A Rationalized Approach to Design and Discover Novel Non-steroidal Derivatives through Computational Aid for the Treatment of Prostate Cancer


Cite item

Full Text

Abstract

Background:Prostate cancer is one of the most prevalent cancers in men, leading to the second most common cause of death in men. Despite the availability of multiple treatments, the prevalence of prostate cancer remains high. Steroidal antagonists are associated with poor bioavailability and side effects, while non-steroidal antagonists show serious side effects, such as gynecomastia. Therefore, there is a need for a potential candidate for the treatment of prostate cancer with better bioavailability, good therapeutic effects, and minimal side effects.

Objective:This current research work focused on identifying a novel non-steroidal androgen receptor antagonist through computational tools, such as docking and in silico ADMET analysis.

Methods:Molecules were designed based on a literature survey, followed by molecular docking of all designed compounds and ADMET analysis of the hit compounds.

Results:A library of 600 non-steroidal derivatives (cis and trans) was designed, and molecular docking was performed in the active site of the androgen receptor (PDBID: 1Z95) using Auto- Dock Vina 1.5.6. Docking studies resulted in 15 potent hits, which were then subjected to ADME analysis using SwissADME. ADME analysis predicted three compounds (SK-79, SK-109, and SK-169) with the best ADME profile and better bioavailability. Toxicity studies using Protox-II were performed on the three best compounds (SK-79, SK-109, and SK-169), which predicted ideal toxicity for these lead compounds.

Conclusion:This research work will provide ample opportunities to explore medicinal and computational research areas. It will facilitate the development of novel androgen receptor antagonists in future experimental studies.

About the authors

Shubham Kumar

Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Lovely Professional University

Email: info@benthamscience.net

Pinky Arora

Department of Biochemistry, School of Bioengineering & Biosciences,, Lovely Professional University

Email: info@benthamscience.net

Pankaj Wadhwa

Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Lovely Professional University,

Author for correspondence.
Email: info@benthamscience.net

Paranjeet Kaur

Chitkara College of Pharmacy, Chitkara University

Author for correspondence.
Email: info@benthamscience.net

References

  1. Rawla, P. Epidemiology of prostate cancer. World J. Oncol., 2019, 10(2), 63-89. doi: 10.14740/wjon1191 PMID: 31068988
  2. Available From: https://www.who.int/news-room/fact-sheets/detail/cancer (accessed 15 nov 2022).
  3. Hammerich, K.H.; Ayala, G.E.; Wheeler, T.M. Anatomy of the prostate gland and surgical pathology of prostate cancer; Cambridge University: Cambridge, 2009, pp. 1-10.
  4. Yasuoka, S.; Kimura, G.; Toyama, Y.; Moriya, K.; Takahashi, K.; Matsuoka, R.; Shibayama, K.; Obayashi, K.; Inoue, Y.; Shindo, T.; Iigaya, S.; Endo, Y.; Akatsuka, J.; Hayashi, T.; Nakayama, S.; Hamasaki, T.; Inokuchi, K.; Kondo, Y. A case of primary malignant lymphoma of the prostate gland presenting as right lower back pain and dysuria. J. Nippon Med. Sch., 2018, 85(4), 236-240. doi: 10.1272/jnms.JNMS.2018_85-37 PMID: 30259894
  5. Keyes, M.; Crook, J.; Morton, G.; Vigneault, E.; Usmani, N.; Morris, W.J. Treatment options for localized prostate cancer. Can. Fam. Physician, 2013, 59(12), 1269-1274. PMID: 24336537
  6. Saman, D.M.; Lemieux, A.M.; Nawal Lutfiyya, M.; Lipsky, M.S. A review of the current epidemiology and treatment options for prostate cancer. Dis. Mon., 2014, 60(4), 150-154. doi: 10.1016/j.disamonth.2014.02.003 PMID: 24726082
  7. Dunn, M.W.; Kazer, M.W. Prostate cancer overview. Seminars in oncology nursing; Elsevier, 2011, 1, pp. (4)241-250.
  8. Holmboe, E.S.; Concato, J. Treatment decisions for localized prostate cancer. J. Gen. Intern. Med., 2000, 15(10), 694-701. doi: 10.1046/j.1525-1497.2000.90842.x PMID: 11089712
  9. Okada, K.; Oishi, K.; Yoshida, O.; Sudo, K.; Kawase, M.; Nakayama, R. Study of the effect of an anti-androgen (Oxendolone) on experimentally induced canine prostatic hyperplasia. Urol. Res., 1988, 16(2), 73-78. doi: 10.1007/BF00261959 PMID: 2453093
  10. Goldenberg, S.L.; Bruchovsky, N. Use of cyproterone acetate in prostate cancer. Urol. Clin. North Am., 1991, 18(1), 111-122. doi: 10.1016/S0094-0143(21)01398-7 PMID: 1825143
  11. Beckmann, K.; Garmo, H.; Lindahl, B.; Holmberg, L.; Stattin, P.; Adolfsson, J.; Cruickshank, J.K.; Van Hemelrijck, M. Spironolactone use is associated with lower prostate cancer risk: A population-wide case-control study. Prostate Cancer Prostatic Dis., 2020, 23(3), 527-533. doi: 10.1038/s41391-020-0220-8 PMID: 32123316
  12. Dhondt, B.; Buelens, S.; Van Besien, J.; Beysens, M.; De Bleser, E.; Ost, P.; Lumen, N. Abiraterone and spironolactone in prostate cancer: A combination to avoid. Acta Clin. Belg., 2019, 74(6), 439-444. doi: 10.1080/17843286.2018.1543827 PMID: 30477405
  13. Gao, W.; Kim, J.; Dalton, J.T. Pharmacokinetics and pharmacodynamics of nonsteroidal androgen receptor ligands. Pharm. Res., 2006, 23(8), 1641-1658. doi: 10.1007/s11095-006-9024-3 PMID: 16841196
  14. Maurice-Dror, C.; Le Moigne, R.; Vaishampayan, U.; Montgomery, R.B.; Gordon, M.S.; Hong, N.H.; DiMascio, L.; Perabo, F.; Chi, K.N. A phase 1 study to assess the safety, pharmacokinetics, and anti-tumor activity of the androgen receptor n-terminal domain inhibitor epi-506 in patients with metastatic castration-resistant prostate cancer. Invest. New Drugs, 2022, 40(2), 322-329. doi: 10.1007/s10637-021-01202-6 PMID: 34843005
  15. Mahler, C.; Verhelst, J.; Denis, L. Clinical pharmacokinetics of the antiandrogens and their efficacy in prostate cancer. Clin. Pharmacokinet., 1998, 34(5), 405-417. doi: 10.2165/00003088-199834050-00005 PMID: 9592622
  16. Ishioka, T.; Kubo, A.; Koiso, Y.; Nagasawa, K.; Itai, A.; Hashimoto, Y. Novel non-steroidal/non-anilide type androgen antagonists with an isoxazolone moiety. Bioorg. Med. Chem., 2002, 10(5), 1555-1566. doi: 10.1016/S0968-0896(01)00421-7 PMID: 11886817
  17. Kaur, P.; Khatik, G.L. Advancements in non-steroidal antiandrogens as potential therapeutic agents for the treatment of prostate cancer. Mini Rev. Med. Chem., 2016, 16(7), 531-546. doi: 10.2174/1389557516666160118112448 PMID: 26776222
  18. Stanisławska, I.J.; Piwowarski, J.P.; Granica, S.; Kiss, A.K. The effects of urolithins on the response of prostate cancer cells to non-steroidal antiandrogen bicalutamide. Phytomedicine, 2018, 46, 176-183. doi: 10.1016/j.phymed.2018.03.054 PMID: 30097116
  19. Kandil, S.B.; McGuigan, C.; Westwell, A.D. Synthesis and biological evaluation of bicalutamide analogues for the potential treatment of prostate cancer. Molecules, 2020, 26(1), 56. doi: 10.3390/molecules26010056 PMID: 33374450
  20. Kandil, S.; Lee, K.Y.; Davies, L.; Rizzo, S.A.; Dart, D.A.; Westwell, A.D. Discovery of deshydroxy bicalutamide derivatives as androgen receptor antagonists. Eur. J. Med. Chem., 2019, 167, 49-60. doi: 10.1016/j.ejmech.2019.01.054 PMID: 30743097
  21. Gomha, S.M.; Abdel-aziz, H.M.; Badrey, M.G.; Abdulla, M.M. efficient synthesis of some new 1, 3, 4‐thiadiazoles and 1, 2, 4‐triazoles linked to pyrazolylcoumarin ring system as potent 5α‐reductase inhibitors. J. Heterocycl. Chem., 2019, 56(4), 1275-1282. doi: 10.1002/jhet.3487
  22. Mochona, B.; Qi, X.; Euynni, S.; Sikazwi, D.; Mateeva, N.; Soliman, K.F. Design and evaluation of novel oxadiazole derivatives as potential prostate cancer agents. Bioorg. Med. Chem. Lett., 2016, 26(12), 2847-2851. doi: 10.1016/j.bmcl.2016.04.058 PMID: 27156770
  23. Gamal El-Din, M. M.; El-Gamal, M. I.; Abdel-Maksoud, M. S.; Yoo, K. H.; Oh, C.-H. Synthesis and broad-spectrum antiproliferative activity of diarylamides and diarylureas possessing 1,3,4-oxadiazole derivatives. Bioorg. Med. Chem. Let., 2015, 25(8), 1692-1699. doi: 10.1016/j.bmcl.2015.03.001 PMID: 25801936
  24. Kharlyngdoh, J.B.; Asnake, S.; Pradhan, A.; Olsson, P.E. TBECH, 1,2-dibromo-4-(1,2 dibromoethyl) cyclohexane, alters androgen receptor regulation in response to mutations associated with prostate cancer. Toxicol. Appl. Pharmacol., 2016, 307, 91-101. doi: 10.1016/j.taap.2016.07.018 PMID: 27473015
  25. Kumar, S.; Khatik, G.L.; Mittal, A. In silico molecular docking study to search new SGLT2 inhibitor based on dioxabicyclo 3.2. 1 octane scaffold. Curr. Computeraided Drug Des., 2020, 16(2), 145-154. doi: 10.2174/1573409914666181019165821 PMID: 30345926
  26. Liu, H.; An, X.; Li, S.; Wang, Y.; Li, J.; Liu, H. Interaction mechanism exploration of R-bicalutamide/S-1 with WT/W741L AR using molecular dynamics simulations. Mol. Biosyst., 2015, 11(12), 3347-3354. doi: 10.1039/C5MB00499C PMID: 26442831
  27. Bohl, C.E.; Wu, Z.; Miller, D.D.; Bell, C.E.; Dalton, J.T. Crystal structure of the T877A human androgen receptor ligand-binding domain complexed to cyproterone acetate provides insight for ligand-induced conformational changes and structure-based drug design. J. Biol. Chem., 2007, 282(18), 13648-13655. doi: 10.1074/jbc.M611711200 PMID: 17311914
  28. Dorice, M.H.C.; Khurana, N.; Sharma, N.; Khatik, G.L. Identification of possible molecular targets of potential anti-parkinson drugs by predicting their binding affinities using molecular docking. Asian J. Pharm. Clin. Res., 2018, 11(14), 28-32. doi: 10.22159/ajpcr.2018.v11s2.28512
  29. Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461. PMID: 19499576
  30. Pharmacophore and ligand-based design with Biovia Discovery Studio. Dassault systemes, 2014. Available from: https://www.3ds.com/fileadmin/PRODUCTS-SERVICES/BIOVIA/PDF/Pharmacophore-Ligand-based-Design-with-BIOVIA-Discover y-Studio.pdf
  31. Yuan, S.; Chan, H.C.S.; Hu, Z. Using PYMOL as a platform for computational drug design. Wiley Interdiscip. Rev. Comput. Mol. Sci., 2017, 7(2), e1298. doi: 10.1002/wcms.1298
  32. Jejurikar, B.L.; Rohane, S.H. Drug designing in discovery studio. Asian J. Res. Chem, 2021, 14(2), 135-138.
  33. Mishra, S.; Dahima, R. In vitro ADME studies of TUG-891, a GPR-120 inhibitor using SWISS ADME predictor. J. Drug Deliv. Ther., 2019, 9(2-s), 366-369.
  34. Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 2017, 7(1), 42717. doi: 10.1038/srep42717 PMID: 28256516
  35. Banerjee, P.; Eckert, A.O.; Schrey, A.K.; Preissner, R. ProTox-II: A webserver for the prediction of toxicity of chemicals. Nucleic Acids Res., 2018, 46(W1), W257-W263. doi: 10.1093/nar/gky318 PMID: 29718510
  36. (a) Banerjee, P.; Dehnbostel, F.O.; Preissner, R. Prediction is a balancing act: Importance of sampling methods to balance sensitivity and specificity of predictive models based on imbalanced chemical data sets. Front Chem., 2018, 6, 362. doi: 10.3389/fchem.2018.00362 PMID: 30271769; (b) Pires, D. E.; Blundell, T. L.; Ascher, D. B. PKCSM: Predicting Small-Molecule Pharmacokinetic and Toxicity Properties Using Graph-Based Signatures. J. Med. Chem., 2015, 58(9), 4066-4072. doi: 10.1021/acs.jmedchem.5b00104 PMID: 25860834

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers