Hibiscus sabdariffa Linn. Extract Increases the mRNA Expression of the Arcuate Nucleus Leptin Receptor and is Predicted in silico as an Anti-obesity Agent


Cite item

Full Text

Abstract

Background:Leptin is predominant in regulating body weight by stimulating energy expenditure through its neuronal action in the brain. Moreover, it is projected to adipose tissue and induces adipocyte browning by activating the β3-adrenergic receptor (β3AR). However, the expression of leptin receptor (Lep-R) and β3AR in people with obesity is downregulated.

Aim:We hypothesized that Hibiscus sabdariffa Linn. extract (HSE) would increase hypothalamus arcuate nucleus (ARC) Lep-R and white adipose tissue (WAT) β3AR mRNA expression in DIO rats. This study also analyzed the potency of H. sabdariffa bioactive compounds as activators of Lep-R and β3AR by an in-silico experiment

Methods:Twenty-four male Sprague-Dawley rats were divided into four groups: Control (standard food), DIO (high-fat diet), DIO-Hib200 (HFD+HSE 200 mg/kg BW), and DIO-Hib400 (HFD+HSE400 mg/kg BW). HSE was administered orally for five weeks, once a day.

Results:HSE administration significantly (p (<0,05) increased the ARC Lep-R expression. The Lee index significantly decreased to the normal range (≤ 310) with p (<0,001 for DIO-Hib200 and p (<0,01 for DIO-Hib400. Among 39 bioactive compounds, 5-O-caffeoyl shikimic acid exhibited high free binding scores (-8,63) for Lep-R, and myricetin_3_arabinogalactoside had high free binding scores (-9,39) for β3AR. These binding predictions could activate Lep-R and β3AR.

Conclusion:This study highlights that HSE could be a potential therapeutic target for obesity by increasing LepR mRNA and leptin sensitivity, enhancing energy expenditure, and reducing obesity.

About the authors

Neng Kartinah

Departement of Medical Physiology, Faculty of Medicine, University of Indonesia

Email: info@benthamscience.net

Suci Anggraini

Master’s Programme in Biomedical Science, Faculty of Medicine, University of Indonesia

Author for correspondence.
Email: info@benthamscience.net

Fadilah Fadilah

Department of Chemistry, Faculty of Medicine,, University of Indonesia

Email: info@benthamscience.net

Rickie Rickie

Master’s Programme in Biomedical Science, Faculty of Medicine, University of Indonesia

Email: info@benthamscience.net

References

  1. Guyenet, S.J.; Schwartz, M.W. Clinical review: Regulation of food intake, energy balance, and body fat mass: Implications for the pathogenesis and treatment of obesity. J. Clin. Endocrinol. Metab., 2012, 97(3), 745-755. doi: 10.1210/jc.2011-2525 PMID: 22238401
  2. Lee, M.K.; Lee, B.; Kim, C.Y. Natural extracts that stimulate adipocyte browning and their underlying mechanisms. Antioxidants, 2021, 10(2), 308.
  3. Varela, L.; Horvath, T.L. Leptin and insulin pathways in POMC and AgRP neurons that modulate energy balance and glucose homeostasis. EMBO Rep., 2012, 13(12), 1079-1086. doi: 10.1038/embor.2012.174 PMID: 23146889
  4. Vargas-Castillo, A.; Fuentes-Romero, R.; Rodriguez-Lopez, L.A.; Torres, N.; Tovar, A.R. Understanding the biology of thermogenic fat: Issss browning a new approach to the treatment of obesity? Arch. Med. Res., 2017, 48(5), 401-413. doi: 10.1016/j.arcmed.2017.10.002 PMID: 29102386
  5. Breslow, M.J.; An, Y.; Berkowitz, D.E. Beta-3 adrenoceptor (beta-3AR) expression in leptin treated Ob/Ob mice. Life Sci., 1997, 61(1), 59-64. doi: 10.1016/S0024-3205(97)00358-5 PMID: 9200670
  6. Morales-Luna, E.; Pérez-Ramírez, I.F.; Salgado, L.M.; Castaño-Tostado, E.; Gómez-Aldapa, C.A.; Reynoso-Camacho, R. The main beneficial effect of roselle (Hibiscus sabdariffa) on obesity is not only related to its anthocyanin content. J. Sci. Food Agric., 2019, 99(2), 596-605. doi: 10.1002/jsfa.9220 PMID: 29943479
  7. Anggraini, S.; Kartinah, N.T. Effectiveness of hibiscus sabdariffa linn for obesity treatment: A systematic review of randomized controlled trials. Ind. J. Med., 2021, 6(4), 439-451. doi: 10.26911/theijmed.2021.06.04.10
  8. Kartinah, N.T.; Komara, N.; Noviati, N.D.; Dewi, S.; Yolanda, S.; Radhina, A. Potential of Hibiscus sabdariffa Linn. in managing FGF21 resistance in diet-induced-obesity rats via miR-34a regulation. Vet. Med. Sci., 2021, 8(1), 309-317. PMID: 34687158
  9. Bryda, E.C. The Mighty Mouse: The impact of rodents on advances in biomedical research. Mo. Med., 2013, 110(3), 207-211. PMID: 23829104
  10. Olfert, E.D.; Cross, B.M.; McWilliam, A.A. Guide to the care and use of experimental animals; Canadian Council on Animal Care: Ontario, 1993.
  11. Jamali, E.; Asad, M.R.; Rasoli, A. The effect of high-intensity interval training (HIIT) on resistin gene expression in visceral adipose tissue in obese male rats. Int. J. Appl. Exerc. Physiol., 2016.
  12. Shukla, S.S.; Sharwan, G.; Jain, P.; Pandey, R. Toxicity and safety profiles of methanolic extract of pistacia integerrima J. L. Stewart ex brandis (PI) for wistar rats. J. Pharmacopuncture, 2016, 19(3), 253-258. doi: 10.3831/KPI.2016.19.027 PMID: 27695635
  13. Salehi, M.S.; Namavar, M.R.; Shirazi, M.R.J.; Rahmanifar, F. A simple method for isolation of the anteroventral periventricular and arcuate nuclei of the rat hypothalamus. Anatomy, 2013, 7(1), 48-51.
  14. Herranz-López, M.; Olivares-Vicente, M.; Encinar, J.; Barrajón-Catalán, E.; Segura-Carretero, A.; Joven, J.; Micol, V. Multi-targeted molecular effects of Hibiscus sabdariffa polyphenols: An opportunity for a global approach to obesity. Nutrients, 2017, 9(8), 907. doi: 10.3390/nu9080907 PMID: 28825642
  15. Timper, K.; Brüning, J.C. Hypothalamic circuits regulating appetite and energy homeostasis: Pathways to obesity. Dis. Model. Mech., 2017, 10(6), 679-689. doi: 10.1242/dmm.026609 PMID: 28592656
  16. Straat, M.E.; Schinkelshoek, M.S.; Fronczek, R.; Lammers, G.J.; Rensen, P.C.N.; Boon, M.R. Role of brown adipose tissue in adiposity associated with narcolepsy type 1. Front. Endocrinol., 2020, 11, 145. doi: 10.3389/fendo.2020.00145 PMID: 32373062
  17. Martin, R.L.; Perez, E.; He, Y.J.; Dawson, R., Jr; Millard, W.J. Leptin resistance is associated with hypothalamic leptin receptor mRNA and protein downregulation. Metabolism, 2000, 49(11), 1479-1484. doi: 10.1053/meta.2000.17695 PMID: 11092515
  18. Wauman, J.; Zabeau, L.; Tavernier, J. The leptin receptor complex: Heavier than expected? Front. Endocrinol., 2017, 8(FEB), 30. doi: 10.3389/fendo.2017.00030 PMID: 28270795
  19. Liu, Z.J.; Bian, J.; Liu, J.; Endoh, A. Obesity reduced the gene expressions of leptin receptors in hypothalamus and liver. Horm. Metab. Res., 2007, 39(7), 489-494. doi: 10.1055/s-2007-981680 PMID: 17611900
  20. Zhai, L.; Zhao, J.; Zhu, Y.; Liu, Q.; Niu, W.; Liu, C.; Wang, Y. Downregulation of leptin receptor and kisspeptin/GPR54 in the murine hypothalamus contributes to male hypogonadism caused by high-fat diet-induced obesity. Endocrine, 2018, 62(1), 195-206. doi: 10.1007/s12020-018-1646-9 PMID: 29948931
  21. Mazor, R.; Friedmann-Morvinski, D.; Alsaigh, T.; Kleifeld, O.; Kistler, E.B.; Rousso-Noori, L.; Huang, C.; Li, J.B.; Verma, I.M.; Schmid-Schönbein, G.W. Cleavage of the leptin receptor by matrix metalloproteinase-2 promotes leptin resistance and obesity in mice. Sci. Transl. Med., 2018, 10(455), eaah6324. doi: 10.1126/scitranslmed.aah6324 PMID: 30135249
  22. Kumar, G.B.; Nair, B.G.; Perry, J.J.P.; Martin, D.B.C. Recent insights into natural product inhibitors of matrix metalloproteinases. MedChemComm, 2019, 10(12), 2024-2037. doi: 10.1039/C9MD00165D PMID: 32904148
  23. Riaz, G.; Chopra, R. A review on phytochemistry and therapeutic uses of Hibiscus sabdariffa L. Biomed. Pharmacother., 2018, 102(102), 575-586. doi: 10.1016/j.biopha.2018.03.023 PMID: 29597091
  24. Meng, X-Y.; Zhang, H-X.; Mezei, M.; Cui, M. Molecular docking: A powerful approach for structure-based drug discovery. Curr. Comput. Aided. Drug Des., 2012, 7(2), 146-157.
  25. Lenin, M.; Ramakrishnan, E.; Sankaran, M. Structure-based molecular docking studies toward exploring phytoestrogen against breast cancer. Eurasian J. Med. Oncol., 2022, 6(2), 142-149.
  26. Maruthanila, V.L.; Elancheran, R.; Mirunalini, S. In Silico approach and molecular docking studies of potent bioactive compounds of carica papaya as anti-breast cancer agents. Curr. Comput. Aided Drug Des., 2022, 18(3), 196-212. doi: 10.2174/1573409918666220519112027 PMID: 35598239
  27. Fenzl, A.; Kiefer, F.W. Brown adipose tissue and thermogenesis. Horm. Mol. Biol. Clin. Investig., 2014, 19(1), 25-37. doi: 10.1515/hmbci-2014-0022 PMID: 25390014
  28. Dodd, G.T.; Decherf, S.; Loh, K.; Simonds, S.E.; Wiede, F.; Balland, E.; Merry, T.L.; Münzberg, H.; Zhang, Z.Y.; Kahn, B.B.; Neel, B.G.; Bence, K.K.; Andrews, Z.B.; Cowley, M.A.; Tiganis, T. Leptin and insulin act on POMC neurons to promote the browning of white fat. Cell, 2015, 160(1-2), 88-104. doi: 10.1016/j.cell.2014.12.022 PMID: 25594176
  29. Collins, S.; Daniel, K.W.; Rohlfs, E.M. Depressed expression of adipocyte β-adrenergic receptors is a common feature of congenital and diet-induced obesity in rodents. Int. J. Obes., 1999, 23(7), 669-677. doi: 10.1038/sj.ijo.0800894 PMID: 10454099
  30. Vernon Rayner, D. The sympathetic nervous system in white adipose tissue regulation. Proc. Nutr. Soc., 2001, 60(3), 357-364. doi: 10.1079/PNS2001101 PMID: 11681810
  31. Valentine, J.M.; Ahmadian, M.; Keinan, O.; Abu-Odeh, M.; Zhao, P.; Zhou, X. β3-adrenergic receptor downregulation leads to adipocyte catecholamine resistance in obesity. J. Clin. Invest., 2021, 132(2), e153357.
  32. Rayner, D.V.; Trayhurn, P. Regulation of leptin production: Sympathetic nervous system interactions. J. Mol. Med., 2001, 79(1), 8-20. doi: 10.1007/s001090100198 PMID: 11327106
  33. de Jong, J.M.A.; Wouters, R.T.F.; Boulet, N.; Cannon, B.; Nedergaard, J.; Petrovic, N. The β3-adrenergic receptor is dispensable for browning of adipose tissues. Am. J. Physiol. Endocrinol. Metab., 2017, 312(6), E508-E518. doi: 10.1152/ajpendo.00437.2016
  34. Santoso, D.I.S.; Sianipar, I.R.; Kartinah, N.T. The role of physical exercise in obesity managemenT: Irisin in action in the brown process. Ind. J. Sports Phys. Sci., 2021, 3(1), 27. doi: 10.51671/jifo.v3i1.86
  35. Kuppusamy, U.R.; Das, N.P. Potentiation of β-adrenoceptor agonist-mediated lipolysis by quercetin and fisetin in isolated rat adipocytes. Biochem. Pharmacol., 1994, 47(3), 521-529. doi: 10.1016/0006-2952(94)90184-8 PMID: 7906943
  36. Concha, F.; Prado, G.; Quezada, J.; Ramirez, A.; Bravo, N.; Flores, C.; Herrera, J.J.; Lopez, N.; Uribe, D.; Duarte-Silva, L.; Lopez-Legarrea, P.; Garcia-Diaz, D.F. Nutritional and non-nutritional agents that stimulate white adipose tissue browning. Rev. Endocr. Metab. Disord., 2019, 20(2), 161-171. doi: 10.1007/s11154-019-09495-y PMID: 31020455
  37. Marhuenda, J.; Perez, S.; Victoria-Montesinos, D.; Abellán, M.S.; Caturla, N.; Jones, J.; López-Román, J. A randomized, double-blind, placebo controlled trial to determine the effectiveness a polyphenolic extract (Hibiscus sabdariffa and lippia citriodora) in the reduction of body fat mass in healthy subjects. Foods, 2020, 9(1), 55. doi: 10.3390/foods9010055
  38. Boix-Castejón, M.; Herranz-López, M.; Pérez Gago, A.; Olivares-Vicente, M.; Caturla, N.; Roche, E. Hibiscus and lemon verbena polyphenols modulate appetite-related biomarkers in overweight subjects: A randomized controlled trial. Food Funct., 2018, 9(6), 3173-3184.
  39. Chang, H.C.; Peng, C.H.; Yeh, D.M.; Kao, E.S.; Wang, C.J. Hibiscus sabdariffa extract inhibits obesity and fat accumulation, and improves liver steatosis in humans. Food Funct., 2014, 5(4), 734-739. doi: 10.1039/c3fo60495k PMID: 24549255

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers