Discovery of a Potential Allosteric Site in the SARS-CoV-2 Spike Protein and Targeting Allosteric Inhibitor to Stabilize the RBD Down State using a Computational Approach


Cite item

Full Text

Abstract

Background:The novel coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to a worldwide public health crisis. At present, the development of effective drugs and/or related therapeutics is still the most urgent and important task for combating the virus. The viral entry and associated infectivity mainly rely on its envelope spike protein to recognize and bind to the host cell receptor angiotensin-converting enzyme 2 (ACE2) through a conformational switch of the spike receptor binding domain (RBD) from inactive to active state. Thus, it is of great significance to design an allosteric inhibitor targeting spike to lock it in the inactive and ACE2-inaccessible state.

Objective:This study aims to discover the potential broad-spectrum allosteric inhibitors capable of binding and stabilizing the diverse spike variants, including the wild type, Delta, and Omicron, in the inactive RBD down state.

Methods:In this work, we first detected a potential allosteric pocket within the SARS-CoV-2 spike protein. Then, we performed large-scale structure-based virtual screening by targeting the putative allosteric pocket to identify allosteric inhibitors that could stabilize the spike inactive state. Molecular dynamics simulations were further carried out to evaluate the effects of compound binding on the stability of spike RBD.

Result:Finally, we identified three potential allosteric inhibitors, CPD3, CPD5, and CPD6, against diverse SARS-CoV-2 variants, including Wild-type, Delta, and Omicron variants. Our simulation results showed that the three compounds could stably bind the predicted allosteric site and effectively stabilize the spike in the inactive state.

Conclusion:The three compounds provide novel chemical structures for rational drug design targeting spike protein, which is expected to greatly assist in the development of new drugs against SARS-CoV-2.

About the authors

Tong Li

China Pharmaceutical University,, China Pharmaceutical University

Email: info@benthamscience.net

Zheng Yan

, The Affiliated Jiangyin Hospital of Nanjing University of Chinese Medicine

Email: info@benthamscience.net

Wei Zhou

School of Traditional Chinese Pharmacy, China Pharmaceutical University

Email: info@benthamscience.net

Qun Liu

School of Traditional Chinese Pharmacy, China Pharmaceutical University

Author for correspondence.
Email: info@benthamscience.net

Jinfeng Liu

School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University

Author for correspondence.
Email: info@benthamscience.net

Haibing Hua

, The Affiliated Jiangyin Hospital of Nanjing University of Chinese Medicine

Author for correspondence.
Email: info@benthamscience.net

References

  1. Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.; Niu, P.; Zhan, F.; Ma, X.; Wang, D.; Xu, W.; Wu, G.; Gao, G.F.; Tan, W. A novel coronavirus from patients with pneumonia in china, 2019. N. Engl. J. Med., 2020, 382(8), 727-733. doi: 10.1056/NEJMoa2001017 PMID: 31978945
  2. World Health Organization. WHO Coronavirus Disease (COVID-19) Dashboard. 2022. Available from: https://covid19.who.int/
  3. Rahman, S.; Montero, M.T.V.; Rowe, K.; Kirton, R.; Kunik, F., Jr Epidemiology, pathogenesis, clinical presentations, diagnosis and treatment of COVID-19: A review of current evidence. Expert Rev. Clin. Pharmacol., 2021, 14(5), 601-621. doi: 10.1080/17512433.2021.1902303 PMID: 33705239
  4. Food and Drug Administration. Coronavirus (COVID-19) ⋅ Drugs. 2022. Available from: https://www.fda.gov/drugs/emergency-preparedness-drugs/coronavirus-covid-19-drugs
  5. Tang, J.W.; Tambyah, P.A.; Hui, D.S.C. Emergence of a new SARS-CoV-2 variant in the UK. J. Infect., 2021, 82(4), e27-e28. doi: 10.1016/j.jinf.2020.12.024 PMID: 33383088
  6. Boehm, E.; Kronig, I.; Neher, R.A.; Eckerle, I.; Vetter, P.; Kaiser, L. Novel SARS-CoV-2 variants: The pandemics within the pandemic. Clin. Microbiol. Infect., 2021, 27(8), 1109-1117. doi: 10.1016/j.cmi.2021.05.022 PMID: 34015535
  7. Tang, J.W.; Toovey, O.T.R.; Harvey, K.N.; Hui, D.S.C. Introduction of the South African SARS-CoV-2 variant 501Y.V2 into the UK. J. Infect., 2021, 82(4), e8-e10. doi: 10.1016/j.jinf.2021.01.007 PMID: 33472093
  8. Lopez Bernal, J.; Andrews, N.; Gower, C.; Gallagher, E.; Simmons, R.; Thelwall, S.; Stowe, J.; Tessier, E.; Groves, N.; Dabrera, G.; Myers, R.; Campbell, C.N.J.; Amirthalingam, G.; Edmunds, M.; Zambon, M.; Brown, K.E.; Hopkins, S.; Chand, M.; Ramsay, M. Effectiveness of Covid-19 Vaccines against the B.1.617.2 (Delta). Variant. N. Engl. J. Med., 2021, 385(7), 585-594. doi: 10.1056/NEJMoa2108891 PMID: 34289274
  9. Lipsitch, M.; Krammer, F.; Regev-Yochay, G.; Lustig, Y.; Balicer, R.D. SARS-CoV-2 breakthrough infections in vaccinated individuals: Measurement, causes and impact. Nat. Rev. Immunol., 2022, 22(1), 57-65. doi: 10.1038/s41577-021-00662-4 PMID: 34876702
  10. Artese, A.; Svicher, V.; Costa, G.; Salpini, R.; Di Maio, V.C.; Alkhatib, M.; Ambrosio, F.A.; Santoro, M.M.; Assaraf, Y.G.; Alcaro, S.; Ceccherini-Silberstein, F. Current status of antivirals and druggable targets of SARS CoV-2 and other human pathogenic coronaviruses. Drug Resist. Updat., 2020, 53, 100721. doi: 10.1016/j.drup.2020.100721 PMID: 33132205
  11. Gordon, D.E.; Jang, G.M.; Bouhaddou, M.; Xu, J.; Obernier, K.; White, K.M.; O’Meara, M.J.; Rezelj, V.V.; Guo, J.Z.; Swaney, D.L.; Tummino, T.A.; Hüttenhain, R.; Kaake, R.M.; Richards, A.L.; Tutuncuoglu, B.; Foussard, H.; Batra, J.; Haas, K.; Modak, M.; Kim, M.; Haas, P.; Polacco, B.J.; Braberg, H.; Fabius, J.M.; Eckhardt, M.; Soucheray, M.; Bennett, M.J.; Cakir, M.; McGregor, M.J.; Li, Q.; Meyer, B.; Roesch, F.; Vallet, T.; Mac Kain, A.; Miorin, L.; Moreno, E.; Naing, Z.Z.C.; Zhou, Y.; Peng, S.; Shi, Y.; Zhang, Z.; Shen, W.; Kirby, I.T.; Melnyk, J.E.; Chorba, J.S.; Lou, K.; Dai, S.A.; Barrio-Hernandez, I.; Memon, D.; Hernandez-Armenta, C.; Lyu, J.; Mathy, C.J.P.; Perica, T.; Pilla, K.B.; Ganesan, S.J.; Saltzberg, D.J.; Rakesh, R.; Liu, X.; Rosenthal, S.B.; Calviello, L.; Venkataramanan, S.; Liboy-Lugo, J.; Lin, Y.; Huang, X.P.; Liu, Y.; Wankowicz, S.A.; Bohn, M.; Safari, M.; Ugur, F.S.; Koh, C.; Savar, N.S.; Tran, Q.D.; Shengjuler, D.; Fletcher, S.J.; O’Neal, M.C.; Cai, Y.; Chang, J.C.J.; Broadhurst, D.J.; Klippsten, S.; Sharp, P.P.; Wenzell, N.A.; Kuzuoglu-Ozturk, D.; Wang, H.Y.; Trenker, R.; Young, J.M.; Cavero, D.A.; Hiatt, J.; Roth, T.L.; Rathore, U.; Subramanian, A.; Noack, J.; Hubert, M.; Stroud, R.M.; Frankel, A.D.; Rosenberg, O.S.; Verba, K.A.; Agard, D.A.; Ott, M.; Emerman, M.; Jura, N.; von Zastrow, M.; Verdin, E.; Ashworth, A.; Schwartz, O.; d’Enfert, C.; Mukherjee, S.; Jacobson, M.; Malik, H.S.; Fujimori, D.G.; Ideker, T.; Craik, C.S.; Floor, S.N.; Fraser, J.S.; Gross, J.D.; Sali, A.; Roth, B.L.; Ruggero, D.; Taunton, J.; Kortemme, T.; Beltrao, P.; Vignuzzi, M.; García-Sastre, A.; Shokat, K.M.; Shoichet, B.K.; Krogan, N.J. A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature, 2020, 583(7816), 459-468. doi: 10.1038/s41586-020-2286-9 PMID: 32353859
  12. Jamalipour Soufi, G.; Iravani, S. Potential inhibitors of SARS-CoV-2: Recent advances. J. Drug Target., 2021, 29(4), 349-364. doi: 10.1080/1061186X.2020.1853736 PMID: 33210953
  13. Li, Q.; Yi, D.; Lei, X.; Zhao, J.; Zhang, Y.; Cui, X.; Xiao, X.; Jiao, T.; Dong, X.; Zhao, X.; Zeng, H.; Liang, C.; Ren, L.; Guo, F.; Li, X.; Wang, J.; Cen, S. Corilagin inhibits SARS-CoV-2 replication by targeting viral RNA-dependent RNA polymerase. Acta Pharm. Sin. B, 2021, 11(6), 1555-1567. doi: 10.1016/j.apsb.2021.02.011 PMID: 33614402
  14. Maio, N.; Lafont, B.A.P.; Sil, D.; Li, Y.; Bollinger, J.M., Jr; Krebs, C.; Pierson, T.C.; Linehan, W.M.; Rouault, T.A. Fe-S cofactors in the SARS-CoV-2 RNA-dependent RNA polymerase are potential antiviral targets. Science, 2021, 373(6551), 236-241. doi: 10.1126/science.abi5224 PMID: 34083449
  15. Xiong, M.; Su, H.; Zhao, W.; Xie, H.; Shao, Q.; Xu, Y. What coronavirus 3C‐like protease tells us: From structure, substrate selectivity, to inhibitor design. Med. Res. Rev., 2021, 41(4), 1965-1998. doi: 10.1002/med.21783 PMID: 33460213
  16. Drayman, N.; DeMarco, J.K.; Jones, K.A.; Azizi, S.A.; Froggatt, H.M.; Tan, K.; Maltseva, N.I.; Chen, S.; Nicolaescu, V.; Dvorkin, S.; Furlong, K.; Kathayat, R.S.; Firpo, M.R.; Mastrodomenico, V.; Bruce, E.A.; Schmidt, M.M.; Jedrzejczak, R.; Muñoz-Alía, M.Á.; Schuster, B.; Nair, V.; Han, K.; O’Brien, A.; Tomatsidou, A.; Meyer, B.; Vignuzzi, M.; Missiakas, D.; Botten, J.W.; Brooke, C.B.; Lee, H.; Baker, S.C.; Mounce, B.C.; Heaton, N.S.; Severson, W.E.; Palmer, K.E.; Dickinson, B.C.; Joachimiak, A.; Randall, G.; Tay, S. Masitinib is a broad coronavirus 3CL inhibitor that blocks replication of SARS-CoV-2. Science, 2021, 373(6557), 931-936. doi: 10.1126/science.abg5827 PMID: 34285133
  17. Petushkova, A.I.; Zamyatnin, A.A., Jr Papain-like proteases as coronaviral drug targets: Current inhibitors, opportunities, and limitations. pharmaceuticals, 2020, 13(10), 277. doi: 10.3390/ph13100277 PMID: 32998368
  18. Gao, X.; Qin, B.; Chen, P.; Zhu, K.; Hou, P.; Wojdyla, J.A.; Wang, M.; Cui, S. Crystal structure of SARS-CoV-2 papain-like protease. Acta Pharm. Sin. B, 2021, 11(1), 237-245. doi: 10.1016/j.apsb.2020.08.014 PMID: 32895623
  19. Huang, Y.; Yang, C.; Xu, X.; Xu, W.; Liu, S. Structural and functional properties of SARS-CoV-2 spike protein: Potential antivirus drug development for COVID-19. Acta Pharmacol. Sin., 2020, 41(9), 1141-1149. doi: 10.1038/s41401-020-0485-4 PMID: 32747721
  20. Costa, C.F.S.; Barbosa, A.J.M.; Dias, A.M.G.C.; Roque, A.C.A. Native, engineered and de novo designed ligands targeting the SARS-CoV-2 spike protein. Biotechnol. Adv., 2022, 59, 107986. doi: 10.1016/j.biotechadv.2022.107986 PMID: 35598822
  21. Beigel, J.H.; Tomashek, K.M.; Dodd, L.E.; Mehta, A.K.; Zingman, B.S.; Kalil, A.C.; Hohmann, E.; Chu, H.Y.; Luetkemeyer, A.; Kline, S.; Lopez de Castilla, D.; Finberg, R.W.; Dierberg, K.; Tapson, V.; Hsieh, L.; Patterson, T.F.; Paredes, R.; Sweeney, D.A.; Short, W.R.; Touloumi, G.; Lye, D.C.; Ohmagari, N.; Oh, M.; Ruiz-Palacios, G.M.; Benfield, T.; Fätkenheuer, G.; Kortepeter, M.G.; Atmar, R.L.; Creech, C.B.; Lundgren, J.; Babiker, A.G.; Pett, S.; Neaton, J.D.; Burgess, T.H.; Bonnett, T.; Green, M.; Makowski, M.; Osinusi, A.; Nayak, S.; Lane, H.C. Remdesivir for the treatment of Covid-19 - Final report. N. Engl. J. Med., 2020, 383(19), 1813-1826. doi: 10.1056/NEJMoa2007764 PMID: 32445440
  22. Mahase, E. Covid-19: Pfizer’s paxlovid is 89% effective in patients at risk of serious illness, company reports. BMJ, 2021, 375(2713), n2713. doi: 10.1136/bmj.n2713 PMID: 34750163
  23. Jayk Bernal, A.; Gomes da Silva, M.M.; Musungaie, D.B.; Kovalchuk, E.; Gonzalez, A.; Delos Reyes, V.; Martín-Quirós, A.; Caraco, Y.; Williams-Diaz, A.; Brown, M.L.; Du, J.; Pedley, A.; Assaid, C.; Strizki, J.; Grobler, J.A.; Shamsuddin, H.H.; Tipping, R.; Wan, H.; Paschke, A.; Butterton, J.R.; Johnson, M.G.; De Anda, C. Molnupiravir for oral treatment of Covid-19 in nonhospitalized patients. N. Engl. J. Med., 2022, 386(6), 509-520. doi: 10.1056/NEJMoa2116044 PMID: 34914868
  24. Stevens, L.J.; Pruijssers, A.J.; Lee, H.W.; Gordon, C.J.; Tchesnokov, E.P.; Gribble, J.; George, A.S.; Hughes, T.M.; Lu, X.; Li, J.; Perry, J.K.; Porter, D.P.; Cihlar, T.; Sheahan, T.P.; Baric, R.S.; Götte, M.; Denison, M.R. Mutations in the SARS-CoV-2 RNA-dependent RNA polymerase confer resistance to remdesivir by distinct mechanisms. Sci. Transl. Med., 2022, 14(656), eabo0718. doi: 10.1126/scitranslmed.abo0718 PMID: 35482820
  25. Gandhi, S.; Klein, J.; Robertson, A.J.; Peña-Hernández, M.A.; Lin, M.J.; Roychoudhury, P.; Lu, P.; Fournier, J.; Ferguson, D.; Mohamed Bakhash, S.A.K.; Catherine Muenker, M.; Srivathsan, A.; Wunder, E.A., Jr; Kerantzas, N.; Wang, W.; Lindenbach, B.; Pyle, A.; Wilen, C.B.; Ogbuagu, O.; Greninger, A.L.; Iwasaki, A.; Schulz, W.L.; Ko, A.I. De novo emergence of a remdesivir resistance mutation during treatment of persistent SARS-CoV-2 infection in an immunocompromised patient: A case report. Nat. Commun., 2022, 13(1), 1547. doi: 10.1038/s41467-022-29104-y PMID: 35301314
  26. Sakamuru, S.; Huang, R.; Xia, M. Use of Tox21 screening data to evaluate the covid-19 drug candidates for their potential toxic effects and related pathways. Front. Pharmacol., 2022, 13, 935399. doi: 10.3389/fphar.2022.935399 PMID: 35910344
  27. Fishbane, S.; Hirsch, J.S.; Nair, V. Special considerations for paxlovid treatment among transplant recipients with SARS-CoV-2 infection. Am. J. Kidney Dis., 2022, 79(4), 480-482. doi: 10.1053/j.ajkd.2022.01.001 PMID: 35032591
  28. Wen, W.; Chen, C.; Tang, J.; Wang, C.; Zhou, M.; Cheng, Y.; Zhou, X.; Wu, Q.; Zhang, X.; Feng, Z.; Wang, M.; Mao, Q. Efficacy and safety of three new oral antiviral treatment (molnupiravir, fluvoxamine and Paxlovid) for COVID-19:A meta-analysis. Ann. Med., 2022, 54(1), 516-523. doi: 10.1080/07853890.2022.2034936 PMID: 35118917
  29. Jackson, C.B.; Farzan, M.; Chen, B.; Choe, H. Mechanisms of SARS-CoV-2 entry into cells. Nat. Rev. Mol. Cell Biol., 2022, 23(1), 3-20. doi: 10.1038/s41580-021-00418-x PMID: 34611326
  30. Dai, L.; Gao, G.F. Viral targets for vaccines against COVID-19. Nat. Rev. Immunol., 2021, 21(2), 73-82. doi: 10.1038/s41577-020-00480-0 PMID: 33340022
  31. Zhou, T.; Tsybovsky, Y.; Gorman, J.; Rapp, M.; Cerutti, G.; Chuang, G.Y.; Katsamba, P.S.; Sampson, J.M.; Schön, A.; Bimela, J.; Boyington, J.C.; Nazzari, A.; Olia, A.S.; Shi, W.; Sastry, M.; Stephens, T.; Stuckey, J.; Teng, I.T.; Wang, P.; Wang, S.; Zhang, B.; Friesner, R.A.; Ho, D.D.; Mascola, J.R.; Shapiro, L.; Kwong, P.D. Cryo-EM Structures of SARS-CoV-2 spike without and with ACE2 reveal a ph-dependent switch to mediate endosomal positioning of receptor-binding domains. Cell Host Microbe., 2020, 28(6), 867-879.e5. doi: 10.1016/j.chom.2020.11.004 PMID: 33271067
  32. Li, T.; Yu, L.; Sun, J.; Liu, J.; He, X. Ionization of D571 Is coupled with sarS-CoV-2 spike Up/Down equilibrium revealing the pH-Dependent allosteric mechanism of receptor-binding domains. J. Phys. Chem. B, 2022, 126(26), 4828-4839. doi: 10.1021/acs.jpcb.2c02365 PMID: 35736566
  33. Yi, Y.; Li, J.; Lai, X.; Zhang, M.; Kuang, Y.; Bao, Y.O.; Yu, R.; Hong, W.; Muturi, E.; Xue, H.; Wei, H.; Li, T.; Zhuang, H.; Qiao, X.; Xiang, K.; Yang, H.; Ye, M. Natural triterpenoids from licorice potently inhibit SARS-CoV-2 infection. J. Adv. Res., 2022, 36, 201-210. doi: 10.1016/j.jare.2021.11.012 PMID: 35116174
  34. Yang, J.; Wang, W.; Chen, Z.; Lu, S.; Yang, F.; Bi, Z.; Bao, L.; Mo, F.; Li, X.; Huang, Y.; Hong, W.; Yang, Y.; Zhao, Y.; Ye, F.; Lin, S.; Deng, W.; Chen, H.; Lei, H.; Zhang, Z.; Luo, M.; Gao, H.; Zheng, Y.; Gong, Y.; Jiang, X.; Xu, Y.; Lv, Q.; Li, D.; Wang, M.; Li, F.; Wang, S.; Wang, G.; Yu, P.; Qu, Y.; Yang, L.; Deng, H.; Tong, A.; Li, J.; Wang, Z.; Yang, J.; Shen, G.; Zhao, Z.; Li, Y.; Luo, J.; Liu, H.; Yu, W.; Yang, M.; Xu, J.; Wang, J.; Li, H.; Wang, H.; Kuang, D.; Lin, P.; Hu, Z.; Guo, W.; Cheng, W.; He, Y.; Song, X.; Chen, C.; Xue, Z.; Yao, S.; Chen, L.; Ma, X.; Chen, S.; Gou, M.; Huang, W.; Wang, Y.; Fan, C.; Tian, Z.; Shi, M.; Wang, F.S.; Dai, L.; Wu, M.; Li, G.; Wang, G.; Peng, Y.; Qian, Z.; Huang, C.; Lau, J.Y.N.; Yang, Z.; Wei, Y.; Cen, X.; Peng, X.; Qin, C.; Zhang, K.; Lu, G.; Wei, X. A vaccine targeting the RBD of the S protein of SARS-CoV-2 induces protective immunity. Nature, 2020, 586(7830), 572-577. doi: 10.1038/s41586-020-2599-8 PMID: 32726802
  35. Yu, F.; Xiang, R.; Deng, X.; Wang, L.; Yu, Z.; Tian, S.; Liang, R.; Li, Y.; Ying, T.; Jiang, S. Receptor-binding domain-specific human neutralizing monoclonal antibodies against SARS-CoV and SARS-CoV-2. Signal Transduct. Target. Ther., 2020, 5(1), 212. doi: 10.1038/s41392-020-00318-0 PMID: 32963228
  36. Mahase, E. Covid-19: Novavax vaccine efficacy is 86% against UK variant and 60% against South African variant. BMJ, 2021, 372(296), n296. doi: 10.1136/bmj.n296 PMID: 33526412
  37. Wu, L.; Peng, C.; Yang, Y.; Shi, Y.; Zhou, L.; Xu, Z.; Zhu, W. Exploring the immune evasion of SARS-CoV-2 variant harboring E484K by molecular dynamics simulations. Brief. Bioinform., 2022, 23(1), bbab383. doi: 10.1093/bib/bbab383 PMID: 34553217
  38. Helfand, M.; Fiordalisi, C.; Wiedrick, J.; Ramsey, K.L.; Armstrong, C.; Gean, E.; Winchell, K.; Arkhipova-Jenkins, I. Risk for reinfection after SARS-CoV-2: A living, rapid review for american college of physicians practice points on the role of the antibody response in conferring immunity following SARS-CoV-2 infection. Ann. Intern. Med., 2022, 175(4), 547-555. doi: 10.7326/M21-4245 PMID: 35073157
  39. Lu, M.; Uchil, P.D.; Li, W.; Zheng, D.; Terry, D.S.; Gorman, J.; Shi, W.; Zhang, B.; Zhou, T.; Ding, S.; Gasser, R.; Prévost, J.; Beaudoin-Bussières, G.; Anand, S.P.; Laumaea, A.; Grover, J.R.; Liu, L.; Ho, D.D.; Mascola, J.R.; Finzi, A.; Kwong, P.D.; Blanchard, S.C.; Mothes, W. Real-time conformational dynamics of SARS-CoV-2 spikes on virus particles. Cell Host Microbe, 2020, 28(6), 880-891.e8. doi: 10.1016/j.chom.2020.11.001 PMID: 33242391
  40. Tan, Z.W.; Tee, W.V.; Samsudin, F.; Guarnera, E.; Bond, P.J.; Berezovsky, I.N. Allosteric perspective on the mutability and druggability of the SARS-CoV-2 Spike protein. Structure, 2022, 30(4), 590-607.e4. doi: 10.1016/j.str.2021.12.011 PMID: 35063064
  41. Toelzer, C.; Gupta, K.; Yadav, S.K.N.; Borucu, U.; Davidson, A.D.; Kavanagh Williamson, M.; Shoemark, D.K.; Garzoni, F.; Staufer, O.; Milligan, R.; Capin, J.; Mulholland, A.J.; Spatz, J.; Fitzgerald, D.; Berger, I.; Schaffitzel, C. Free fatty acid binding pocket in the locked structure of SARS-CoV-2 spike protein. Science, 2020, 370(6517), 725-730. doi: 10.1126/science.abd3255 PMID: 32958580
  42. Tong, L.; Wang, L.; Liao, S.; Xiao, X.; Qu, J.; Wu, C.; Zhu, Y.; Tai, W.; Huang, Y.; Wang, P.; Li, L.; Zhang, R.; Xiang, Y.; Cheng, G. A retinol derivative inhibits SARS-CoV-2 infection by interrupting spike-mediated cellular entry. MBio, 2022, 13(4), e01485-e22. doi: 10.1128/mbio.01485-22 PMID: 35862773
  43. Wang, Q.; Wang, L.; Zhang, Y.; Zhang, X.; Zhang, L.; Shang, W.; Bai, F. Probing the allosteric inhibition mechanism of a spike protein using molecular dynamics simulations and active compound identifications. J. Med. Chem., 2022, 65(4), 2827-2835. doi: 10.1021/acs.jmedchem.1c00320 PMID: 34415156
  44. Wagner, J.R.; Lee, C.T.; Durrant, J.D.; Malmstrom, R.D.; Feher, V.A.; Amaro, R.E. Emerging computational methods for the rational discovery of allosteric drugs. Chem. Rev., 2016, 116(11), 6370-6390. doi: 10.1021/acs.chemrev.5b00631 PMID: 27074285
  45. Di Paola, L.; Hadi-Alijanvand, H.; Song, X.; Hu, G.; Giuliani, A. The discovery of a putative allosteric site in the SARS-CoV-2 spike protein Using an integrated structural/dynamic approach. J. Proteome Res., 2020, 19(11), 4576-4586. doi: 10.1021/acs.jproteome.0c00273 PMID: 32551648
  46. Webb, B.; Sali, A. Comparative protein structure modeling using MODELLER. Curr Protoc Bioinformatics., 2017, 54, 5.6.37. doi: 10.1002/cpbi.3 PMID: 27322406
  47. Case, D.A.; Cheatham, T.E., III; Darden, T.; Gohlke, H.; Luo, R.; Merz, K.M., Jr; Onufriev, A.; Simmerling, C.; Wang, B.; Woods, R.J. The Amber biomolecular simulation programs. J. Comput. Chem., 2005, 26(16), 1668-1688. doi: 10.1002/jcc.20290 PMID: 16200636
  48. Le Guilloux, V.; Schmidtke, P.; Tuffery, P. Fpocket: An open source platform for ligand pocket detection. BMC Bioinformatics, 2009, 10(1), 168. doi: 10.1186/1471-2105-10-168 PMID: 19486540
  49. Liang, J.; Woodward, C.; Edelsbrunner, H. Anatomy of protein pockets and cavities: Measurement of binding site geometry and implications for ligand design. Protein Sci., 1998, 7(9), 1884-1897. doi: 10.1002/pro.5560070905 PMID: 9761470
  50. Santos-Martins, D.; Solis-Vasquez, L.; Tillack, A.F.; Sanner, M.F.; Koch, A.; Forli, S. Accelerating A UTO D OCK 4 with GPUs and Gradient-Based Local Search. J. Chem. Theory Comput., 2021, 17(2), 1060-1073. doi: 10.1021/acs.jctc.0c01006 PMID: 33403848
  51. O’Boyle, N.M.; Banck, M.; James, C.A.; Morley, C.; Vandermeersch, T.; Hutchison, G.R. Open Babel: An open chemical toolbox. J. Cheminform., 2011, 3(1), 33. doi: 10.1186/1758-2946-3-33 PMID: 21982300
  52. Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem., 2009, 30(16), 2785-2791. doi: 10.1002/jcc.21256 PMID: 19399780
  53. Huey, R.; Morris, G.M.; Olson, A.J.; Goodsell, D.S. A semiempirical free energy force field with charge-based desolvation. J. Comput. Chem., 2007, 28(6), 1145-1152. doi: 10.1002/jcc.20634 PMID: 17274016
  54. Adasme, M.F.; Linnemann, K.L.; Bolz, S.N.; Kaiser, F.; Salentin, S.; Haupt, V.J.; Schroeder, M. PLIP 2021: Expanding the scope of the protein–ligand interaction profiler to DNA and RNA. Nucleic Acids Res., 2021, 49(W1), W530-W534. doi: 10.1093/nar/gkab294 PMID: 33950214
  55. Maier, J.A.; Martinez, C.; Kasavajhala, K.; Wickstrom, L.; Hauser, K.E.; Simmerling, C. ff14SB: Improving the accuracy of protein side chain and backbone parameters from ff99SB. J. Chem. Theory Comput., 2015, 11(8), 3696-3713. doi: 10.1021/acs.jctc.5b00255 PMID: 26574453
  56. Wang, J.; Wolf, R.M.; Caldwell, J.W.; Kollman, P.A.; Case, D.A. Development and testing of a general amber force field. J. Comput. Chem., 2004, 25(9), 1157-1174. doi: 10.1002/jcc.20035 PMID: 15116359
  57. Ryckaert, J.P.; Ciccotti, G.; Berendsen, H.J.C. Numerical integration of the cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes. J. Comput. Phys., 1977, 23(3), 327-341. doi: 10.1016/0021-9991(77)90098-5
  58. Berendsen, H.J.C.; Grigera, J.R.; Straatsma, T.P. The missing term in effective pair potentials. J. Phys. Chem., 1987, 91(24), 6269-6271. doi: 10.1021/j100308a038
  59. Sindhikara, D.J.; Kim, S.; Voter, A.F.; Roitberg, A.E. Bad seeds sprout perilous dynamics: Stochastic thermostat induced trajectory synchronization in biomolecules. J. Chem. Theory Comput., 2009, 5(6), 1624-1631. doi: 10.1021/ct800573m PMID: 26609854
  60. Petersen, H.G. Accuracy and efficiency of the particle mesh Ewald method. J. Chem. Phys., 1995, 103(9), 3668-3679. doi: 10.1063/1.470043
  61. Pastor, R.W.; Brooks, B.R.; Szabo, A. An analysis of the accuracy of Langevin and molecular dynamics algorithms. Mol. Phys., 1988, 65(6), 1409-1419. doi: 10.1080/00268978800101881
  62. Bouysset, C.; Fiorucci, S. ProLIF: A library to encode molecular interactions as fingerprints. J. Cheminform., 2021, 13(1), 72. doi: 10.1186/s13321-021-00548-6 PMID: 34563256
  63. Roe, D.R.; Cheatham, T.E., III PTRAJ and CPPTRAJ: software for processing and analysis of molecular dynamics trajectory data. J. Chem. Theory Comput., 2013, 9(7), 3084-3095. doi: 10.1021/ct400341p PMID: 26583988
  64. Kollman, P.A.; Massova, I.; Reyes, C.; Kuhn, B.; Huo, S.; Chong, L.; Lee, M.; Lee, T.; Duan, Y.; Wang, W.; Donini, O.; Cieplak, P.; Srinivasan, J.; Case, D.A.; Cheatham, T.E., III Calculating structures and free energies of complex molecules: Combining molecular mechanics and continuum models. Acc. Chem. Res., 2000, 33(12), 889-897. doi: 10.1021/ar000033j PMID: 11123888
  65. Weiser, J.; Shenkin, P.S.; Still, W.C. Approximate atomic surfaces from linear combinations of pairwise overlaps (LCPO). J. Comput. Chem., 1999, 20(2), 217-230. doi: 10.1002/(SICI)1096-987X(19990130)20:23.0.CO;2-A
  66. Tian, W.; Li, D.; Zhang, N.; Bai, G.; Yuan, K.; Xiao, H.; Gao, F.; Chen, Y.; Wong, C.C.L.; Gao, G.F. O-glycosylation pattern of the SARS-CoV-2 spike protein reveals an "O-Follow-N" rule. Cell Res., 2021, 31(10), 1123-1125. doi: 10.1038/s41422-021-00545-2 PMID: 34341488
  67. Lopez, E.; Barthélémy, M.; Baronti, C.; Masse, S.; Falchi, A.; Durbesson, F.; Vincentelli, R.; de Lamballerie, X.; Charrel, R.; Coutard, B. Endonuclease-based genotyping of the RBM as a method to track the emergence or evolution of SARS-CoV-2 variants. iScience, 2021, 24(11), 103329. doi: 10.1016/j.isci.2021.103329 PMID: 34697603
  68. Bateman, A.; Martin, M-J.; Orchard, S.; Magrane, M.; Agivetova, R.; Ahmad, S.; Alpi, E.; Bowler-Barnett, E.H.; Britto, R.; Bursteinas, B.; Bye-A-Jee, H.; Coetzee, R.; Cukura, A.; Da Silva, A.; Denny, P.; Dogan, T.; Ebenezer, T.G.; Fan, J.; Castro, L.G.; Garmiri, P.; Georghiou, G.; Gonzales, L.; Hatton-Ellis, E.; Hussein, A.; Ignatchenko, A.; Insana, G.; Ishtiaq, R.; Jokinen, P.; Joshi, V.; Jyothi, D.; Lock, A.; Lopez, R.; Luciani, A.; Luo, J.; Lussi, Y.; MacDougall, A.; Madeira, F.; Mahmoudy, M.; Menchi, M.; Mishra, A.; Moulang, K.; Nightingale, A.; Oliveira, C.S.; Pundir, S.; Qi, G.; Raj, S.; Rice, D.; Lopez, M.R.; Saidi, R.; Sampson, J.; Sawford, T.; Speretta, E.; Turner, E.; Tyagi, N.; Vasudev, P.; Volynkin, V.; Warner, K.; Watkins, X.; Zaru, R.; Zellner, H.; Bridge, A.; Poux, S.; Redaschi, N.; Aimo, L.; Argoud-Puy, G.; Auchincloss, A.; Axelsen, K.; Bansal, P.; Baratin, D.; Blatter, M-C.; Bolleman, J.; Boutet, E.; Breuza, L.; Casals-Casas, C.; de Castro, E.; Echioukh, K.C.; Coudert, E.; Cuche, B.; Doche, M.; Dornevil, D.; Estreicher, A.; Famiglietti, M.L.; Feuermann, M.; Gasteiger, E.; Gehant, S.; Gerritsen, V.; Gos, A.; Gruaz-Gumowski, N.; Hinz, U.; Hulo, C.; Hyka-Nouspikel, N.; Jungo, F.; Keller, G.; Kerhornou, A.; Lara, V.; Le Mercier, P.; Lieberherr, D.; Lombardot, T.; Martin, X.; Masson, P.; Morgat, A.; Neto, T.B.; Paesano, S.; Pedruzzi, I.; Pilbout, S.; Pourcel, L.; Pozzato, M.; Pruess, M.; Rivoire, C.; Sigrist, C.; Sonesson, K.; Stutz, A.; Sundaram, S.; Tognolli, M.; Verbregue, L.; Wu, C.H.; Arighi, C.N.; Arminski, L.; Chen, C.; Chen, Y.; Garavelli, J.S.; Huang, H.; Laiho, K.; McGarvey, P.; Natale, D.A.; Ross, K.; Vinayaka, C.R.; Wang, Q.; Wang, Y.; Yeh, L-S.; Zhang, J.; Ruch, P.; Teodoro, D. UniProt: The universal protein knowledgebase in 2021. Nucleic Acids Res., 2021, 49(D1), D480-D489. doi: 10.1093/nar/gkaa1100 PMID: 33237286
  69. Tsueng, G.; Mullen, J.L.; Alkuzweny, M.; Cano, M.; Rush, B.; Haag, E.; Curators, O.; Latif, A.A.; Zhou, X.; Qian, Z.; Hufbauer, E.; Zeller, M.; Andersen, K.G.; Wu, C.; Su, A.I.; Gangavarapu, K.; Hughes, L.D. Outbreak.info research library: A standardized, searchable platform to discover and explore COVID-19 resources. bioRxiv, 2022, 2022, 477133. doi: 10.1101/2022.01.20.477133

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers