Strychni Semen Combined with Atractylodes Macrocephala Koidz Attenuates Rheumatoid Arthritis by Regulating Apoptosis


Дәйексөз келтіру

Толық мәтін

Аннотация

Background:Rheumatoid arthritis (RA) is a chronic autoimmune disease that can lead to joint pain and disability, and seriously impact patients' quality of life. Strychni Semen combined with Atractylodes Macrocephala koidz (SA) have pronounced curative effect on RA, and there is no poisoning of Strychni Semen (SS). However, its pharmacological mechanisms are still unclear.

Objective:In this study, we aimed to investigate the pharmacological mechanisms of Strychni Semen combined with Atractylodes Macrocephala Koidz (SA) for the treatment of RA.

Methods:We used network pharmacology to screen the active components of SA and predict the targets and pathways involved. Results originating from network pharmacology were then verified by animal experiments.

Results:Network pharmacology identified 81 active ingredients and 141 targets of SA; 2640 disease- related genes were also identified. The core targets of SA for the treatment of RA included ALB, IL-6, TNF and IL-1β. A total of 354 gene ontology terms were identified by Gene ontology (GO) enrichment analysis. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis results showed that SA was closely associated with TNF signaling pathways in the treatment of RA. Furthermore, according to the predicted results of network pharmacology, we established a rat model of Adjuvant Arthritis (AA) for in vivo experiments. Analysis showed that each treatment group led to an improvement in paw swelling, immune organ coefficient and synovial tissue morphology in AA rats to different degrees, inhibit the expression levels of IL-1β, TNF-α and IL-6, upregulated the levels of Fas, Bax and Caspase 3, down-regulated the expression levels of Fas-L, Bcl-2 and p53.

Conclusion:SA has an anti-RA effect, the mechanism underlying the therapeutic action of SA in AA rats was related to the regulation of apoptosis signaling pathways

Авторлар туралы

Xiaoxin Wang

College of Traditional Chinese Medicine,, Shandong University of Traditional Chinese Medicine

Email: info@benthamscience.net

Yuling Li

College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine

Email: info@benthamscience.net

Huihui Lou

College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine

Email: info@benthamscience.net

Zidong Yang

College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine

Email: info@benthamscience.net

Jing Wang

College of Traditional Chinese Medicine,, Shandong University of Traditional Chinese Medicine

Email: info@benthamscience.net

Xiaodong Liang

College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine

Хат алмасуға жауапты Автор.
Email: info@benthamscience.net

Yuejuan Bian

, American Academy of Acupuncture and Oriental Medicine

Email: info@benthamscience.net

Әдебиет тізімі

  1. Xia, Z.B.; Meng, F.R.; Fang, Y.X.; Wu, X.; Zhang, C.W.; Liu, Y.; Liu, D.; Li, G.Q.; Feng, F.B.; Qiu, H.Y. Inhibition of NF-κB signaling pathway induces apoptosis and suppresses proliferation and angiogenesis of human fibroblast-like synovial cells in rheumatoid arthritis. Medicine, 2018, 97(23), e10920. doi: 10.1097/MD.0000000000010920 PMID: 29879032
  2. Yin, G.; Wang, Y.; Cen, X.; Yang, M.; Liang, Y.; Xie, Q. Lipid peroxidation-mediated inflammation promotes cell apoptosis through activation of NF-κB pathway in rheumatoid arthritis synovial cells. Mediators Inflamm., 2015, 2015, 1-10. doi: 10.1155/2015/460310 PMID: 25741130
  3. Scherer, H.U.; Häupl, T.; Burmester, G.R. The etiology of rheumatoid arthritis. J. Autoimmun., 2020, 110, 102400. doi: 10.1016/j.jaut.2019.102400 PMID: 31980337
  4. Birch, J.T., Jr; Bhattacharya, S. Emerging trends in diagnosis and treatment of rheumatoid arthritis. Prim. Care, 2010, 37(4), 779-792. doi: 10.1016/j.pop.2010.07.001 PMID: 21050958
  5. Littlejohn, E.A.; Monrad, S.U. Early diagnosis and treatment of rheumatoid arthritis. Prim. Care, 2018, 45(2), 237-255. doi: 10.1016/j.pop.2018.02.010 PMID: 29759122
  6. Lu, Y.; Gao, N. Research progress on pharmacological activities of Strychnos nux-vomica L. and methods of synergism and attenuation. Shanghai J. Tradit. Chinese Med., 2019, 53(5), 93-97.
  7. Sun, Z.; Cao, L. Study on the qiqing compatibility of strychni semen based on pharmacological effect. Pharmacol. Clinic. Chinese Mater. Medica., 2020, 36(2), 257-262.
  8. Liang, X.; Chen, T.; Tang, Y.; Cao, Y. Study on the compatibility of nux vomica and baizhu on immune mechanism in rats with arthritis. Chinese J. Basic Med. Tradit. Chinese Med., 2015, 21(8), 949-951.
  9. Liang, X.; Chen, T.; Cao, Y.; Tang, Y. Effects of nux vomica alone and compatibility of nux vomica and largehead atractylodes rhizome on adjuvant arthritis rats. Zhonghua Zhongyiyao Zazhi, 2016, 31(1), 235-238.
  10. Yan, S.; Cai, B.; Zhang, Z. Application progress of network pharmacology in traditional chinese medicine research. J. Nanjing Uni. Tradit. Chinese Med., 2021, 37(1), 156-160.
  11. Ru, J.; Li, P.; Wang, J.; Zhou, W.; Li, B.; Huang, C.; Li, P.; Guo, Z.; Tao, W.; Yang, Y.; Xu, X.; Li, Y.; Wang, Y.; Yang, L. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines. J. Cheminform., 2014, 6(1), 13. doi: 10.1186/1758-2946-6-13 PMID: 24735618
  12. Kim, S.; Chen, J.; Cheng, T.; Gindulyte, A.; He, J.; He, S.; Li, Q.; Shoemaker, B.A.; Thiessen, P.A.; Yu, B.; Zaslavsky, L.; Zhang, J.; Bolton, E.E. PubChem in 2021: New data content and improved web interfaces. Nucleic Acids Res., 2021, 49(D1), D1388-D1395. doi: 10.1093/nar/gkaa971 PMID: 33151290
  13. Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 2017, 7(1), 42717. doi: 10.1038/srep42717 PMID: 28256516
  14. Wang, X.; Shen, Y.; Wang, S.; Li, S.; Zhang, W.; Liu, X.; Lai, L.; Pei, J.; Li, H. PharmMapper 2017 update: A web server for potential drug target identification with a comprehensive target pharmacophore database. Nucleic Acids Res., 2017, 45(W1), W356-W360. doi: 10.1093/nar/gkx374 PMID: 28472422
  15. UniProt Consortium. UniProt: A worldwide hub of protein knowledge. Nucleic Acids Res., 2019, 47(D1), D506-D515. doi: 10.1093/nar/gky1049 PMID: 30395287
  16. PCAWG transcriptome core group, Calabrese, C.; Davidson, N. R.; Demircioğlu, D.; Fonseca, N. A.; He, Y.; Kahles, A.; Lehmann, K. V.; Liu, F.; Shiraishi, Y.; Soulette, C. M.; Urban, L.; Greger, L.; Li, S.; Liu, D.; Perry, M. D.; Xiang, Q.; Zhang, F.; Zhang, J.; Bailey, P.; Erkek, S.; Hoadley, K. A.; Hou, Y., Huska, M. R.; Kilpinen, H.; Korbel, J. O.; Marin, M. G.; Markowski, J.; Nandi, T.; Pan-Hammarström, Q.; Pedamallu, C. S.; Siebert, R.; Stark, S. G.; Su, H.; Tan, P.; Waszak, S.M.; Yung, C.; Zhu, S.; Awadalla, P.; Creighton, C. J.; Meyerson, M.; Ouellette, B. F. F.; Wu, K.; Yang,H.; PCAWG transcriptome working group; Brazma, A.; Brooks, A. N.; Göke, J.; Rätsch, G.; Schwarz, R. F.; Stegle, O.; Zhang, Z. PCAWG consortium genomic basis for RNA alterations in cancer. Nature., 2020, 578, 129-136. doi: 10.1038/s41586-020-1970-0 PMID: 7054216
  17. Wang, Y.; Zhang, S.; Li, F.; Zhou, Y.; Zhang, Y.; Wang, Z.; Zhang, R.; Zhu, J.; Ren, Y.; Tan, Y.; Qin, C.; Li, Y.; Li, X.; Chen, Y.; Zhu, F. Therapeutic target database 2020: Enriched resource for facilitating research and early development of targeted therapeutics. Nucleic Acids Res., 2020, 48(D1), D1031-D1041. PMID: 31691823
  18. Wishart, D.S.; Feunang, Y.D.; Guo, A.C.; Lo, E.J.; Marcu, A.; Grant, J.R.; Sajed, T.; Johnson, D.; Li, C.; Sayeeda, Z.; Assempour, N.; Iynkkaran, I.; Liu, Y.; Maciejewski, A.; Gale, N.; Wilson, A.; Chin, L.; Cummings, R.; Le, D.; Pon, A.; Knox, C.; Wilson, M. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Res., 2018, 46(D1), D1074-D1082. doi: 10.1093/nar/gkx1037 PMID: 29126136
  19. Szklarczyk, D.; Gable, A.L.; Lyon, D.; Junge, A.; Wyder, S.; Huerta-Cepas, J.; Simonovic, M.; Doncheva, N.T.; Morris, J.H.; Bork, P.; Jensen, L.J.; Mering, C. STRING v11: Protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res., 2019, 47(D1), D607-D613. doi: 10.1093/nar/gky1131 PMID: 30476243
  20. Huang, D.W.; Sherman, B.T.; Lempicki, R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc., 2009, 4(1), 44-57. doi: 10.1038/nprot.2008.211 PMID: 19131956
  21. Urman, A.; Taklalsingh, N.; Sorrento, C.; McFarlane, I.M. Inflammation beyond the joints: Rheumatoid arthritis and cardiovascular disease. Scifed. J. Cardiol., 2018, 2(3), 1000019.
  22. Figus, F.A.; Piga, M.; Azzolin, I.; McConnell, R.; Iagnocco, A. Rheumatoid arthritis: Extra-articular manifestations and comorbidities. Autoimmun. Rev., 2021, 20(4), 102776. doi: 10.1016/j.autrev.2021.102776 PMID: 33609792
  23. Yan, H.; Yu, J.; Zhang, X.; An, Y.; Xue, Y. Research progress of apoptosis protein in the pathogenesis of rheumatoid arthritis. Rheumatism Arthritis., 2021, 10(5), 69-72.
  24. Zhang, Q.; Liu, J.; Zhang, M.; Wei, S.; Li, R.; Gao, Y.; Peng, W.; Wu, C. Apoptosis induction of fibroblast-like synoviocytes is an important molecular-mechanism for herbal medicine along with its active components in treating rheumatoid arthritis. Biomolecules, 2019, 9(12), 795. doi: 10.3390/biom9120795 PMID: 31795133
  25. Hu, W.; Fu, W.; Wei, X.; Yang, Y.; Lu, C.; Liu, Z. A network pharmacology study on the active ingredients and potential targets of Tripterygium wilfordii hook for treatment of rheumatoid arthritis. Evid. Based Complement. Alternat. Med., 2019, 2019, 1-15. doi: 10.1155/2019/5276865 PMID: 31118961
  26. Guo, Q.; Mao, X.; Zhang, Y.; Meng, S.; Xi, Y.; Ding, Y.; Zhang, X.; Dai, Y.; Liu, X.; Wang, C.; Li, Y.; Lin, N. Guizhi-Shaoyao-Zhimu decoction attenuates rheumatoid arthritis partially by reversing inflammation-immune system imbalance. J. Transl. Med., 2016, 14(1), 165. doi: 10.1186/s12967-016-0921-x PMID: 27277474
  27. Chen, T.; Zhang, P.; Cheng, Y. Research progress on determination method, dryness and pharmacological action of Rhizoma Atractylodis. Zhongchengyao, 2020, 44(06), 1902-1905.
  28. Yao, Z.; Chen, W.; Yang, Z.; Jiang, C.; Li, N.; Guo, Y.; Wang, D.; Liu, C. Research progress in Atractylodes macrocephala and predictive analysis on Q-marker. Chin. Tradit. Herbal Drugs, 2019, 50(19), 4796-4807.
  29. Wang, S.; Sun, Y.; Li, C.; Lu, Q. Research progress of stigmasterol. China Pharmaceut., 2019, 28(23), 96-98.
  30. Wu, L.; Li, J.; Zhang, T.; Tao, F.; Liu, W. Discussion on anti-inflammatory effect of stigmasterol based on network pharmacology and cell experiment. Zhongchengyao, 2022, 44(2), 609-615.
  31. Yin, W.; Wang, T.S.; Yin, F.Z.; Cai, B.C. Analgesic and anti-inflammatory properties of brucine and brucine N-oxide extracted from seeds of Strychnos nux-vomica. J. Ethnopharmacol., 2003, 88(2-3), 205-214. doi: 10.1016/S0378-8741(03)00224-1 PMID: 12963144
  32. Xu, J.; Chen, J.; Cai, B. Advances in studies on brucine. Zhongguo Xin Yao Zazhi, 2009, 18(3), 213-216, 221.
  33. Xie, B.; Tang, W.; Wang, X. Research progress on chemical constituents and pharmacological effects of Strychnos nux -vomica. J. Pharm. Res., 2014, (10), 603-606.
  34. Mateen, S.; Zafar, A.; Moin, S.; Khan, A.Q.; Zubair, S. Understanding the role of cytokines in the pathogenesis of rheumatoid arthritis. Clin. Chim. Acta., 2016, 455, 161-171. doi: 10.1016/j.cca.2016.02.010 PMID: 26883280
  35. Favalli, E.G. Understanding the role of interleukin-6 (IL-6) in the joint and beyond: A comprehensive review of IL-6 inhibition for the management of rheumatoid arthritis. Rheumatol. Ther., 2020, 7(3), 473-516. doi: 10.1007/s40744-020-00219-2 PMID: 32734482
  36. Zhao, Z.; Xu, J.; Wang, R.; Xu, L. Expression and significance of NLRP3 inflammasome and its downstream factors IL-1β/IL-18 in synovium of rheumatoid arthritis. Chinese J. Clinic. Exp. Pathol., 2019, 35(5), 534-538.
  37. Cabal-Hierro, L.; Lazo, P.S. Signal transduction by tumor necrosis factor receptors. Cell. Signal., 2012, 24(6), 1297-1305. doi: 10.1016/j.cellsig.2012.02.006 PMID: 22374304
  38. Wertz, I.E. TNFR1-activated NF-κB signal transduction: Regulation by the ubiquitin/proteasome system. Curr. Opin. Chem. Biol., 2014, 23, 71-77. doi: 10.1016/j.cbpa.2014.10.011 PMID: 25461388
  39. Benderska, N.; Chakilam, S.; Hugle, M.; Ivanovska, J.; Gandesiri, M.; Schulze-Luhrmann, J.; Bajbouj, K.; Croner, R.; Schneider-Stock, R. Apoptosis signalling activated by TNF in the lower gastrointestinal tract--review. Curr. Pharm. Biotechnol., 2012, 13(11), 2248-2258. doi: 10.2174/138920112802501971 PMID: 21605069
  40. Chu, W.M. Tumor necrosis factor. Cancer Lett., 2013, 328(2), 222-225. doi: 10.1016/j.canlet.2012.10.014 PMID: 23085193
  41. Ma, Y.; Jiang, Z.; Jin, Y.; Miao, Q.; Zhang, C.; Zhang, L. Gene ontology analysis of the TNF signaling pathway in early orthodontic tooth movement of rats with peri-odontitis. J. Dent. Prevent. Treat., 2019, 27(11), 695-702.
  42. Calmon-Hamaty, F.; Audo, R.; Combe, B.; Morel, J.; Hahne, M. Targeting the Fas/FasL system in rheumatoid arthritis therapy: Promising or risky? Cytokine, 2015, 75(2), 228-233. doi: 10.1016/j.cyto.2014.10.004 PMID: 25481649
  43. Wang, M.; Su, P. The role of the Fas/FasL signaling pathway in environmental toxicant-induced testicular cell apoptosis: An update. Syst. Biol. Reprod Med., 2018, 64(2), 93-102. doi: 10.1080/19396368.2017.1422046 PMID: 29299971
  44. Kiraz, Y.; Adan, A.; Kartal Yandim, M.; Baran, Y. Major apoptotic mechanisms and genes involved in apoptosis. Tumour Biol., 2016, 37(7), 8471-8486. doi: 10.1007/s13277-016-5035-9 PMID: 27059734
  45. Xu, X.; Lai, Y.; Hua, Z.C. Apoptosis and apoptotic body: Disease message and therapeutic target potentials. Biosci. Rep., 2019, 39(1), BSR20180992. doi: 10.1042/BSR20180992 PMID: 30530866
  46. Abd El-Rahman, R.S.; Suddek, G.M.; Gameil, N.M.; El-kashef, H.A. Protective potential of MMR vaccine against complete Freund’s adjuvant-induced inflammation in rats. Inflammopharmacology, 2011, 19(6), 343-348. doi: 10.1007/s10787-011-0094-4 PMID: 22081121
  47. Choudhary, N.; Bhatt, L.K.; Prabhavalkar, K.S. Experimental animal models for rheumatoid arthritis. Immunopharmacol. Immunotoxicol., 2018, 40(3), 193-200. doi: 10.1080/08923973.2018.1434793 PMID: 29433367

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Bentham Science Publishers, 2024