Network Pharmacology-based and Molecular Docking Combined with GEO Gene Chips to Investigate the Potential Mechanism of Duhuo Jisheng Decoction against Rheumatoid Arthritis
- Authors: Yang Z.1, Yuan Z.1, Ma X.1
-
Affiliations:
- Department of Orthopedics, Tianjin Hospital
- Issue: Vol 20, No 4 (2024)
- Pages: 405-415
- Section: Chemistry
- URL: https://rjpbr.com/1573-4099/article/view/644065
- DOI: https://doi.org/10.2174/1573409919666230516110622
- ID: 644065
Cite item
Full Text
Abstract
Background:Rheumatoid Arthritis (RA) is a chronic autoimmune disease with various symptoms in patients. Duhuo Jisheng Decoction (DHJSD) has been used to treat RA in China for a long history as a classic TCM formula. However, the underlying pharmacological mechanism still needs to be elucidated.
Purpose:In the current study, we combined network pharmacology with molecular docking to investigate the potential mechanism of DHJSD treating RA.
Methods:The active compounds and related targets of DHJSD were obtained from the TCMSP database. The RA targets were retrieved from the GEO database. The PPI network of overlapping targets was constructed, whereas the core genes were selected by CytoNCA for molecular docking. GO and KEGG enrichment analysis were used to further explore the biological process and pathways of overlapping targets. On this basis, molecular docking was carried out to verify the interrelations of the main compounds and core targets.
Results:In this study, we found 81 active components corresponding to 225 targets of DHJSD. Moreover, 775 RA-related targets were obtained, of which 12 were shared between DHJSD targets and RA target genes. From GO and KEGG analysis, there were 346 GO items and 18 signaling pathways. As the molecular docking showed, the binding of components was stable with the core gene.
Conclusion:In conclusion, our works revealed the underlying mechanism of DHJSD for treating RA using network pharmacology and molecular docking, which provided a theoretical basis for further clinical application in the future.
About the authors
Zhao Yang
Department of Orthopedics, Tianjin Hospital
Author for correspondence.
Email: info@benthamscience.net
Zhen-Zhen Yuan
Department of Orthopedics, Tianjin Hospital
Email: info@benthamscience.net
Xin-long Ma
Department of Orthopedics, Tianjin Hospital
Author for correspondence.
Email: info@benthamscience.net
References
- Aihaiti, Y.; Song Cai, Y. Tuerhong, X.; Ni Yang, Y.; Ma, Y.; Shi Zheng, H.; Xu, K.; Xu, P. Therapeutic effects of naringin in rheumatoid arthritis: Network pharmacology and experimental validation. Front. Pharmacol., 2021, 12, 672054. doi: 10.3389/fphar.2021.672054 PMID: 34054546
- Lin, Y.J.; Anzaghe, M.; Schülke, S. Update on the pathomechanism, diagnosis, and treatment options for rheumatoid arthritis. Cells, 2020, 9(4), 880. doi: 10.3390/cells9040880 PMID: 32260219
- Bullock, J.; Rizvi, S.A.A.; Saleh, A.M. Rheumatoid Arthritis: A brief overview of the treatment. Med. Princ. Pract., 2018, 27(6), 501-507.
- Liu, Z.; Wang, Z.; Huang, C.; Fu, Z.; Liu, Y.; Wei, Z.; Liu, S.; Ma, C.; Shen, J.; Duan, D.D. Duhuo Jisheng Decoction inhibits SDF-1-induced inflammation and matrix degradation in human degenerative nucleus pulposus cells in vitro through the CXCR4/NF-κB pathway. Acta Pharmacol. Sin., 2018, 39(6), 912-922. doi: 10.1038/aps.2018.36 PMID: 29795361
- Xiong, Z.; Zheng, C.; Chang, Y. Exploring the pharmacological mechanism of duhuo jisheng decoction in treating osteoporosis based on network pharmacology. Evid. Based Complement. Alternat. Med., 2021, 2021, 5510290. doi: 10.1155/2021/5510290
- Zhao, J.; Zha, Q.; Jiang, M. Expert consensus on the treatment of rheumatoid arthritis with Chinese patent medicines. J. Altern. Complement. Med ., 2013, 19(2), 111-118. doi: 10.1089/acm.2011.0370
- Liu, F.; Liu, G.; Liang, W.; Ye, H.; Weng, X.; Lin, P.; Li, H.; Chen, J.; Liu, X.; Li, X. Duhuo Jisheng decoction treatment inhibits the sodium nitroprussiate-induced apoptosis of chondrocytes through the mitochondrial-dependent signaling pathway. Int. J. Mol. Med., 2014, 34(6), 1573-1580. doi: 10.3892/ijmm.2014.1962 PMID: 25339266
- Tang, M.; Xie, X.; Yi, P. Integrating network pharmacology with molecular docking to unravel the active compounds and potential mechanism of simiao pill treating rheumatoid arthritis. Evid. Based Complement. Alternat. Med., 2020, 2020, 5786053. doi: 10.1155/2020/5786053
- Yan, H-X.; Xu, C-F.; Yang, H. Network pharmacology-based analysis on the curative effect of kunxian capsules against rheumatoid arthritis. Evid. Based Complement. Alternat. Med., 2021, 2021, 6812374. doi: 10.1155/2021/6812374
- Basu, A.; Schell, J.; Scofield, R.H. Dietary fruits and arthritis. Food Funct., 2018, 9(1), 70-77. doi: 10.1039/C7FO01435J PMID: 29227497
- Guazelli, C.F.S.; Staurengo-Ferrari, L.; Zarpelon, A.C. Quercetin attenuates zymosan-induced arthritis in mice. Biomed. Pharmacother., 2018, 102, 175-184. doi: 10.1016/j.biopha.2018.03.057
- Zhang, C.F.; Zhang, S.L.; He, X.; Yang, X.L.; Wu, H.T.; Lin, B.Q.; Jiang, C.P.; Wang, J.; Yu, C.H.; Yang, Z.L.; Wang, C.Z.; Li, P.; Yuan, C.S. Antioxidant effects of Genkwa flos flavonoids on Freund׳s adjuvant-induced rheumatoid arthritis in rats. J. Ethnopharmacol., 2014, 153(3), 793-800. doi: 10.1016/j.jep.2014.03.046 PMID: 24685587
- Pan, D.; Li, N.; Liu, Y.; Xu, Q.; Liu, Q.; You, Y.; Wei, Z.; Jiang, Y.; Liu, M.; Guo, T.; Cai, X.; Liu, X.; Wang, Q.; Liu, M.; Lei, X.; Zhang, M.; Zhao, X.; Lin, C. Kaempferol inhibits the migration and invasion of rheumatoid arthritis fibroblast-like synoviocytes by blocking activation of the MAPK pathway. Int. Immunopharmacol., 2018, 55, 174-182. doi: 10.1016/j.intimp.2017.12.011 PMID: 29268189
- Khandia, R.; Munjal, A.K.; Iqbal, H.M.N.; Dhama, K. Heat shock proteins: Therapeutic perspectives in inflammatory disorders. Recent Pat. Inflamm. Allergy Drug Discov., 2017, 10(2), 94-104. doi: 10.2174/1872213X10666161213163301 PMID: 27978789
- White, P.T.; Subramanian, C.; Motiwala, H.F.; Cohen, M.S. Natural withanolides in the treatment of chronic diseases. Adv. Exp. Med. Biol., 2016, 928, 329-373. doi: 10.1007/978-3-319-41334-1_14 PMID: 27671823
- Guo, Q.; Mao, X.; Zhang, Y.; Meng, S.; Xi, Y.; Ding, Y.; Zhang, X.; Dai, Y.; Liu, X.; Wang, C.; Li, Y.; Lin, N. Guizhi-Shaoyao-Zhimu decoction attenuates rheumatoid arthritis partially by reversing inflammation-immune system imbalance. J. Transl. Med., 2016, 14(1), 165. doi: 10.1186/s12967-016-0921-x PMID: 27277474
- Maruotti, N.; Cantatore, F.P.; Ribatti, D. Putative effects of potentially anti-angiogenic drugs in rheumatic diseases. Eur. J. Clin. Pharmacol., 2014, 70(2), 135-140. doi: 10.1007/s00228-013-1605-6 PMID: 24196651
- Jian, C.; Yan, J.; Zhang, H.; Zhu, J. Recent advances of small molecule fluorescent probes for distinguishing monoamine oxidase-A and monoamine oxidase-B in vitro and in vivo. Mol. Cell. Probes, 2021, 55, 101686. doi: 10.1016/j.mcp.2020.101686 PMID: 33279529
- Dronjak, S.; Stefanovic, B.; Jovanovic, P.; Spasojevic, N.; Jankovic, M.; Jeremic, I.; Hoffmann, M. Altered cardiac gene expression of noradrenaline enzymes, transporter and β-adrenoceptors in rat model of rheumatoid arthritis. Auton. Neurosci., 2017, 208, 165-169. doi: 10.1016/j.autneu.2017.10.003 PMID: 29029974
- Igari, T.; Shimamura, T. Serotonin metabolism and its enzymic activities in joint diseases. Clin. Orthop. Relat. Res., 1979, & NA;(139), 232-249. doi: 10.1097/00003086-197903000-00035 PMID: 455840
- Lesniak, A.; Aarnio, M.; Jonsson, A.; Norberg, T.; Nyberg, F.; Gordh, T. High-throughput screening and radioligand binding studies reveal monoamine oxidase-B as the primary binding target for d-deprenyl. Life Sci., 2016, 152, 231-237. doi: 10.1016/j.lfs.2016.03.058 PMID: 27058977
- Elhaj Mahmoud, D.; Kaabachi, W.; Sassi, N.; Mokhtar, A.; Ben Ammar, L.; Rekik, S.; Tarhouni, L.; Kallel-Sellami, M.; Cheour, E.; Laadhar, L. Expression of extracellular matrix components and cytokine receptors in human fibrocytes during rheumatoid arthritis. Connect. Tissue Res., 2021, 62(6), 720-731. doi: 10.1080/03008207.2021.1873962 PMID: 33427511
- Chakraborty, D.; Gupta, K.; Biswas, S. A mechanistic insight of phytoestrogens used for Rheumatoid arthritis: An evidence-based review. Biomed. Pharmacother., 2021, 133, 111039. doi: 10.1016/j.biopha.2020.111039
- Orellana, C.; Saevarsdottir, S.; Klareskog, L.; Karlson, E.W.; Alfredsson, L.; Bengtsson, C. Postmenopausal hormone therapy and the risk of rheumatoid arthritis: Results from the Swedish EIRA population-based case-control study. Eur. J. Epidemiol., 2015, 30(5), 449-457. doi: 10.1007/s10654-015-0004-y PMID: 25762170
- Hang, X.; Zhang, Z.; Niu, R.; Wang, C.; Yao, J.; Xu, Y.; Tao, J.; Li, L.; Chen, F. Estrogen protects articular cartilage by downregulating asic1a in rheumatoid arthritis. J. Inflamm. Res., 2021, 14, 843-858. doi: 10.2147/JIR.S295222 PMID: 33737825
- Sapir-Koren, R.; Livshits, G. Rheumatoid arthritis onset in postmenopausal women: Does the ACPA seropositive subset result from genetic effects, estrogen deficiency, skewed profile of CD4+ T-cells, and their interactions? Mol. Cell. Endocrinol., 2016, 431, 145-163. doi: 10.1016/j.mce.2016.05.009 PMID: 27178986
- Kuwabara, T.; Ishikawa, F.; Kondo, M.; Kakiuchi, T. The role of IL-17 and related cytokines in inflammatory autoimmune diseases. Mediators Inflamm., 2017, 2017, 1-11. doi: 10.1155/2017/3908061 PMID: 28316374
- Amin, A.; Sheikh, N.; Mukhtar, M.; Saleem, T.; Akhtar, T.; Fatima, N.; Mehmood, R. Association of interleukin-17 gene polymorphisms with the onset of Rheumatoid Arthritis. Immunobiology, 2021, 226(1), 152045. doi: 10.1016/j.imbio.2020.152045 PMID: 33387966
- Schinocca, C.; Rizzo, C.; Fasano, S.; Grasso, G.; La Barbera, L.; Ciccia, F.; Guggino, G. Role of the IL-23/IL-17 pathway in rheumatic diseases: An overview. Front. Immunol., 2021, 12, 637829. doi: 10.3389/fimmu.2021.637829 PMID: 33692806
- Kunwar, S.; Dahal, K.; Sharma, S. Anti-IL-17 therapy in treatment of rheumatoid arthritis: A systematic literature review and meta-analysis of randomized controlled trials. Rheumatol. Int., 2016, 36(8), 1065-1075. doi: 10.1007/s00296-016-3480-9 PMID: 27105880
- Pi, H.; Zhou, H.; Jin, H.; Ning, Y.; Wang, Y. Abnormal glucose metabolism in rheumatoid arthritis. BioMed Res. Int., 2017, 2017, 9670434. doi: 10.1155/2017/9670434 PMID: 28529957
- Tripolino, C.; Ciaffi, J.; Pucino, V.; Ruscitti, P.; van Leeuwen, N.; Borghi, C.; Giacomelli, R.; Meliconi, R.; Ursini, F. Insulin signaling in arthritis. Front. Immunol., 2021, 12, 672519. doi: 10.3389/fimmu.2021.672519 PMID: 33995414
- Shahin, D.; Eltoraby, E.; Mesbah, A. Insulin resistance in early untreated rheumatoid arthritis patients. Clin. Biochem., 2010, 43(7-8), 661-665. doi: 10.1016/j.clinbiochem.2010.01.012
- Jin, H.; Ning, Y.; Zhou, H.; Wang, Y. IL-6 promotes Islet β -cell dysfunction in rat collagen-induced arthritis. J. Diabetes Res., 2016, 2016, 7592931. doi: 10.1155/2016/7592931 PMID: 27965984
- Panfili, E.; Gerli, R.; Grohmann, U.; Pallotta, M.T. Amino acid metabolism in rheumatoid arthritis: Friend or foe? Biomolecules, 2020, 10(9), 1280. doi: 10.3390/biom10091280 PMID: 32899743
- He, M.; Harms, A.C.; van Wijk, E.; Wang, M.; Berger, R.; Koval, S.; Hankemeier, T.; van der Greef, J. Role of amino acids in rheumatoid arthritis studied by metabolomics. Int. J. Rheum. Dis., 2019, 22(1), 38-46. doi: 10.1111/1756-185X.13062 PMID: 28328075
- Cheung, T.T.; McInnes, I.B. Future therapeutic targets in rheumatoid arthritis? Semin. Immunopathol., 2017, 39(4), 487-500. doi: 10.1007/s00281-017-0623-3 PMID: 28451787
- Tang, M.; Gao, X.; Geng, T.; Chen, X.; Wang, J.; Shen, C.; Gao, H.; Qian, M.; Wang, Z.; Cao, L.; Xiao, W. Metabolomics analysis of the therapeutic effects of Qiwei Tongbi oral liquid on rheumatoid arthritis in rats. J. Pharm. Biomed. Anal., 2021, 202, 114166. doi: 10.1016/j.jpba.2021.114166 PMID: 34052551
- Kolodziej, L. Systemic metabolism of tryptophan and its catabolites, kynurenine and 3-HAA, in mice with inflammatory arthritis. Gene, 2013, 512(1), 23-27. doi: 10.1016/j.gene.2012.09.122 PMID: 23063938
Supplementary files
