Predicting Antitumor Activity of Anthrapyrazole Derivatives using Advanced Machine Learning Techniques


如何引用文章

全文:

详细

Background:Anthrapyrazoles are a new class of antitumor agents and successors to anthracyclines possessing a broad range of antitumor activity in various model tumors.

Objective:The present study introduces novel QSAR models for the prediction of antitumor activity of anthrapyrazole analogues.

Methods:The predictive performance of four machine learning algorithms, namely artificial neural networks, boosted trees, multivariate adaptive regression splines, and random forest, was studied in terms of variation of the observed and predicted data, internal validation, predictability, precision, and accuracy.

Results:ANN and boosted trees algorithms met the validation criteria. It means that these procedures may be able to forecast the anticancer effects of the anthrapyrazoles studied. Evaluation of validation metrics, calculated for each approach, indicated the artificial neural network (ANN) procedure as the algorithm of choice, especially with regard to the obtained predictability as well as the lowest value of mean absolute error. The designed multilayer perceptron (MLP)-15-7-1 network displayed a high correlation between the predicted and the experimental pIC50 value for the training, test, and validation set. A conducted sensitivity analysis enabled an indication of the most important structural features of the studied activity.

Conclusion:The ANN strategy combines topographical and topological information and can be used for the design and development of novel anthrapyrazole analogues as anticancer molecules.

作者简介

Marcin Gackowski

Department of Toxicology and Bromatology, Faculty of Pharmacy, L. Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun

编辑信件的主要联系方式.
Email: info@benthamscience.net

Robert Pluskota

Department of Toxicology and Bromatology, Faculty of Pharmacy, L. Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun

Email: info@benthamscience.net

Marcin Koba

Department of Toxicology and Bromatology, Faculty of Pharmacy, L. Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun

Email: info@benthamscience.net

参考

  1. Mross, K.; Scheulen, M.E.; Licht, T.; Unger, C.; Richly, H.; Stern, A.C.; Kutz, K.; Camboni, M.G.; Barbieri, P.; Verdi, E.; Vincenzi, B.; Bernareggi, A. Phase I clinical and pharmacokinetic study of BBR 3576, a novel aza-anthrapyrazole, administered i.v. every 4 weeks in patients with advanced solid tumors: A phase I study group trial of the Central European Society of Anticancer-Drug Research (CESAR). Anticancer Drugs, 2004, 15(1), 15-22. doi: 10.1097/00001813-200401000-00003 PMID: 15090738
  2. Duchnowska, R.; Chmielowska, E.; Streb, J.; Chudzik, M.; Czartoryska-Arlukowicz, B.; Litwiniuk, M. The role of anthracyclines and dose dense therapy in an adjuvant setting, in HER2-positive early breast cancer, in clinical practice. Oncol Clin Pract., 2016, 12(1), 8-11.
  3. Schirone, L.; Toldo, S.; Cianflone, E.; Sala, V.; Greco, E. The role of Anthracyclines in Cardio-Oncology: Oxidative stress, inflammation, and autophagy. Oxid. Med. Cell. Longev., 2022, 2022, 9862524.
  4. Showalter, H.D.H.; Johnson, J.L.; Hoftiezer, J.M.; Turner, W.R.; Werbel, L.M.; Leopold, W.R.; Shillis, J.L.; Jackson, R.C.; Elslager, E.F. Anthrapyrazole anticancer agents. Synthesis and structure-activity relationships against murine leukemias. J. Med. Chem., 1987, 30(1), 121-131. doi: 10.1021/jm00384a021 PMID: 3806589
  5. Leopold, W.R.; Nelson, J.M.; Plowman, J.; Jackson, R.C. Anthrapyrazoles, a new class of intercalating agents with high-level, broad spectrum activity against murine tumors. Cancer Res., 1985, 45(11 Pt 1), 5532-5539. PMID: 4053027
  6. Begleiter, A.; Lin, D.; Larson, K.K.; Lang, J.; Wu, X.; Cabral, T.; Taylor, H.; Guziec, L.J.; Kerr, P.D.; Hasinoff, B.B.; Guziec, F.S., Jr Structure-activity studies with cytotoxic anthrapyrazoles. Oncol. Rep., 2006, 15(6), 1575-1580. PMID: 16685398
  7. Leteurtre, F.; Kohlhagen, G.; Paull, K.D.; Pommier, Y. Topoisomerase II inhibition and cytotoxicity of the anthrapyrazoles DuP 937 and DuP 941 (Losoxantrone) in the National Cancer Institute preclinical antitumor drug discovery screen. J. Natl. Cancer Inst., 1994, 86(16), 1239-1244. doi: 10.1093/jnci/86.16.1239 PMID: 8040892
  8. Wang, J.; Zhao, H.; Luo, Z.; Wang, Z.; Zhang, Y.; Zhao, J. Synthesis and biological activity of anthrapyrazoles derivatives as potential antitumor agents. Med. Chem., 2014, 10(8), 772-777. doi: 10.2174/1573406410666140428152227 PMID: 24773347
  9. Dibia, K.T.; Igbokwe, P.K.; Ezemagu, G.I.; Asadu, C.O. Exploration of the quantitative Structure-Activity relationships for predicting Cyclooxygenase-2 inhibition bioactivity by Machine learning approaches. Results Chem, 2022, 4, 100272. doi: 10.1016/j.rechem.2021.100272
  10. Prasanna, S.; Doerksen, R. Topological polar surface area: A useful descriptor in 2D-QSAR. Curr. Med. Chem., 2009, 16(1), 21-41. doi: 10.2174/092986709787002817 PMID: 19149561
  11. TIBCO Software Inc. IBCO Statistica® User’s Guide. 2017. Available From: https://docs.tibco.com/products/tibco-statistica-13-3-0
  12. Baskin, I.I.; Palyulin, V.A.; Zefirov, N.S. Neural networks in building QSAR models. Methods Mol. Biol., 2008, 458(458), 137-158. PMID: 19065809
  13. Dobchev, D.; Karelson, M. Have artificial neural networks met expectations in drug discovery as implemented in QSAR framework? Expert Opin. Drug Discov., 2016, 11(7), 627-639. doi: 10.1080/17460441.2016.1186876 PMID: 27149299
  14. Breiman, L. Random forests. Mach. Learn., 2001, 45(1), 5-32. doi: 10.1023/A:1010933404324
  15. Svetnik, V.; Liaw, A.; Tong, C.; Culberson, J.C.; Sheridan, R.P.; Feuston, B.P. Random forest: A classification and regression tool for compound classification and QSAR modeling. J. Chem. Inf. Comput. Sci., 2003, 43(6), 1947-1958. doi: 10.1021/ci034160g PMID: 14632445
  16. De’ath, G. Boosted trees for ecological modeling and prediction. Ecology, 2007, 88(1), 243-251. doi: 10.1890/0012-9658(2007)88243:BTFEMA2.0.CO;2 PMID: 17489472
  17. Friedman, J.H. Multivariate Adaptive Regression Splines. Ann. Stat., 1991, 19(1), 1-141.
  18. De Veaux, R.D.; Psichogios, D.C.; Ungar, L.H. A comparison of two nonparametric estimation schemes: MARS and neural networks. Comput. Chem. Eng., 1993, 17(8), 819-837. doi: 10.1016/0098-1354(93)80066-V
  19. Roy, K.; Ambure, P.; Kar, S.; Ojha, P.K. Is it possible to improve the quality of predictions from an "intelligent" use of multiple QSAR/QSPR/QSTR models? J. Chemometr., 2018, 32(4), e2992. doi: 10.1002/cem.2992
  20. Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. Cancer J Clin., 2021, 71(3), 209-249.
  21. Gackowski, M.; Szewczyk-Golec, K.; Pluskota, R.; Koba, M.; Mądra-Gackowska, K.; Woźniak, A. Application of Multivariate Adaptive Regression Splines (MARSplines) for predicting antitumor activity of anthrapyrazole derivatives. Int. J. Mol. Sci., 2022, 23(9), 5132. doi: 10.3390/ijms23095132 PMID: 35563523
  22. Velázquez-Libera, J.L.; Caballero, J.; Toropova, A.P.; Toropov, A.A. Estimation of 2D autocorrelation descriptors and 2D Monte Carlo descriptors as a tool to build up predictive models for acetylcholinesterase (AChE) inhibitory activity. Chemom. Intell. Lab. Syst., 2019, 184, 14-21. doi: 10.1016/j.chemolab.2018.11.008
  23. Tropsha, A.; Weifan, Z. Identification of the descriptor pharmacophores using variable selection QSAR: Applications to database mining. Curr. Pharm. Des., 2001, 7(7), 599-612. doi: 10.2174/1381612013397834 PMID: 11375770
  24. Carhart, R.E.; Smith, D.H.; Venkataraghavan, R. Atom pairs as molecular features in structure-activity studies: Definition and applications. J. Chem. Inf. Comput. Sci., 1985, 25(2), 64-73. doi: 10.1021/ci00046a002
  25. Dehmer, M.; Emmert-Streib, F.; Tripathi, S. Large-scale evaluation of molecular descriptors by means of clustering. PLoS One, 2013, 8(12), e83956. doi: 10.1371/journal.pone.0083956 PMID: 24391854
  26. Grisoni, F.; Reker, D.; Schneider, P.; Friedrich, L.; Consonni, V.; Todeschini, R.; Koeberle, A.; Werz, O.; Schneider, G. Matrix-based molecular descriptors for prospective virtual compound screening. Mol. Inform., 2017, 36(1-2), 1600091. doi: 10.1002/minf.201600091 PMID: 27650559
  27. Roy, K.; Ghosh, G. Exploring QSARs with Extended Topochemical Atom (ETA) indices for modeling chemical and drug toxicity. Curr. Pharm. Des., 2010, 16(24), 2625-2639. doi: 10.2174/138161210792389270 PMID: 20642426
  28. Roy, K.; Das, R.N. The "ETA" Indices in QSAR/QSPR/QSTR Research.Pharmaceutical Sciences: Breakthroughs in research and practice; IGI Global: Pennsylvania, 2017, p. 34.
  29. Consonni, V.; Todeschini, R.; Pavan, M.; Gramatica, P. Structure/response correlations and similarity/diversity analysis by GETAWAY descriptors. 2. Application of the novel 3D molecular descriptors to QSAR/QSPR studies. J. Chem. Inf. Comput. Sci., 2002, 42(3), 693-705. doi: 10.1021/ci0155053 PMID: 12086531
  30. Roy, K.; Mitra, I. Electrotopological state atom (E-state) index in drug design, QSAR, property prediction and toxicity assessment. Curr. Computeraided Drug Des., 2012, 8(2), 135-158. doi: 10.2174/157340912800492366 PMID: 22497469
  31. Hall, L.H.; Kier, L.B. The E-state as the basis for molecular structure space definition and structure similarity. J. Chem. Inf. Comput. Sci., 2000, 40(3), 784-791. doi: 10.1021/ci990140w PMID: 10850783
  32. Roy, K.; Dc, A.U.; Sengupta, C. QSAR with electro topological state atom index: Antialirenergic activi ty of N,N-dimethyl-2-bromo-2-phenylethylami nesl'. Semantic Scholar, 1999, 39, 942-949.
  33. Yilmaz, H.; Rasulev, B.; Leszczynski, J. Modeling the dispersibility of single walled carbon nanotubes in organic solvents by quantitative structure-activity relationship approach. Nanomaterials, 2015, 5(2), 778-791. doi: 10.3390/nano5020778 PMID: 28347035
  34. Paukku, Y.; Rasulev, B.; Syrov, V.; Khushbaktova, Z.; Leszczynski, J. Structure-hepatoprotective activity relationship study of sesquiterpene lactones: A QSAR analysis. Int. J. Quantum Chem., 2009, 109(1), 17-27. doi: 10.1002/qua.21647
  35. Gupta, V.P. Approximate Molecular Orbital Theories. Principles and Applications of Quantum Chemistry; Elsevier: Amsterdam, 2016, pp. 127-153. doi: 10.1016/B978-0-12-803478-1.00004-2

补充文件

附件文件
动作
1. JATS XML

版权所有 © Bentham Science Publishers, 2024