Network Pharmacology Study to Reveal the Mechanism of Zuogui Pill for Treating Osteoporosis


Cite item

Full Text

Abstract

Background:To our knowledge, there is still a lack of scientific reports on the pharmacological mechanism of the Zuogui Pill (ZGP) for treating osteoporosis (OP).

Aims:This study aimed to explore it via network pharmacology and molecular docking.

Methods:We identified active compounds and associated targets in ZGP via two drug databases. Disease targets of OP were obtained utilizing five disease databases. Networks were established and analyzed through the Cytoscape software and STRING databases. Enrichment analyses were performed using the DAVID online tools. Molecular docking was performed using Maestro, PyMOL, and Discovery Studio software.

Results:89 drug active compounds, 365 drug targets, 2514 disease targets, and 163 drug-disease common targets were obtained. Quercetin, kaempferol, phenylalanine, isorhamnetin, betavulgarin, and glycitein may be the crucial compounds of ZGP in treating OP. AKT1, MAPK14, RELA, TNF, and JUN may be the most important therapeutic targets. Osteoclast differentiation, TNF, MAPK, and thyroid hormone signaling pathways may be the critical therapeutic signaling pathways. The potential therapeutic mechanism mainly relates to osteoblastic or osteoclastic differentiation, oxidative stress, and osteoclastic apoptosis.

Conclusion:This study has revealed the anti-OP mechanism of ZGP, which offers objective evidence for relevant clinical application and further basic research.

About the authors

Gaoxiang Wang

Department of Endocrinology, Shenzhen Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine

Email: info@benthamscience.net

Huilin Li

Department of Endocrinology, Shenzhen Traditional Chinese Medicine Hospital

Author for correspondence.
Email: info@benthamscience.net

Hengxia Zhao

Department of Endocrinology, Shenzhen Traditional Chinese Medicine Hospital

Email: info@benthamscience.net

Deliang Liu

Department of Endocrinology, Shenzhen Traditional Chinese Medicine Hospital

Email: info@benthamscience.net

Shufang Chu

Department of Endocrinology, Shenzhen Traditional Chinese Medicine Hospital

Email: info@benthamscience.net

Maosheng Lee

Department of Endocrinology, Shenzhen Traditional Chinese Medicine Hospital

Email: info@benthamscience.net

Zebin Fang

Department of Endocrinology, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine

Email: info@benthamscience.net

References

  1. Pagnotti, G.M.; Styner, M.; Uzer, G.; Patel, V.S.; Wright, L.E.; Ness, K.K.; Guise, T.A.; Rubin, J.; Rubin, C.T. Combating osteoporosis and obesity with exercise: Leveraging cell mechanosensitivity. Nat. Rev. Endocrinol., 2019, 15(6), 339-355. doi: 10.1038/s41574-019-0170-1 PMID: 30814687
  2. Bellavia, D.; Dimarco, E.; Costa, V.; Carina, V.; De Luca, A.; Raimondi, L.; Fini, M.; Gentile, C.; Caradonna, F.; Giavaresi, G. Flavonoids in bone erosive diseases: Perspectives in osteoporosis treatment. Trends Endocrinol. Metab., 2021, 32(2), 76-94. doi: 10.1016/j.tem.2020.11.007 PMID: 33288387
  3. Cummings, S.R.; Melton, L.J. Epidemiology and outcomes of osteoporotic fractures. Lancet, 2002, 359(9319), 1761-1767. doi: 10.1016/S0140-6736(02)08657-9 PMID: 12049882
  4. Lancet, D. Endocrinology, osteoporosis: Overlooked in men for too long. Lancet Diabetes Endocrinol., 2021, 9(1), 1. doi: 10.1016/S2213-8587(20)30408-3
  5. Compston, J.E.; McClung, M.R.; Leslie, W.D. Osteoporosis. Lancet, 2019, 393(10169), 364-376. doi: 10.1016/S0140-6736(18)32112-3 PMID: 30696576
  6. Langdahl, B.L. Overview of treatment approaches to osteoporosis. Br. J. Pharmacol., 2021, 178(9), 1891-1906. doi: 10.1111/bph.15024 PMID: 32060897
  7. Ensrud, K.E. Bisphosphonates for postmenopausal osteoporosis. JAMA, 2021, 325(1), 96. doi: 10.1001/jama.2020.2923 PMID: 33399841
  8. Mullard, A. FDA approves first-in-class osteoporosis drug. Nat. Rev. Drug Discov., 2019, 18(6), 411. PMID: 31160772
  9. Estell, E.G.; Rosen, C.J. Emerging insights into the comparative effectiveness of anabolic therapies for osteoporosis. Nat. Rev. Endocrinol., 2021, 17(1), 31-46. doi: 10.1038/s41574-020-00426-5 PMID: 33149262
  10. Zhang, M.; Moalin, M.; Haenen, G.R.M.M. Connecting West and East. Int. J. Mol. Sci., 2019, 20(9), 2333. doi: 10.3390/ijms20092333 PMID: 31083489
  11. Li, J.; Sun, K.; Qi, B.; Feng, G.; Wang, W.; Sun, Q.; Zheng, C.; Wei, X.; Jia, Y. An evaluation of the effects and safety of Zuogui pill for treating osteoporosis: Current evidence for an ancient Chinese herbal formula. Phytother. Res., 2021, 35(4), 1754-1767. doi: 10.1002/ptr.6908 PMID: 33089589
  12. Yin, H.; Wang, S.; Zhang, Y.; Wu, M.; Wang, J.; Ma, Y. Zuogui Pill improves the dexamethasone-induced osteoporosis progression in zebrafish larvae. Biomed. Pharmacother., 2018, 97, 995-999. doi: 10.1016/j.biopha.2017.11.029 PMID: 29136778
  13. Li, Y.H.; Yu, C.Y.; Li, X.X.; Zhang, P.; Tang, J.; Yang, Q.; Fu, T.; Zhang, X.; Cui, X.; Tu, G.; Zhang, Y.; Li, S.; Yang, F.; Sun, Q.; Qin, C.; Zeng, X.; Chen, Z.; Chen, Y.Z.; Zhu, F. Therapeutic target database update 2018: Enriched resource for facilitating bench-to-clinic research of targeted therapeutics. Nucleic Acids Res., 2018, 46(D1), D1121-D1127. doi: 10.1093/nar/gkx1076 PMID: 29140520
  14. Wenxiong, L.; Kuaiqiang, Z.; Zhu, L.; Li, L.; Yan, C.; Jichao, Y.; Yindi, S.; Feng, Y.; Yin, J.; Sun, Y. Effect of zuogui pill and yougui pill on osteoporosis: A randomized controlled trial. J. Tradit. Chin. Med., 2018, 38(1), 33-42. doi: 10.1016/j.jtcm.2018.01.005 PMID: 32185949
  15. Liu, S.H.; Chuang, W.C.; Lam, W.; Jiang, Z.; Cheng, Y.C. Safety surveillance of traditional Chinese medicine: Current and future. Drug Saf., 2015, 38(2), 117-128. doi: 10.1007/s40264-014-0250-z PMID: 25647717
  16. Zhang, L.; Han, L.; Wang, X.; Wei, Y.; Zheng, J.; Zhao, L.; Tong, X. Exploring the mechanisms underlying the therapeutic effect of Salvia miltiorrhiza in diabetic nephropathy using network pharmacology and molecular docking. Biosci. Rep., 2021, 41(6), BSR20203520. doi: 10.1042/BSR20203520 PMID: 33634308
  17. Hopkins, A.L. Network pharmacology. Nat. Biotechnol., 2007, 25(10), 1110-1111. doi: 10.1038/nbt1007-1110 PMID: 17921993
  18. Ning, K.; Zhao, X.; Poetsch, A.; Chen, W.H.; Yang, J. Computational molecular networks and network pharmacology. BioMed Res. Int., 2017, 2017, 1. doi: 10.1155/2017/7573904 PMID: 29250548
  19. Boezio, B.; Audouze, K.; Ducrot, P.; Taboureau, O. Network-based approaches in pharmacology. Mol. Inform., 2017, 36(10), 1700048. doi: 10.1002/minf.201700048 PMID: 28692140
  20. Ru, J.; Li, P.; Wang, J.; Zhou, W.; Li, B.; Huang, C.; Li, P.; Guo, Z.; Tao, W.; Yang, Y.; Xu, X.; Li, Y.; Wang, Y.; Yang, L. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines. J. Cheminform., 2014, 6(1), 13. doi: 10.1186/1758-2946-6-13 PMID: 24735618
  21. Liu, Z.; Guo, F.; Wang, Y.; Li, C.; Zhang, X.; Li, H.; Diao, L.; Gu, J.; Wang, W.; Li, D.; He, F. BATMAN-TCM: A bioinformatics analysis tool for molecular mechanism of traditional chinese medicine. Sci. Rep., 2016, 6(1), 21146. doi: 10.1038/srep21146 PMID: 26879404
  22. Huang, J.; Cheung, F.; Tan, H.Y.; Hong, M.; Wang, N.; Yang, J.; Feng, Y.; Zheng, Q. Identification of the active compounds and significant pathways of yinchenhao decoction based on network pharmacology. Mol. Med. Rep., 2017, 16(4), 4583-4592. doi: 10.3892/mmr.2017.7149 PMID: 28791364
  23. Qin, X.; Niu, Z.; Han, X.; Yang, Y.; Wei, Q.; Gao, X.; An, R.; Han, L.; Yang, W.; Chai, L.; Liu, E.; Gao, X.; Mao, H. Anti-perimenopausal osteoporosis effects of Erzhi formula via regulation of bone resorption through osteoclast differentiation: A network pharmacology-integrated experimental study. J. Ethnopharmacol., 2021, 270, 113815. doi: 10.1016/j.jep.2021.113815 PMID: 33444724
  24. The UniProt Consortium. UniProt: The universal protein knowledgebase. Nucleic Acids Res., 2018, 46(5), 2699. doi: 10.1093/nar/gky092 PMID: 29425356
  25. Piñero, J.; Ramírez-Anguita, J.M.; Saüch-Pitarch, J.; Ronzano, F.; Centeno, E.; Sanz, F.; Furlong, L.I. The DisGeNET knowledge platform for disease genomics: 2019 update. Nucleic Acids Res., 2020, 48(D1), D845-D855. doi: 10.1093/nar/gkz1021 PMID: 31680165
  26. Safran, M.; Dalah, I.; Alexander, J.; Rosen, N.; Iny Stein, T.; Shmoish, M.; Nativ, N.; Bahir, I.; Doniger, T.; Krug, H.; Sirota-Madi, A.; Olender, T.; Golan, Y.; Stelzer, G.; Harel, A.; Lancet, D. GeneCards version 3: The human gene integrator. Database, 2010, 2010, baq020. doi: 10.1093/database/baq020 PMID: 20689021
  27. Wishart, D.S.; Feunang, Y.D.; Guo, A.C.; Lo, E.J.; Marcu, A.; Grant, J.R.; Sajed, T.; Johnson, D.; Li, C.; Sayeeda, Z.; Assempour, N.; Iynkkaran, I.; Liu, Y.; Maciejewski, A.; Gale, N.; Wilson, A.; Chin, L.; Cummings, R.; Le, D.; Pon, A.; Knox, C.; Wilson, M. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Res., 2018, 46(D1), D1074-D1082. doi: 10.1093/nar/gkx1037 PMID: 29126136
  28. Amberger, J.S.; Hamosh, A. Searching online mendelian inheritance in man (OMIM): A knowledgebase of human genes and genetic phenotypes. Curr Protoc Bioinformatics, 2017, 58(1), 1-2. doi: 10.1002/cpbi.27 PMID: 28654725
  29. Bardou, P.; Mariette, J.; Escudié, F.; Djemiel, C.; Klopp, C. jvenn: An interactive venn diagram viewer. BMC Bioinformatics, 2014, 15(1), 293. doi: 10.1186/1471-2105-15-293 PMID: 25176396
  30. Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res., 2003, 13(11), 2498-2504. doi: 10.1101/gr.1239303 PMID: 14597658
  31. Szklarczyk, D.; Gable, A.L.; Lyon, D.; Junge, A.; Wyder, S.; Huerta-Cepas, J.; Simonovic, M.; Doncheva, N.T.; Morris, J.H.; Bork, P.; Jensen, L.J.; Mering, C. STRING v11: Protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res., 2019, 47(D1), D607-D613. doi: 10.1093/nar/gky1131 PMID: 30476243
  32. Tang, Y.; Li, M.; Wang, J.; Pan, Y.; Wu, F.X. CytoNCA: A cytoscape plugin for centrality analysis and evaluation of protein interaction networks. Biosystems, 2015, 127, 67-72. doi: 10.1016/j.biosystems.2014.11.005 PMID: 25451770
  33. Jiao, X.; Sherman, B.T.; Huang, D.W.; Stephens, R.; Baseler, M.W.; Lane, H.C.; Lempicki, R.A. DAVID-WS: A stateful web service to facilitate gene/protein list analysis. Bioinformatics, 2012, 28(13), 1805-1806. doi: 10.1093/bioinformatics/bts251 PMID: 22543366
  34. Kim, S.; Chen, J.; Cheng, T.; Gindulyte, A.; He, J.; He, S.; Li, Q.; Shoemaker, B.A.; Thiessen, P.A.; Yu, B.; Zaslavsky, L.; Zhang, J.; Bolton, E.E. PubChem in 2021: New data content and improved web interfaces. Nucleic Acids Res., 2021, 49(D1), D1388-D1395. doi: 10.1093/nar/gkaa971 PMID: 33151290
  35. Kouranov, A.; Xie, L.; de la Cruz, J.; Chen, L.; Westbrook, J.; Bourne, P.E.; Berman, H.M. The RCSB PDB information portal for structural genomics. Nucleic Acids Res., 2006, 34(90001), D302-D305. doi: 10.1093/nar/gkj120 PMID: 16381872
  36. Miyauchi, Y.; Sato, Y.; Kobayashi, T.; Yoshida, S.; Mori, T.; Kanagawa, H.; Katsuyama, E.; Fujie, A.; Hao, W.; Miyamoto, K.; Tando, T.; Morioka, H.; Matsumoto, M.; Chambon, P.; Johnson, R.S.; Kato, S.; Toyama, Y.; Miyamoto, T. HIF1α is required for osteoclast activation by estrogen deficiency in postmenopausal osteoporosis. Proc. Natl. Acad. Sci. USA, 2013, 110(41), 16568-16573. doi: 10.1073/pnas.1308755110 PMID: 24023068
  37. Cole, H.A.; Ohba, T.; Nyman, J.S.; Hirotaka, H.; Cates, J.M.M.; Flick, M.J.; Degen, J.L.; Schoenecker, J.G. Fibrin accumulation secondary to loss of plasmin-mediated fibrinolysis drives inflammatory osteoporosis in mice. Arthritis Rheumatol., 2014, 66(8), 2222-2233. doi: 10.1002/art.38639 PMID: 24664548
  38. Li, C.; Du, X.; Liu, Y.; Liu, Q.Q.; Zhi, W.B.; Wang, C.L.; Zhou, J.; Li, Y.; Zhang, H. A systems pharmacology approach for identifying the multiple mechanisms of action for the rougui-fuzi herb pair in the treatment of cardiocerebral vascular diseases. Evid. Based Complement. Alternat. Med., 2020, 2020, 1-17. doi: 10.1155/2020/5196302 PMID: 32025235
  39. Fuggle, N.R.; Curtis, E.M.; Ward, K.A.; Harvey, N.C.; Dennison, E.M.; Cooper, C. Fracture prediction, imaging and screening in osteoporosis. Nat. Rev. Endocrinol., 2019, 15(9), 535-547. doi: 10.1038/s41574-019-0220-8 PMID: 31189982
  40. Chen, G.; Zhang, Z.; Liu, Y.; Lu, J.; Qi, X.; Fang, C.; Zhou, C. Efficacy and safety of Zuogui Pill in treating osteoporosis. Medicine, 2019, 98(8), e13936. doi: 10.1097/MD.0000000000013936 PMID: 30813123
  41. Liu, M.; Li, Y.; Pan, J.; Liu, H.; Wang, S.; Teng, J.; Zhao, H.; Ju, D. Effects of zuogui pill (see text) on Wnt singal transduction in rats with glucocorticoid-induced osteoporosis. J. Tradit. Chin. Med., 2011, 31(2), 98-102. doi: 10.1016/S0254-6272(11)60020-4 PMID: 21977807
  42. Yang, A.; Yu, C.; You, F.; He, C.; Li, Z. Mechanisms of zuogui pill in treating osteoporosis: Perspective from bone marrow mesenchymal stem cells. Evid. Based Complement. Alternat. Med., 2018, 2018, 1-8. doi: 10.1155/2018/3717391 PMID: 30327678
  43. Liu, F-X.; Tan, F.; Fan, Q-L.; Tong, W-W.; Teng, Z-L.; Ye, S-M.; Li, X.; Zhang, M-Y.; Chai, Y.; Mai, C-Y. Zuogui Wan improves trabecular bone microarchitecture in ovariectomy-induced osteoporosis rats by regulating orexin-A and orexin receptor. J. Tradit. Chin. Med., 2021, 41(6), 927-934. doi: 10.19852/j.cnki.jtcm.20210903.001 PMID: 34939389
  44. Zhou, W.; Wang, Y.; Lu, A.; Zhang, G. Systems pharmacology in small molecular drug discovery. Int. J. Mol. Sci., 2016, 17(2), 246. doi: 10.3390/ijms17020246 PMID: 26901192
  45. Wang, N.; Wang, L.; Yang, J.; Wang, Z.; Cheng, L. Quercetin promotes osteogenic differentiation and antioxidant responses of mouse bone mesenchymal stem cells through activation of the AMPK/SIRT1 signaling pathway. Phytother. Res., 2021, 35(5), 2639-2650. doi: 10.1002/ptr.7010 PMID: 33421256
  46. Pandit, A.P.; Omase, S.B.; Mute, V.M. A chitosan film containing quercetin-loaded transfersomes for treatment of secondary osteoporosis. Drug Deliv. Transl. Res., 2020, 10(5), 1495-1506. doi: 10.1007/s13346-020-00708-5 PMID: 31942700
  47. Vakili, S.; Zal, F.; Mostafavi-pour, Z.; Savardashtaki, A.; Koohpeyma, F. Quercetin and vitamin E alleviate ovariectomy‐induced osteoporosis by modulating autophagy and apoptosis in rat bone cells. J. Cell. Physiol., 2021, 236(5), 3495-3509. doi: 10.1002/jcp.30087 PMID: 33030247
  48. Liu, H.; Yi, X.; Tu, S.; Cheng, C.; Luo, J. Kaempferol promotes BMSC osteogenic differentiation and improves osteoporosis by downregulating miR-10a-3p and upregulating CXCL12. Mol. Cell. Endocrinol., 2021, 520, 111074. doi: 10.1016/j.mce.2020.111074 PMID: 33157164
  49. Wong, S.K.; Chin, K.Y.; Ima-Nirwana, S. The osteoprotective effects of kaempferol: The evidence from in vivo and in vitro studies. Drug Des. Devel. Ther., 2019, 13, 3497-3514. doi: 10.2147/DDDT.S227738 PMID: 31631974
  50. Koura, H.M.; Ismail, N.A.; Kamel, A.F.; Ahmed, A.M.; Saad-Hussein, A.; Effat, L.K. A long-term study of bone mineral density in patients with phenylketonuria under diet therapy. Arch. Med. Sci., 2011, 3(3), 493-500. doi: 10.5114/aoms.2011.23417 PMID: 22295034
  51. Messer, J.G.; Hopkins, R.G.; Kipp, D.E. Quercetin metabolites up-regulate the antioxidant response in osteoblasts isolated from fetal rat calvaria. J. Cell. Biochem., 2015, 116(9), 1857-1866. doi: 10.1002/jcb.25141 PMID: 25716194
  52. Křížová, L.; Dadáková, K.; Kašparovská, J.; Kašparovský, T. Isoflavones. Molecules, 2019, 24(6), 1076. doi: 10.3390/molecules24061076 PMID: 30893792
  53. He, Q.; Yang, J.; Zhang, G.; Chen, D.; Zhang, M.; Pan, Z.; Wang, Z.; Su, L.; Zeng, J.; Wang, B.; Wang, H.; Chen, P. Sanhuang Jiangtang tablet protects type 2 diabetes osteoporosis via AKT-GSK3β-NFATc1 signaling pathway by integrating bioinformatics analysis and experimental validation. J. Ethnopharmacol., 2021, 273, 113946. doi: 10.1016/j.jep.2021.113946 PMID: 33647426
  54. Zhang, Y.; Wang, N.; Ma, J.; Chen, X.C.; Li, Z.; Zhao, W. Expression profile analysis of new candidate genes for the therapy of primary osteoporosis. Eur. Rev. Med. Pharmacol. Sci., 2016, 20(3), 433-440. PMID: 26914116
  55. Jia, X.; Yang, M.; Hu, W.; Cai, S. Overexpression of miRNA-22-3p attenuates osteoporosis by targeting MAPK14. Exp. Ther. Med., 2021, 22(1), 692. doi: 10.3892/etm.2021.10124 PMID: 33986857
  56. Li, J.; Ayoub, A.; Xiu, Y.; Yin, X.; Sanders, J.O.; Mesfin, A.; Xing, L.; Yao, Z.; Boyce, B.F. TGFβ-induced degradation of TRAF3 in mesenchymal progenitor cells causes age-related osteoporosis. Nat. Commun., 2019, 10(1), 2795. doi: 10.1038/s41467-019-10677-0 PMID: 31243287
  57. Neugebauer, J.; Heilig, J.; Hosseinibarkooie, S.; Ross, B.C.; Mendoza-Ferreira, N.; Nolte, F.; Peters, M.; Hölker, I.; Hupperich, K.; Tschanz, T.; Grysko, V.; Zaucke, F.; Niehoff, A.; Wirth, B. Plastin 3 influences bone homeostasis through regulation of osteoclast activity. Hum. Mol. Genet., 2018, 27(24), 4249-4262. doi: 10.1093/hmg/ddy318 PMID: 30204862
  58. Liu, Z.; Li, C.; Huang, P.; Hu, F.; Jiang, M.; Xu, X.; Li, B.; Deng, L.; Ye, T.; Guo, L. CircHmbox1 targeting mirna-1247-5p is involved in the regulation of bone metabolism by tnf-α in postmenopausal osteoporosis. Front. Cell Dev. Biol., 2020, 8, 594785. doi: 10.3389/fcell.2020.594785 PMID: 33425899
  59. Yang, F.; Jia, Y.; Sun, Q.; Zheng, C.; Liu, C.; Wang, W.; Du, L.; Kang, S.; Niu, X.; Li, J. Raloxifene improves TNF α induced osteogenic differentiation inhibition of bone marrow mesenchymal stem cells and alleviates osteoporosis. Exp. Ther. Med., 2020, 20(1), 309-314. doi: 10.3892/etm.2020.8689 PMID: 32550885
  60. Lerbs, T.; Cui, L.; Muscat, C.; Saleem, A.; van Neste, C.; Domizi, P.; Chan, C.; Wernig, G. Expansion of bone precursors through jun as a novel treatment for osteoporosis-associated fractures. Stem Cell Reports, 2020, 14(4), 603-613. doi: 10.1016/j.stemcr.2020.02.009 PMID: 32197115
  61. Chen, S.; Li, Y.; Zhi, S.; Ding, Z.; Huang, Y.; Wang, W.; Zheng, R.; Yu, H.; Wang, J.; Hu, M.; Miao, J.; Li, J. lncRNA xist regulates osteoblast differentiation by sponging mir-19a-3p in aging-induced osteoporosis. Aging Dis., 2020, 11(5), 1058-1068. doi: 10.14336/AD.2019.0724 PMID: 33014522
  62. Mazurek, A.H.; Szeleszczuk, Ł.; Simonson, T.; Pisklak, D.M. Application of various molecular modelling methods in the study of estrogens and xenoestrogens. Int. J. Mol. Sci., 2020, 21(17), 6411. doi: 10.3390/ijms21176411 PMID: 32899216
  63. Cao, B.; Chai, C.; Zhao, S. Protective effect of Edaravone against hypoxia-induced cytotoxicity in osteoblasts MC3T3-E1 cells. IUBMB Life, 2015, 67(12), 928-933. doi: 10.1002/iub.1436 PMID: 26596678
  64. Beringer, A.; Gouriou, Y.; Lavocat, F.; Ovize, M.; Miossec, P. Blockade of store-operated calcium entry reduces il-17/tnf cytokine-induced inflammatory response in human myoblasts. Front. Immunol., 2019, 9, 3170. doi: 10.3389/fimmu.2018.03170 PMID: 30693003
  65. Wu, L.; Luo, Z.; Liu, Y.; Jia, L.; Jiang, Y.; Du, J.; Guo, L.; Bai, Y.; Liu, Y. Aspirin inhibits RANKL-induced osteoclast differentiation in dendritic cells by suppressing NF-κB and NFATc1 activation. Stem Cell Res. Ther., 2019, 10(1), 375. doi: 10.1186/s13287-019-1500-x PMID: 31805984
  66. Al Mamun, M.A.; Asim, M.M.H.; Sahin, M.A.Z.; Al-Bari, M.A.A. Flavonoids compounds from Tridax procumbens inhibit osteoclast differentiation by down‐regulating c‐Fos activation. J. Cell. Mol. Med., 2020, 24(4), 2542-2551. doi: 10.1111/jcmm.14948 PMID: 31919976
  67. Jeong, Y.H.; Hur, H.J.; Lee, A.S.; Lee, S.H.; Sung, M.J. Amaranthus mangostanus inhibits the differentiation of osteoclasts and prevents ovariectomy-induced bone loss. Evid. Based Complement. Alternat. Med., 2020, 2020, 1-11. doi: 10.1155/2020/1927017 PMID: 32089716
  68. Wu, D.; Zhang, X.; Liu, L.; Guo, Y. Key CMM combinations in prescriptions for treating mastitis and working mechanism analysis based on network pharmacology. Evid. Based Complement. Alternat. Med., 2019, 2019, 1-11. doi: 10.1155/2019/8245071 PMID: 30911319
  69. Zha, J.; Wang, X.; Di, J. MiR-920 promotes osteogenic differentiation of human bone mesenchymal stem cells by targeting HOXA7. J. Orthop. Surg. Res., 2020, 15(1), 254. doi: 10.1186/s13018-020-01775-7 PMID: 32650806
  70. Wu, H.; Hu, B.; Zhou, X.; Zhou, C.; Meng, J.; Yang, Y.; Zhao, X.; Shi, Z.; Yan, S. Artemether attenuates LPS-induced inflammatory bone loss by inhibiting osteoclastogenesis and bone resorption via suppression of MAPK signaling pathway. Cell Death Dis., 2018, 9(5), 498. doi: 10.1038/s41419-018-0540-y PMID: 29703893
  71. Zantut-Wittmann, D.E.; Quintino-Moro, A.; dos Santos, P.N.S.; Melhado-Kimura, V.; Bahamondes, L.; Fernandes, A. Lack of influence of thyroid hormone on bone mineral density and body composition in healthy euthyroid women. Front. Endocrinol., 2020, 10, 890. doi: 10.3389/fendo.2019.00890 PMID: 31998231
  72. Delitala, A.P.; Scuteri, A.; Doria, C. Thyroid hormone diseases and osteoporosis. J. Clin. Med., 2020, 9(4), 1034. doi: 10.3390/jcm9041034 PMID: 32268542

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers