Deciphering the Underlying Mechanisms of Sanleng-Ezhu for the Treatment of Idiopathic Pulmonary Fibrosis Based on Network Pharmacology and Single-cell RNA Sequencing Data


Cite item

Full Text

Abstract

Aims:To decipher the underlying mechanisms of Sanleng-Ezhu for the treatment of idiopathic pulmonary fibrosis based on network pharmacology and single-cell RNA sequencing data.

Background:Idiopathic Pulmonary Fibrosis (IPF) is the most common type of interstitial lung disease. Although the combination of herbs Sanleng (SL) and Ezhu (EZ) has shown reliable efficacy in the management of IPF, its underlying mechanisms remain unknown.

Method:Based on LC-MS/MS analysis and the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) database, we identified the bioactive components of SL-EZ. After obtaining the IPF-related dataset GSE53845 from the Gene Expression Omnibus (GEO) database, we performed the differential expression analysis and the weighted gene co-expression network analysis (WGCNA), respectively. We obtained lowly and highly expressed IPF subtype gene sets by comparing Differentially Expressed Genes (DEGs) with the most significantly negatively and positively related IPF modules in WGCNA. Subsequently, we performed Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses on IPF subtype gene sets. The low- and highexpression MCODE subgroup feature genes were identified by the MCODE plug-in and were adopted for Disease Ontology (DO), GO, and KEGG enrichment analyses. Next, we performed the immune cell infiltration analysis of the MCODE subgroup feature genes. Single-cell RNA sequencing analysis demonstrated the cell types which expressed different MCODE subgroup feature genes. Molecular docking and animal experiments validated the effectiveness of SL-EZ in delaying the progression of pulmonary fibrosis.

Result:We obtained 5 bioactive components of SL-EZ as well as their corresponding 66 candidate targets. After normalizing the samples of the GSE53845 dataset from the GEO database source, we obtained 1907 DEGs of IPF. Next, we performed a WGCNA analysis on the dataset and got 11 modules. Notably, we obtained 2 IPF subgroups by contrasting the most significantly up- and down-regulated modular genes in IPF with DEGs, respectively. The different IPF subgroups were compared with drugcandidate targets to obtain direct targets of action. After constructing the protein interaction networks between IPF subgroup genes and drug candidate targets, we applied the MCODE plug-in to filter the highest-scoring MCODE components. DO, GO, and KEGG enrichment analyses were applied to drug targets, IPF subgroup genes, and MCODE component signature genes. In addition, we downloaded the single-cell dataset GSE157376 from the GEO database. By performing quality control and dimensionality reduction, we clustered the scattered primary sample cells into 11 clusters and annotated them into 2 cell subtypes. Drug sensitivity analysis suggested that SL-EZ acts on different cell subtypes in IPF subgroups. Molecular docking revealed the mode of interaction between targets and their corresponding components. Animal experiments confirmed the efficacy of SL-EZ.

Conclusion:We found SL-EZ acted on epithelial cells mainly through the calcium signaling pathway in the lowly-expressed IPF subtype, while in the highly-expressed IPF subtype, SL-EZ acted on smooth muscle cells mainly through the viral infection, apoptosis, and p53 signaling pathway.

About the authors

Xianqiang Zhou

Department of Traditional Chinese Medicine, Jing’an District Central Hospital Affiliated to Fudan University

Email: info@benthamscience.net

Fang Tan

Department of Neurology, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine

Email: info@benthamscience.net

Suxian Zhang

Department of Traditional Chinese Medicine, ing’an District Central Hospital Affiliated to Fudan University

Email: info@benthamscience.net

Tiansong Zhang

Department of Traditional Chinese Medicine, Jing’an District Central Hospital Affiliated to Fudan University

Author for correspondence.
Email: info@benthamscience.net

References

  1. Somogyi, V.; Chaudhuri, N.; Torrisi, S.E.; Kahn, N.; Müller, V.; Kreuter, M. The therapy of idiopathic pulmonary fibrosis: What is next? Eur. Respir. Rev., 2019, 28(153), 190021. doi: 10.1183/16000617.0021-2019 PMID: 31484664
  2. Raghu, G.; Weycker, D.; Edelsberg, J.; Bradford, W.Z.; Oster, G. Incidence and prevalence of idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med., 2006, 174(7), 810-816. doi: 10.1164/rccm.200602-163OC PMID: 16809633
  3. Arjun, S.; Patel, D.; Sanivarapu, R.; Iqbal, J.; Anjum, F. Case report of severe pulmonary fibrosis as a sequelae of COVID-19 Infection. Chest, 2020, 158(4), A433-A434. doi: 10.1016/j.chest.2020.08.422
  4. Combet, M.; Pavot, A.; Savale, L.; Humbert, M.; Monnet, X. Rapid onset honeycombing fibrosis in spontaneously breathing patient with COVID-19. Eur. Respir. J., 2020, 56(2), 2001808. doi: 10.1183/13993003.01808-2020 PMID: 32631838
  5. Schwensen, H.F.; Borreschmidt, L.K.; Storgaard, M.; Redsted, S.; Christensen, S.; Madsen, L.B. Fatal pulmonary fibrosis: A post- COVID-19 autopsy case. J. Clin. Pathol., 2020, jclinpath-2020-206879. doi: 10.1136/jclinpath-2020-206879
  6. Wendisch, D.; Dietrich, O.; Mari, T.; von Stillfried, S.; Ibarra, I.L.; Mittermaier, M.; Mache, C.; Chua, R.L.; Knoll, R.; Timm, S.; Brumhard, S.; Krammer, T.; Zauber, H.; Hiller, A.L.; Pascual-Reguant, A.; Mothes, R.; Bülow, R.D.; Schulze, J.; Leipold, A.M.; Djudjaj, S.; Erhard, F.; Geffers, R.; Pott, F.; Kazmierski, J.; Radke, J.; Pergantis, P.; Baßler, K.; Conrad, C.; Aschenbrenner, A.C.; Sawitzki, B.; Landthaler, M.; Wyler, E.; Horst, D.; Hippenstiel, S.; Hocke, A.; Heppner, F.L.; Uhrig, A.; Garcia, C.; Machleidt, F.; Herold, S.; Elezkurtaj, S.; Thibeault, C.; Witzenrath, M.; Cochain, C.; Suttorp, N.; Drosten, C.; Goffinet, C.; Kurth, F.; Schultze, J.L.; Radbruch, H.; Ochs, M.; Eils, R.; Müller-Redetzky, H.; Hauser, A.E.; Luecken, M.D.; Theis, F.J.; Conrad, C.; Wolff, T.; Boor, P.; Selbach, M.; Saliba, A.E.; Sander, L.E. SARS-CoV-2 infection triggers profibrotic macrophage responses and lung fibrosis. Cell, 2021, 184(26), 6243-6261.e27. doi: 10.1016/j.cell.2021.11.033 PMID: 34914922
  7. George, P.M.; Wells, A.U.; Jenkins, R.G. Pulmonary fibrosis and COVID-19: The potential role for antifibrotic therapy. Lancet Respir. Med., 2020, 8(8), 807-815. doi: 10.1016/S2213-2600(20)30225-3 PMID: 32422178
  8. Richeldi, L.; Collard, H.R.; Jones, M.G. Idiopathic pulmonary fibrosis. Lancet, 2017, 389(10082), 1941-1952. doi: 10.1016/S0140-6736(17)30866-8 PMID: 28365056
  9. Lederer, D.J.; Martinez, F.J. Idiopathic pulmonary fibrosis. N. Engl. J. Med., 2018, 378(19), 1811-1823. doi: 10.1056/NEJMra1705751 PMID: 29742380
  10. King, C.S.; Nathan, S.D. Idiopathic pulmonary fibrosis: Effects and optimal management of comorbidities. Lancet Respir. Med., 2017, 5(1), 72-84. doi: 10.1016/S2213-2600(16)30222-3 PMID: 27599614
  11. Raghu, G.; Rochwerg, B.; Zhang, Y.; Garcia, C.A.C.; Azuma, A.; Behr, J.; Brozek, J.L.; Collard, H.R.; Cunningham, W.; Homma, S.; Johkoh, T.; Martinez, F.J.; Myers, J.; Protzko, S.L.; Richeldi, L.; Rind, D.; Selman, M.; Theodore, A.; Wells, A.U.; Hoogsteden, H.; Schünemann, H.J. An official ATS/ERS/JRS/ALAT clinical practice guideline: Treatment of idiopathic pulmonary fibrosis. An update of the 2011 clinical practice guideline. Am. J. Respir. Crit. Care Med., 2015, 192(2), e3-e19. doi: 10.1164/rccm.201506-1063ST PMID: 26177183
  12. Borie, R.; Justet, A.; Beltramo, G.; Manali, E.D.; Pradère, P.; Spagnolo, P.; Crestani, B. Pharmacological management of IPF. Respirology, 2016, 21(4), 615-625. doi: 10.1111/resp.12778 PMID: 27072575
  13. George, P.M.; Patterson, C.M.; Reed, A.K.; Thillai, M. Lung transplantation for idiopathic pulmonary fibrosis. Lancet Respir. Med., 2019, 7(3), 271-282. doi: 10.1016/S2213-2600(18)30502-2 PMID: 30738856
  14. Clay, E.; Cristeau, O.; Chafaie, R.; Pinta, A.; Mazaleyrat, B.; Cottin, V. Cost-effectiveness of pirfenidone compared to all available strategies for the treatment of idiopathic pulmonary fibrosis in France. J. Mark. Access Health Policy, 2019, 7(1), 1626171. doi: 10.1080/20016689.2019.1626171 PMID: 31275535
  15. Verpoorte, R.; Choi, Y.H.; Kim, H.K. Ethnopharmacology and systems biology: A perfect holistic match. J. Ethnopharmacol., 2005, 100(1-2), 53-56. doi: 10.1016/j.jep.2005.05.033 PMID: 16026949
  16. Zhang, S. The effect of typical couplet medicinals on bleomycin-induced pulmonary fibrosis in mice based on data mining; Fudan University: Shanghai, 2018.
  17. Jia, J.; Li, X.; Ren, X.; Liu, X.; Wang, Y.; Dong, Y.; Wang, X.; Sun, S.; Xu, X.; Li, X.; Song, R.; Ma, J.; Yu, A.; Fan, Q.; Wei, J.; Yan, X.; Wang, X.; She, G. Sparganii Rhizoma: A review of traditional clinical application, processing, phytochemistry, pharmacology, and toxicity. J. Ethnopharmacol., 2021, 268, 113571. doi: 10.1016/j.jep.2020.113571 PMID: 33181282
  18. Zhou, Y.; Xie, M.; Song, Y.; Wang, W.; Zhao, H.; Tian, Y.; Wang, Y.; Bai, S.; Zhao, Y.; Chen, X.; She, G. Two traditional chinese medicines curcumae radix and curcumae rhizoma: An ethnopharmacology, phytochemistry, and pharmacology review. Evid. Based Complement. Alternat. Med., 2016, 2016, 1-30. doi: 10.1155/2016/4973128 PMID: 27057197
  19. Lee, T.K.; Lee, D.; Lee, S.R.; Ko, Y.J.; Sung Kang, K.; Chung, S.J.; Kim, K.H. Sesquiterpenes from Curcuma zedoaria rhizomes and their cytotoxicity against human gastric cancer AGS cells. Bioorg. Chem., 2019, 87, 117-122. doi: 10.1016/j.bioorg.2019.03.015 PMID: 30884305
  20. Li, S.; Zhang, B. Traditional Chinese medicine network pharmacology: Theory, methodology and application. Chin. J. Nat. Med., 2013, 11(2), 110-120. doi: 10.1016/S1875-5364(13)60037-0 PMID: 23787177
  21. Chen, X.; Yu, J.; Lei, H.; Li, L.; Liu, X.; Liu, B.; Xie, Y.; Fang, H. Exploring the mechanism of buyang huanwu decoction alleviating restenosis by regulating VSMC phenotype switching and proliferation by network pharmacology and molecular docking. Curr. Computeraided Drug Des., 2023, 19(6), 451-464. PMID: 36740793
  22. Shan, W.; Yang, Z.; Zhao, Y.; Hu, Y.; Yan, R.; Wu, X.; Huang, J.; Lin, M. Bioactive phytochemicals and molecular mechanisms of artemisiae capillariae against drug induced liver injury based on network pharmacology. Curr. Computeraided Drug Des., 2023, 19(6), 476-489. PMID: 36856178
  23. Guo, D.; Jin, J.; Liu, J.; Ren, M.; He, Y. Network pharmacological study of compound kushen injection in esophageal cancer. Curr. Computeraided Drug Des., 2023, 19(5), 367-381. PMID: 36635923
  24. Heath, J.R.; Ribas, A.; Mischel, P.S. Single-cell analysis tools for drug discovery and development. Nat. Rev. Drug Discov., 2016, 15(3), 204-216. doi: 10.1038/nrd.2015.16 PMID: 26669673
  25. Luo, Y.; Fan, R. Deconvolution analysis of cell‐type expression from bulk tissues by integrating with single‐cell expression reference. Genet. Epidemiol., 2022, 46(8), 615-628. doi: 10.1002/gepi.22494 PMID: 35788983
  26. Nascimento, I.J.S.; de Aquino, T.M.; da Silva-Júnior, E.F. The new era of drug discovery: The power of Computer-aided Drug Design (CADD). Lett. Drug Des. Discov., 2022, 19(11), 951-955. doi: 10.2174/1570180819666220405225817
  27. dos Santos Nascimento, I.J.; da Silva-Júnior, E.F.; de Aquino, T.M. Molecular modeling targeting transmembrane serine protease 2 (TMPRSS2) as an alternative drug target against coronaviruses. Curr. Drug Targets, 2022, 23(3), 240-259. doi: 10.2174/1389450122666210809090909
  28. dos Santos Nascimento, I.J.; de Aquino, T.M.; da Silva-Júnior, E.F. Drug repurposing: A strategy for discovering inhibitors against emerging viral infections. Curr. Med. Chem., 2021, 28(15), 2887-2942. doi: 10.2174/0929867327666200812215852
  29. Li, C.; Du, X.; Liu, Y.; Liu, Q.Q.; Zhi, W.B.; Wang, C.L.; Zhou, J.; Li, Y.; Zhang, H. A systems pharmacology approach for identifying the multiple mechanisms of action for the rougui-fuzi herb pair in the treatment of cardiocerebral vascular diseases. Evid. Based Complement. Alternat. Med., 2020, 2020, 1-17. doi: 10.1155/2020/5196302 PMID: 32025235
  30. Kim, S.; Chen, J.; Cheng, T.; Gindulyte, A.; He, J.; He, S.; Li, Q.; Shoemaker, B.A.; Thiessen, P.A.; Yu, B.; Zaslavsky, L.; Zhang, J.; Bolton, E.E. PubChem in 2021: New data content and improved web interfaces. Nucleic Acids Res., 2021, 49(D1), D1388-D1395. doi: 10.1093/nar/gkaa971 PMID: 33151290
  31. Bateman, A.; Martin, M-J.; Orchard, S.; Magrane, M.; Agivetova, R.; Ahmad, S.; Alpi, E.; Bowler-Barnett, E.H.; Britto, R.; Bursteinas, B.; Bye-A-Jee, H.; Coetzee, R.; Cukura, A.; Da Silva, A.; Denny, P.; Dogan, T.; Ebenezer, T.G.; Fan, J.; Castro, L.G.; Garmiri, P.; Georghiou, G.; Gonzales, L.; Hatton-Ellis, E.; Hussein, A.; Ignatchenko, A.; Insana, G.; Ishtiaq, R.; Jokinen, P.; Joshi, V.; Jyothi, D.; Lock, A.; Lopez, R.; Luciani, A.; Luo, J.; Lussi, Y.; MacDougall, A.; Madeira, F.; Mahmoudy, M.; Menchi, M.; Mishra, A.; Moulang, K.; Nightingale, A.; Oliveira, C.S.; Pundir, S.; Qi, G.; Raj, S.; Rice, D.; Lopez, M.R.; Saidi, R.; Sampson, J.; Sawford, T.; Speretta, E.; Turner, E.; Tyagi, N.; Vasudev, P.; Volynkin, V.; Warner, K.; Watkins, X.; Zaru, R.; Zellner, H.; Bridge, A.; Poux, S.; Redaschi, N.; Aimo, L.; Argoud-Puy, G.; Auchincloss, A.; Axelsen, K.; Bansal, P.; Baratin, D.; Blatter, M-C.; Bolleman, J.; Boutet, E.; Breuza, L.; Casals-Casas, C.; de Castro, E.; Echioukh, K.C.; Coudert, E.; Cuche, B.; Doche, M.; Dornevil, D.; Estreicher, A.; Famiglietti, M.L.; Feuermann, M.; Gasteiger, E.; Gehant, S.; Gerritsen, V.; Gos, A.; Gruaz-Gumowski, N.; Hinz, U.; Hulo, C.; Hyka-Nouspikel, N.; Jungo, F.; Keller, G.; Kerhornou, A.; Lara, V.; Le Mercier, P.; Lieberherr, D.; Lombardot, T.; Martin, X.; Masson, P.; Morgat, A.; Neto, T.B.; Paesano, S.; Pedruzzi, I.; Pilbout, S.; Pourcel, L.; Pozzato, M.; Pruess, M.; Rivoire, C.; Sigrist, C.; Sonesson, K.; Stutz, A.; Sundaram, S.; Tognolli, M.; Verbregue, L.; Wu, C.H.; Arighi, C.N.; Arminski, L.; Chen, C.; Chen, Y.; Garavelli, J.S.; Huang, H.; Laiho, K.; McGarvey, P.; Natale, D.A.; Ross, K.; Vinayaka, C.R.; Wang, Q.; Wang, Y.; Yeh, L-S.; Zhang, J.; Ruch, P.; Teodoro, D. UniProt: The universal protein knowledgebase in 2021. Nucleic Acids Res., 2021, 49(D1), D480-D489. doi: 10.1093/nar/gkaa1100 PMID: 33237286
  32. DePianto, D.J.; Chandriani, S.; Abbas, A.R.; Jia, G.; N’Diaye, E.N.; Caplazi, P.; Kauder, S.E.; Biswas, S.; Karnik, S.K.; Ha, C.; Modrusan, Z.; Matthay, M.A.; Kukreja, J.; Collard, H.R.; Egen, J.G.; Wolters, P.J.; Arron, J.R. Heterogeneous gene expression signatures correspond to distinct lung pathologies and biomarkers of disease severity in idiopathic pulmonary fibrosis. Thorax, 2015, 70(1), 48-56. doi: 10.1136/thoraxjnl-2013-204596 PMID: 25217476
  33. Barrett, T.; Wilhite, S.E.; Ledoux, P.; Evangelista, C.; Kim, I.F.; Tomashevsky, M.; Marshall, K.A.; Phillippy, K.H.; Sherman, P.M.; Holko, M.; Yefanov, A.; Lee, H.; Zhang, N.; Robertson, C.L.; Serova, N.; Davis, S.; Soboleva, A. NCBI GEO: Archive for functional genomics data sets-update. Nucleic Acids Res., 2012, 41(D1), D991-D995. doi: 10.1093/nar/gks1193 PMID: 23193258
  34. Debrabant, B. The null hypothesis of GSEA, and a novel statistical model for competitive gene set analysis. Bioinformatics, 2017, 33(9), 1271-1277. doi: 10.1093/bioinformatics/btw803 PMID: 28453686
  35. Langfelder, P.; Horvath, S. WGCNA: An R package for weighted correlation network analysis. BMC Bioinformatics, 2008, 9(1), 559. doi: 10.1186/1471-2105-9-559 PMID: 19114008
  36. Szklarczyk, D.; Gable, A.L.; Nastou, K.C.; Lyon, D.; Kirsch, R.; Pyysalo, S.; Doncheva, N.T.; Legeay, M.; Fang, T.; Bork, P.; Jensen, L.J.; von Mering, C. The STRING database in 2021: Customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res., 2021, 49(D1), D605-D612. doi: 10.1093/nar/gkaa1074 PMID: 33237311
  37. Tang, Y.; Li, M.; Wang, J.; Pan, Y.; Wu, F.X. CytoNCA: A cytoscape plugin for centrality analysis and evaluation of protein interaction networks. Biosystems, 2015, 127, 67-72. doi: 10.1016/j.biosystems.2014.11.005 PMID: 25451770
  38. Berman, H.; Henrick, K.; Nakamura, H. Announcing the worldwide protein data bank. Nat. Struct. Mol. Biol., 2003, 10(12), 980. doi: 10.1038/nsb1203-980 PMID: 14634627
  39. Lohning, A.E.; Levonis, S.M.; Williams-Noonan, B.; Schweiker, S.S. A practical guide to molecular docking and homology modelling for medicinal chemists. Curr. Top. Med. Chem., 2017, 17(18), 2023-2040. doi: 10.2174/1568026617666170130110827 PMID: 28137238
  40. Olson, A.L.; Gifford, A.H.; Inase, N.; Fernández Pérez, E.R.; Suda, T. The epidemiology of idiopathic pulmonary fibrosis and interstitial lung diseases at risk of a progressive-fibrosing phenotype. Eur. Respir. Rev., 2018, 27(150), 180077. doi: 10.1183/16000617.0077-2018 PMID: 30578336
  41. Selman, M.; Pardo, A. Revealing the pathogenic and aging-related mechanisms of the enigmatic idiopathic pulmonary fibrosis. An integral model. Am. J. Respir. Crit. Care Med., 2014, 189(10), 1161-1172. doi: 10.1164/rccm.201312-2221PP PMID: 24641682
  42. Sgalla, G.; Biffi, A.; Richeldi, L. Idiopathic pulmonary fibrosis: Diagnosis, epidemiology and natural history. Respirology, 2016, 21(3), 427-437. doi: 10.1111/resp.12683 PMID: 26595062
  43. Richeldi, L.; Rubin, A.S.; Avdeev, S.; Udwadia, Z.F.; Xu, Z.J. Idiopathic pulmonary fibrosis in BRIC countries: The cases of Brazil, Russia, India, and China. BMC Med., 2015, 13(1), 237. doi: 10.1186/s12916-015-0495-0 PMID: 26399999
  44. Gao, L.; Tang, H.; He, H.; Liu, J.; Mao, J.; Ji, H.; Lin, H.; Wu, T. Glycyrrhizic acid alleviates bleomycin-induced pulmonary fibrosis in rats. Front. Pharmacol., 2015, 6, 215. doi: 10.3389/fphar.2015.00215 PMID: 26483688
  45. Li, R.F.; Chen, X.Y.; Xu, Y.; Feng, F.C.; He, H.L.; Zhou, X.M. Inhibitory effects of alkaline extract from the pericarp of Citrus reticulata Blanco on collagen behavior in bleomycin-induced pulmonary fibrosis. J. Ethnopharmacol., 2021, 269, 113761. doi: 10.1016/j.jep.2020.113761 PMID: 33383114
  46. Zhang, Y.; Gu, L.; Xia, Q.; Tian, L.; Qi, J.; Cao, M. Radix astragali and radix angelicae sinensis in the treatment of idiopathic pulmonary fibrosis: A systematic review and meta-analysis. Front. Pharmacol., 2020, 11, 415. doi: 10.3389/fphar.2020.00415 PMID: 32425767
  47. Zhang, S.; Wu, H.; Liu, J.; Gu, H.; Li, X.; Zhang, T. Medication regularity of pulmonary fibrosis treatment by contemporary traditional Chinese medicine experts based on data mining. J. Thorac. Dis., 2018, 10(3), 1775-1787. doi: 10.21037/jtd.2018.03.11 PMID: 29707332
  48. Wu, Q.L.; Cheng, Y.Q.; Liu, A.J.; Zhang, W.D. Formononetin recovered injured nerve functions by enhancing synaptic plasticity in ischemic stroke rats. Biochem. Biophys. Res. Commun., 2020, 525(1), 67-72. doi: 10.1016/j.bbrc.2020.02.015 PMID: 32081422
  49. Sugimoto, M.; Ko, R.; Goshima, H.; Koike, A.; Shibano, M.; Fujimori, K. Formononetin attenuates H2O2-induced cell death through decreasing ROS level by PI3K/Akt-Nrf2-activated antioxidant gene expression and suppressing MAPK-regulated apoptosis in neuronal SH-SY5Y cells. Neurotoxicology, 2021, 85, 186-200. doi: 10.1016/j.neuro.2021.05.014 PMID: 34077701
  50. Zhao, X.; Qu, G.; Song, C.; Li, R.; Liu, W.; Lv, C.; Song, X.; Zhang, J.; Li, M. Novel formononetin-7-sal ester ameliorates pulmonary fibrosis via MEF2c signaling pathway. Toxicol. Appl. Pharmacol., 2018, 356, 15-24. doi: 10.1016/j.taap.2018.07.005 PMID: 29990528
  51. Babu, S.; Jayaraman, S. An update on β-sitosterol: A potential herbal nutraceutical for diabetic management. Biomed. Pharmacother., 2020, 131, 110702. doi: 10.1016/j.biopha.2020.110702 PMID: 32882583
  52. Wu, A.G.; Zeng, W.; Wong, V.K.W.; Zhu, Y.Z.; Lo, A.C.Y.; Liu, L.; Law, B.Y.K. Hederagenin and α-hederin promote degradation of proteins in neurodegenerative diseases and improve motor deficits in MPTP-mice. Pharmacol. Res., 2017, 115, 25-44. doi: 10.1016/j.phrs.2016.11.002 PMID: 27838509
  53. Akhtar, M.; Shaukat, A.; Zahoor, A.; Chen, Y.; Wang, Y.; Yang, M.; Umar, T.; Guo, M.; Deng, G. Anti-inflammatory effects of Hederacoside-C on Staphylococcus aureus induced inflammation via TLRs and their downstream signal pathway in vivo and in vitro. Microb. Pathog., 2019, 137, 103767. doi: 10.1016/j.micpath.2019.103767 PMID: 31580956
  54. Wolf, A.; Gosens, R.; Meurs, H.; Häberlein, H. Pre-treatment with α-hederin increases β-adrenoceptor mediated relaxation of airway smooth muscle. Phytomedicine, 2011, 18(2-3), 214-218. doi: 10.1016/j.phymed.2010.05.010 PMID: 20637581
  55. Ma, W.; Huang, Q.; Xiong, G.; Deng, L.; He, Y. The protective effect of Hederagenin on pulmonary fibrosis by regulating the Ras/JNK/NFAT4 axis in rats. Biosci. Biotechnol. Biochem., 2020, 84(6), 1131-1138. doi: 10.1080/09168451.2020.1721263 PMID: 32024440
  56. Antwi, A.O.; Obiri, D.D.; Osafo, N. Stigmasterol modulates allergic airway inflammation in guinea pig model of ovalbumin-induced asthma. Mediators Inflamm., 2017, 2017, 1-11. doi: 10.1155/2017/2953930 PMID: 28555089
  57. Mendez, E.; Calzada, C.; Ocharan, E.; Sierra, A.; Castillo, C.; Ramirez, I.; Meaney, E.; Meaney, A.; Asbun, J.; Miliar, A.; Herrera, J.; Ceballos, G. Differential expression of α1-adrenergic receptor subtypes in coronary microvascular endothelial cells in culture. Eur. J. Pharmacol., 2006, 546(1-3), 127-133. doi: 10.1016/j.ejphar.2006.06.070 PMID: 16904663
  58. Lin, C.H.; Nfor, O.N.; Ho, C.C.; Hsu, S.Y.; Tantoh, D.M.; Liaw, Y.C.; Daria, M.R.; Chen, C.H.; Liaw, Y.P. Association of ADH1B polymorphism and alcohol consumption with increased risk of intracerebral hemorrhagic stroke. J. Transl. Med., 2021, 19(1), 227. doi: 10.1186/s12967-021-02904-4 PMID: 34051793
  59. Zhao, L.; Yang, F.; Xu, K.; Cao, H.; Zheng, G.Y.; Zhang, Y.; Li, J.; Cui, H.; Chen, X.; Zhu, Z.; He, H.; Mo, X.; Kennedy, B.K.; Suh, Y.; Zeng, Y.; Tian, X.L. Common genetic variants of the β2-adrenergic receptor affect its translational efficiency and are associated with human longevity. Aging Cell, 2012, 11(6), 1094-1101. doi: 10.1111/acel.12011 PMID: 23020224
  60. Bossard, F.; Silantieff, É.; Lavazais-Blancou, E.; Robay, A.; Sagan, C.; Rozec, B.; Gauthier, C. β1, β2, and β3 adrenoceptors and Na+/H+ exchanger regulatory factor 1 expression in human bronchi and their modifications in cystic fibrosis. Am. J. Respir. Cell Mol. Biol., 2011, 44(1), 91-98. doi: 10.1165/rcmb.2009-0372OC PMID: 20203292
  61. Moon, Y.K.; Kim, H.; Kim, S.; Lim, S-W.; Kim, D.K. Influence of antidepressant treatment on SLC6A4 methylation in korean patients with major depression. Am. J. Med. Genet. B. Neuropsychiatr. Genet., 2022, 192(1-2), 28-37. doi: 10.1002/ajmg.b.32921 PMID: 36094099
  62. Liu, L.; Hu, Y.; Lu, Y.; Hu, L.; Gao, C.; Nie, S. Sex-dependent DNA hypermethylation of SLC6A4 in patients with schizophrenia. Neurosci. Lett., 2022, 769, 136394. doi: 10.1016/j.neulet.2021.136394 PMID: 34910986
  63. Cybulska, A.M.; Szkup, M.; Schneider-Matyka, D.; Skonieczna-Żydecka, K.; Kaczmarczyk, M.; Jurczak, A.; Wieder-Huszla, S.; Karakiewicz, B.; Grochans, E. Depressive symptoms among middle-aged women—understanding the cause. Brain Sci., 2020, 11(1), 26. doi: 10.3390/brainsci11010026 PMID: 33379297
  64. Buffin-Meyer, B.; Crassous, P.A.; Delage, C.; Denis, C.; Schaak, S.; Paris, H. EGF receptor transactivation and PI3-kinase mediate stimulation of ERK by α2A-adrenoreceptor in intestinal epithelial cells: A role in wound healing. Eur. J. Pharmacol., 2007, 574(2-3), 85-93. doi: 10.1016/j.ejphar.2007.07.014 PMID: 17655843
  65. Tutton, P.J.; Barkla, D.H. Biogenic amines as regulators of the proliferative activity of normal and neoplastic intestinal epithelial cells (review). Anticancer Res., 1987, 7(1), 1-12. PMID: 3032070
  66. Epperson, S.A.; Brunton, L.L.; Ramirez-Sanchez, I.; Villarreal, F. Adenosine receptors and second messenger signaling pathways in rat cardiac fibroblasts. Am. J. Physiol. Cell Physiol., 2009, 296(5), C1171-C1177. doi: 10.1152/ajpcell.00290.2008 PMID: 19244482

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers