The Possibility of Polygonum cuspidatum against Osteoarthritis based on Network Pharmacology


Cite item

Full Text

Abstract

Background:Polygonum cuspidatum (PC), a widely used Chinese herbal medicine (CHM), plays an important role in treating various diseases including osteoarthritis (OA). Yet, the multicomponent and multitarget characteristics of PC make deciphering the pharmacological mechanisms difficult.

Objective:The purpose of this study is to identify the core molecular mechanisms of PC against OA.

Methods:The Traditional Chinese Medicine Systems Pharmacology (TCMSP) database was used to search for the active ingredients of PC. GeneCards was then screened to establish relevant databases for OA. A visual interactive network diagram of the relationship between the active ingredient, action target, and disease was built using Uniprot. Finally, we used STRING (Search Tool for the Retrieval of Interacting Genes/Proteins) database to explain the interaction network of proteins and to further analyze the relationships between related proteins.

Results:PC was screened for nine potentially effective active compounds that can be used to treat OA: 6,8-Dihydroxy-7-methoxyxanthone, rhein, physovenine, beta-sitosterol, picralinal, quercetin, luteolin, catechin, and resveratrol. Using GeneCards database and TCMSP database, we obtained 149 OA-related genes after taking the intersection of OA and PC targets. Moreover, eight core target proteins were calculated by CytoNCA plugin, which is used for network centrality analysis. The enrichment analysis of the common target genes shared by PC and OA unraveled the main biological processes, such as responses to lipopolysaccharide, chemical stress, and reactive oxygen species. Previous research has demonstrated that signaling pathways related to apoptosis, inflammation, and cartilage protection are involved with those core target genes we found, like TNF and PI3K-Akt signaling pathways. The results bring that PC similarly has the potential to treat OA.

Conclusion:The main purpose of this study is to screen the active ingredients and most important target molecules of PC in treating OA. This was achieved using bioinformatic tools and databases to investigate molecular docking technology. The findings provide a theoretical foundation and potential new treatment plan for OA using PC.

About the authors

Chengyin Liu

Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Nanjing Agricultural University

Email: info@benthamscience.net

Lingyun Yu

Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Nanjing Agricultural University

Email: info@benthamscience.net

Yixin Jiang

Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Nanjing Agricultural University

Email: info@benthamscience.net

Songlian Gu

Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Nanjing Agricultural University

Email: info@benthamscience.net

Chenjian Li

Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Nanjing Agricultural University

Email: info@benthamscience.net

Wen Yin

Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Nanjing Agricultural University

Email: info@benthamscience.net

Zhenlei Zhou

Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Nanjing Agricultural University

Author for correspondence.
Email: info@benthamscience.net

References

  1. Katz, J.N.; Arant, K.R.; Loeser, R.F. Diagnosis and treatment of hip and knee osteoarthritis. JAMA, 2021, 325(6), 568-578. doi: 10.1001/jama.2020.22171 PMID: 33560326
  2. Van Spil, W.E.; Kubassova, O.; Boesen, M.; Bay-Jensen, A.C.; Mobasheri, A. Osteoarthritis phenotypes and novel therapeutic targets. Biochem. Pharmacol., 2019, 165, 41-48. doi: 10.1016/j.bcp.2019.02.037 PMID: 30831073
  3. Chu, M.; Gao, T.; Zhang, X.; Kang, W.; Feng, Y.; Cai, Z.; Wu, P. Elucidation of potential targets of san-miao-san in the treatment of osteoarthritis based on network pharmacology and molecular docking analysis. Evid. Based Complement. Alternat. Med., 2022, 2022, 1-13. doi: 10.1155/2022/7663212 PMID: 35087596
  4. Hou, P.W.; Fu, P.K.; Hsu, H.C.; Hsieh, C.L. Traditional Chinese medicine in patients with osteoarthritis of the knee. J. Tradit. Complement. Med., 2015, 5(4), 182-196. doi: 10.1016/j.jtcme.2015.06.002 PMID: 26587390
  5. Ouyang, L.; Luo, Y.; Tian, M.; Zhang, S.Y.; Lu, R.; Wang, J.H.; Kasimu, R.; Li, X. Plant natural products: From traditional compounds to new emerging drugs in cancer therapy. Cell Prolif., 2014, 47(6), 506-515. doi: 10.1111/cpr.12143 PMID: 25377084
  6. Li, S.; Zhang, Z.Q.; Wu, L.J.; Zhang, X.G.; Wang, Y.Y.; Li, Y.D. Understanding ZHENG in traditional Chinese medicine in the context of neuro-endocrine-immune network. IET Syst. Biol., 2007, 1(1), 51-60. doi: 10.1049/iet-syb:20060032 PMID: 17370429
  7. Ru, J.; Li, P.; Wang, J.; Zhou, W.; Li, B.; Huang, C.; Li, P.; Guo, Z.; Tao, W.; Yang, Y.; Xu, X.; Li, Y.; Wang, Y.; Yang, L. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines. J. Cheminform., 2014, 6(1), 13. doi: 10.1186/1758-2946-6-13 PMID: 24735618
  8. Zhang, W.; Chen, Y.; Jiang, H.; Yang, J.; Wang, Q.; Du, Y.; Xu, H. Integrated strategy for accurately screening biomarkers based on metabolomics coupled with network pharmacology. Talanta, 2020, 211, 120710. doi: 10.1016/j.talanta.2020.120710 PMID: 32070601
  9. Wishart, D.S.; Knox, C.; Guo, A.C.; Shrivastava, S.; Hassanali, M.; Stothard, P.; Chang, Z.; Woolsey, J. DrugBank: A comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res., 2006, 34(90001), D668-D672. doi: 10.1093/nar/gkj067 PMID: 16381955
  10. Uszkoreit, J.; Winkelhardt, D.; Barkovits, K.; Wulf, M.; Roocke, S.; Marcus, K.; Eisenacher, M. MaCPepDB: A database to quickly access all tryptic peptides of the uniProtKB. J. Proteome Res., 2021, 20(4), 2145-2150. doi: 10.1021/acs.jproteome.0c00967 PMID: 33724838
  11. Stelzer, G.; Rosen, N.; Plaschkes, I.; Zimmerman, S.; Twik, M.; Fishilevich, S.; Stein, T. I.; Nudel, R.; Lieder, I.; Mazor, Y.; Kaplan, S.; Dahary, D.; Warshawsky, D.; Guan-Golan, Y.; Kohn, A.; Rappaport, N.; Safran, M.; Lancet, D. The GeneCards suite: From gene data mining to disease genome sequence analyses. Curr Protoc Bioinformatics, 2016, 54, 1.30.1-1.30.33. doi: 10.1002/cpbi.5 PMID: 27322403
  12. Jia, A.; Xu, L.; Wang, Y. Venn diagrams in bioinformatics. Brief. Bioinform., 2021, 22(5), bbab108. doi: 10.1093/bib/bbab108 PMID: 33839742
  13. Szklarczyk, D.; Gable, A.L.; Lyon, D.; Junge, A.; Wyder, S.; Huerta-Cepas, J.; Simonovic, M.; Doncheva, N.T.; Morris, J.H.; Bork, P.; Jensen, L.J.; Mering, C. STRING v11: Protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res., 2019, 47(D1), D607-D613. doi: 10.1093/nar/gky1131 PMID: 30476243
  14. Doncheva, N.T.; Morris, J.H.; Gorodkin, J.; Jensen, L.J. Cytoscape StringApp: Network analysis and visualization of proteomics data. J. Proteome Res., 2019, 18(2), 623-632. doi: 10.1021/acs.jproteome.8b00702 PMID: 30450911
  15. Yu, G.; Wang, L.G.; Han, Y.; He, Q.Y. clusterProfiler: An R package for comparing biological themes among gene clusters. OMICS, 2012, 16(5), 284-287. doi: 10.1089/omi.2011.0118 PMID: 22455463
  16. Zhou, M.; Wang, D.; Tang, J. Identification of the resveratrol potential targets in the treatment of osteoarthritis. Evid. Based Complement. Alternat. Med., 2021, 2021, 1-12. doi: 10.1155/2021/9911286 PMID: 34917160
  17. Sun, K.; Luo, J.; Guo, J.; Yao, X.; Jing, X.; Guo, F. The PI3K/AKT/mTOR signaling pathway in osteoarthritis: A narrative review. Osteoarthritis Cartilage, 2020, 28(4), 400-409. doi: 10.1016/j.joca.2020.02.027 PMID: 32081707
  18. Li, W.; Cai, L.; Zhang, Y.; Cui, L.; Shen, G. Intra-articular resveratrol injection prevents osteoarthritis progression in a mouse model by activating SIRT1 and thereby silencing HIF-2α. J. Orthop. Res., 2015, 33(7), 1061-1070. doi: 10.1002/jor.22859 PMID: 25737402
  19. Shakibaei, M.; Csaki, C.; Nebrich, S.; Mobasheri, A. Resveratrol suppresses interleukin-1β-induced inflammatory signaling and apoptosis in human articular chondrocytes: Potential for use as a novel nutraceutical for the treatment of osteoarthritis. Biochem. Pharmacol., 2008, 76(11), 1426-1439. doi: 10.1016/j.bcp.2008.05.029 PMID: 18606398
  20. Han, J.H.; Koh, W.; Lee, H.J.; Lee, H.J.; Lee, E.O.; Lee, S.J.; Khil, J.H.; Kim, J.T.; Jeong, S.J.; Kim, S.H. Analgesic and anti-inflammatory effects of ethyl acetate fraction of Polygonum cuspidatum in experimental animals. Immunopharmacol. Immunotoxicol., 2012, 34(2), 191-195. doi: 10.3109/08923973.2011.590499 PMID: 21711083
  21. Tao, T.; Zhang, Q.; Liu, Z.; Zhang, T.; Wang, L.; Liu, J.; He, T.; Chen, Y.; Feng, J.; Chen, Y. Polygonum cuspidatum extract exerts antihyperlipidemic effects by regulation of PI3K/AKT/FOXO3 signaling pathway. Oxid. Med. Cell. Longev., 2021, 2021, 1-17. doi: 10.1155/2021/3830671 PMID: 34925692
  22. Yu, M.; Chen, T.T.; Zhang, T.; Jia, H.M.; Li, J.J.; Zhang, H.W.; Zou, Z.M. Anti-inflammatory constituents in the root and rhizome of Polygonum cuspidatum by UPLC-PDA-QTOF/MS and lipopolysaccharide-activated RAW264.7 macrophages. J. Pharm. Biomed. Anal., 2021, 195, 113839. doi: 10.1016/j.jpba.2020.113839 PMID: 33388645
  23. Renaud, S.; de Lorgeril, M. Wine, alcohol, platelets, and the French paradox for coronary heart disease. Lancet, 1992, 339(8808), 1523-1526. doi: 10.1016/0140-6736(92)91277-F PMID: 1351198
  24. Maepa, M.; Razwinani, M.; Motaung, S. Effects of resveratrol on collagen type II protein in the superficial and middle zone chondrocytes of porcine articular cartilage. J. Ethnopharmacol., 2016, 178, 25-33. doi: 10.1016/j.jep.2015.11.047 PMID: 26647105
  25. Kim, Y.S.; Nam, Y.; Song, J.; Kim, H. Gastroprotective and healing effects of Polygonum cuspidatum root on experimentally induced gastric ulcers in rats. Nutrients, 2020, 12(8), 2241. doi: 10.3390/nu12082241 PMID: 32727104
  26. Feng, K.; Chen, Z.; Pengcheng, L.; Zhang, S.; Wang, X. Quercetin attenuates oxidative stress‐induced apoptosis via SIRT1/AMPK‐mediated inhibition of ER stress in rat chondrocytes and prevents the progression of osteoarthritis in a rat model. J. Cell. Physiol., 2019, 234(10), 18192-18205. doi: 10.1002/jcp.28452 PMID: 30854676
  27. Hu, Y.; Gui, Z.; Zhou, Y.; Xia, L.; Lin, K.; Xu, Y. Quercetin alleviates rat osteoarthritis by inhibiting inflammation and apoptosis of chondrocytes, modulating synovial macrophages polarization to M2 macrophages. Free Radic. Biol. Med., 2019, 145, 146-160. doi: 10.1016/j.freeradbiomed.2019.09.024 PMID: 31550528
  28. Fei, J.; Liang, B.; Jiang, C.; Ni, H.; Wang, L. Luteolin inhibits IL-1β-induced inflammation in rat chondrocytes and attenuates osteoarthritis progression in a rat model. Biomed. Pharmacother., 2019, 109, 1586-1592. doi: 10.1016/j.biopha.2018.09.161 PMID: 30551412
  29. Zhou, Z.; Zhang, L.; Liu, Y.; Huang, C.; Xia, W.; Zhou, H.; Zhou, Z.; Zhou, X. Luteolin protects chondrocytes from H2O2-induced oxidative injury and attenuates osteoarthritis progression by activating AMPK-Nrf2 signaling. Oxid. Med. Cell. Longev., 2022, 2022, 1-20. doi: 10.1155/2022/5635797 PMID: 35154568
  30. Paniagua-Pérez, R.; Flores-Mondragón, G.; Reyes-Legorreta, C.; Herrera-López, B.; Cervantes-Hernández, I.; Madrigal-Santillán, O.; Morales-González, J.A.; Álvarez-González, I.; Madrigal-Bujaidar, E. Evaluation of the anti-inflammatory capacity of beta-sitosterol in rodent assays. Afr. J. Tradit. Complement. Altern. Med., 2016, 14(1), 123-130. doi: 10.21010/ajtcam.v14i1.13 PMID: 28480389
  31. Liao, P.C.; Lai, M.H.; Hsu, K.P.; Kuo, Y.H.; Chen, J.; Tsai, M.C.; Li, C.X.; Yin, X.J.; Jeyashoke, N.; Chao, L.K.P. Identification of β-sitosterol as in vitro anti-inflammatory constituent in Moringa oleifera. J. Agric. Food Chem., 2018, 66(41), 10748-10759. doi: 10.1021/acs.jafc.8b04555 PMID: 30280897
  32. Kaur, R.; Kapoor, Y.; Manjal, S.K.; Rawal, R.K.; Kumar, K. Diversity-oriented synthetic approaches for furoindoline: A review. Curr. Org. Synth., 2019, 16(3), 342-368. doi: 10.2174/1570179416666190328211509 PMID: 31984898
  33. Weston, C.R.; Davis, R.J. The JNK signal transduction pathway. Curr. Opin. Cell Biol., 2007, 19(2), 142-149. doi: 10.1016/j.ceb.2007.02.001 PMID: 17303404
  34. Wojdasiewicz, P.; Poniatowski, Ł.A.; Szukiewicz, D. The role of inflammatory and anti-inflammatory cytokines in the pathogenesis of osteoarthritis. Mediators Inflamm., 2014, 2014, 1-19. doi: 10.1155/2014/561459 PMID: 24876674
  35. Barreto, G.; Manninen, M.; K Eklund, K. Osteoarthritis and toll-like receptors: When innate immunity meets chondrocyte apoptosis. Biology, 2020, 9(4), 65. doi: 10.3390/biology9040065 PMID: 32235418
  36. Ansari, M.Y.; Novak, K.; Haqqi, T.M. ERK1/2-mediated activation of DRP1 regulates mitochondrial dynamics and apoptosis in chondrocytes. Osteoarthritis Cartilage, 2022, 30(2), 315-328. doi: 10.1016/j.joca.2021.11.003 PMID: 34767958
  37. Zhou, Z.; Tang, S.; Nie, X.; Zhang, Y.; Li, D.; Zhao, Y.; Cao, Y.; Yin, J.; Chen, T.; Ruan, G.; Zhu, Z.; Bai, X.; Han, W.; Ding, C. Osteoarthritic infrapatellar fat pad aggravates cartilage degradation via activation of p38MAPK and ERK1/2 pathways. Inflamm. Res., 2021, 70(10-12), 1129-1139. doi: 10.1007/s00011-021-01503-9 PMID: 34562102
  38. Lin, C.; Shao, Y.; Zeng, C.; Zhao, C.; Fang, H.; Wang, L.; Pan, J.; Liu, L.; Qi, W.; Feng, X.; Qiu, H.; Zhang, H.; Chen, Y.; Wang, H.; Cai, D.; Xian, C.J. Blocking PI3K/AKT signaling inhibits bone sclerosis in subchondral bone and attenuates post‐traumatic osteoarthritis. J. Cell. Physiol., 2018, 233(8), 6135-6147. doi: 10.1002/jcp.26460 PMID: 29323710
  39. Matsuzaki, T.; Alvarez-Garcia, O.; Mokuda, S.; Nagira, K.; Olmer, M.; Gamini, R.; Miyata, K.; Akasaki, Y.; Su, A.I.; Asahara, H.; Lotz, M.K. FoxO transcription factors modulate autophagy and proteoglycan 4 in cartilage homeostasis and osteoarthritis. Sci. Transl. Med., 2018, 10(428), eaan0746. doi: 10.1126/scitranslmed.aan0746 PMID: 29444976

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers