Network Pharmacology, Molecular Docking and Experimental Verification Revealing the Mechanism of Fule Cream against Childhood Atopic Dermatitis
- Authors: Liu C.1, Liu Y.2, Liu Y.1, Guan J.3, Gao Y.4, Ou L.1, Qi Y.1, Lv X.5, Zhang J.1
-
Affiliations:
- Drug Clinical Trial Institution, Children's Hospital of Capital Institute of Pediatrics
- Immunology and Cancer Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College
- Preparation Research Laboratory, Childrens Hospital, Capital Institute of Pediatrics,
- Department of Dermatology,, Childrens Hospital, Capital Institute of Pediatrics
- Immunology and Cancer Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College,
- Issue: Vol 20, No 6 (2024)
- Pages: 860-875
- Section: Chemistry
- URL: https://rjpbr.com/1573-4099/article/view/644379
- DOI: https://doi.org/10.2174/0115734099257922230925074407
- ID: 644379
Cite item
Full Text
Abstract
Background:The Fule Cream (FLC) is an herbal formula widely used for the treatment of pediatric atopic dermatitis (AD), however, the main active components and functional mechanisms of FLC remain unclear. This study performed an initial exploration of the potential acting mechanisms of FLC in childhood AD treatment through analyses of an AD mouse model using network pharmacology, molecular docking technology, and RNA-seq analysis.
Materials and Methods:The main bioactive ingredients and potential targets of FLC were collected from the Traditional Chinese Medicine Systems Pharmacology Database (TCMSP) and SwissTargetPrediction databases. An herb-compound-target network was built using Cytoscape 3.7.2. The disease targets of pediatric AD were searched in the DisGeNET, Therapeutic Target Database (TTD), OMIM, DrugBank and GeneCards databases. The overlapping targets between the active compounds and the disease were imported into the STRING database for the construction of the protein-protein interaction (PPI) network. Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses of the intersection targets were performed, and molecular docking verification of the core compounds and targets was then performed using AutoDock Vina 1.1.2. The AD mouse model for experimental verification was induced by MC903.
Results:The herb-compound-target network included 415 nodes and 1990 edges. Quercetin, luteolin, beta-sitosterol, wogonin, ursolic acid, apigenin, stigmasterol, kaempferol, sitogluside and myricetin were key nodes. The targets with higher degree values were IL-4, IL-10, IL-1α, IL-1β, TNFα, CXCL8, CCL2, CXCL10, CSF2, and IL-6. GO enrichment and KEGG analyses illustrated that important biological functions involved response to extracellular stimulus, regulation of cell adhesion and migration, inflammatory response, cellular response to cytokine stimulus, and cytokine receptor binding. The signaling pathways in the FLC treatment of pediatric AD mainly involve the PI3K-Akt signaling pathway, cytokine‒cytokine receptor interaction, chemokine signaling pathway, TNF signaling pathway, and NF-κB signaling pathway. The binding energy scores of the compounds and targets indicate a good binding activity. Luteolin, quercetin, and kaempferol showed a strong binding activity with TNFα and IL-4.
Conclusion:This study illustrates the main bioactive components and potential mechanisms of FLC in the treatment of childhood AD, and provides a basis and reference for subsequent exploration.
About the authors
Chang Liu
Drug Clinical Trial Institution, Children's Hospital of Capital Institute of Pediatrics
Email: info@benthamscience.net
Yuxin Liu
Immunology and Cancer Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College
Email: info@benthamscience.net
Yi Liu
Drug Clinical Trial Institution, Children's Hospital of Capital Institute of Pediatrics
Email: info@benthamscience.net
Jing Guan
Preparation Research Laboratory, Childrens Hospital, Capital Institute of Pediatrics,
Email: info@benthamscience.net
Ying Gao
Department of Dermatology,, Childrens Hospital, Capital Institute of Pediatrics
Email: info@benthamscience.net
Ling Ou
Drug Clinical Trial Institution, Children's Hospital of Capital Institute of Pediatrics
Email: info@benthamscience.net
Yuenan Qi
Drug Clinical Trial Institution, Children's Hospital of Capital Institute of Pediatrics
Email: info@benthamscience.net
Xiaoxi Lv
Immunology and Cancer Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College,
Author for correspondence.
Email: info@benthamscience.net
Jianmin Zhang
Drug Clinical Trial Institution, Children's Hospital of Capital Institute of Pediatrics
Author for correspondence.
Email: info@benthamscience.net
References
- Langan, S.M.; Irvine, A.D.; Weidinger, S. Atopic dermatitis. Lancet, 2020, 396(10247), 345-360. doi: 10.1016/S0140-6736(20)31286-1 PMID: 32738956
- Weidinger, S.; Beck, L.A.; Bieber, T.; Kabashima, K.; Irvine, A.D. Atopic dermatitis. Nat. Rev. Dis. Primers, 2018, 4(1), 1. doi: 10.1038/s41572-018-0001-z PMID: 29930242
- Bieber, T. Atopic dermatitis: An expanding therapeutic pipeline for a complex disease. Nat. Rev. Drug Discov., 2022, 21(1), 21-40. doi: 10.1038/s41573-021-00266-6 PMID: 34417579
- Silverberg, J.I. Public health burden and epidemiology of atopic dermatitis. Dermatol. Clin., 2017, 35(3), 283-289. doi: 10.1016/j.det.2017.02.002 PMID: 28577797
- Ariëns, L.; Nimwegen, K.; Shams, M.; Bruin, D.; Schaft, J.; Os-Medendorp, H.; Bruin-Weller, M. Economic burden of adult patients with moderate to severe atopic dermatitis indicated for systemic treatment. Acta Derm. Venereol., 2019, 99(9), 762-768. doi: 10.2340/00015555-3212 PMID: 31073619
- Tsoi, L.C.; Rodriguez, E.; Stölzl, D.; Wehkamp, U.; Sun, J.; Gerdes, S.; Sarkar, M.K.; Hübenthal, M.; Zeng, C.; Uppala, R.; Xing, X.; Thielking, F.; Billi, A.C.; Swindell, W.R.; Shefler, A.; Chen, J.; Patrick, M.T.; Harms, P.W.; Kahlenberg, J.M.; Perez White, B.E.; Maverakis, E.; Gudjonsson, J.E.; Weidinger, S. Progression of acute-to-chronic atopic dermatitis is associated with quantitative rather than qualitative changes in cytokine responses. J. Allergy Clin. Immunol., 2020, 145(5), 1406-1415. doi: 10.1016/j.jaci.2019.11.047 PMID: 31891686
- Tsoi, L.C.; Rodriguez, E.; Degenhardt, F.; Baurecht, H.; Wehkamp, U.; Volks, N.; Szymczak, S.; Swindell, W.R.; Sarkar, M.K.; Raja, K.; Shao, S.; Patrick, M.; Gao, Y.; Uppala, R.; Perez White, B.E.; Getsios, S.; Harms, P.W.; Maverakis, E.; Elder, J.T.; Franke, A.; Gudjonsson, J.E.; Weidinger, S. Atopic dermatitis is an IL-13dominant disease with greater molecular heterogeneity compared to psoriasis. J. Invest. Dermatol., 2019, 139(7), 1480-1489. doi: 10.1016/j.jid.2018.12.018 PMID: 30641038
- Gittler, J.K.; Shemer, A.; Suárez-Fariñas, M.; Fuentes-Duculan, J.; Gulewicz, K.J.; Wang, C.Q.F.; Mitsui, H.; Cardinale, I.; de Guzman Strong, C.; Krueger, J.G.; Guttman-Yassky, E. Progressive activation of TH2/TH22 cytokines and selective epidermal proteins characterizes acute and chronic atopic dermatitis. J. Allergy Clin. Immunol., 2012, 130(6), 1344-1354. doi: 10.1016/j.jaci.2012.07.012 PMID: 22951056
- Renert-Yuval, Y.; Del Duca, E.; Pavel, A.B.; Fang, M.; Lefferdink, R.; Wu, J.; Diaz, A.; Estrada, Y.D.; Canter, T.; Zhang, N.; Wagner, A.; Chamlin, S.; Krueger, J.G.; Guttman-Yassky, E.; Paller, A.S. The molecular features of normal and atopic dermatitis skin in infants, children, adolescents, and adults. J. Allergy Clin. Immunol., 2021, 148(1), 148-163. doi: 10.1016/j.jaci.2021.01.001 PMID: 33453290
- Mancuso, J.B.; Lee, S.S.; Paller, A.S.; Ohya, Y.; Eichenfield, L.F. Management of severe atopic dermatitis in pediatric patients. J. Allergy Clin. Immunol. Pract., 2021, 9(4), 1462-1471. doi: 10.1016/j.jaip.2021.02.017 PMID: 33838839
- Mandlik, D.S.; Mandlik, S.K. Atopic dermatitis: New insight into the etiology, pathogenesis, diagnosis and novel treatment strategies. Immunopharmacol. Immunotoxicol., 2021, 43(2), 105-125. doi: 10.1080/08923973.2021.1889583 PMID: 33645388
- Wang, Z.; Xia, Q.; Liu, X.; Liu, W.; Huang, W.; Mei, X.; Luo, J.; Shan, M.; Lin, R.; Zou, D.; Ma, Z. Phytochemistry, pharmacology, quality control and future research of Forsythia suspensa (Thunb.) Vahl: A review. J. Ethnopharmacol., 2018, 210, 318-339. doi: 10.1016/j.jep.2017.08.040 PMID: 28887216
- Hao, Y.; Li, D.; Piao, X.; Piao, X. Forsythia suspensa extract alleviates hypersensitivity induced by soybean β-conglycinin in weaned piglets. J. Ethnopharmacol., 2010, 128(2), 412-418. doi: 10.1016/j.jep.2010.01.035 PMID: 20083183
- Sung, Y.Y.; Lee, A.Y.; Kim, H.K. Forsythia suspensa fruit extracts and the constituent matairesinol confer anti-allergic effects in an allergic dermatitis mouse model. J. Ethnopharmacol., 2016, 187, 49-56. doi: 10.1016/j.jep.2016.04.015 PMID: 27085937
- Sung, Y.Y.; Yoon, T.; Jang, S.; Kim, H.K. Forsythia suspensa suppresses house dust mite extract-induced atopic dermatitis in NC/Nga mice. PLoS One, 2016, 11(12), e0167687. doi: 10.1371/journal.pone.0167687 PMID: 27936051
- Zhang, H.; Sun, X.; Qi, H.; Ma, Q.; Zhou, Q.; Wang, W.; Wang, K. Pharmacological inhibition of the temperature-sensitive and Ca 2+ -Permeable transient receptor potential vanilloid trpv3 channel by natural forsythoside b attenuates pruritus and cytotoxicity of keratinocytes. J. Pharmacol. Exp. Ther., 2019, 368(1), 21-31. doi: 10.1124/jpet.118.254045 PMID: 30377214
- Kim, H.; Yang, B.; Lee, H-B.; Kim, S.; Park, Y.C.; Kim, K. Decoction of Dictamnus Dasycarpus Turcz. Root bark ameliorates skin lesions and inhibits inflammatory reactions in mice with contact dermatitis. Pharmacogn. Mag., 2017, 13(51), 483-487. doi: 10.4103/0973-1296.211034 PMID: 28839376
- Gao, P.; Wang, L.; Zhao, L.; Zhang, Q.; Zeng, K.; Zhao, M.; Jiang, Y.; Tu, P.; Guo, X. Anti-inflammatory quinoline alkaloids from the root bark of Dictamnus dasycarpus. Phytochemistry, 2020, 172, 112260. doi: 10.1016/j.phytochem.2020.112260 PMID: 31982646
- Kim, H.; Kim, M.; Kim, H.; San Lee, G.; Gun An, W.; In Cho, S. Anti-inflammatory activities of Dictamnus dasycarpus Turcz., root bark on allergic contact dermatitis induced by dinitrofluorobenzene in mice. J. Ethnopharmacol., 2013, 149(2), 471-477. doi: 10.1016/j.jep.2013.06.055 PMID: 23850712
- Chu, X.; Wei, M.; Yang, X.; Cao, Q.; Xie, X.; Guan, M.; Wang, D.; Deng, X. Effects of an anthraquinone derivative from Rheum officinale Baill, emodin, on airway responses in a murine model of asthma. Food Chem. Toxicol., 2012, 50(7), 2368-2375. doi: 10.1016/j.fct.2012.03.076 PMID: 22484343
- Lin, Y.C.; Yang, C.C.; Lin, C.H.; Hsia, T.C.; Chao, W.C.; Lin, C.C. Atractylodin ameliorates ovalbumin induced asthma in a mouse model and exerts immunomodulatory effects on Th2 immunity and dendritic cell function. Mol. Med. Rep., 2020, 22(6), 4909-4918. doi: 10.3892/mmr.2020.11569 PMID: 33174031
- Hopkins, A.L. Network pharmacology: The next paradigm in drug discovery. Nat. Chem. Biol., 2008, 4(11), 682-690. doi: 10.1038/nchembio.118 PMID: 18936753
- Wang, Y.; Yuan, Y.; Wang, W.; He, Y.; Zhong, H.; Zhou, X.; Chen, Y.; Cai, X.J.; Liu, L. Mechanisms underlying the therapeutic effects of Qingfeiyin in treating acute lung injury based on GEO datasets, network pharmacology and molecular docking. Comput. Biol. Med., 2022, 145, 105454. doi: 10.1016/j.compbiomed.2022.105454 PMID: 35367781
- Li, X.; Wei, S.; Niu, S.; Ma, X.; Li, H.; Jing, M.; Zhao, Y. Network pharmacology prediction and molecular docking-based strategy to explore the potential mechanism of Huanglian Jiedu Decoction against sepsis. Comput. Biol. Med., 2022, 144, 105389. doi: 10.1016/j.compbiomed.2022.105389 PMID: 35303581
- Ru, J.; Li, P.; Wang, J.; Zhou, W.; Li, B.; Huang, C.; Li, P.; Guo, Z.; Tao, W.; Yang, Y.; Xu, X.; Li, Y.; Wang, Y.; Yang, L. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines. J. Cheminform., 2014, 6(1), 13. doi: 10.1186/1758-2946-6-13 PMID: 24735618
- Daina, A.; Michielin, O.; Zoete, V. SwissTargetPrediction: Updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Res., 2019, 47(W1), W357-W364. doi: 10.1093/nar/gkz382 PMID: 31106366
- Tao, W.; Xu, X.; Wang, X.; Li, B.; Wang, Y.; Li, Y.; Yang, L. Network pharmacology-based prediction of the active ingredients and potential targets of Chinese herbal Radix Curcumae formula for application to cardiovascular disease. J. Ethnopharmacol., 2013, 145(1), 1-10. doi: 10.1016/j.jep.2012.09.051 PMID: 23142198
- Kim, S.; Chen, J.; Cheng, T.; Gindulyte, A.; He, J.; He, S.; Li, Q.; Shoemaker, B.A.; Thiessen, P.A.; Yu, B.; Zaslavsky, L.; Zhang, J.; Bolton, E.E. PubChem 2023 update. Nucleic Acids Res., 2023, 51(D1), D1373-D1380. doi: 10.1093/nar/gkac956 PMID: 36305812
- Piñero, J.; Ramírez-Anguita, J.M.; Saüch-Pitarch, J.; Ronzano, F.; Centeno, E.; Sanz, F.; Furlong, L.I. The DisGeNET knowledge platform for disease genomics: 2019 update. Nucleic Acids Res., 2020, 48(D1), D845-D855. PMID: 31680165
- Zhou, Y.; Zhang, Y.; Lian, X.; Li, F.; Wang, C.; Zhu, F.; Qiu, Y.; Chen, Y. Therapeutic target database update 2022: Facilitating drug discovery with enriched comparative data of targeted agents. Nucleic Acids Res., 2022, 50(D1), D1398-D1407. doi: 10.1093/nar/gkab953 PMID: 34718717
- Amberger, J.S.; Bocchini, C.A.; Schiettecatte, F.; Scott, A.F.; Hamosh, A. OMIM.org: Online Mendelian Inheritance in Man (OMIM®), an online catalog of human genes and genetic disorders. Nucleic Acids Res., 2015, 43(D1), D789-D798. doi: 10.1093/nar/gku1205 PMID: 25428349
- Wishart, D.S.; Feunang, Y.D.; Guo, A.C.; Lo, E.J.; Marcu, A.; Grant, J.R.; Sajed, T.; Johnson, D.; Li, C.; Sayeeda, Z.; Assempour, N.; Iynkkaran, I.; Liu, Y.; Maciejewski, A.; Gale, N.; Wilson, A.; Chin, L.; Cummings, R.; Le, D.; Pon, A.; Knox, C.; Wilson, M. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Res., 2018, 46(D1), D1074-D1082. doi: 10.1093/nar/gkx1037 PMID: 29126136
- Stelzer, G.; Rosen, N.; Plaschkes, I.; Zimmerman, S.; Twik, M.; Fishilevich, S.; Stein, T. I.; Nudel, R.; Lieder, I.; Mazor, Y.; Kaplan, S.; Dahary, D.; Warshawsky, D.; Guan-Golan, Y.; Kohn, A.; Rappaport, N.; Safran, M.; Lancet, D. The genecards suite: From gene data mining to disease genome sequence analyses. Curr. Protoc. Bioinformatics, 2016, 54, 1.30.1-1.30.33.
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res., 2003, 13(11), 2498-2504. doi: 10.1101/gr.1239303 PMID: 14597658
- Tang, Y.; Li, M.; Wang, J.; Pan, Y.; Wu, F.X. CytoNCA: A cytoscape plugin for centrality analysis and evaluation of protein interaction networks. Biosystems, 2015, 127, 67-72. doi: 10.1016/j.biosystems.2014.11.005 PMID: 25451770
- Raman, K.; Damaraju, N.; Joshi, G.K. The organisational structure of protein networks: Revisiting the centralitylethality hypothesis. Syst. Synth. Biol., 2014, 8(1), 73-81. doi: 10.1007/s11693-013-9123-5 PMID: 24592293
- Missiuro, P.V.; Liu, K.; Zou, L.; Ross, B.C.; Zhao, G.; Liu, J.S.; Ge, H. Information flow analysis of interactome networks. PLOS Comput. Biol., 2009, 5(4), e1000350. doi: 10.1371/journal.pcbi.1000350 PMID: 19503817
- R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2021. Available from: https://www.eea.europa.eu/data-and-maps/indicators/oxygen-consuming-substances-in-rivers/r-development-core-team-2006
- Chen, H. R package VennDiagram: Generate High-Resolution Venn and Euler Plots. 2021. Available from: https://rdrr.io/cran/VennDiagram/#:~:text=A%20set%20of%20functions%20to,of%20plot%20shape%20and%20structure.
- Szklarczyk, D.; Gable, A.L.; Lyon, D.; Junge, A.; Wyder, S.; Huerta-Cepas, J.; Simonovic, M.; Doncheva, N.T.; Morris, J.H.; Bork, P.; Jensen, L.J.; Mering, C. STRING v11: Proteinprotein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res., 2019, 47(D1), D607-D613. doi: 10.1093/nar/gky1131 PMID: 30476243
- Chin, C.H.; Chen, S.H.; Wu, H.H.; Ho, C.W.; Ko, M.T.; Lin, C.Y. cytoHubba: Identifying hub objects and sub-networks from complex interactome. BMC Syst. Biol., 2014, 8(S4), S11. doi: 10.1186/1752-0509-8-S4-S11 PMID: 25521941
- Zhou, Y.; Zhou, B.; Pache, L.; Chang, M.; Khodabakhshi, A.H.; Tanaseichuk, O.; Benner, C.; Chanda, S.K. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun., 2019, 10(1), 1523. doi: 10.1038/s41467-019-09234-6 PMID: 30944313
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer, 2016.
- Neuwirth, E. RColorBrewer: ColorBrewer Palettes(Version 1.1-2). 2014. Available from: http://cran.nexr.com/web/packages/RColorBrewer/index.html
- Csardi, G. The igraph software package for complex network research. InterJ. Complex Syst., 2006, 1695(5), 1-9.
- Wu, T.; Hu, E.; Xu, S.; Chen, M.; Guo, P.; Dai, Z.; Feng, T.; Zhou, L.; Tang, W.; Zhan, L.; Fu, X.; Liu, S.; Bo, X.; Yu, G. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. Innovation, 2021, 2(3), 100141. doi: 10.1016/j.xinn.2021.100141 PMID: 34557778
- Walter, W.; Sánchez-Cabo, F.; Ricote, M. GOplot: An R package for visually combining expression data with functional analysis. Bioinformatics, 2015, 31(17), 2912-2914. doi: 10.1093/bioinformatics/btv300 PMID: 25964631
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461. PMID: 19499576
- Kim, S.; Chen, J.; Cheng, T.; Gindulyte, A.; He, J.; He, S.; Li, Q.; Shoemaker, B.A.; Thiessen, P.A.; Yu, B.; Zaslavsky, L.; Zhang, J.; Bolton, E.E. PubChem 2019 update: Improved access to chemical data. Nucleic Acids Res., 2019, 47(D1), D1102-D1109. doi: 10.1093/nar/gky1033 PMID: 30371825
- OBoyle, N.M.; Banck, M.; James, C.A.; Morley, C.; Vandermeersch, T.; Hutchison, G.R. Open Babel: An open chemical toolbox. J. Cheminform., 2011, 3(1), 33. doi: 10.1186/1758-2946-3-33 PMID: 21982300
- Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem., 2009, 30(16), 2785-2791. doi: 10.1002/jcc.21256 PMID: 19399780
- Seeliger, D.; de Groot, B.L. Ligand docking and binding site analysis with PyMOL and Autodock/Vina. J. Comput. Aided Mol. Des., 2010, 24(5), 417-422. doi: 10.1007/s10822-010-9352-6 PMID: 20401516
- Burley, S.K.; Bhikadiya, C.; Bi, C.; Bittrich, S.; Chen, L.; Crichlow, G.V.; Christie, C.H.; Dalenberg, K.; Di Costanzo, L.; Duarte, J.M.; Dutta, S.; Feng, Z.; Ganesan, S.; Goodsell, D.S.; Ghosh, S.; Green, R.K.; Guranović, V.; Guzenko, D.; Hudson, B.P.; Lawson, C.L.; Liang, Y.; Lowe, R.; Namkoong, H.; Peisach, E.; Persikova, I.; Randle, C.; Rose, A.; Rose, Y.; Sali, A.; Segura, J.; Sekharan, M.; Shao, C.; Tao, Y.P.; Voigt, M.; Westbrook, J.D.; Young, J.Y.; Zardecki, C.; Zhuravleva, M. RCSB Protein Data Bank: Powerful new tools for exploring 3D structures of biological macromolecules for basic and applied research and education in fundamental biology, biomedicine, biotechnology, bioengineering and energy sciences. Nucleic Acids Res., 2021, 49(D1), D437-D451. doi: 10.1093/nar/gkaa1038 PMID: 33211854
- DeLano, W.L. The PyMOL Molecular Graphics System (Version 2.5.0). 2021. Available from: https://mybiosoftware.com/pymol-molecular-visualization-system.html
- Laskowski, R.A.; Swindells, M.B. LigPlot+: Multiple ligand-protein interaction diagrams for drug discovery. J. Chem. Inf. Model., 2011, 51(10), 2778-2786. doi: 10.1021/ci200227u PMID: 21919503
- Dai, J.; Choo, M.K.; Park, J.M.; Fisher, D.E. Topical ror inverse agonists suppress inflammation in mouse models of atopic dermatitis and acute irritant dermatitis. J. Invest. Dermatol., 2017, 137(12), 2523-2531. doi: 10.1016/j.jid.2017.07.819 PMID: 28774591
- Hou, D.D.; Zhang, W.; Gao, Y.L.; Sun, Y.; Wang, H.X.; Qi, R.Q.; Chen, H.D.; Gao, X.H. Anti-inflammatory effects of quercetin in a mouse model of MC903-induced atopic dermatitis. Int. Immunopharmacol., 2019, 74, 105676. doi: 10.1016/j.intimp.2019.105676 PMID: 31181406
- Karuppagounder, V.; Arumugam, S.; Thandavarayan, R.A.; Sreedhar, R.; Giridharan, V.V.; Watanabe, K. Molecular targets of quercetin with anti-inflammatory properties in atopic dermatitis. Drug Discov. Today, 2016, 21(4), 632-639. doi: 10.1016/j.drudis.2016.02.011 PMID: 26905599
- Karuppagounder, V.; Arumugam, S.; Thandavarayan, R.A.; Pitchaimani, V.; Sreedhar, R.; Afrin, R.; Harima, M.; Suzuki, H.; Nomoto, M.; Miyashita, S.; Suzuki, K.; Nakamura, M.; Watanabe, K. Modulation of HMGB1 translocation and RAGE/NF κ B cascade by quercetin treatment mitigates atopic dermatitis in NC/Nga transgenic mice. Exp. Dermatol., 2015, 24(6), 418-423. doi: 10.1111/exd.12685 PMID: 25739980
- Lee, H.N.; Shin, S.A.; Choo, G.S.; Kim, H.J.; Park, Y.S.; Kim, B.S.; Kim, S.K.; Cho, S.D.; Nam, J.S.; Choi, C.S.; Che, J.H.; Park, B.K.; Jung, J.Y. Anti inflammatory effect of quercetin and galangin in LPS stimulated RAW264.7 macrophages and DNCB induced atopic dermatitis animal models. Int. J. Mol. Med., 2018, 41(2), 888-898. PMID: 29207037
- Beken, B.; Serttas, R.; Yazicioglu, M.; Turkekul, K.; Erdogan, S. Quercetin improves inflammation, oxidative stress, and impaired wound healing in atopic dermatitis model of human keratinocytes. Pediatr. Allergy Immunol. Pulmonol., 2020, 33(2), 69-79. doi: 10.1089/ped.2019.1137 PMID: 34678092
- Gendrisch, F.; Esser, P.R.; Schempp, C.M.; Wölfle, U. Luteolin as a modulator of skin aging and inflammation. Biofactors, 2021, 47(2), 170-180. doi: 10.1002/biof.1699 PMID: 33368702
- Gugliandolo, E.; Palma, E.; Cordaro, M.; DAmico, R.; Peritore, A.F.; Licata, P.; Crupi, R. Canine atopic dermatitis: Role of luteolin as new natural treatment. Vet. Med. Sci., 2020, 6(4), 926-932. doi: 10.1002/vms3.325 PMID: 32741111
- Han, N.R.; Kim, H.M.; Jeong, H.J. The β-sitosterol attenuates atopic dermatitis-like skin lesions through down-regulation of TSLP. Exp. Biol. Med., 2014, 239(4), 454-464. doi: 10.1177/1535370213520111 PMID: 24510054
- Moon, P.D.; Han, N.R.; Lee, J.; Kim, H.M.; Jeong, H.J. Ursolic acid downregulates thymic stromal lymphopoietin through the blockade of intracellular calcium/caspase 1/NF κB signaling cascade in HMC 1 cells. Int. J. Mol. Med., 2019, 43(5), 2252-2258. doi: 10.3892/ijmm.2019.4144 PMID: 30976816
- Yano, S.; Umeda, D.; Yamashita, S.; Yamada, K.; Tachibana, H. Dietary apigenin attenuates the development of atopic dermatitis-like skin lesions in NC/Nga mice. J. Nutr. Biochem., 2009, 20(11), 876-881. doi: 10.1016/j.jnutbio.2008.08.002 PMID: 18993046
- Che, D.N.; Cho, B.O.; Shin, J.Y.; Kang, H.J.; Kim, J.S.; Oh, H.; Kim, Y.S.; Jang, S.I. Apigenin inhibits IL-31 cytokine in human mast cell and mouse skin tissues. Molecules, 2019, 24(7), 1290. doi: 10.3390/molecules24071290 PMID: 30987029
- Lee, H.S.; Jeong, G.S. Therapeutic effect of kaempferol on atopic dermatitis by attenuation of T cell activity via interaction with multidrug resistance‐associated protein 1. Br. J. Pharmacol., 2021, 178(8), 1772-1788. doi: 10.1111/bph.15396 PMID: 33555623
- Hou, D.D.; Gu, Y.J.; Wang, D.C.; Niu, Y.; Xu, Z.R.; Jin, Z.Q.; Wang, X.X.; Li, S.J. Therapeutic effects of myricetin on atopic dermatitis in vivo and in vitro. Phytomedicine, 2022, 102, 154200. doi: 10.1016/j.phymed.2022.154200 PMID: 35671605
- Behniafard, N.; Gharagozlou, M.; Farhadi, E.; Khaledi, M.; Sotoudeh, S.; Darabi, B.; Fathi, S.M.; Gholizadeh Moghaddam, Z.; Mahmoudi, M.; Aghamohammadi, A.; Amirzargar, A.A.; Rezaei, N. TNF-alpha single nucleotide polymorphisms in atopic dermatitis. Eur. Cytokine Netw., 2012, 23(4), 163-165. doi: 10.1684/ecn.2012.0323 PMID: 23328497
- Gharagozlou, M.; Farhadi, E.; Khaledi, M.; Behniafard, N.; Sotoudeh, S.; Salari, R.; Darabi, B.; Fathi, S.M.; Mahmoudi, M.; Aghamohammadi, A.; Amirzargar, A.A.; Rezaei, N. Association between the interleukin 6 genotype at position -174 and atopic dermatitis. J. Investig. Allergol. Clin. Immunol., 2013, 23(2), 89-93. PMID: 23654074
- Stavric, K.; Peova, S.; Trajkov, D.; Spiroski, M. Gene polymorphisms of 22 cytokines in Macedonian children with atopic dermatitis. Iran. J. Allergy Asthma Immunol., 2012, 11(1), 37-50. PMID: 22427475
- Kayserova, J.; Sismova, K.; Zentsova-Jaresova, I.; Katina, S.; Vernerova, E.; Polouckova, A.; Capkova, S.; Malinova, V.; Striz, I.; Sediva, A. A prospective study in children with a severe form of atopic dermatitis: Clinical outcome in relation to cytokine gene polymorphisms. J. Investig. Allergol. Clin. Immunol., 2012, 22(2), 92-101. PMID: 22533231
- Hulshof, L.; Hack, D.P.; Hasnoe, Q.C.J.; Dontje, B.; Jakasa, I.; Riethmüller, C.; McLean, W.H.I.; Aalderen, W.M.C.; vant Land, B.; Kezic, S.; Sprikkelman, A.B.; Middelkamp-Hup, M.A. A minimally invasive tool to study immune response and skin barrier in children with atopic dermatitis. Br. J. Dermatol., 2019, 180(3), 621-630. doi: 10.1111/bjd.16994 PMID: 29989151
- Lyubchenko, T.; Collins, H.K.; Goleva, E.; Leung, D.Y.M. Skin tape sampling technique identifies proinflammatory cytokines in atopic dermatitis skin. Ann. Allergy Asthma Immunol., 2021, 126(1), 46-53.e2. doi: 10.1016/j.anai.2020.08.397 PMID: 32896640
- Lee, Y.; Choi, H.K.; Ndeh, K.P.U.; Choi, Y.J.; Fan, M.; Kim, E.; Chung, K.H.; An, J.H. Inhibitory effect of centella asiatica extract on dncb-induced atopic dermatitis in hacat cells and BALB/c mice. Nutrients, 2020, 12(2), 411. doi: 10.3390/nu12020411 PMID: 32033291
- Danso, M.O.; van Drongelen, V.; Mulder, A.; van Esch, J.; Scott, H.; van Smeden, J.; El Ghalbzouri, A.; Bouwstra, J.A. TNF-α and Th2 cytokines induce atopic dermatitis-like features on epidermal differentiation proteins and stratum corneum lipids in human skin equivalents. J. Invest. Dermatol., 2014, 134(7), 1941-1950. doi: 10.1038/jid.2014.83 PMID: 24518171
- Howell, M.D.; Kim, B.E.; Gao, P.; Grant, A.V.; Boguniewicz, M.; DeBenedetto, A.; Schneider, L.; Beck, L.A.; Barnes, K.C.; Leung, D.Y.M. Cytokine modulation of atopic dermatitis filaggrin skin expression. J. Allergy Clin. Immunol., 2007, 120(1), 150-155. doi: 10.1016/j.jaci.2007.04.031 PMID: 17512043
Supplementary files
