Network Pharmacology and Intestinal Microbiota Analysis Revealing the Mechanism of Punicalagin Improving Bacterial Enteritis
- Authors: Huang S.1, Wang Y.1, Zhu Q.2, Guo H.1, Hong Z.1, Zhong S.1
-
Affiliations:
- Tissue and Embryo Department, Wannan Medical College
- Computer and Information Department, Hohai University
- Issue: Vol 20, No 2 (2024)
- Pages: 104-120
- Section: Chemistry
- URL: https://rjpbr.com/1573-4099/article/view/643913
- DOI: https://doi.org/10.2174/1573409919666230526165501
- ID: 643913
Cite item
Full Text
Abstract
Background:The Chinese medicine punicalagin (Pun), the most important active ingredient in pomegranate peel, has significant bacteriostatic and anti-inflammatory properties. The potential mechanisms of Pun for bacterial enteritis, however, are unknown.
Objective:The goal of our research is to investigate the mechanism of Pun in the treatment of bacterial enteritis using computer-aided drug technology, as well as to investigate the intervention effect of Pun on mice with bacterial enteritis using intestinal flora sequencing.
Methods:The targets of Pun and Bacterial enteritis were obtained by using the specific database, and cross-targets were screened among these targets, followed by PPI and enrichment analysis of the targets. Furthermore, the degree of binding between Pun and key targets was predicted through molecular docking. After successfully establishing the bacterial enteritis model in vivo, mice were randomly assigned to groups. They were treated for 7 days, the symptoms were observed daily, and the daily DAI and body weight change rate were calculated. Following administration, the intestinal tissue was removed, and the contents were separated. The tight junction protein expression was detected in the small intestine by the immunohistochemical method; ELISA and Western Blot (WB) were performed to detect the expressions of tumor necrosis factor-α (TNF-α) and interleukin- 6 (IL-6) in the serum and intestinal wall of mice. The 16S rRNA sequence was used to determine the composition and diversity of the intestinal flora of mice.
Results:In total, 130 intersection targets of Pun and disease were screened by network pharmacology. The enrichment analysis showed cross genes were closely related and enriched in the cancer regulation and the TNF signal pathway. The active components of Pun could specifically bind to the core targets TNF, IL-6, etc., determined from molecular docking results. In vivo experiment results showed that the symptoms in the PUN group mice were alleviated, and the expression levels of TNF-α and IL-6 were significantly reduced. A Pun can cause substantial changes in the intestinal flora of mice in terms of structure and function.
Conclusion:Pun plays a multi-target role in alleviating bacterial enteritis by regulating intestinal flora.
About the authors
Shuyun Huang
Tissue and Embryo Department, Wannan Medical College
Email: info@benthamscience.net
Ying Wang
Tissue and Embryo Department, Wannan Medical College
Email: info@benthamscience.net
Qingsong Zhu
Computer and Information Department, Hohai University
Email: info@benthamscience.net
Hongmin Guo
Tissue and Embryo Department, Wannan Medical College
Email: info@benthamscience.net
Zongyuan Hong
Tissue and Embryo Department, Wannan Medical College
Email: info@benthamscience.net
Shuzhi Zhong
Tissue and Embryo Department, Wannan Medical College
Author for correspondence.
Email: info@benthamscience.net
References
- Ashkenazi, S.; Schwartz, E. Travelers diarrhea in children: New insights and existing gaps. Travel Med. Infect. Dis., 2020, 34, 101503. doi: 10.1016/j.tmaid.2019.101503 PMID: 31654742
- Bi, C.; Jing, W.; Xie, X.; Liu, Y. Efficacy and mechanism of traditional Chinese medicine in relieving antibiotic-resistant bacterial diarrhea in children: Study protocol for a randomized controlled trial. Trials, 2021, 22(1), 426. doi: 10.1186/s13063-021-05381-8 PMID: 34187535
- Westermarck, E. Chronic diarrhea in dogs: What do we actually know about it? Top. Companion Anim. Med., 2016, 31(2), 78-84. doi: 10.1053/j.tcam.2016.03.001 PMID: 27968758
- Li, G.; Feng, Y.; Xu, Y.; Wu, Q.; Han, Q.; Liang, X.; Yang, B.; Wang, X.; Xia, X. The anti-infective activity of punicalagin against Salmonella enterica subsp. enterica serovar typhimurium in mice. Food Funct., 2015, 6(7), 2357-2364. doi: 10.1039/C5FO00053J PMID: 26084785
- Bialonska, D.; Kasimsetty, S.G.; Schrader, K.K.; Ferreira, D. The effect of pomegranate (Punica granatum L.) byproducts and ellagitannins on the growth of human gut bacteria. J. Agric. Food Chem., 2009, 57(18), 8344-8349. doi: 10.1021/jf901931b PMID: 19705832
- Brighenti, V.; Iseppi, R.; Pinzi, L.; Mincuzzi, A.; Ippolito, A.; Messi, P.; Sanzani, S.M.; Rastelli, G.; Pellati, F. Antifungal activity and DNA topoisomerase inhibition of hydrolysable tannins from Punica granatum L. Int. J. Mol. Sci., 2021, 22(8), 4175. doi: 10.3390/ijms22084175 PMID: 33920681
- Neyrinck, A.M.; Van Hée, V.F.; Bindels, L.B.; De Backer, F.; Cani, P.D.; Delzenne, N.M. Polyphenol-rich extract of pomegranate peel alleviates tissue inflammation and hypercholesterolaemia in high-fat diet-induced obese mice: potential implication of the gut microbiota. Br. J. Nutr., 2013, 109(5), 802-809. doi: 10.1017/S0007114512002206 PMID: 22676910
- Akdis, C.A. Does the epithelial barrier hypothesis explain the increase in allergy, autoimmunity and other chronic conditions? Nat. Rev. Immunol., 2021, 21(11), 739-751. doi: 10.1038/s41577-021-00538-7 PMID: 33846604
- Ru, J.; Li, P.; Wang, J.; Zhou, W.; Li, B.; Huang, C.; Li, P.; Guo, Z.; Tao, W.; Yang, Y.; Xu, X.; Li, Y.; Wang, Y.; Yang, L. TCMSP: A data-base of systems pharmacology for drug discovery from herbal medicines. J. Cheminform., 2014, 6(1), 13. doi: 10.1186/1758-2946-6-13 PMID: 24735618
- Guo, W.; Huang, J.; Wang, N.; Tan, H.Y.; Cheung, F.; Chen, F.; Feng, Y. Integrating network pharmacology and pharmacological evaluation for deciphering the action mechanism of herbal formula zuojin pill in suppressing hepatocellular carcinoma. Front. Pharmacol., 2019, 10, 1185. doi: 10.3389/fphar.2019.01185 PMID: 31649545
- Szklarczyk, D.; Gable, A.L.; Nastou, K.C.; Lyon, D.; Kirsch, R.; Pyysalo, S.; Doncheva, N.T.; Legeay, M.; Fang, T.; Bork, P.; Jensen, L.J.; von Mering, C. The STRING database in 2021: customizable proteinprotein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res., 2021, 49(D1), D605-D612. doi: 10.1093/nar/gkaa1074 PMID: 33237311
- The Gene Ontology Consortium. Expansion of the Gene Ontology knowledgebase and resources. Nucleic Acids Res., 2017, 45(D1), D331-D338. doi: 10.1093/nar/gkw1108 PMID: 27899567
- Kanehisa, M.; Furumichi, M.; Tanabe, M.; Sato, Y.; Morishima, K. KEGG: New perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res., 2017, 45(D1), D353-D361. doi: 10.1093/nar/gkw1092 PMID: 27899662
- Aucar, M.G.; Cavasotto, C.N. Molecular docking using quantum mechanical-based methods. Methods Mol. Biol., 2020, 2114, 269-284. doi: 10.1007/978-1-0716-0282-9_17 PMID: 32016899
- Xu, B.; Yan, Y.; Huang, J.; Yin, B.; Pan, Y.; Ma, L. Cortex Phellodendri extract's anti-diarrhea effect in mice related to its modification of gut microbiota. Biomedecine & pharmacotherapie, 2020, 123, 109720. doi: 10.1016/j.biopha.2019.109720
- Chen, R.; Wang, J.; Zhan, R.; Zhang, L.; Wang, X. Fecal metabonomics combined with 16S rRNA gene sequencing to analyze the changes of gut microbiota in rats with kidney-yang deficiency syndrome and the intervention effect of You-gui pill. J. Ethnopharmacol., 2019, 244, 112139. doi: 10.1016/j.jep.2019.112139 PMID: 31401318
- Hsin, K.Y.; Ghosh, S.; Kitano, H. Combining machine learning systems and multiple docking simulation packages to improve docking prediction reliability for network pharmacology. PLoS One, 2013, 8(12), e83922. doi: 10.1371/journal.pone.0083922 PMID: 24391846
- Wu, H.; Chen, Q. Y.; Wang, W. Z.; Chu, S.; Liu, X. X.; Liu, Y. J.; Tan, C.; Zhu, F.; Deng, S. J.; Dong, Y. L.; Yu, T.; Gao, F.; He, H. X.; Leng, X. Y.; Fan, H. Compound sophorae decoction enhances intestinal barrier function of dextran sodium sulfate induced colitis via regulating notch signaling pathway in mice. Biomedecine & pharmacotherapie, 2021, 133, 110937. doi: 10.1016/j.biopha.2020.110937
- Bandsma, R.H.J.; Sadiq, K.; Bhutta, Z.A. Persistent diarrhoea: Current knowledge and novel concepts. Paediatr. Int. Child Health, 2019, 39(1), 41-47. doi: 10.1080/20469047.2018.1504412 PMID: 30079818
- Arasaradnam, R.P.; Brown, S.; Forbes, A.; Fox, M.R.; Hungin, P.; Kelman, L.; Major, G.; OConnor, M.; Sanders, D.S.; Sinha, R.; Smith, S.C.; Thomas, P.; Walters, J.R.F. Guidelines for the investigation of chronic diarrhoea in adults: British Society of Gastroenterology, 3rd edition. Gut, 2018, 67(8), 1380-1399.2018. doi: 10.1136/gutjnl-2017-315909 PMID: 29653941
- Szajewska, H.; Kołodziej, M. Systematic review with meta-analysis: Saccharomyces boulardii in the prevention of antibiotic-associated diarrhoea. Aliment. Pharmacol. Ther., 2015, 42(7), 793-801. doi: 10.1111/apt.13344 PMID: 26216624
- Chen, T.; Zhang, X.; Zhu, G.; Liu, H.; Chen, J.; Wang, Y.; He, X. Quercetin inhibits TNF-α induced HUVECs apoptosis and inflammation via downregulating NF-kB and AP-1 signaling pathway in vitro. Medicine, 2020, 99(38), e22241. doi: 10.1097/MD.0000000000022241 PMID: 32957369
- Jing, B.; Wang, T.; Sun, B.; Xu, J.; Xu, D.; Liao, Y.; Song, H.; Guo, W.; Li, K.; Hu, M.; Zhang, S.; Ling, J.; Kuang, Y.; Zhang, T.; Zhou, B.P.; Yao, F.; Deng, J. IL6/STAT3 signaling orchestrates premetastatic niche formation and immunosuppressive traits in lung. Cancer Res., 2020, 80(4), 784-797. doi: 10.1158/0008-5472.CAN-19-2013 PMID: 31848193
- Cao, Y.; Chen, J.; Ren, G.; Zhang, Y.; Tan, X.; Yang, L. Punicalagin prevents inflammation in LPS-induced RAW264.7 macrophages by inhibiting FoxO3a/Autophagy signaling pathway. Nutrients, 2019, 11(11), 2794. doi: 10.3390/nu11112794 PMID: 31731808
- Peng, L.; Wen, L.; Shi, Q.F.; Gao, F.; Huang, B.; Meng, J.; Hu, C.P.; Wang, C.M. Scutellarin ameliorates pulmonary fibrosis through inhibiting NF-κB/NLRP3-mediated epithelialmesenchymal transition and inflammation. Cell Death Dis., 2020, 11(11), 978. doi: 10.1038/s41419-020-03178-2 PMID: 33188176
- Donehower, L.A.; Soussi, T.; Korkut, A.; Liu, Y.; Schultz, A.; Cardenas, M.; Li, X.; Babur, O.; Hsu, T.K.; Lichtarge, O.; Weinstein, J.N.; Akbani, R.; Wheeler, D.A. Integrated analysis of TP53 gene and pathway alterations in the cancer genome atlas. Cell Rep., 2019, 28(5), 1370-1384.e5. doi: 10.1016/j.celrep.2019.07.001 PMID: 31365877
- Vila Ellis, L.; Cain, M.P.; Hutchison, V.; Flodby, P.; Crandall, E.D.; Borok, Z.; Zhou, B.; Ostrin, E.J.; Wythe, J.D.; Chen, J. Epithelial vegfa specifies a distinct endothelial population in the mouse lung. Dev. Cell, 2020, 52(5), 617-630.e6. doi: 10.1016/j.devcel.2020.01.009 PMID: 32059772
- Hu, L.; Chen, M.; Chen, X.; Zhao, C.; Fang, Z.; Wang, H.; Dai, H. Chemotherapy-induced pyroptosis is mediated by BAK/BAX-caspase-3-GSDME pathway and inhibited by 2-bromopalmitate. Cell Death Dis., 2020, 11(4), 281. doi: 10.1038/s41419-020-2476-2 PMID: 32332857
- Kuo, W.T.; Shen, L.; Zuo, L.; Shashikanth, N.; Ong, M.L.D.M.; Wu, L.; Zha, J.; Edelblum, K.L.; Wang, Y.; Wang, Y.; Nilsen, S.P.; Turner, J.R. Inflammation-induced occludin downregulation limits epithelial apoptosis by suppressing Caspase-3 expression. Gastroenterology, 2019, 157(5), 1323-1337. doi: 10.1053/j.gastro.2019.07.058 PMID: 31401143
- Sheahan, B.J.; Freeman, A.N.; Keeley, T.M.; Samuelson, L.C.; Roper, J.; Hasapis, S.; Lee, C.L.; Dekaney, C.M. Epithelial regeneration after doxorubicin arises primarily from early progeny of active intestinal stem cells. Cell. Mol. Gastroenterol. Hepatol., 2021, 12(1), 119-140. doi: 10.1016/j.jcmgh.2021.01.015 PMID: 33571711
- Siersbæk, R.; Scabia, V.; Nagarajan, S.; Chernukhin, I.; Papachristou, E.K.; Broome, R.; Johnston, S.J.; Joosten, S.E.P.; Green, A.R.; Kumar, S.; Jones, J.; Omarjee, S.; Alvarez-Fernandez, R.; Glont, S.; Aitken, S.J.; Kishore, K.; Cheeseman, D.; Rakha, E.A.; DSantos, C.; Zwart, W.; Russell, A.; Brisken, C.; Carroll, J.S. IL6/STAT3 signaling hijacks estrogen receptor α enhancers to drive breast cancer metastasis. Cancer Cell, 2020, 38(3), 412-423.e9. doi: 10.1016/j.ccell.2020.06.007 PMID: 32679107
- Jia, X.; Wen, Z.; Sun, Q.; Zhao, X.; Yang, H.; Shi, X.; Xin, T. Apatinib suppresses the proliferation and apoptosis of gastric cancer cells via the PI3K/Akt signaling pathway. J. BUON, 2019, 24(5), 1985-1991. PMID: 31786865
- Chen, Y.H.; Yang, S.F.; Yang, C.K.; Tsai, H.D.; Chen, T.H.; Chou, M.C.; Hsiao, Y.H. Metformin induces apoptosis and inhibits migration by activating the AMPK/p53 axis and suppressing PI3K/AKT signaling in human cervical cancer cells. Mol. Med. Rep., 2020, 23(1), 88. doi: 10.3892/mmr.2020.11725 PMID: 33236135
- Li, S.; Dai, Q.; Zhang, S.; Liu, Y.; Yu, Q.; Tan, F.; Lu, S.; Wang, Q.; Chen, J.; Huang, H.; Liu, P.; Li, M. Ulinastatin attenuates LPS-induced inflammation in mouse macrophage RAW264.7 cells by inhibiting the JNK/NF-κB signaling pathway and activating the PI3K/Akt/Nrf2 pathway. Acta Pharmacol. Sin., 2018, 39(8), 1294-1304. doi: 10.1038/aps.2017.143 PMID: 29323338
- Zhang, X.; Hu, F.; Li, G.; Li, G.; Yang, X.; Liu, L.; Zhang, R.; Zhang, B.; Feng, Y. Human colorectal cancer-derived mesenchymal stem cells promote colorectal cancer progression through IL-6/JAK2/STAT3 signaling. Cell Death Dis., 2018, 9(2), 25. doi: 10.1038/s41419-017-0176-3 PMID: 29348540
- Tuganbaev, T.; Mor, U.; Bashiardes, S.; Liwinski, T.; Nobs, S.P.; Leshem, A.; Dori-Bachash, M.; Thaiss, C.A.; Pinker, E.Y.; Ratiner, K.; Adlung, L.; Federici, S.; Kleimeyer, C.; Moresi, C.; Yamada, T.; Cohen, Y.; Zhang, X.; Massalha, H.; Massasa, E.; Kuperman, Y.; Koni, P.A.; Harmelin, A.; Gao, N.; Itzkovitz, S.; Honda, K.; Shapiro, H.; Elinav, E. Diet diurnally regulates small intestinal microbiome-epithelial-immune homeostasis and enteritis. Cell, 2020, 182(6), 1441-1459.e21. doi: 10.1016/j.cell.2020.08.027 PMID: 32888430
- Zihni, C.; Mills, C.; Matter, K.; Balda, M.S. Tight junctions: from simple barriers to multifunctional molecular gates. Nat. Rev. Mol. Cell Biol., 2016, 17(9), 564-580. doi: 10.1038/nrm.2016.80 PMID: 27353478
- Kim, S.; Kim, G.H. Roles of claudin-2, ZO-1 and occludin in leaky HK-2 cells. PLoS One, 2017, 12(12), e0189221. doi: 10.1371/journal.pone.0189221 PMID: 29252987
- Gomes, A.C.; Hoffmann, C.; Mota, J.F. The human gut microbiota: Metabolism and perspective in obesity. Gut Microbes, 2018, 9(4), 1-18. doi: 10.1080/19490976.2018.1465157 PMID: 29667480
- Camilleri, M.; Madsen, K.; Spiller, R.; Van Meerveld, B.G.; Verne, G.N. Intestinal barrier function in health and gastrointestinal disease. Neurogastroenterol. Motil., 2012, 24(6), 503-512. doi: 10.1111/j.1365-2982.2012.01921.x PMID: 22583600
- Wisniewski, P.J.; Dowden, R.A.; Campbell, S.C. Role of dietary lipids in modulating inflammation through the gut microbiota. Nutrients, 2019, 11(1), 117. doi: 10.3390/nu11010117 PMID: 30626117
- Laudadio, I.; Fulci, V.; Palone, F.; Stronati, L.; Cucchiara, S.; Carissimi, C. Quantitative assessment of shotgun metagenomics and 16S rDNA amplicon sequencing in the study of human gut microbiome. OMICS, 2018, 22(4), 248-254. doi: 10.1089/omi.2018.0013 PMID: 29652573
- Pei, Z.; Xiaowei, W.; Yajuan, L.; Yuanhong, X. Exploring the characteristics of intestinal microbiota in hematologic malignancy patients via 16s rDNA high-throughput sequencing. Clin. Lab., 2021, 67(02/2021) doi: 10.7754/Clin.Lab.2020.200448 PMID: 33616341
- Dong, S.; jiao, J.; Jia, S.; Li, G.; Zhang, W.; Yang, K.; Wang, Z.; Liu, C.; Li, D.; Wang, X. 16S rDNA full-length assembly sequencing technology analysis of intestinal microbiome in polycystic ovary syndrome. Front. Cell. Infect. Microbiol., 2021, 11, 634981. doi: 10.3389/fcimb.2021.634981 PMID: 34041041
- Mun, S.H.; Kang, O.H.; Kong, R.; Zhou, T.; Kim, S.A.; Shin, D.W.; Kwon, D.Y. Punicalagin suppresses methicillin resistance of Staphylococcus aureus to oxacillin. J. Pharmacol. Sci., 2018, 137(4), 317-323. doi: 10.1016/j.jphs.2017.10.008 PMID: 30150143
- Megrian, D.; Taib, N.; Witwinowski, J.; Beloin, C.; Gribaldo, S. One or two membranes? Diderm Firmicutes challenge the Gram‐positive/Gram‐negative divide. Mol. Microbiol., 2020, 113(3), 659-671. doi: 10.1111/mmi.14469 PMID: 31975449
- Larsbrink, J.; McKee, L.S. Bacteroidetes bacteria in the soil: Glycan acquisition, enzyme secretion, and gliding motility. Adv. Appl. Microbiol., 2020, 110, 63-98. doi: 10.1016/bs.aambs.2019.11.001 PMID: 32386606
- Yan, X.; Jin, J.; Su, X.; Yin, X.; Gao, J.; Wang, X.; Zhang, S.; Bu, P.; Wang, M.; Zhang, Y.; Wang, Z.; Zhang, Q. Intestinal flora modulates blood pressure by regulating the synthesis of intestinal-derived corticosterone in high salt-induced hypertension. Circ. Res., 2020, 126(7), 839-853. doi: 10.1161/CIRCRESAHA.119.316394 PMID: 32078445
- Milani, C.; Duranti, S.; Bottacini, F.; Casey, E.; Turroni, F.; Mahony, J.; Belzer, C.; Delgado Palacio, S.; Arboleya Montes, S.; Mancabelli, L.; Lugli, G.A.; Rodriguez, J.M.; Bode, L.; de Vos, W.; Gueimonde, M.; Margolles, A.; van Sinderen, D.; Ventura, M. The first microbial colonizers of the human gut: Composition, activities, and health implications of the infant gut microbiota. Microbiol. Mol. Biol. Rev., 2017, 81(4), e00036-e17. doi: 10.1128/MMBR.00036-17 PMID: 29118049
- Shin, N.R.; Whon, T.W.; Bae, J.W. Proteobacteria: Microbial signature of dysbiosis in gut microbiota. Trends Biotechnol., 2015, 33(9), 496-503. doi: 10.1016/j.tibtech.2015.06.011 PMID: 26210164
- Gresse, R.; Chaucheyras-Durand, F.; Fleury, M.A.; Van de Wiele, T.; Forano, E.; Blanquet-Diot, S. Gut microbiota dysbiosis in postweaning piglets: Understanding the keys to health. Trends Microbiol., 2017, 25(10), 851-873. doi: 10.1016/j.tim.2017.05.004 PMID: 28602521
Supplementary files
