Advances in Drug Discovery and Design using Computer-aided Molecular Modeling


Cite item

Full Text

Abstract

Computer-aided molecular modeling is a rapidly emerging technology that is being used to accelerate the discovery and design of new drug therapies. It involves the use of computer algorithms and 3D structures of molecules to predict interactions between molecules and their behavior in the body. This has drastically improved the speed and accuracy of drug discovery and design. Additionally, computer-aided molecular modeling has the potential to reduce costs, increase the quality of data, and identify promising targets for drug development. Through the use of sophisticated methods, such as virtual screening, molecular docking, pharmacophore modeling, and quantitative structure-activity relationships, scientists can achieve higher levels of efficacy and safety for new drugs. Moreover, it can be used to understand the activity of known drugs and simplify the process of formulating, optimizing, and predicting the pharmacokinetics of new and existing drugs. In conclusion, computer-aided molecular modeling is an effective tool to rapidly progress drug discovery and design by predicting the interactions between molecules and anticipating the behavior of new drugs in the body.

About the authors

Kuldeep Singh

Department of Pharmacology, Rajiv Academy for Pharmacy

Author for correspondence.
Email: info@benthamscience.net

Bharat Bhushan

Department of Pharmacology, Institute of Pharmaceutical Research, GLA University

Email: info@benthamscience.net

Bhoopendra Singh

Department of Pharmacy,, B.S.A. College of Engineering & Technology

Email: info@benthamscience.net

References

  1. Sliwoski, G; Kothiwale, S; Meiler, J; Lowe, EW Computational methods in drug discovery. Pharmacol Rev, 2014, 66(1), 334. doi: 10.1124/pr.112.007336
  2. Doman, T.N.; McGovern, S.L.; Witherbee, B.J.; Kasten, T.P.; Kurumbail, R.; Stallings, W.C.; Connolly, D.T.; Shoichet, B.K. Molecular docking and high-throughput screening for novel inhibitors of protein tyrosine phosphatase-1B. J. Med. Chem., 2002, 45(11), 2213-2221. doi: 10.1021/jm010548w PMID: 12014959
  3. Adelusi, T.I.; Oyedele, A.Q.K.; Boyenle, I.D.; Ogunlana, A.T.; Adeyemi, R.O.; Ukachi, C.D.; Idris, M.O.; Olaoba, O.T.; Adedotun, I.O.; Kolawole, O.E.; Xiaoxing, Y.; Abdul-Hammed, M. Molecular modeling in drug discovery. Inform. Med. Unlocked,, 2022, 29, 100880. doi: 10.1016/j.imu.2022.100880
  4. Du Toit, A. Outbreak of a novel coronavirus. Nat. Rev. Microbiol., 2020, 18(3), 123-123. doi: 10.1038/s41579-020-0332-0 PMID: 31988490
  5. Myers, S.; Baker, A. Drug discovery—an operating model for a new era. Nat. Biotechnol., 2001, 19(8), 727-730. doi: 10.1038/90765 PMID: 11479559
  6. Manglik, A.; Lin, H.; Aryal, D.K.; McCorvy, J.D.; Dengler, D.; Corder, G.; Levit, A.; Kling, R.C.; Bernat, V.; Hübner, H.; Huang, X.P.; Sassano, M.F.; Giguère, P.M.; Löber, S.; Da Duan; Scherrer, G.; Kobilka, B.K.; Gmeiner, P.; Roth, B.L.; Shoichet, B.K. Structure-based discovery of opioid analgesics with reduced side effects. Nature, 2016, 537(7619), 185-190. doi: 10.1038/nature19112 PMID: 27533032
  7. Porter, C.T.; Bartlett, G.J.; Thornton, J.M. The catalytic site atlas: A resource of catalytic sites and residues identified in enzymes using structural data. Nucleic Acids Res., 2004, 32(90001), 129D-133. doi: 10.1093/nar/gkh028 PMID: 14681376
  8. Arakaki, A.K.; Zhang, Y.; Skolnick, J. Large-scale assessment of the utility of low-resolution protein structures for biochemical function assignment. Bioinformatics, 2004, 20(7), 1087-1096. doi: 10.1093/bioinformatics/bth044 PMID: 14764543
  9. Källberg, M.; Wang, H.; Wang, S.; Peng, J.; Wang, Z.; Lu, H.; Xu, J. Template-based protein structure modeling using the RaptorX web server. Nat. Protoc., 2012, 7(8), 1511-1522. doi: 10.1038/nprot.2012.085 PMID: 22814390
  10. Gupta, R.; Srivastava, D.; Sahu, M.; Tiwari, S.; Ambasta, R.K.; Kumar, P. Artificial intelligence to deep learning: Machine intelligence approach for drug discovery. Mol. Divers., 2021, 25(3), 1315-1360. doi: 10.1007/s11030-021-10217-3 PMID: 33844136
  11. Ejalonibu, M.A.; Ogundare, S.A.; Elrashedy, A.A.; Ejalonibu, M.A.; Lawal, M.M.; Mhlongo, N.N.; Kumalo, H.M. Drug discovery for Mycobacterium tuberculosis using structure-based computer- aided drug design approach. Int. J. Mol. Sci., 2021, 22(24), 13259. doi: 10.3390/ijms222413259 PMID: 34948055
  12. Bassani, D.; Moro, S. Past, present, and future perspectives on computer-aided drug design methodologies. Molecules, 2023, 28(9), 3906. doi: 10.3390/molecules28093906 PMID: 37175316
  13. Martin, L.; Hutchens, M.; Hawkins, C. Clinical trial cycle times continue to increase despite industry efforts. Nat. Rev. Drug Discov., 2017, 16(3), 157-157. doi: 10.1038/nrd.2017.21 PMID: 28184041
  14. Mouchlis, V.D.; Afantitis, A.; Serra, A.; Fratello, M.; Papadiamantis, A.G.; Aidinis, V.; Lynch, I.; Greco, D.; Melagraki, G. Advances in de novo drug design: From conventional to machine learning methods. Int. J. Mol. Sci., 2021, 22(4), 1676. doi: 10.3390/ijms22041676 PMID: 33562347
  15. Petrović, D.; Scott, J.S.; Bodnarchuk, M.S.; Lorthioir, O.; Boyd, S.; Hughes, G.M.; Lane, J.; Wu, A.; Hargreaves, D.; Robinson, J.; Sadowski, J. Virtual screening in the cloud identifies potent and selective ROS1 kinase inhibitors. J. Chem. Inf. Model., 2022, 62(16), 3832-3843. doi: 10.1021/acs.jcim.2c00644 PMID: 35920716
  16. Gorgulla, C.; Boeszoermenyi, A.; Wang, Z.F.; Fischer, P.D.; Coote, P.W.; Padmanabha Das, K.M.; Malets, Y.S.; Radchenko, D.S.; Moroz, Y.S.; Scott, D.A.; Fackeldey, K.; Hoffmann, M.; Iavniuk, I.; Wagner, G.; Arthanari, H. An open-source drug discovery platform enables ultra-large virtual screens. Nature, 2020, 580(7805), 663-668. doi: 10.1038/s41586-020-2117-z PMID: 32152607
  17. Ooms, F. Molecular modeling and computer aided drug design. Examples of their applications in medicinal chemistry. Curr. Med. Chem., 2000, 7(2), 141-158. doi: 10.2174/0929867003375317 PMID: 10637360
  18. Guha, R. The ups and downs of structure–activity landscapes. In: Chemoinformatics and Computational Chemical Biology. Methods in Molecular Biology; Bajorath, J., Ed; Humana Press: Totowa, NJ, 2010; 672, pp. 101-117. doi: 10.1007/978-1-60761-839-3_3
  19. Fu, H.; Shao, X.; Cai, W. Computer-aided design of molecular machines: Techniques, paradigms and difficulties. Phys. Chem. Chem. Phys., 2022, 24(3), 1286-1299. doi: 10.1039/D1CP04942A PMID: 34951435
  20. Ferreira, L.; dos Santos, R.; Oliva, G.; Andricopulo, A. Molecular docking and structure-based drug design strategies. Molecules, 2015, 20(7), 13384-13421. doi: 10.3390/molecules200713384 PMID: 26205061
  21. Palazzesi, F.; Pozzan, A. Deep learning applied to ligand-based de novo drug design. In: Artificial Intelligence in Drug Design. Methods in Molecular Biology; Humana: New York, NY, 2022; vol 2390, pp. 273-299. doi: 10.1007/978-1-0716-1787-8_12
  22. Yu, W; Mackerell, AD. Computer-aided drug design methods., Methods Mol Biol, 2017, 1520, 85-106. doi: 10.1007/978-1-4939-6634-9_5
  23. Zhang, Y.; Luo, M.; Wu, P.; Wu, S.; Lee, T.Y.; Bai, C. Application of computational biology and artificial intelligence in drug design. Int. J. Mol. Sci., 2022, 23(21), 13568. doi: 10.3390/ijms232113568 PMID: 36362355
  24. Pecina, A.; Eyrilmez, S.M.; Köprülüoğlu, C.; Miriyala, V.M.; Lepšík, M.; Fanfrlík, J.; Řezáč, J.; Hobza, P. SQM/COSMO scoring function: Reliable quantum‐mechanical tool for sampling and ranking in structure‐based drug design. ChemPlusChem, 2020, 85(11), 2362-2371. doi: 10.1002/cplu.202000120 PMID: 32609421
  25. Monteleone, S.; Fedorov, D.G.; Townsend-Nicholson, A.; Southey, M.; Bodkin, M.; Heifetz, A. Hotspot identification and drug design of protein–protein interaction modulators using the fragment molecular orbital method. J. Chem. Inf. Model., 2022, 62(16), 3784-3799. doi: 10.1021/acs.jcim.2c00457 PMID: 35939049
  26. Tripathi, A.; Bankaitis, VA. Molecular docking: From lock and key to combination lock. J. Mol. Med. Clin. Appl., 2017, 2(1), 10.
  27. Maiti, S.; Nazmeen, A.; Banerjee, A. Significant impact of redox regulation of estrogen‐metabolizing proteins on cellular stress responses. Cell Biochem. Funct., 2023, 41(4), 461-477. doi: 10.1002/cbf.3796 PMID: 37139830
  28. Zhou, S.; Weiß, R.G.; Cheng, L.T.; Dzubiella, J.; McCammon, J.A.; Li, B. Variational implicit-solvent predictions of the dry–wet transition pathways for ligand–receptor binding and unbinding kinetics. Proc. Natl. Acad. Sci. USA, 2019, 116(30), 14989-14994. doi: 10.1073/pnas.1902719116 PMID: 31270236
  29. Śledź, P.; Caflisch, A. Protein structure-based drug design: From docking to molecular dynamics. Curr. Opin. Struct. Biol., 2018, 48, 93-102. doi: 10.1016/j.sbi.2017.10.010 PMID: 29149726
  30. Lindorff-Larsen, K.; Maragakis, P.; Piana, S.; Eastwood, M.P.; Dror, R.O.; Shaw, D.E. Systematic validation of protein force fields against experimental data. PLoS One, 2012, 7(2), e32131. doi: 10.1371/journal.pone.0032131 PMID: 22384157
  31. Wang, L.; Wu, Y.; Deng, Y.; Kim, B.; Pierce, L.; Krilov, G.; Lupyan, D.; Robinson, S.; Dahlgren, M.K.; Greenwood, J.; Romero, D.L.; Masse, C.; Knight, J.L.; Steinbrecher, T.; Beuming, T.; Damm, W.; Harder, E.; Sherman, W.; Brewer, M.; Wester, R.; Murcko, M.; Frye, L.; Farid, R.; Lin, T.; Mobley, D.L.; Jorgensen, W.L.; Berne, B.J.; Friesner, R.A.; Abel, R. Accurate and reliable prediction of relative ligand binding potency in prospective drug discovery by way of a modern free-energy calculation protocol and force field. J. Am. Chem. Soc., 2015, 137(7), 2695-2703. doi: 10.1021/ja512751q PMID: 25625324
  32. Caleman, C.; van Maaren, P.J.; Hong, M.; Hub, J.S.; Costa, L.T.; van der Spoel, D. Force field benchmark of organic liquids: Density, enthalpy of vaporization, heat capacities, surface tension, isothermal compressibility, volumetric expansion coefficient, and dielectric constant. J. Chem. Theory Comput., 2012, 8(1), 61-74. doi: 10.1021/ct200731v PMID: 22241968
  33. Karunakar, P.; P B, S.; v, K. In silico modelling and virtual screening for identification of inhibitors for spore wall protein-5 in Nosema bombycis. J. Biomol. Struct. Dyn., 2022, 40(4), 1748-1763. doi: 10.1080/07391102.2020.1832579 PMID: 33050775
  34. Hassan Baig, M.; Ahmad, K.; Roy, S.; Mohammad Ashraf, J.; Adil, M.; Haris Siddiqui, M.; Khan, S.; Amjad Kamal, M.; Provazník, I.; Choi, I. Computer aided drug design: Success and limitations. Curr. Pharm. Des., 2016, 22(5), 572-581. doi: 10.2174/1381612822666151125000550 PMID: 26601966
  35. Seidel, T.; Schuetz, D.A.; Garon, A.; Langer, T. The pharmacophore concept and its applications in computer-aided drug design. In: Progress in the Chemistry of Organic Natural Products; Kinghorn, A.; Falk, H.; Gibbons, S., Eds.; Springer: Cham, 2019; 110, pp. 99-141. doi: 10.1007/978-3-030-14632-0_4
  36. Yang, D.; Zhou, Q.; Labroska, V.; Qin, S.; Darbalaei, S.; Wu, Y.; Yuliantie, E.; Xie, L.; Tao, H.; Cheng, J.; Liu, Q.; Zhao, S.; Shui, W.; Jiang, Y.; Wang, M.W. G protein-coupled receptors: Structureand function-based drug discovery. Signal Transduct. Target. Ther., 2021, 6(1), 7. doi: 10.1038/s41392-020-00435-w PMID: 33414387
  37. Morris, G.M.; Lim-Wilby, M. Molecular docking. Methods Mol Biol., 2008, 443, 365-382. doi: 10.1007/978-1-59745-177-2_19. PMID: 18446297
  38. Shahin, R.; Mansi, I.; Swellmeen, L.; Alwidyan, T.; Al-Hashimi, N.; Al-Qarar’h, Y.; Shaheen, O. Ligand-based computer aided drug design reveals new tropomycin receptor kinase a (TrkA) inhibitors. J. Mol. Graph. Model., 2018, 80, 327-352. doi: 10.1016/j.jmgm.2018.01.004 PMID: 29454290
  39. Ballante, F.; Kooistra, A.J.; Kampen, S.; de Graaf, C.; Carlsson, J. Structure-based virtual screening for ligands of G protein-coupled receptors: What can molecular docking do for you? Pharmacol Rev, 2021, 73(4), 527-565.
  40. Forli, S.; Huey, R.; Pique, M.E.; Sanner, M.F.; Goodsell, D.S.; Olson, A.J. Computational protein–ligand docking and virtual drug screening with the AutoDock suite. Nat. Protoc., 2016, 11(5), 905-919. doi: 10.1038/nprot.2016.051 PMID: 27077332
  41. Blanes-Mira, C.; Fernández-Aguado, P.; de Andrés-López, J.; Fernández-Carvajal, A.; Ferrer-Montiel, A.; Fernández-Ballester, G. Comprehensive survey of consensus docking for highthroughput virtual screening. Molecules, 2022, 28(1), 175. doi: 10.3390/molecules28010175 PMID: 36615367
  42. Tahir ul Qamar, M.; Zhu, XT.; Chen, LL; Alhussain, L Targetspecific machine learning scoring function improved structurebased virtual screening performance for SARS-CoV-2 drugs development. Int J Mol Sci, 2022, 23(19), 11003.
  43. Wu, C; Liu, Y; Yang, Y; Zhang, P; Zhong, W; Wang, Y Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharm Sin B, 2020, 10(5), 766.
  44. Rajasekaran, R.; Chen, Y.P.P. Probing the structure of Leishmania major DHFR TS and structure based virtual screening of peptide library for the identification of anti-leishmanial leads. J. Mol. Model., 2012, 18(9), 4089-4100. doi: 10.1007/s00894-012-1411-6 PMID: 22527276
  45. Editorial (Hot Topic: Topological and electrotopological descriptors of molecules: Fundamental principles and applications to computer aided molecular design – Part II). Curr Comput Aided- Drug Des., 2012, 8(3), 171. doi: 10.2174/157340912801619111
  46. Llinas del Torrent, C.; Pérez-Benito, L.; Tresadern, G. Computational drug design applied to the study of metabotropic glutamate receptors. Molecules, 2019, 24(6), 1098. doi: 10.3390/molecules24061098 PMID: 30897742
  47. Barril, X.; Hubbard, R.E.; Morley, S.D. Virtual screening in structure- based drug discovery. Mini Rev. Med. Chem., 2004, 4(7), 779-791. PMID: 15379645
  48. Gao, Y.; Zhou, Z.; Zhang, T.; Xue, S.; Li, K.; Jiang, J. Structurebased virtual screening towards the discovery of novel ULK1 inhibitors with anti-HCC activities. Molecules, 2022, 27(9), 2627. doi: 10.3390/molecules27092627 PMID: 35565977
  49. Dong, J.; Cao, D.S.; Miao, H.Y.; Liu, S.; Deng, B.C.; Yun, Y.H.; Wang, N.N.; Lu, A.P.; Zeng, W.B.; Chen, A.F. ChemDes: An integrated web-based platform for molecular descriptor and fingerprint computation. J. Cheminform., 2015, 7(1), 60. doi: 10.1186/s13321-015-0109-z PMID: 26664458
  50. Vucicevic, J.; Nikolic, K.; Mitchell, J.B.O. Rational drug design of antineoplastic agents using 3D-QSAR, cheminformatic, and virtual screening approaches. Curr. Med. Chem., 2019, 26(21), 3874-3889. doi: 10.2174/0929867324666170712115411 PMID: 28707592
  51. Huynh, L.; Neale, C.; Pomès, R.; Allen, C. Computational approaches to the rational design of nanoemulsions, polymeric micelles, and dendrimers for drug delivery. Nanomedicine, 2012, 8(1), 20-36. doi: 10.1016/j.nano.2011.05.006 PMID: 21669300
  52. Zhang, S.; Zhang, J.; Gao, P.; Sun, L.; Song, Y.; Kang, D.; Liu, X.; Zhan, P. Efficient drug discovery by rational lead hybridization based on crystallographic overlay. Drug Discov. Today, 2019, 24(3), 805-813. doi: 10.1016/j.drudis.2018.11.021 PMID: 30529326
  53. Testa, A.; Hughes, S.J.; Lucas, X.; Wright, J.E.; Ciulli, A. Structure‐ based design of a macrocyclic PROTAC. Angew. Chem. Int. Ed., 2020, 59(4), 1727-1734. doi: 10.1002/anie.201914396 PMID: 31746102
  54. Krüger, D.M.; Evers, A. Comparison of structure- and ligand-based virtual screening protocols considering hit list complementarity and enrichment factors. ChemMedChem, 2010, 5(1), 148-158. doi: 10.1002/cmdc.200900314 PMID: 19908272
  55. Rush, T.S., III; Grant, J.A.; Mosyak, L.; Nicholls, A. A shapebased 3-D scaffold hopping method and its application to a bacterial protein-protein interaction. J. Med. Chem., 2005, 48(5), 1489-1495. doi: 10.1021/jm040163o PMID: 15743191
  56. Razzaghi-Asl, N.; Sepehri, S.; Ebadi, A.; Miri, R.; Shahabipour, S. Effect of biomolecular conformation on docking simulation: A case study on a potent HIV-1 protease inhibitor. Iran. J. Pharm. Res., 2015, 14(3), 785-802. PMID: 26330867
  57. Lin, J.; Sahakian, D.; de Morais, S.; Xu, J.; Polzer, R.; Winter, S. The role of absorption, distribution, metabolism, excretion and toxicity in drug discovery. Curr. Top. Med. Chem., 2003, 3(10), 1125-1154. doi: 10.2174/1568026033452096 PMID: 12769713
  58. Ansari, S.; Azizian, H.; Pedrood, K.; Yavari, A.; Mojtabavi, S.; Faramarzi, M.A.; Golshani, S.; Hosseini, S.; Biglar, M.; Larijani, B.; Rastegar, H.; Hamedifar, H.; Mohammadi-Khanaposhtani, M.; Mahdavi, M. Design, synthesis, and α‐glucosidase‐inhibitory activity of phenoxy‐biscoumarin –N ‐phenylacetamide hybrids. Arch. Pharm., 2021, 354(12), 2100179. doi: 10.1002/ardp.202100179 PMID: 34467580
  59. Zhu, Y.; Han, Y.; Ma, Y.; Yang, P. ADME/toxicity prediction and antitumor activity of novel nitrogenous heterocyclic compounds designed by computer targeting of alkylglycerone phosphate synthase. Oncol. Lett., 2018, 16(2), 1431-1438. doi: 10.3892/ol.2018.8873 PMID: 30008821
  60. Rai, H.; Barik, A.; Singh, Y.P.; Suresh, A.; Singh, L.; Singh, G.; Nayak, U.Y.; Dubey, V.K.; Modi, G. Molecular docking, binding mode analysis, molecular dynamics, and prediction of ADMET/ toxicity properties of selective potential antiviral agents against SARS-CoV-2 main protease: an effort toward drug repurposing to combat COVID-19. Mol. Divers., 2021, 25(3), 1905-1927. doi: 10.1007/s11030-021-10188-5 PMID: 33582935
  61. Parmar, D.R.; Soni, J.Y.; Guduru, R.; Rayani, R.H.; Kusurkar, R.V.; Vala, A.G.; Talukdar, S.N.; Eissa, I.H.; Metwaly, A.M.; Khalil, A.; Zunjar, V.; Battula, S. Discovery of new anticancer thiourea- azetidine hybrids: design, synthesis, in vitro antiproliferative, SAR, in silico molecular docking against VEGFR-2, ADMET, toxicity, and DFT studies. Bioorg. Chem., 2021, 115, 105206. doi: 10.1016/j.bioorg.2021.105206 PMID: 34339975
  62. McKim, J., Jr Building a tiered approach to in vitro predictive toxicity screening: A focus on assays with in vivo relevance. Comb. Chem. High Throughput Screen., 2010, 13(2), 188-206. doi: 10.2174/138620710790596736 PMID: 20053163
  63. Alanazi, M.M.; Elwan, A.; Alsaif, N.A.; Obaidullah, A.J.; Alkahtani, H.M.; Al-Mehizia, A.A.; Alsubaie, S.M.; Taghour, M.S.; Eissa, I.H. Discovery of new 3-methylquinoxalines as potential anti- cancer agents and apoptosis inducers targeting VEGFR-2: design, synthesis, and in silico studies. J. Enzyme Inhib. Med. Chem., 2021, 36(1), 1732-1750. doi: 10.1080/14756366.2021.1945591 PMID: 34325596
  64. Idris, M.O.; Yekeen, A.A.; Alakanse, O.S.; Durojaye, O.A. Computer- aided screening for potential TMPRSS2 inhibitors: A combination of pharmacophore modeling, molecular docking and molecular dynamics simulation approaches. J. Biomol. Struct. Dyn., 2021, 39(15), 5638-5656. doi: 10.1080/07391102.2020.1792346 PMID: 32672528
  65. Daoui, O.; Nour, H.; Abchir, O.; Elkhattabi, S.; Bakhouch, M.; Chtita, S. A computer-aided drug design approach to explore novel type II inhibitors of c-Met receptor tyrosine kinase for cancer therapy: QSAR, molecular docking, ADMET and molecular dynamics simulations. J. Biomol. Struct. Dyn., 2023, 41(16), 7768-7785. doi: 10.1080/07391102.2022.2124456 PMID: 36120976
  66. Tabeshpour, J.; Sahebkar, A.; Zirak, M.R.; Zeinali, M.; Hashemzaei, M.; Rakhshani, S.; Rakhshani, S. Computer-aided drug design and drug pharmacokinetic prediction: A mini-review. Curr. Pharm. Des., 2018, 24(26), 3014-3019. doi: 10.2174/1381612824666180903123423 PMID: 30179125
  67. Sodum, N; Rao, V; Cheruku, SP; Kumar, G; Sankhe, R; Kishore, A. Amelioration of high-fat diet (HFD) + CCl4 induced NASH/NAFLD in CF-1 mice by activation of SIRT-1 using cinnamoyl sulfonamide hydroxamate derivatives: In-silico molecular modelling and in-vivo prediction. 3 Biotech, 2022, 12(7), 147.
  68. Rim, K.T. In silico prediction of toxicity and its applications for chemicals at work. Toxicol. Environ. Health Sci., 2020, 12(3), 191-202. doi: 10.1007/s13530-020-00056-4 PMID: 32421081
  69. Tripathy, S.; Sahu, S.K.; Azam, M.A.; Jupudi, S. Computer-aided identification of lead compounds as Staphylococcal epidermidis FtsZ inhibitors using molecular docking, virtual screening, DFT analysis, and molecular dynamic simulation. J. Mol. Model., 2019, 25(12), 360. doi: 10.1007/s00894-019-4238-6 PMID: 31773394
  70. Krishnan, S.R.; Bung, N.; Vangala, S.R.; Srinivasan, R.; Bulusu, G.; Roy, A. De novo structure-based drug design using deep learning. J. Chem. Inf. Model., 2022, 62(21), 5100-5109. doi: 10.1021/acs.jcim.1c01319 PMID: 34792338
  71. Lin, Y.; Zhang, Y.; Wang, D.; Yang, B.; Shen, Y.Q. Computer especially AI-assisted drug virtual screening and design in traditional Chinese medicine. Phytomedicine, 2022, 107, 154481. doi: 10.1016/j.phymed.2022.154481 PMID: 36215788
  72. Congreve, M.; Murray, C.W.; Blundell, T.L. Keynote review: Structural biology and drug discovery. Drug Discov. Today, 2005, 10(13), 895-907. doi: 10.1016/S1359-6446(05)03484-7 PMID: 15993809
  73. Hartenfeller, M.; Schneider, G. De novo drug design. In: Chemoinformatics and Computational Chemical Biology. Methods in Molecular Biology; Bajorath, J., Ed.; Humana Press: Totowa, N, 2010; 672, pp. 299-332. doi: 10.1007/978-1-60761-839-3_12
  74. Papadopoulos, K.; Giblin, K.A.; Janet, J.P.; Patronov, A.; Engkvist, O. De novo design with deep generative models based on 3D similarity scoring. Bioorg. Med. Chem., 2021, 44, 116308. doi: 10.1016/j.bmc.2021.116308 PMID: 34280849
  75. Shulga, D.A.; Ivanov, N.N.; Palyulin, V.A. In silico structure-based approach for group efficiency estimation in fragment-based drug design using evaluation of fragment contributions. Molecules, 2022, 27(6), 1985. doi: 10.3390/molecules27061985 PMID: 35335347
  76. Ullah, A.; Khan, A.; Al-Harrasi, A.; Ullah, K.; Shabbir, A. Threedimensional structure characterization and inhibition study of exfoliative toxin D from staphylococcus aureus. Front. Pharmacol., 2022, 13(Feb), 800970. doi: 10.3389/fphar.2022.800970 PMID: 35250557
  77. Wu, K.; Bai, H.; Chang, Y.T.; Redler, R.; McNally, K.E.; Sheffler, W.; Brunette, T.J.; Hicks, D.R.; Morgan, T.E.; Stevens, T.J.; Broerman, A.; Goreshnik, I.; DeWitt, M.; Chow, C.M.; Shen, Y.; Stewart, L.; Derivery, E.; Silva, D.A.; Bhabha, G.; Ekiert, D.C.; Baker, D. De novo design of modular peptide-binding proteins by superhelical matching. Nature, 2023, 616(7957), 581-589. doi: 10.1038/s41586-023-05909-9 PMID: 37020023
  78. Smith, M.D.; Rao, J.S.; Segelken, E.; Cruz, L. Force-field induced bias in the structure of Aβ 21–30 : A comparison of OPLS, AMBER, CHARMM, and GROMOS force fields. J. Chem. Inf. Model., 2015, 55(12), 2587-2595. doi: 10.1021/acs.jcim.5b00308 PMID: 26629886
  79. Kiss, G.; Röthlisberger, D.; Baker, D.; Houk, K.N. Evaluation and ranking of enzyme designs. Protein Sci., 2010, 19(9), 1760-1773. doi: 10.1002/pro.462 PMID: 20665693
  80. Krieger, E.; Joo, K.; Lee, J.; Lee, J.; Raman, S.; Thompson, J.; Tyka, M.; Baker, D.; Karplus, K. Improving physical realism, stereochemistry, and side-chain accuracy in homology modeling: Four approaches that performed well in CASP8. Proteins, 2009, 77(S9)(Suppl. 9), 114-122. doi: 10.1002/prot.22570 PMID: 19768677
  81. Batool, M.; Ahmad, B.; Choi, S. A structure-based drug discovery paradigm. Int. J. Mol. Sci., 2019, 20(11), 2783. doi: 10.3390/ijms20112783 PMID: 31174387
  82. Emilien, G.; Ponchon, M.; Caldas, C.; Isacson, O.; Maloteaux, J.M. Impact of genomics on drug discovery and clinical medicine. QJM, 2000, 93(7), 391-423. doi: 10.1093/qjmed/93.7.391 PMID: 10874050
  83. da Silva Rocha, S.F.L.; Olanda, C.G.; Fokoue, H.H.; Sant’Anna, C.M.R. Virtual screening techniques in drug discovery: Review and recent applications. Curr. Top. Med. Chem., 2019, 19(19), 1751-1767. doi: 10.2174/1568026619666190816101948 PMID: 31418662
  84. Trott, O; Olson, AJ AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading.. J Comput Chem, 2009, 31(2), 455-461.
  85. Hosseini, M.; Chen, W.; Xiao, D.; Wang, C. Computational molecular docking and virtual screening revealed promising SARS-CoV- 2 drugs. Precis. Clin. Med., 2021, 4(1), 1-16. doi: 10.1093/pcmedi/pbab001 PMID: 33842834
  86. Chen, Z.; Li, H.; Zhang, Q.; Bao, X.; Yu, K.; Luo, X.; Zhu, W.; Jiang, H. Pharmacophore-based virtual screening versus dockingbased virtual screening: a benchmark comparison against eight targets. Acta Pharmacol. Sin., 2009, 30(12), 1694-1708. doi: 10.1038/aps.2009.159 PMID: 19935678
  87. Giordano, D.; Biancaniello, C.; Argenio, M.A.; Facchiano, A. Drug design by pharmacophore and virtual screening approach. Pharmaceuticals, 2022, 15(5), 646. doi: 10.3390/ph15050646 PMID: 35631472
  88. Van Drie, J.H. Computer-aided drug design: the next 20 years. J. Comput. Aided Mol. Des., 2007, 21(10-11), 591-601. doi: 10.1007/s10822-007-9142-y PMID: 17989929
  89. León, R.; Soto-Delgado, J.; Montero, E.; Vargas, M. Development of computational approaches with a fragment-based drug design strategy: In silico hsp90 inhibitors discovery. Int. J. Mol. Sci., 2021, 22(24), 13226. doi: 10.3390/ijms222413226 PMID: 34948022
  90. Michel, M.; Homan, E.J.; Wiita, E.; Pedersen, K.; Almlöf, I.; Gustavsson, A.L.; Lundbäck, T.; Helleday, T.; Warpman Berglund, U. In silico druggability assessment of the NUDIX hydrolase protein family as a workflow for target prioritization. Front Chem., 2020, 8, 443. doi: 10.3389/fchem.2020.00443 PMID: 32548091
  91. Jäntschi, L Prediction of physico-chemical and biological properties with the help of mathematical descriptors; Ian: Cluj-Napoca, 2000.
  92. Jäntschi, L. Molecular descriptors family on structure activity relationships 1. Review of the methodology. Leonardo J. Pract. Technol., 2005, 4(6), 76-98.
  93. Bolboacă, S.D.; Jäntschi, L. Comparison of QSAR performances on carboquinone derivatives. ScientificWorldJournal, 2009, 9(10), 1148-1166. doi: 10.1100/tsw.2009.131 PMID: 19838601
  94. Bolboacă, S.D.; Jäntschi, L. Nano-quantitative structure-property relationship modeling on C42 fullerene isomers. J. Chem., 2016, 2016, 1-8. doi: 10.1155/2016/1791756
  95. Wang, W.; He, S.; Dong, G.; Sheng, C. Nucleic-acid-based targeted degradation in drug discovery. J. Med. Chem., 2022, 65(15), 10217-10232. doi: 10.1021/acs.jmedchem.2c00875 PMID: 35916496
  96. Diller, D.J.; Swanson, J.; Bayden, A.S.; Jarosinski, M.; Audie, J. Rational, computer-enabled peptide drug design: Principles, methods, applications and future directions. Future Med. Chem., 2015, 7(16), 2173-2193. doi: 10.4155/fmc.15.142 PMID: 26510691
  97. Dong, D.; Xu, Z.; Zhong, W.; Peng, S. Parallelization of molecular docking: A review. Curr. Top. Med. Chem., 2018, 18(12), 1015-1028. doi: 10.2174/1568026618666180821145215 PMID: 30129415
  98. Wadood, A.; Ghufran, M.; Hassan, S.F.; Khan, H.; Azam, S.S.; Rashid, U. In silico identification of promiscuous scaffolds as potential inhibitors of 1-deoxy- D -xylulose 5-phosphate reductoisomerase for treatment of Falciparum malaria. Pharm. Biol., 2017, 55(1), 19-32. doi: 10.1080/13880209.2016.1225778 PMID: 27650666
  99. Liu, T.; Lu, D.; Zhang, H.; Zheng, M.; Yang, H.; Xu, Y.; Luo, C.; Zhu, W.; Yu, K.; Jiang, H. Applying high-performance computing in drug discovery and molecular simulation. Natl. Sci. Rev., 2016, 3(1), 49-63. doi: 10.1093/nsr/nww003 PMID: 32288960
  100. Pérez, B.; Antunes, S.; Gonçalves, L.M.; Domingos, A.; Gomes, J.R.B.; Gomes, P.; Teixeira, C. Toward the discovery of inhibitors of babesipain-1, a Babesia bigemina cysteine protease: in vitro evaluation, homology modeling and molecular docking studies. J. Comput. Aided Mol. Des., 2013, 27(9), 823-835. doi: 10.1007/s10822-013-9682-2 PMID: 24129820
  101. Jiang, Y.; Yang, M.; Wang, S.; Li, X.; Sun, Y. Emerging role of deep learning‐based artificial intelligence in tumor pathology. Cancer Commun., 2020, 40(4), 154-166. doi: 10.1002/cac2.12012 PMID: 32277744
  102. Huang, W.; Zhang, L.; Li, Z. Advances in computer-aided drug design for type 2 diabetes. Expert Opin. Drug Discov., 2022, 17(5), 461-472. doi: 10.1080/17460441.2022.2047644 PMID: 35254188
  103. Usha, T.; Shanmugarajan, D.; Goyal, A.K.; Kumar, C.S.; Middha, S.K. Recent updates on computer-aided drug discovery: Time for a paradigm shift. Curr. Top. Med. Chem., 2018, 17(30), 3296-3307. doi: 10.2174/1568026618666180101163651 PMID: 29295698
  104. Gurung, A.B.; Ali, M.A.; Lee, J.; Farah, M.A.; Al-Anazi, K.M. An updated review of computer-aided drug design and its application to COVID-19. Biomed Res Int, 2021, 2021, 8853056.
  105. Wang, L.; Sarafianos, S.G.; Wang, Z. Cutting into the substrate dominance: Pharmacophore and structure-based approaches toward inhibiting human immunodeficiency virus reverse transcriptaseassociated ribonuclease H. Acc. Chem. Res., 2020, 53(1), 218-230. doi: 10.1021/acs.accounts.9b00450 PMID: 31880912
  106. Zeb, A.; Park, C.; Rampogu, S.; Son, M.; Lee, G.; Lee, K.W. Structure- based drug designing recommends HDAC6 inhibitors to attenuate microtubule-associated tau-pathogenesis. ACS Chem. Neurosci., 2019, 10(3), 1326-1335. doi: 10.1021/acschemneuro.8b00405 PMID: 30407786
  107. Simon, L.; Imane, A.; Srinivasan, K.K.; Pathak, L.; Daoud, I. In silico drug-designing studies on flavanoids as anticolon cancer agents: Pharmacophore mapping, molecular docking, and monte carlo method-based QSAR modeling. Interdiscip. Sci., 2017, 9(3), 445-458. doi: 10.1007/s12539-016-0169-4 PMID: 27059855
  108. Shen, L.; Huang, H.; Makriyannis, A.; Fisher, L.S. Integrated ligand based pharmacophore model derived from diverse FAAH covalent ligand classes. Curr. Computeraided Drug Des., 2012, 8(4), 330-334. doi: 10.2174/157340912803519615 PMID: 22734710
  109. Kale, A.; Kakde, R.; Pawar, S.; Jagtap, V.; Dorugade, R. Importance of pharmacophore in designing anticonvulsant agents. CNS Neurol. Disord. Drug Targets, 2023, 22(4), 500-511. doi: 10.2174/1871527321666220401115529 PMID: 35366788
  110. Kesharwani, R.K.; Singh, D.V.; Misra, K. Computation-based virtual screening for designing novel antimalarial drugs by targeting falcipain-III: a structure-based drug designing approach. J. Vector Borne Dis., 2013, 50(2), 93-102. PMID: 23995310

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers