Research of Active Compounds from Allii Macrostemonis Bulbus and Potential Targets against Non-Hodgkin’s Lymphoma Based on Network Pharmacology


Cite item

Full Text

Abstract

Background:Non-Hodgkin’s Lymphoma (NHL) is a series of lymphoid malignancies in some aggressive subtypes with unsatisfactory treatment effects. Allii Macrostemonis Bulbus (Xie Bai) is a traditional Chinese medicine with anti-cancer activities, which may potentially suppress aggressive NHL.

Objective:This study tries to discover active components and targets of Xie Bai in treating NHL by network pharmacology-based approaches.

Methods:Compounds and related targets of Xie Bai were collected from the Traditional Chinese Medicine Database and Analysis Platform. Target genes associated with NHL were searched by GeneCards and DisGeNET, then the overlapped targets were further analyzed by STRING tool, GO, and KEGG pathway enrichment analysis. Molecular docking was employed to verify the interaction between compounds and targets.

Results:11 bioactive compounds were successfully identified, with 30 targets that were screened out for the treatment of NHL. Functional enrichment analysis suggested that Xie Bai exerted its potential effects against NHL via pathways in cancer, such as PI3K/ AKT, p53, and MAPK signaling pathways. Molecular docking results showed that 3 active compounds (quercetin, betasitosterol, and naringenin) had good affinity with selected 6 targets (TP53, AKT1, CASP3, CCND1, HPK1, and NLRP3).

Conclusion:Identifying six potential genes could accurately be docked with Xie Bai and had close interactions with NHL, which may provide insight into further research and new treatment strategy.

About the authors

Xiuliang Qiu

Department of Pharmacy, Clinical Oncology School of Fujian Medical University

Email: info@benthamscience.net

QiuLing Zhao

Department of Pharmacy, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital

Email: info@benthamscience.net

Hongqiang Qiu

Department of Pharmacy, Fujian Medical University Union Hospital

Email: info@benthamscience.net

Yu Cheng

Department of Pharmacy, Fujian Medical University Union Hospital

Email: info@benthamscience.net

WenBin Liu

Department of Pharmacy, Clinical Oncology School of Fujian Medical University

Email: info@benthamscience.net

Lin Yang

Department of Pharmacy, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital

Author for correspondence.
Email: info@benthamscience.net

References

  1. Mangal, N.; Salem, A.H.; Li, M.; Menon, R.; Freise, K.J. Relationship between response rates and median progression-free survival in non-Hodgkin’s lymphoma: A meta-analysis of published clinical trials. Hematol. Oncol., 2018, 36(1), 37-43. doi: 10.1002/hon.2463 PMID: 28707346
  2. Wang, Y.W.; Zhang, S.D.; Xue, W.J.; Zhu, M.L.; Zheng, L.Z. SHMT1 C1420T polymorphism contributes to the risk of non-Hodgkin lymphoma: Evidence from 7309 patients. Chin. J. Cancer, 2015, 34(3), 60. doi: 10.1186/s40880-015-0065-z PMID: 26666829
  3. Ribeiro, M.L.; Reyes-Garau, D.; Vinyoles, M.; Profitós Pelejà, N.; Santos, J.C.; Armengol, M.; Fernández-Serrano, M.; Sedó Mor, A.; Bech-Serra, J.J.; Blecua, P.; Musulen, E.; De La Torre, C.; Miskin, H.; Esteller, M.; Bosch, F.; Menéndez, P.; Normant, E.; Roué, G. Antitumor activity of the novel BTK inhibitor TG-1701 Is associated with disruption of ikaros signaling in patients with B-cell non-hodgkin lymphoma. Clin. Cancer Res., 2021, 27(23), 6591-6601. doi: 10.1158/1078-0432.CCR-21-1067 PMID: 34551904
  4. Ji, J.; Liu, Z.; Kuang, P.; Dong, T.; Chen, X.; Li, J.; Zhang, C.; Liu, J.; Zhang, L.; Shen, K.; Liu, T. A new conditioning regimen with chidamide, cladribine, gemcitabine and busulfan significantly improve the outcome of high‐risk or relapsed/refractory NON‐HODGKIN's lymphomas. Int. J. Cancer, 2021, 149(12), 2075-2082. doi: 10.1002/ijc.33761 PMID: 34398971
  5. Yoneshima, Y.; Morita, S.; Ando, M.; Nakamura, A.; Iwasawa, S.; Yoshioka, H.; Goto, Y.; Takeshita, M.; Harada, T.; Hirano, K.; Oguri, T.; Kondo, M.; Miura, S.; Hosomi, Y.; Kato, T.; Kubo, T.; Kishimoto, J.; Yamamoto, N.; Nakanishi, Y.; Okamoto, I. Phase 3 Trial comparing nanoparticle albumin-bound paclitaxel With docetaxel for previously treated advanced NSCLC. J. Thorac. Oncol., 2021, 16(9), 1523-1532. doi: 10.1016/j.jtho.2021.03.027 PMID: 33915251
  6. Lassaletta, A.; Scheinemann, K.; Zelcer, S.M.; Hukin, J.; Wilson, B.A.; Jabado, N.; Carret, A.S.; Lafay-Cousin, L.; Larouche, V.; Hawkins, C.E.; Pond, G.R.; Poskitt, K.; Keene, D.; Johnston, D.L.; Eisenstat, D.D.; Krishnatry, R.; Mistry, M.; Arnoldo, A.; Ramaswamy, V.; Huang, A.; Bartels, U.; Tabori, U.; Bouffet, E. Phase II weekly vinblastine for chemotherapy-naïve children with progressive low-grade glioma: A canadian pediatric brain tumor consortium study. J. Clin. Oncol., 2016, 34(29), 3537-3543. doi: 10.1200/JCO.2016.68.1585 PMID: 27573663
  7. Yang, W.; Cai, J.; Shen, S.; Gao, J.; Yu, J.; Hu, S.; Jiang, H.; Fang, Y.; Liang, C.; Ju, X.; Wu, X.; Zhai, X.; Tian, X.; Wang, N.; Liu, A.; Jiang, H.; Jin, R.; Sun, L.; Yang, M.; Leung, A.W.K.; Pan, K.; Zhang, Y.; Chen, J.; Zhu, Y.; Zhang, H.; Li, C.; Yang, J.J.; Cheng, C.; Li, C.K.; Tang, J.; Zhu, X.; Pui, C.H. Pulse therapy with vincristine and dexamethasone for childhood acute lymphoblastic leukaemia (CCCG-ALL-2015): An open-label, multicentre, randomised, phase 3, non-inferiority trial. Lancet Oncol., 2021, 22(9), 1322-1332. doi: 10.1016/S1470-2045(21)00328-4 PMID: 34329606
  8. Yao, Z.H.; Qin, Z.F.; Dai, Y.; Yao, X.S. Phytochemistry and pharmacology of Allii Macrostemonis Bulbus, a traditional Chinese medicine. Chin. J. Nat. Med., 2016, 14(7), 481-498. doi: 10.1016/S1875-5364(16)30058-9 PMID: 27507199
  9. Lai, Q.K.; Tao, R.L.; Zhao, Y.J.; Zi, R.F.; He, Q. Advances in study of anticancer properties of Allii Macrostemonis Bulbus. Zhongguo Zhongyao Zazhi, 2015, 40(24), 4811-4816. PMID: 27245027
  10. Leung, E.L.; Cao, Z.W.; Jiang, Z.H.; Zhou, H.; Liu, L. Network-based drug discovery by integrating systems biology and computational technologies. Brief. Bioinform., 2013, 14(4), 491-505. doi: 10.1093/bib/bbs043 PMID: 22877768
  11. Zhao, S.; Iyengar, R. Systems pharmacology: Network analysis to identify multiscale mechanisms of drug action. Annu. Rev. Pharmacol. Toxicol., 2012, 52(1), 505-521. doi: 10.1146/annurev-pharmtox-010611-134520 PMID: 22235860
  12. Ru, J.; Li, P.; Wang, J.; Zhou, W.; Li, B.; Huang, C.; Li, P.; Guo, Z.; Tao, W.; Yang, Y.; Xu, X.; Li, Y.; Wang, Y.; Yang, L. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines. J. Cheminform., 2014, 6(1), 13. doi: 10.1186/1758-2946-6-13 PMID: 24735618
  13. Lv, X.; Xu, Z.; Xu, G.; Li, H.; Wang, C.; Chen, J.; Sun, J. Investigation of the active components and mechanisms of Schisandra chinensis in the treatment of asthma based on a network pharmacology approach and experimental validation. Food Funct., 2020, 11(4), 3032-3042. doi: 10.1039/D0FO00087F PMID: 32186565
  14. Consortium, U.P. The UniProt consortium: Reorganizing the protein space at the universal protein resource (UniProt). Nucleic Acids Res., 2012, (D1), D1.
  15. Stelzer, G; Rosen, N; Plaschkes, I; Zimmerman, S; Twik, M; Fishilevich, S The GeneCards suite: From gene data mining to disease genome sequence analyses. Curr Protoc Bioinformatics, 2016, 54, 1.30.1-1.30.33.
  16. Bauer-Mehren, A.; Rautschka, M.; Sanz, F.; Furlong, L.I. DisGeNET: A Cytoscape plugin to visualize, integrate, search and analyze gene–disease networks. Bioinformatics, 2010, 26(22), 2924-2926. doi: 10.1093/bioinformatics/btq538 PMID: 20861032
  17. Kohl, M.; Wiese, S.; Warscheid, B. Cytoscape: Software for visualization and analysis of biological networks. Methods Mol. Biol., 2011, 696, 291-303. doi: 10.1007/978-1-60761-987-1_18 PMID: 21063955
  18. Tang, Z.; Li, C.; Kang, B.; Gao, G.; Li, C.; Zhang, Z. GEPIA: A web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res., 2017, 45(W1), W98-W102. doi: 10.1093/nar/gkx247 PMID: 28407145
  19. Szklarczyk, D.; Morris, J.H.; Cook, H.; Kuhn, M.; Wyder, S.; Simonovic, M.; Santos, A.; Doncheva, N.T.; Roth, A.; Bork, P.; Jensen, L.J.; von Mering, C. The STRING database in 2017: quality-controlled protein–protein association networks, made broadly accessible. Nucleic Acids Res., 2017, 45(D1), D362-D368. doi: 10.1093/nar/gkw937 PMID: 27924014
  20. Liu, Y; Grimm, M; Dai, WT; Hou, MC Cao, Y CB-Dock: A web server for cavity detection-guided protein–ligand blind docking. Acta Pharmacologica Sinica, 2019, 41(Suppl 14)
  21. Chua, G.T.; Rosa Duque, J.S.; Cheuk, D.K.L.; Leung, A.W.K.; Wong, W.H.S.; Liu, A.P.Y.; Lee, P.P.W.; Ha, S.Y.; Chiang, A.K.S.; Ho, M.H.K.; Chu, W.K.; Chan, Y.S.; Luk, C.W.; Ling, A.S.C.; Kwan, M.Y.W.; Yiu, O.K.F.; Wong, I.C.K.; Lau, Y.L.; Li, C.K.; Leung, W.H.; Chan, G.C.F.; Ip, P.; Kwok, J. HLA alleles associated with asparaginase hypersensitivity in Chinese children. J. Hematol. Oncol., 2021, 14(1), 182. doi: 10.1186/s13045-021-01201-3 PMID: 34717720
  22. Zhi-Min, W.; Qi-Fan, Z.; Ying-Wei, X.; Da, P. Apoptosis of human gastric cancer cells induced by bulbus allii macrostemi volatile oil. Zhongguo Linchuang Kangfu, 2006, 10(19), 115-117.
  23. Luo, T.; Shi, M.Q.; Liu, X. Effect of total saponin from allium macrostemon bunge on proliferation and apoptosis of cervix cancer HeLa cells. Chinese J. Diff. Compl. Cases., 2012, 11(10), 762-765.
  24. Wang, Y.; Tang, Q.; Jiang, S.; Li, M.; Wang, X. Anti-colorectal cancer activity of macrostemonoside A mediated by reactive oxygen species. Biochem. Biophys. Res. Commun., 2013, 441(4), 825-830. doi: 10.1016/j.bbrc.2013.10.148 PMID: 24211203
  25. Chen, H.; Wang, G.; Wang, N.; Yang, M.; Wang, Z.; Wang, X.; Yao, X. New furostanol saponins from the bulbs of Allium macrostemon Bunge and their cytotoxic activity. Pharmazie, 2007, 62(7), 544-548. PMID: 17718198
  26. Zhang, R.; Zhu, X.; Bai, H.; Ning, K. Network pharmacology databases for traditional chinese medicine: Review and assessment. Front. Pharmacol., 2019, 10, 123. doi: 10.3389/fphar.2019.00123 PMID: 30846939
  27. Gu, J.; Gui, Y.; Chen, L.; Yuan, G.; Lu, H.Z.; Xu, X. Use of natural products as chemical library for drug discovery and network pharmacology. PLoS One, 2013, 8(4), e62839. doi: 10.1371/journal.pone.0062839 PMID: 23638153
  28. Hernandez Borrero, L.; Dicker, D.T.; Santiago, J.; Sanders, J.; Tian, X.; Ahsan, N.; Lev, A.; Zhou, L.; El-Deiry, W.S. A subset of CB002 xanthine analogs bypass p53-signaling to restore a p53 transcriptome and target an S-phase cell cycle checkpoint in tumors with mutated-p53. eLife, 2021, 10, e70429. doi: 10.7554/eLife.70429 PMID: 34324416
  29. Tenbaum, S.P. Ordóñez-Morán, P.; Puig, I.; Chicote, I.; Arqués, O.; Landolfi, S.; Fernández, Y.; Herance, J.R.; Gispert, J.D.; Mendizabal, L.; Aguilar, S.; Cajal, S.R.; Schwartz, S., Jr; Vivancos, A.; Espín, E.; Rojas, S.; Baselga, J.; Tabernero, J.; Muñoz, A.; Palmer, H.G. β-catenin confers resistance to PI3K and AKT inhibitors and subverts FOXO3a to promote metastasis in colon cancer. Nat. Med., 2012, 18(6), 892-901. doi: 10.1038/nm.2772 PMID: 22610277
  30. Wang, Y.; Hou, H.; Liang, Z.; Chen, X.; Lian, X.; Yang, J.; Zhu, Z.; Luo, H.; Su, H.; Gong, Q. P38 MAPK/AKT signalling is involved in IL-33-mediated anti-apoptosis in childhood acute lymphoblastic leukaemia blast cells. Ann. Med., 2021, 53(1), 1464-1472. doi: 10.1080/07853890.2021.1970217 PMID: 34435521
  31. Koh, Y.W.; Han, J.H.; Yoon, D.H.; Suh, C.; Huh, J. Epstein-Barr virus positivity is associated with angiogenesis in, and poorer survival of, patients receiving standard treatment for classical Hodgkin’s lymphoma. Hematol. Oncol., 2018, 36(1), 182-188. doi: 10.1002/hon.2468 PMID: 28744882
  32. Mawson, A.R.; Majumdar, S. Malaria, Epstein-Barr virus infection and the pathogenesis of Burkitt’s lymphoma. Int. J. Cancer, 2017, 141(9), 1849-1855. doi: 10.1002/ijc.30885 PMID: 28707393
  33. Forlani, G.; Shallak, M.; Tedeschi, A.; Cavallari, I.; Marçais, A.; Hermine, O.; Accolla, R.S. Dual cytoplasmic and nuclear localization of HTLV-1-encoded HBZ protein is a unique feature of adult T-cell leukemia. Haematologica, 2021, 106(8), 2076-2085. doi: 10.3324/haematol.2020.272468 PMID: 33626865
  34. Mitobe, Y.; Yasunaga, J.; Furuta, R.; Matsuoka, M. HTLV-1 bZIP factor RNA and protein impart distinct functions on T-cell proliferation and survival. Cancer Res., 2015, 75(19), 4143-4152. doi: 10.1158/0008-5472.CAN-15-0942 PMID: 26383166
  35. Massi, A.; Bortolini, O.; Ragno, D.; Bernardi, T.; Sacchetti, G.; Tacchini, M.; De Risi, C. Research progress in the modification of quercetin leading to anticancer agents. Molecules, 2017, 22(8), 1270. doi: 10.3390/molecules22081270 PMID: 28758919
  36. Reyes-Farias, M.; Carrasco-Pozo, C. The anti-cancer effect of quercetin: Molecular implications in cancer metabolism. Int. J. Mol. Sci., 2019, 20(13), 3177. doi: 10.3390/ijms20133177 PMID: 31261749
  37. Li, H.; Chen, F.J.; Yang, W.L.; Qiao, H.Z.; Zhang, S.J. Quercetin improves cognitive disorder in aging mice by inhibiting NLRP3 inflammasome activation. Food Funct., 2021, 12(2), 717-725. doi: 10.1039/D0FO01900C PMID: 33338087
  38. Vargas, A.J.; Burd, R. Hormesis and synergy: Pathways and mechanisms of quercetin in cancer prevention and management. Nutr. Rev., 2010, 68(7), 418-428. doi: 10.1111/j.1753-4887.2010.00301.x PMID: 20591109
  39. Bin Sayeed, M.S.; Ameen, S.S. Beta-Sitosterol: A promising but orphan nutraceutical to fight against cancer. Nutr. Cancer, 2015, 67(8), 1216-1222. doi: 10.1080/01635581.2015.1087042 PMID: 26473555
  40. Park, C.; Moon, D.O.; Rhu, C.H.; Choi, B.T.; Lee, W.H.; Kim, G.Y.; Choi, Y.H. Beta-sitosterol induces anti-proliferation and apoptosis in human leukemic U937 cells through activation of caspase-3 and induction of Bax/Bcl-2 ratio. Biol. Pharm. Bull., 2007, 30(7), 1317-1323. doi: 10.1248/bpb.30.1317 PMID: 17603173
  41. Awad, A.B. Chinnam, M.; Fink, C.S.; Bradford, P.G. β-Sitosterol activates Fas signaling in human breast cancer cells. Phytomedicine, 2007, 14(11), 747-754. doi: 10.1016/j.phymed.2007.01.003 PMID: 17350814
  42. Zeng, W.; Jin, L.; Zhang, F.; Zhang, C.; Liang, W. Naringenin as a potential immunomodulator in therapeutics. Pharmacol. Res., 2018, 135, 122-126. doi: 10.1016/j.phrs.2018.08.002 PMID: 30081177
  43. Chen, Y.Y.; Chang, Y.M.; Wang, K.Y.; Chen, P.N.; Hseu, Y.C.; Chen, K.M.; Yeh, K.T.; Chen, C.J.; Hsu, L.S. Naringenin inhibited migration and invasion of glioblastoma cells through multiple mechanisms. Environ. Toxicol., 2019, 34(3), 233-239. doi: 10.1002/tox.22677 PMID: 30431227
  44. Park, S.; Lim, W.; Bazer, F.W.; Song, G. Naringenin suppresses growth of human placental choriocarcinoma via reactive oxygen species-mediated P38 and JNK MAPK pathways. Phytomedicine, 2018, 50, 238-246. doi: 10.1016/j.phymed.2017.08.026 PMID: 30466984
  45. Lim, W.; Park, S.; Bazer, F.W.; Song, G. Naringenin-induced apoptotic cell death in prostate cancer cells is mediated via the PI3K/AKT and MAPK signaling pathways. J. Cell. Biochem., 2017, 118(5), 1118-1131. doi: 10.1002/jcb.25729 PMID: 27606834
  46. Curylova, L.; Ramos, H.; Saraiva, L.; Skoda, J. Noncanonical roles of p53 in cancer stemness and their implications in sarcomas. Cancer Lett., 2022, 525, 131-145. doi: 10.1016/j.canlet.2021.10.037 PMID: 34742870
  47. Chen, J.; Ge, X.; Zhang, W.; Ding, P.; Du, Y.; Wang, Q.; Li, L.; Fang, L.; Sun, Y.; Zhang, P.; Zhou, Y.; Zhang, L.; Lv, X.; Li, L.; Zhang, X.; Zhang, Q.; Xue, K.; Gu, H.; Lei, Q.; Wong, J.; Hu, W. PI3K/AKT inhibition reverses R-CHOP resistance by destabilizing SOX2 in diffuse large B cell lymphoma. Theranostics, 2020, 10(7), 3151-3163. doi: 10.7150/thno.41362 PMID: 32194860
  48. Vera-Lozada, G.; Segges, P.; Stefanoff, C.G.; Barros, M.H.M.; Niedobitek, G.; Hassan, R. Pathway-focused gene expression profiles and immunohistochemistry detection identify contrasting association of caspase 3 (CASP3) expression with prognosis in pediatric classical Hodgkin lymphoma. Hematol. Oncol., 2018, 36(4), 663-670. doi: 10.1002/hon.2523 PMID: 29901224
  49. Mohanty, A.; Sandoval, N.; Phan, A.; Nguyen, T.V.; Chen, R.W.; Budde, E.; Mei, M.; Popplewell, L.; Pham, L.V.; Kwak, L.W.; Weisenburger, D.D.; Rosen, S.T.; Chan, W.C.; Müschen, M.; Ngo, V.N. Regulation of SOX11 expression through CCND1 and STAT3 in mantle cell lymphoma. Blood, 2019, 133(4), 306-318. doi: 10.1182/blood-2018-05-851667 PMID: 30530749
  50. Si, J.; Shi, X.; Sun, S.; Zou, B.; Li, Y.; An, D.; Lin, X.; Gao, Y.; Long, F.; Pang, B.; Liu, X.; Liu, T.; Chi, W.; Chen, L.; Dimitrov, D.S.; Sun, Y.; Du, X.; Yin, W.; Gao, G.; Min, J.; Wei, L.; Liao, X. Hematopoietic progenitor kinase 1 (HPK1) mediates T cell dysfunction and is a druggable target for T cell-based immunotherapies. Cancer Cell, 2020, 38(4), 551-566.e11. doi: 10.1016/j.ccell.2020.08.001 PMID: 32860752
  51. Lu, F.; Zhao, Y.; Pang, Y.; Ji, M.; Sun, Y.; Wang, H.; Zou, J.; Wang, Y.; Li, G.; Sun, T.; Li, J.; Ma, D.; Ye, J.; Ji, C. NLRP3 inflammasome upregulates PD-L1 expression and contributes to immune suppression in lymphoma. Cancer Lett., 2021, 497, 178-189. doi: 10.1016/j.canlet.2020.10.024 PMID: 33091534
  52. Lin, Y.; Hui, W.; Winter, B.; Chang-Cheng, S.; Hong-Qiang, Q. Yu, C Pharmacokinetics and pharmacogenetics of high-dose methotrexate in Chinese adult patients with non-Hodgkin lymphoma: A population analysis. Cancer chemotherapy and pharmacology, 2020, 85(5), 881-897.
  53. Yang, L.; Wu, H.; Gelder, T.; Matic, M.; Ruan, J.S.; Han, Y.; Xie, R.X. SLCO1B1 rs4149056 genetic polymorphism predicting methotrexate toxicity in Chinese patients with non-Hodgkin lymphoma. Pharmacogenomics, 2017, 18(17), 1557-1562. doi: 10.2217/pgs-2017-0110 PMID: 29095107

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers