Handgrip Strength and Clinical Evolution of People Living with HIV: A Mini Narrative Review


Cite item

Full Text

Abstract

:HIV infection is a worldwide epidemic. Antiretroviral therapy allows people living with HIV (PLHIV) increased longevity and a better quality of life. Among the various ways of monitoring the clinical evolution of PLHIV, handgrip strength (HGS) is a promising strategy, as this test can be used to assess the health condition quickly and at a low cost. In this sense, the present study aims to describe, through a literature review, the relationship between HGS and the clinical evolution of PLHIV, especially with morbimortality. Initially, it is highlighted that aging, HIV infection, and excess body fat are related to the loss of HGS in PLHIV. Furthermore, PLHIV is more likely to present cardiometabolic diseases that can be aggravated by reduced HGS. Thus, in people without positive HIV serology, low HGS indirectly, through the presence of risk factors or cardiometabolic diseases, or directly increases the chance of mortality. In conclusion, the lack of studies on this topic for PLHIV is highlighted, and more longitudinal studies, including control groups, are needed.

About the authors

Luiz Gouvêa-e-Silva

Morphofunctional Study and Research Group in Health and Disease, Universidade Federal de Jataí

Author for correspondence.
Email: info@benthamscience.net

Lorhoâne Eduarda de Morais

Morphofunctional Study and Research Group in Health and Disease, Universidade Federal de Jataí

Email: info@benthamscience.net

Giovana de Souza Gonçalves

Morphofunctional Study and Research Group in Health and Disease, Universidade Federal de Jataí

Email: info@benthamscience.net

Morganna Siqueira

Morphofunctional Study and Research Group in Health and Disease, Universidade Federal de Jataí

Email: info@benthamscience.net

Vitória Souza Lima

Morphofunctional Study and Research Group in Health and Disease, Universidade Federal de Jataí

Email: info@benthamscience.net

Ludimila Paula Cardoso

Postgraduate Program in Applied Health Sciences, Jataí, Goiás, Brazil, Universidade Federal de Jataí

Email: info@benthamscience.net

Eduardo Fernandes

Morphofunctional Study and Research Group in Health and Disease, Universidade Federal de Jataí

Email: info@benthamscience.net

References

  1. Joint United Nations Programme on HIV/Aids. 2022. Available from:https://www.unaids.org/en/resources/fact-sheet (accessed on 30-7-2024)
  2. Fararouei M, Akbari M, Haghdoost A, Gouya M, Kazerooni P. Survival and associated factors among people living with HIV/AIDS: A 30-year national survey in Iran. J Res Med Sci 2019; 24(1): 5. doi: 10.4103/jrms.JRMS_630_18 PMID: 30815018
  3. Smith CJ, Ryom L, Weber R, et al. Trends in underlying causes of death in people with HIV from 1999 to 2011 (D:A:D): a multicohort collaboration. Lancet 2014; 384(9939): 241-8. doi: 10.1016/S0140-6736(14)60604-8 PMID: 25042234
  4. Rava M, Domínguez-Domínguez L, Bisbal O, et al. Late presentation for HIV remains a major health issue in Spain: Results from a multicenter cohort study, 2004–2018. PLoS One 2021; 16(4): e0249864. doi: 10.1371/journal.pone.0249864 PMID: 33882093
  5. Maciel RA, Klück HM, Durand M, Sprinz E. Comorbidity is more common and occurs earlier in persons living with HIV than in HIV-uninfected matched controls, aged 50 years and older: A cross-sectional study. Int J Infect Dis 2018; 70: 30-5. doi: 10.1016/j.ijid.2018.02.009 PMID: 29476902
  6. Zanetti HR, Mendes EL, Palandri Chagas AC, et al. Triad of the ischemic cardiovascular disease in people living with HIV? Association between risk factors, HIV infection, and use of antiretroviral therapy. Curr Atheroscler Rep 2018; 20(6): 30. doi: 10.1007/s11883-018-0727-9 PMID: 29777448
  7. Zanetti HR, Roever L, Gonçalves A, Resende ES. Cardiovascular complications of HIV. Int J Cardiovasc Sci 2018; 31(5): 538-43. doi: 10.5935/2359-4802.20180049
  8. Nguyen KA, Peer N, Mills EJ, Kengne AP. A Meta-analysis of the metabolic syndrome prevalence in the global HIV-infected population. PLoS One 2016; 11(3): e0150970. doi: 10.1371/journal.pone.0150970 PMID: 27008536
  9. d’Arminio Monforte A, Diaz-Cuervo H, De Luca A, et al. Evolution of major non-HIV-related comorbidities in HIV-infected patients in the Italian Cohort of Individuals, Naïve for Antiretrovirals (ICONA) Foundation Study cohort in the period 2004–2014. HIV Med 2019; 20(2): 99-109. doi: 10.1111/hiv.12683 PMID: 30461158
  10. Gouvêa-e-Silva LF, Silva CF, Araujo IB, Lima VS, Fernandes EV, Xavier MB. Relationship between handgrip strength and age in the body composition variables among people living with HIV. Curr HIV Res 2022; 20(6): 472-8. doi: 10.2174/1570162X20666220927114848 PMID: 36173077
  11. Gouvêa-e-Silva LF, Brito ER, Sol NCC, Fernandes EV, Xavier MB. Relationship of handgrip strength with health indicators of people living with HIV in west Pará, Brazil. Int J STD AIDS 2023; 34(13): 932-9. doi: 10.1177/09564624231188749 PMID: 37436258
  12. Santos FB, Conceição-Machado MEP, Sampaio EJ, Ramos LB, Barreto-Medeiros JM. Reduction of relative handgrip strength and cardiometabolic risk in individuals with HIV/AIDS. Rev Soc Bras Med Trop 2019; 52: e20180405. doi: 10.1590/0037-8682-0405-2018 PMID: 31141050
  13. Palacio AC, Díaz-Torrente X, Quintiliano-Scarpelli D. Higher abdominal adiposity is associated with lower muscle strength in Chilean adults. Front Nutr 2022; 9: 812928. doi: 10.3389/fnut.2022.812928 PMID: 35284443
  14. Amaral CA, Portela MC, Muniz PT, Farias ES, Araújo TS, Souza OF. Association of handgrip strength with self-reported diseases in adults in Rio Branco, Acre State, Brazil: a population-based study. Cad Saude Publica 2015; 31(6): 1313-25. doi: 10.1590/0102-311X00062214 PMID: 26200378
  15. Oliveira VHF, Webel AR, Borsari AL, Cárdenas JDG, Deminice R. Health and sociodemographic factors associated with low muscle strength, muscle mass, and physical performance among people living with HIV. AIDS Care 2023; 35(12): 1863-73. doi: 10.1080/09540121.2022.2147482 PMID: 36404290
  16. Ji C, Xia Y, Tong S, Wu Q, Zhao Y. Association of handgrip strength with the prevalence of metabolic syndrome in US adults: the national health and nutrition examination survey. Aging (Albany NY) 2020; 12(9): 7818-29. doi: 10.18632/aging.103097 PMID: 32365052
  17. Jurca R, Lamonte MJ, Church TS, et al. Associations of muscle strength and fitness with metabolic syndrome in men. Med Sci Sports Exerc 2004; 36(8): 1301-7. doi: 10.1249/01.MSS.0000135780.88930.A9 PMID: 15292736
  18. Celis-Morales CA, Welsh P, Lyall DM, et al. Associations of grip strength with cardiovascular, respiratory, and cancer outcomes and all cause mortality: prospective cohort study of half a million UK Biobank participants. BMJ 2018; 361: k1651. doi: 10.1136/bmj.k1651 PMID: 29739772
  19. Masters MC, Yang J, Lake JE, et al. Diabetes mellitus is associated with declines in physical function among men with and without HIV. AIDS 2022; 36(5): 637-46. doi: 10.1097/QAD.0000000000003160 PMID: 34999609
  20. Hsu NW, Lin CH, Yang NP, Chen HC, Chou P. Handgrip strength is associated with mortality in community-dwelling older adults: the Yilan cohort study, Taiwan. BMC Public Health 2023; 23(1): 2194. doi: 10.1186/s12889-023-17058-9 PMID: 37940899
  21. Luk FWL, Li T, Ho HY, Chan YY, Cheung SK, Wong V. Sarcopenia in people living with HIV in Hong Kong: which definition correlates with health outcomes? J Int AIDS Soc 2022; 25(Suppl 4): e25988. doi: 10.1002/jia2.25988
  22. Verstraeten LMG, de Haan NJ, Verbeet E, van Wijngaarden JP, Meskers CGM, Maier AB. Handgrip strength rather than chair stand test should be used to diagnose sarcopenia in geriatric rehabilitation inpatients: REStORing health of acutely unwell adulTs (RESORT). Age Ageing 2022; 51(11): afac242. doi: 10.1093/ageing/afac242 PMID: 36413590
  23. Kallianpur KJ, Sakoda M, Gangcuangco LMA, et al. Frailty characteristics in chronic HIV patients are markers of white matter atrophy independently of age and depressive symptoms: a pilot study. Open Med J 2016; 3(1): 138-52. doi: 10.2174/1874220301603010138 PMID: 27721908
  24. Postorino MC, Torti C, Carè I, et al. Is hand-grip another culprit for the risk of fractures in HIV-positive patients? New Microbiol 2016; 39(1): 61-4. https://pubmed.ncbi.nlm.nih.gov/26922987/ PMID: 26922987
  25. Newman AB, Kupelian V, Visser M, et al. Strength, but not muscle mass, is associated with mortality in the health, aging and body composition study cohort. J Gerontol A Biol Sci Med Sci 2006; 61(1): 72-7. doi: 10.1093/gerona/61.1.72 PMID: 16456196
  26. Marcus JL, Leyden WA, Alexeeff SE, et al. Comparison of overall and comorbidity-free life expectancy between insured adults with and without HIV infection, 2000-2016. JAMA Netw Open 2020; 3(6): e207954. doi: 10.1001/jamanetworkopen.2020.7954 PMID: 32539152
  27. Bor J, Rosen S, Chimbindi N, et al. Mass HIV treatment and sex disparities in life expectancy: demographic surveillance in rural south Africa. PLoS Med 2015; 12(11): e1001905. doi: 10.1371/journal.pmed.1001905 PMID: 26599699
  28. Tseng A, Seet J, Phillips EJ. The evolution of three decades of antiretroviral therapy: challenges, triumphs and the promise of the future. Br J Clin Pharmacol 2015; 79(2): 182-94. doi: 10.1111/bcp.12403 PMID: 24730660
  29. Montano M, Bhasin S, D’Aquila RT, et al. Harvard HIV and aging workshop: perspectives and priorities from Claude D. AIDS Res Hum Retroviruses 2019; 35(11-12): 999-1012. doi: 10.1089/aid.2019.0130 PMID: 31456412
  30. Schrack JA, Jacobson LP, Althoff KN, et al. Effect of HIV-infection and cumulative viral load on age-related decline in grip strength. AIDS 2016; 30(17): 2645-52. doi: 10.1097/QAD.0000000000001245 PMID: 27603294
  31. Wilkinson DJ, Piasecki M, Atherton PJ. The age-related loss of skeletal muscle mass and function: Measurement and physiology of muscle fibre atrophy and muscle fibre loss in humans. Ageing Res Rev 2018; 47: 123-32. doi: 10.1016/j.arr.2018.07.005 PMID: 30048806
  32. Addison O, Marcus RL, LaStayo PC, Ryan AS. Intermuscular fat: a review of the consequences and causes. Int J Endocrinol 2014; 2014: 1-11. doi: 10.1155/2014/309570 PMID: 24527032
  33. Birx DL, Redfield RR, Tencer K, Fowler A, Burke DS, Tosato G. Induction of interleukin-6 during human immunodeficiency virus infection. Blood 1990; 76(11): 2303-10.https://pubmed.ncbi.nlm.nih.gov/2257304/ doi: 10.1182/blood.V76.11.2303.2303 PMID: 2257304
  34. Aukrust P, Liabakk NB, ller F, Lien E, Espevik T, Frøland SS. Serum levels of tumor necrosis factor-alpha (TNF alpha) and soluble TNF receptors in human immunodeficiency virus type 1 infection--correlations to clinical, immunologic, and virologic parameters. J Infect Dis 1994; 169(2): 420-4. doi: 10.1093/infdis/169.2.420 PMID: 7906293
  35. Cardoso SW, Torres TS, Santini-Oliveira M, Marins LMS, Veloso VG, Grinsztejn B. Aging with HIV: a practical review. Braz J Infect Dis 2013; 17(4): 464-79. doi: 10.1016/j.bjid.2012.11.007 PMID: 23711587
  36. Osuji FN, Onyenekwe CC, Ahaneku JE, Ukibe NR. The effects of highly active antiretroviral therapy on the serum levels of pro-inflammatory and anti-inflammatory cytokines in HIV infected subjects. J Biomed Sci 2018; 25(1): 88. doi: 10.1186/s12929-018-0490-9 PMID: 30501642
  37. Negin J, Martiniuk A, Cumming RG, Naidoo N, Phaswana-Mafuya N, Madurai L. Prevalence of HIV and chronic comorbidities among older adults. AIDS 2012; 26(S1): S55-63. doi: 10.1097/QAD.0b013e3283558459
  38. Schrack JA, Althoff KN, Jacobson LP, et al. Accelerated longitudinal gait speed decline in HIV-infected older men. J Acquir Immune Defic Syndr 2015; 70(4): 370-6. doi: 10.1097/QAI.0000000000000731 PMID: 26102450
  39. Bernard C, Dabis F, de Rekeneire N. Physical function, grip strength and frailty in people living with HIV in sub-Saharan Africa: systematic review. Trop Med Int Health 2017; 22(5): 516-25. doi: 10.1111/tmi.12852 PMID: 28170120
  40. Crawford KW, Li X, Xu X, et al. Lipodystrophy and inflammation predict later grip strength in HIV-infected men: the MACS Body Composition substudy. AIDS Res Hum Retroviruses 2013; 29(8): 1138-45. doi: 10.1089/aid.2013.0020 PMID: 23550976
  41. Mendham AE, Goedecke JH, Micklesfield LK, et al. Understanding factors associated with sarcopenic obesity in older African women from a low-income setting: a cross-sectional analysis. BMC Geriatr 2021; 21(1): 247. doi: 10.1186/s12877-021-02132-x PMID: 33853546
  42. Funderburg NT, Mehta NN. Lipid Abnormalities and Inflammation in HIV Inflection. Curr HIV/AIDS Rep 2016; 13(4): 218-25. doi: 10.1007/s11904-016-0321-0 PMID: 27245605
  43. Tavares Junior AC, Silva HS, Penedo T, et al. Correlation of the handgrip strength and body composition parameters in young judokas. Int J Environ Res Public Health 2023; 20(3): 2707. doi: 10.3390/ijerph20032707 PMID: 36768073
  44. Gerber M, Filippou K, Knappe F, et al. Associations between grip strength, cardiorespiratory fitness, cardiovascular risk and mental health in forcibly displaced people from a Greek refugee camp. Sci Rep 2023; 13(1): 20970. doi: 10.1038/s41598-023-48032-5 PMID: 38017094
  45. Pinto Pereira SM, Garfield V, Farmaki AE, et al. Adiposity and grip strength: a Mendelian randomisation study in UK Biobank. BMC Med 2022; 20(1): 201. doi: 10.1186/s12916-022-02393-2 PMID: 35650572
  46. Basso GB, Siqueira MA, Kono EM, Souza J, Baseggio LT, Fernandes EV. Relationship between handgrip strength and body composition and laboratory indicators in diabetic and hypertensive patients. Medicina 2023; 56(4): e210088. doi: 10.11606/issn.2176-7262.rmrp.2023.210088
  47. Triana-Reina HR, Ortiz-Pacheco LE, Ramírez-Vélez R. Menores valores de fuerza de prensión manual se asocian a incremento de los niveles de adiposidad y exceso de peso: un estudio transversal. Nutr Hosp 2022; 39(4): 752-9. doi: 10.20960/nh.04004 PMID: 35815738
  48. Cossio-Bolaños M, Gómez-Campos R, Castelli Correia de Campos LF, Sulla-Torres J, Urra-Albornoz C, Pires Lopes V. Muscle strength and body fat percentage in children and adolescents from the Maule region, Chile. Arch Argent Pediatr 2020; 118(5): 320-6. doi: 10.5546/aap.2020.eng.320 PMID: 32924394
  49. Li B, Li Y, Zhang Y, et al. Visceral fat obesity correlates with frailty in middle-aged and older adults. Diabetes Metab Syndr Obes 2022; 15: 2877-84. doi: 10.2147/DMSO.S383597 PMID: 36164455
  50. Kim GH, Song BK, Kim JW, et al. Associations between relative grip strength and type 2 diabetes mellitus: The Yangpyeong cohort of the Korean genome and epidemiology study. PLoS One 2021; 16(8): e0256550. doi: 10.1371/journal.pone.0256550 PMID: 34437604
  51. Lawman HG, Troiano RP, Perna FM, Wang CY, Fryar CD, Ogden CL. Associations of relative handgrip strength and cardiovascular disease biomarkers in U.S. adults, 2011-2012. Am J Prev Med 2016; 50(6): 677-83. doi: 10.1016/j.amepre.2015.10.022 PMID: 26689977
  52. Aberg JA. Aging and HIV infection: focus on cardiovascular disease risk. Top Antivir Med 2020; 27(4): 102-5.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7162677/ PMID: 32224501
  53. Zhang W, Zhao Z, Sun X, Tian X. Prevalence of metabolic syndrome according to absolute and relative values of muscle strength in middle-aged and elderly women. Int J Environ Res Public Health 2021; 18(17): 9073. doi: 10.3390/ijerph18179073 PMID: 34501662
  54. Chun SW, Kim W, Choi KH. Comparison between grip strength and grip strength divided by body weight in their relationship with metabolic syndrome and quality of life in the elderly. PLoS One 2019; 14(9): e0222040. doi: 10.1371/journal.pone.0222040 PMID: 31490975
  55. Chang KV, Yang KC, Wu WT, Huang KC, Han DS. Association between metabolic syndrome and limb muscle quantity and quality in older adults: a pilot ultrasound study. Diabetes Metab Syndr Obes 2019; 12: 1821-30. doi: 10.2147/DMSO.S219649 PMID: 31571957
  56. Byeon JY, Lee MK, Yu MS, et al. Lower relative handgrip strength is significantly associated with a higher prevalence of the metabolic syndrome in adults. Metab Syndr Relat Disord 2019; 17(5): 280-8. doi: 10.1089/met.2018.0111 PMID: 30945974
  57. Ko DH, Kim YK. The prevalence of metabolic syndrome according to grip strength in teenagers. Children (Basel) 2021; 8(2): 108. doi: 10.3390/children8020108 PMID: 33557385
  58. Shen C, Lu J, Xu Z, Xu Y, Yang Y. Association between handgrip strength and the risk of new-onset metabolic syndrome: a population-based cohort study. BMJ Open 2020; 10(10): e041384. doi: 10.1136/bmjopen-2020-041384 PMID: 33020107
  59. Lee MJ, Khang AR, Yi D, Kang YH. Low relative hand grip strength is associated with a higher risk for diabetes and impaired fasting glucose among the Korean population. PLoS One 2022; 17(10): e0275746. doi: 10.1371/journal.pone.0275746 PMID: 36201556
  60. Liang X, Jiang CQ, Zhang WS, et al. Glycaemia and hand grip strength in aging people: Guangzhou biobank cohort study. BMC Geriatr 2020; 20(1): 399. doi: 10.1186/s12877-020-01808-0 PMID: 33046005
  61. Lee MR, Jung SM, Bang H, Kim HS, Kim YB. Association between muscle strength and type 2 diabetes mellitus in adults in Korea. Medicine (Baltimore) 2018; 97(23): e10984. doi: 10.1097/MD.0000000000010984 PMID: 29879054
  62. Choe H, Sung H, Kim GH, Lee O, Moon HY, Kim YS. Associations between grip strength and glycemic control in type 2 diabetes mellitus: an analysis of data from the 2014-2019 Korea National Health and Nutrition Examination Survey. Epidemiol Health 2021; 43: e2021080. doi: 10.4178/epih.e2021080 PMID: 34645204
  63. Lorenz DR, Mukerji SS, Misra V, et al. Predictors of transition to frailty in middle-aged and older people with HIV: a prospective cohort Study. J Acquir Immune Defic Syndr 2021; 88(5): 518-27. doi: 10.1097/QAI.0000000000002810 PMID: 34757975
  64. Boonpor J, Parra-Soto S, Petermann-Rocha F, et al. Associations between grip strength and incident type 2 diabetes: findings from the UK Biobank prospective cohort study. BMJ Open Diabetes Res Care 2021; 9(1): e001865. doi: 10.1136/bmjdrc-2020-001865 PMID: 34353878
  65. Suda N, Manda C, Gallagher J, Wagatsuma Y. Observational study: handgrip strength, body composition and diabetes mellitus. BMC Res Notes 2021; 14(1): 332. doi: 10.1186/s13104-021-05731-4 PMID: 34454579
  66. Kunutsor SK, Isiozor NM, Khan H, Laukkanen JA. Handgrip strength—A risk indicator for type 2 diabetes: Systematic review and meta-analysis of observational cohort studies. Diabetes Metab Res Rev 2021; 37(2): e3365. doi: 10.1002/dmrr.3365 PMID: 32543028
  67. Wagle A, Goerlich E, Post WS, Woldu B, Wu KC, Hays AG. HIV and global cardiovascular health. Curr Cardiol Rep 2022; 24(9): 1149-57. doi: 10.1007/s11886-022-01741-1 PMID: 35802233
  68. Ntsekhe M, Baker JV. Cardiovascular disease among persons living with HIV: new insights into pathogenesis and clinical manifestations in a global context. Circulation 2023; 147(1): 83-100. doi: 10.1161/CIRCULATIONAHA.122.057443 PMID: 36576956
  69. Domingues CSB, Waldman EA. Causes of death among people living with AIDS in the pre- and post-HAART Eras in the city of São Paulo, Brazil. PLoS One 2014; 9(12): e114661. doi: 10.1371/journal.pone.0114661 PMID: 25500837
  70. Farahani M, Mulinder H, Farahani A, Marlink R. Prevalence and distribution of non-AIDS causes of death among HIV-infected individuals receiving antiretroviral therapy: a systematic review and meta-analysis. Int J STD AIDS 2017; 28(7): 636-50. doi: 10.1177/0956462416632428 PMID: 26868158
  71. Paula AA, Schechter M, Tuboi SH, et al. Continuous increase of cardiovascular diseases, diabetes, and non-HIV related cancers as causes of death in HIV-infected individuals in Brazil: an analysis of nationwide data. PLoS One 2014; 9(4): e94636. doi: 10.1371/journal.pone.0094636 PMID: 24728320
  72. Kelly SG, Wu K, Tassiopoulos K, Erlandson KM, Koletar SL, Palella FJ Jr. Incorporating frailty into the pooled cohort equations to predict cardiovascular disease among persons with HIV. J Acquir Immune Defic Syndr 2021; 87(3): 971-7. doi: 10.1097/QAI.0000000000002662 PMID: 33625065
  73. Milic J, Calza S, Cantergiani S, et al. Sarcopenic obesity phenotypes in patients with HIV: implications for cardiovascular prevention and rehabilitation. Can J Cardiol 2023; 39(11): S359-67. doi: 10.1016/j.cjca.2023.08.027 PMID: 37659756
  74. Lu Y, Li G, Ferrari P, et al. Associations of handgrip strength with morbidity and all-cause mortality of cardiometabolic multimorbidity. BMC Med 2022; 20(1): 191. doi: 10.1186/s12916-022-02389-y PMID: 35655218
  75. Peterson MD, Duchowny K, Meng Q, Wang Y, Chen X, Zhao Y. Low normalized grip strength is a biomarker for cardiometabolic disease and physical disabilities among U.S. and Chinese adults. J Gerontol A Biol Sci Med Sci 2017; 72(11): 1525-31. doi: 10.1093/gerona/glx031 PMID: 28329157
  76. Welsh CE, Celis-Morales CA, Ho FK, et al. Grip strength and walking pace and cardiovascular disease risk prediction in 406,834 UK Biobank participants. Mayo Clin Proc 2020; 95(5): 879-88. doi: 10.1016/j.mayocp.2019.12.032 PMID: 32299669
  77. Li D, Guo G, Xia L, et al. Relative handgrip strength is inversely associated with metabolic profile and metabolic disease in the general population in China. Front Physiol 2018; 9: 59. doi: 10.3389/fphys.2018.00059 PMID: 29459831
  78. Simard EP, Pfeiffer RM, Engels EA. Mortality due to cancer among people with AIDS. AIDS 2012; 26(10): 1311-8. doi: 10.1097/QAD.0b013e328353f38e PMID: 22472857
  79. de Coninck Z, Hussain-Alkhateeb L, Bratt G, et al. Non-AIDS mortality is higher among successfully treated people living with HIV compared with matched HIV-negative control persons: a 15-year follow-up cohort study in Sweden. AIDS Patient Care STDS 2018; 32(8): 297-305. doi: 10.1089/apc.2018.0015 PMID: 30067408
  80. Nanditha NGA, Zheng G, Tafessu HM, et al. Disparities in multimorbidity and mortality among people living with and without HIV across British Columbia’s health regions: a population-based cohort study. Can J Public Health 2021; 112(6): 1030-41. doi: 10.17269/s41997-021-00525-4 PMID: 34462891
  81. Marin B, Thiébaut R, Bucher HC, et al. Non-AIDS-defining deaths and immunodeficiency in the era of combination antiretroviral therapy. AIDS 2009; 23(13): 1743-53. doi: 10.1097/QAD.0b013e32832e9b78 PMID: 19571723
  82. Song M, Zhang Q, Tang M, et al. Associations of low hand grip strength with 1 year mortality of cancer cachexia: a multicentre observational study. J Cachexia Sarcopenia Muscle 2021; 12(6): 1489-500. doi: 10.1002/jcsm.12778 PMID: 34545711
  83. Zhuang CL, Zhang FM, Li W, et al. Associations of low handgrip strength with cancer mortality: a multicentre observational study. J Cachexia Sarcopenia Muscle 2020; 11(6): 1476-86. doi: 10.1002/jcsm.12614 PMID: 32910535
  84. Bae EJ, Park NJ, Sohn HS, Kim YH. Handgrip strength and all-cause mortality in middle-aged and older koreans. Int J Environ Res Public Health 2019; 16(5): 740. doi: 10.3390/ijerph16050740 PMID: 30823660
  85. Koopman JJE, van Bodegom D, van Heemst D, Westendorp RGJ. Handgrip strength, ageing and mortality in rural Africa. Age Ageing 2015; 44(3): 465-70. doi: 10.1093/ageing/afu165 PMID: 25331975
  86. Rolland Y, Lauwers-Cances V, Cesari M, Vellas B, Pahor M, Grandjean H. Physical performance measures as predictors of mortality in a cohort of community-dwelling older French women. Eur J Epidemiol 2006; 21(2): 113-22. doi: 10.1007/s10654-005-5458-x PMID: 16518679
  87. García-Hermoso A, Cavero-Redondo I, Ramírez-Vélez R, Ruiz JR, Ortega FB, Lee DC. Muscular strength as a predictor of all-cause mortality in an apparently healthy population: a systematic review and meta-analysis of data from approximately 2 million men and women. Arch Phys Med Rehabil 2018; 99(10): 2100-13. doi: 10.1016/j.apmr.2018.01.008
  88. Wang YC, Liang CK, Hsu YH, et al. Synergistic effect of low handgrip strength and malnutrition on 4-year all-cause mortality in older males: A prospective longitudinal cohort study. Arch Gerontol Geriatr 2019; 83: 217-22. doi: 10.1016/j.archger.2019.05.007 PMID: 31100544

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers