A Computational Investigation on Chitosan Derivatives using Pharmacophore- based Screening, Molecular Docking, and Molecular Dynamics Simulations against Kaposi Sarcoma


Cite item

Full Text

Abstract

Background:Cancer is one of the most dangerous illnesses to the human body due to its severity and progressive nature. Kaposi's Sarcoma (KS) tumor can appear as painless purple spots on the legs, foot, or face. This cancer develops in the lining of lymph arteries and blood vessels. Along with the enlargement of lymph nodes, the vaginal region and the mouth portion are the additional target areas of KS. DNA-binding proteins known as Sox proteins are found in all mammals and belong to the HMG box superfamily. They controlled a wide range of developmental procedures, such as the formation of the germ layer, the growth of organs, and the selection of the cell type. Human developmental abnormalities and congenital illnesses are frequently caused by the deletion or mutation of the Sox protein.

Aim:The purpose of this study is to determine the promising Kaposi's sarcoma inhibitors through computational studies.

Objective:In this present study computational approaches were used to evaluate the anti- carcinogenic efficacy against Kaposi's sarcoma.

Methods:Ligand-based pharmacophore screening was performed utilising four different chemical libraries (Asinex, Chembridge, Specs, and NCI Natural products (NSC)) depending on the top hypothesis. The top hits were examined using molecular docking, absorption, distribution, metabolism and excretion. Highest occupied molecular orbital and lowest unoccupied molecular orbital were analysed to determine the lead compounds' biological and pharmacological efficacy. The results of the study indicated that the leading candidates were possible SOX protein inhibitors.

Conclusion:The results revealed that the top hits responded to all of the pharmacological druglikening criteria and had the best interaction residues, fitness scores, and docking scores. The resulting leads might be potential Kaposi's Sarcoma alternative treatments.

About the authors

Kiruba Sakthivel

Department of Bioinformatics, Science Campus, Alagappa University

Email: info@benthamscience.net

Priyanka Ganapathy

Department of Physiology, Sree Balaji Medical College and Hospital

Email: info@benthamscience.net

Kirubhanand Chandrasekaran

Department of Anatomy, All India Institute of Medical Sciences

Email: info@benthamscience.net

Gowtham Subbaraj

Faculty of Allied Health Sciences, Chettinad Hospital & Research Institute, Chettinad Academy of Research and Education

Email: info@benthamscience.net

Langeswaran Kulanthaivel

Department of Bioinformatics, Science Campus, Alagappa University

Author for correspondence.
Email: info@benthamscience.net

References

  1. Chalya, P.L.; Mbunda, F.; Rambau, P.F.; Jaka, H.; Masalu, N.; Mirambo, M.; Mushi, M.F.; Kalluvya, S.E. Kaposi’s sarcoma: A 10-year experience with 248 patients at a single tertiary care hospital in Tanzania. BMC Res. Notes, 2015, 8(1), 440. doi: 10.1186/s13104-015-1348-9 PMID: 26374100
  2. Ruocco, E.; Ruocco, V.; Tornesello, M.L.; Gambardella, A.; Wolf, R.; Buonaguro, F.M. Kaposi’s sarcoma: Etiology and pathogenesis, inducing factors, causal associations, and treatments: Facts and controversies. Clin. Dermatol., 2013, 31(4), 413-422. doi: 10.1016/j.clindermatol.2013.01.008 PMID: 23806158
  3. Gaglia, M.M. Kaposi’s sarcoma-associated herpesvirus at 27. Tumour Virus Res., 2021, 12, 200223. doi: 10.1016/j.tvr.2021.200223 PMID: 34153523
  4. Glaunsinger, B.A.; Ganem, D.E. Messenger RNA turnover and its regulation in herpesviral infection. Adv. Virus Res., 2006, 66, 337-394. doi: 10.1016/S0065-3527(06)66007-7 PMID: 16877064
  5. Borah, S.; Darricarrère, N.; Darnell, A.; Myoung, J.; Steitz, J.A. A viral nuclear noncoding RNA binds re-localized poly(A) binding protein and is required for late KSHV gene expression. PLoS Pathog., 2011, 7(10), e1002300. doi: 10.1371/journal.ppat.1002300 PMID: 22022268
  6. Lou, T.; Yan, X.; Wang, X. Chitosan coated polyacrylonitrile nanofibrous mat for dye adsorption. Int. J. Biol. Macromol., 2019, 135, 919-925. doi: 10.1016/j.ijbiomac.2019.06.008 PMID: 31170493
  7. Razmi, F.A.; Ngadi, N.; Wong, S.; Inuwa, I.M.; Opotu, L.A. Kinetics, thermodynamics, isotherm and regeneration analysis of chitosan modified pandan adsorbent. J. Clean. Prod., 2019, 231, 98-109. doi: 10.1016/j.jclepro.2019.05.228
  8. Modak, C.; Jha, A.; Sharma, N.; Kumar, A. Chitosan derivatives: A suggestive evaluation for novel inhibitor discovery against wild type and variants of SARS-CoV-2 virus. Int. J. Biol. Macromol., 2021, 187, 492-512. doi: 10.1016/j.ijbiomac.2021.07.144 PMID: 34324908
  9. Kumar, R.; Garg, P.; Bharatam, P.V. Shape-based virtual screening, docking, and molecular dynamics simulations to identify Mtb -ASADH inhibitors. J. Biomol. Struct. Dyn., 2015, 33(5), 1082-1093. doi: 10.1080/07391102.2014.929535 PMID: 24875451
  10. Pal, S.; Kumar, V.; Kundu, B.; Bhattacharya, D.; Preethy, N.; Reddy, M.P.; Talukdar, A. Ligand-based pharmacophore modeling, virtual screening and molecular docking studies for discovery of potential topoisomerase I inhibitors. Comput. Struct. Biotechnol. J., 2019, 17, 291-310. doi: 10.1016/j.csbj.2019.02.006 PMID: 30867893
  11. Vijayakumar, B.; Umamaheswari, A.; Puratchikody, A.; Velmurugan, D. Selection of an improved HDAC8 inhibitor through structure-based drug design. Bioinformation, 2011, 7(3), 134-141. doi: 10.6026/97320630007134 PMID: 22125384
  12. Kouassi, K.A.R.; Ganiyou, A.; Didier, D.G.G.; Benié, A.; Nahossé, Z. In silico Docking of rhodanine derivatives and 3D-QSAR study to identify potent prostate cancer inhibitors. Comput. Chem., 2022, 10(2), 19-52. doi: 10.4236/cc.2022.102002
  13. Zhao, S.; Li, X.; Peng, W.; Wang, L.; Ye, W.; Zhao, Y.; Yin, W.; Chen, W.D.; Li, W.; Wang, Y.D. Ligand-based pharmacophore modeling, virtual screening and biological evaluation to identify novel TGR5 agonists. RSC Advances, 2021, 11(16), 9403-9409. doi: 10.1039/D0RA10168K PMID: 35423434
  14. Schroodinger, S.R. 2: LigPrep, version 2.7; Schrödinger, LLC: New York, NY, 2013.
  15. Release, S. 2021-4: Glide; Schrodinger, LLC: New York, NY, 2021.
  16. Pattar, S.V.; Adhoni, S.A.; Kamanavalli, C.M.; Kumbar, S.S. In silico molecular docking studies and MM/GBSA analysis of coumarin-carbonodithioate hybrid derivatives divulge the anticancer potential against breast cancer. Beni. Suef Univ. J. Basic Appl. Sci., 2020, 9(1), 36. doi: 10.1186/s43088-020-00059-7
  17. Xu, M.; Lill, M.A. Induced fit docking, and the use of QM/MM methods in docking. Drug Discov. Today. Technol., 2013, 10(3), e411-e418. doi: 10.1016/j.ddtec.2013.02.003 PMID: 24050138
  18. Karthick, T.; Balachandran, V.; Perumal, S.; Nataraj, A. Rotational isomers, vibrational assignments, HOMO–LUMO, NLO properties and molecular electrostatic potential surface of N-(2 bromoethyl) phthalimide. J. Mol. Struct., 2011, 1005(1-3), 202-213. doi: 10.1016/j.molstruc.2011.08.051
  19. Sangeetha, R. ArockiaJeyaYasmi Prabha E, Lakshmi A, Sangavi P, Langeswaran K. Molecular docking and dynamic simulations of Ocimumbasilicum compounds against HCC and structural, vibrational, quantum, and chemical investigation of campesterol. J. Biomol. Struct. Dyn., 2021, 40(24), 13997-14012.
  20. Pradeepkiran, J.A. konidala, K.; Yellapu, N.; Bhaskar, M. Modeling, molecular dynamics, and docking assessment of transcription factor rho: A potential drug target in Brucella melitensis 16M. Drug Des. Devel. Ther., 2015, 9, 1897-1912. doi: 10.2147/DDDT.S77020 PMID: 25848225
  21. Turner, P.J. Version 5.1. 19. Center for Coastal and Land-Margin Research; Oregon Graduate Institute of Science and Technology: Beaverton, 2005.
  22. Banerjee, P.; Eckert, A.O.; Schrey, A.K.; Preissner, R. ProTox-II: A webserver for the prediction of toxicity of chemicals. Nucleic Acids Res., 2018, 46(W1), W257-W263. doi: 10.1093/nar/gky318 PMID: 29718510

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers