Heterologous DNA Prime/Protein Boost Immunization Targeting Nef-Tat Fusion Antigen Induces Potent T-cell Activity and in vitro Anti-SCR HIV-1 Effects


Цитировать

Полный текст

Аннотация

Background:Heterologous combinations in vaccine design are an effective approach to promote T cell activity and antiviral effects. The goal of this study was to compare the homologous and heterologous regimens targeting the Nef-Tat fusion antigen to develop a human immunodeficiency virus-1 (HIV-1) therapeutic vaccine candidate.

Methods:At first, the DNA and protein constructs harboring HIV-1 Nef and the first exon of Tat as linked form (pcDNA-nef-tat and Nef-Tat protein) were prepared in large scale and high purity. The generation of the Nef-Tat protein was performed in the E. coli expression system using an IPTG inducer. Then, we evaluated and compared immune responses of homologous DNA prime/ DNA boost, homologous protein prime/ protein boost, and heterologous DNA prime/protein boost regimens in BALB/c mice. Finally, the ability of mice splenocytes to secret cytokines after exposure to single-cycle replicable (SCR) HIV-1 was compared between immunized and control groups in vitro.

Results:The nef-tat gene was successfully subcloned in eukaryotic pcDNA3.1 (-) and prokaryotic pET-24a (+) expression vectors. The recombinant Nef-Tat protein was generated in the E. coli Rosetta strain under optimized conditions as a clear band of ~ 35 kDa detected on SDS-PAGE. Moreover, transfection of pcDNA-nef-tat into HEK-293T cells was successfully performed using Lipofectamine 2000, as confirmed by western blotting. The immunization studies showed that heterologous DNA prime/protein boost regimen could significantly elicit the highest levels of Ig- G2a, IFN-γ, and Granzyme B in mice as compared to homologous DNA/DNA and protein/protein regimens. Moreover, the secretion of IFN-γ was higher in DNA/protein regimens than in DNA/DNA and protein/protein regimens after exposure of mice splenocytes to SCR HIV-1 in vitro.

Conclusion:The chimeric HIV-1 Nef-Tat antigen was highly immunogenic, especially when applied in a heterologous prime/ boost regimen. This regimen could direct immune response toward cellular immunity (Th1 and CTL activity) and increase IFN-γ secretion after virus exposure.

Об авторах

Leila Sadeghi

Department of Hepatitis and AIDS, Pasteur Institute of Iran

Email: info@benthamscience.net

Azam Bolhassani

Department of Hepatitis and AIDS, Pasteur Institute of Iran

Автор, ответственный за переписку.
Email: info@benthamscience.net

Elham Mohit

Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences

Автор, ответственный за переписку.
Email: info@benthamscience.net

Kazem Baesi

Department of Hepatitis and AIDS, Pasteur Institute of Iran

Email: info@benthamscience.net

Mohammad Aghasadeghi

Department of Hepatitis and AIDS, Pasteur Institute of Iran

Email: info@benthamscience.net

Список литературы

  1. Landovitz RJ, Scott H, Deeks SG. Prevention, treatment and cure of HIV infection. Nat Rev Microbiol 2023; 21(10): 657-70. doi: 10.1038/s41579-023-00914-1 PMID: 37344551
  2. Picker LJ, Lifson JD, Gale M Jr, Hansen SG, Früh K. Programming cytomegalovirus as an HIV vaccine. Trends Immunol 2023; 44(4): 287-304. doi: 10.1016/j.it.2023.02.001 PMID: 36894436
  3. Nikyar A, Bolhassani A, Agi E. LL-37 antimicrobial peptide and heterologous prime-boost vaccination regimen significantly induce HIV-1 Nef-Vpr antigen- and virion-specific immune responses in mice. Biotechnol Lett 2023; 45(1): 33-45. doi: 10.1007/s10529-022-03339-7 PMID: 36550339
  4. Akamine P, González-Feliciano JA, Almodóvar R, et al. Optimizing the production of gp145, an HIV-1 envelope glycoprotein vaccine candidate and its encapsulation in guanosine microparticles. Vaccines (Basel) 2023; 11(5): 975. doi: 10.3390/vaccines11050975 PMID: 37243079
  5. Dolgin E. How protein-based COVID vaccines could change the pandemic. Nature 2021; 599(7885): 359-60. doi: 10.1038/d41586-021-03025-0 PMID: 34750543
  6. Toledo-Romaní ME, García-Carmenate M, Valenzuela-Silva C, et al. Safety and efficacy of the two doses conjugated protein-based SOBERANA-02 COVID-19 vaccine and of a heterologous threedose combination with SOBERANA-Plus: A double-blind, randomised, placebo-controlled phase 3 clinical trial. Lancet Reg Health - Americas 2023; 18: 100423. doi: 10.1016/j.lana.2022.100423 PMID: 36618081
  7. Pagliari S, Dema B, Sanchez-Martinez A, Montalvo Zurbia-Flores G, Rollier CS. DNA vaccines: History, molecular mechanisms and future perspectives. J Mol Biol 2023; 435(23): 168297. doi: 10.1016/j.jmb.2023.168297 PMID: 37797831
  8. Zhang X, Yuan H, Mahmmod YS, et al. Insight into the current Toxoplasma gondii DNA vaccine: A review article. Expert Rev Vaccines 2023; 22(1): 66-89. doi: 10.1080/14760584.2023.2157818 PMID: 36508550
  9. Ledesma-Feliciano C, Chapman R, Hooper JW, et al. Improved DNA vaccine delivery with needle-free injection systems. Vaccines (Basel) 2023; 11(2): 280. doi: 10.3390/vaccines11020280 PMID: 36851159
  10. Rezaei T, Khalili S, Baradaran B, et al. Recent advances on HIV DNA vaccines development: Stepwise improvements to clinical trials. J Control Release 2019; 316: 116-37. doi: 10.1016/j.jconrel.2019.10.045 PMID: 31669566
  11. Hutnick NA, Myles DJF, Bian CB, Muthumani K, Weiner DB. Selected approaches for increasing HIV DNA vaccine immunogenicity in vivo. Curr Opin Virol 2011; 1(4): 233-40. doi: 10.1016/j.coviro.2011.08.003 PMID: 22440782
  12. Kardani K, Bolhassani A, Shahbazi S. Prime-boost vaccine strategy against viral infections: Mechanisms and benefits. Vaccine 2016; 34(4): 413-23. doi: 10.1016/j.vaccine.2015.11.062 PMID: 26691569
  13. Excler JL, Kim JH. Novel prime-boost vaccine strategies against HIV-1. Expert Rev Vaccines 2019; 18(8): 765-79. doi: 10.1080/14760584.2019.1640117 PMID: 31271322
  14. Siddiqui A, Adnan A, Abbas M, Taseen S, Ochani S, Essar MY. Revival of the heterologous prime-boost technique in COVID-19: An outlook from the history of outbreaks. Health Sci Rep 2022; 5(2): e531. doi: 10.1002/hsr2.531 PMID: 35229055
  15. Muthumani K, Wise MC, Broderick KE, et al. HIV-1 Env DNA vaccine plus protein boost delivered by EP expands B- and T-cell responses and neutralizing phenotype in vivo. PLoS One 2013; 8(12): e84234. doi: 10.1371/journal.pone.0084234 PMID: 24391921
  16. Staudt RP, Alvarado JJ, Emert-Sedlak LA, et al. Structure, function, and inhibitor targeting of HIV-1 Nef-effector kinase complexes. J Biol Chem 2020; 295(44): 15158-71. doi: 10.1074/jbc.REV120.012317 PMID: 32862141
  17. Buffalo CZ, Iwamoto Y, Hurley JH, Ren X, How HIV. Nef proteins hijack membrane traffic to promote infection. J Virol 2019; 93(24): e01322-19. doi: 10.1128/JVI.01322-19 PMID: 31578291
  18. Yarandi SS, Duggan MR, Sariyer IK. Emerging role of Nef in the development of HIV associated neurological disorders. J Neuroimmune Pharmacol 2021; 16(2): 238-50. doi: 10.1007/s11481-020-09964-1 PMID: 33123948
  19. Anastasopoulou S, Georgakopoulos T, Mouzaki A. HIV-1 transcriptional activator Tat inhibits IL2 expression by preventing the presence of Pol II on the IL2 promoter. Biomolecules 2023; 13(6): 881. doi: 10.3390/biom13060881 PMID: 37371461
  20. Ensoli B, Buonaguro L, Barillari G, et al. Release, uptake, and effects of extracellular human immunodeficiency virus type 1 Tat protein on cell growth and viral transactivation. J Virol 1993; 67(1): 277-87. doi: 10.1128/jvi.67.1.277-287.1993 PMID: 8416373
  21. Cafaro A, Barillari G, Moretti S, et al. HIV-1 Tat protein enters dysfunctional endothelial cells via integrins and renders them permissive to virus replication. Int J Mol Sci 2020; 22(1): 317. doi: 10.3390/ijms22010317 PMID: 33396807
  22. Ensoli B, Barillari G, Salahuddin SZ, Gallo RC, Wong-Staal F. Tat protein of HIV-1 stimulates growth of cells derived from Kaposi’s sarcoma lesions of AIDS patients. Nature 1990; 345(6270): 84-6. doi: 10.1038/345084a0 PMID: 2184372
  23. Kurnaeva MA, Sheval EV, Musinova YR, Vassetzky YS. Tat basic domain: A "Swiss army knife" of HIV-1 Tat? Rev Med Virol 2019; 29(2): e2031. doi: 10.1002/rmv.2031 PMID: 30609200
  24. Van Gulck E, Pardons M, Nijs E, et al. A truncated HIV Tat demonstrates potent and specific latency reversal activity. Antimicrob Agents Chemother 2023; 67(11): e00417-23. doi: 10.1128/aac.00417-23 PMID: 37874295
  25. Frankel AD, Pabo CO. Cellular uptake of the tat protein from human immunodeficiency virus. Cell 1988; 55(6): 1189-93. doi: 10.1016/0092-8674(88)90263-2 PMID: 2849510
  26. Green M, Loewenstein PM. Autonomous functional domains of chemically synthesized human immunodeficiency virus tat trans-activator protein. Cell 1988; 55(6): 1179-88. doi: 10.1016/0092-8674(88)90262-0 PMID: 2849509
  27. Schmidt N, Mishra A, Lai GH, Wong GCL. Arginine-rich cell-penetrating peptides. FEBS Lett 2010; 584(9): 1806-13. doi: 10.1016/j.febslet.2009.11.046 PMID: 19925791
  28. Ali A, Mishra R, Kaur H, Chandra Banerjea A. HIV-1 Tat: An update on transcriptional and non-transcriptional functions. Biochimie 2021; 190: 24-35. doi: 10.1016/j.biochi.2021.07.001 PMID: 34242726
  29. Moretti S, Cafaro A, Tripiciano A, et al. HIV therapeutic vaccines aimed at intensifying combination antiretroviral therapy. Expert Rev Vaccines 2020; 19(1): 71-84. doi: 10.1080/14760584.2020.1712199 PMID: 31957513
  30. Kadkhodayan S, Jafarzade BS, Sadat SM, Motevalli F, Agi E, Bolhassani A. Combination of cell penetrating peptides and heterologous DNA prime/protein boost strategy enhances immune responses against HIV-1 Nef antigen in BALB/c mouse model. Immunol Lett 2017; 188: 38-45. doi: 10.1016/j.imlet.2017.06.003 PMID: 28602843
  31. Liu Y, Li F, Qi Z, et al. The effects of HIV Tat DNA on regulating the immune response of HIV DNA vaccine in mice. Virol J 2013; 10(1): 297. doi: 10.1186/1743-422X-10-297 PMID: 24073803
  32. Qin Z, Zhao P, Zhang X, et al. Silencing of SARS-CoV spike gene by small interfering RNA in HEK 293T cells. Biochem Biophys Res Commun 2004; 324(4): 1186-93. doi: 10.1016/j.bbrc.2004.09.180 PMID: 15504339
  33. Hu J, Han J, Li H, et al. Human embryonic kidney 293 cells: A vehicle for biopharmaceutical manufacturing, structural biology, and electrophysiology state of the art and future perspectives. Cells Tissues Organs 2018; 205(1): 1-8. doi: 10.1159/000485501 PMID: 29393161
  34. Ferrantelli F, Manfredi F, Chiozzini C, et al. DNA vectors generating engineered exosomes potential CTL vaccine candidates against AIDS, hepatitis B, and tumors. Mol Biotechnol 2018; 60(11): 773-82. doi: 10.1007/s12033-018-0114-3 PMID: 30167966
  35. Chiozzini C, Manfredi F, Ferrantelli F, et al. The C-terminal domain of Nefmut is dispensable for the CD8+ T cell immunogenicity of in vivo engineered extracellular vesicles. Vaccines (Basel) 2021; 9(4): 373. doi: 10.3390/vaccines9040373 PMID: 33921215
  36. Shi B, Xue M, Wang Y, et al. An improved method for increasing the efficiency of gene transfection and transduction. Int J Physiol Pathophysiol Pharmacol 2018; 10(2): 95-104. PMID: 29755642
  37. Kasagi S, Wang D, Zhang P, et al. Combination of apoptotic T cell induction and self-peptide administration for therapy of experimental autoimmune encephalomyelitis. EBioMedicine 2019; 44: 50-9. doi: 10.1016/j.ebiom.2019.05.005 PMID: 31097410
  38. Rezaei F, Bolhassani A, Sadat SM, et al. Development of novel HPV therapeutic vaccine constructs based on engineered exosomes and tumor cell lysates. Life Sci 2024; 340: 122456. doi: 10.1016/j.lfs.2024.122456 PMID: 38266814
  39. Milani A, Akbari E, Pordanjani PM, et al. Immunostimulatory effects of Hsp70 fragments and Hsp27 in design of novel HIV -1 vaccine formulations. HIV Med 2024; 25(2): 276-90. doi: 10.1111/hiv.13576 PMID: 37936563
  40. Heidarnejad F, Bolhassani A, Ajdary S, Milani A, Sadeghi SA. Investigation of immunostimulatory effects of IFN-γ cytokine and CD40 ligand costimulatory molecule for development of HIV-1 therapeutic vaccine candidate. Adv Biol 2024; 8(2): 2300402. doi: 10.1002/adbi.202300402 PMID: 37840398
  41. Castro F, Cardoso AP, Gonçalves RM, Serre K, Oliveira MJ. Interferon-gamma at the crossroads of tumor immune surveillance or evasion. Front Immunol 2018; 9: 847. doi: 10.3389/fimmu.2018.00847 PMID: 29780381
  42. Jakiela B, Szczeklik W, Plutecka H, et al. Increased production of IL-5 and dominant Th2-type response in airways of Churg–Strauss syndrome patients. Rheumatology (Oxford) 2012; 51(10): 1887-93. doi: 10.1093/rheumatology/kes171 PMID: 22772323
  43. Milani A, Agi E, Hassan Pouriayevali M, Motamedi-Rad M, Motevalli F, Bolhassani A. Different dendritic cells-based vaccine constructs influence HIV-1 antigen-specific immunological responses and cytokine generation in virion-exposed splenocytes. Int Immunopharmacol 2022; 113(Pt A): 109406. doi: 10.1016/j.intimp.2022.109406 PMID: 36461600
  44. Roy U, Rodríguez J, Barber P, das Neves J, Sarmento B, Nair M. The potential of HIV-1 nanotherapeutics: From in vitro studies to clinical trials. Nanomedicine (Lond) 2015; 10(24): 3597-609. doi: 10.2217/nnm.15.160 PMID: 26400459
  45. Ng’uni T, Chasara C, Ndhlovu ZM. Major scientific hurdles in HIV vaccine development: Historical perspective and future directions. Front Immunol 2020; 11: 590780. doi: 10.3389/fimmu.2020.590780 PMID: 33193428
  46. Kinloch-de Loes S. Role of therapeutic vaccines in the control of HIV-1. J Antimicrob Chemother 2004; 53(4): 562-6. doi: 10.1093/jac/dkh132 PMID: 14985273
  47. Lema D, Garcia A, De Sanctis JB. HIV vaccines: A brief overview. Scand J Immunol 2014; 80(1): 1-11. doi: 10.1111/sji.12184 PMID: 24813074
  48. Bayon E, Morlieras J, Dereuddre-Bosquet N, et al. Overcoming immunogenicity issues of HIV p24 antigen by the use of innovative nanostructured lipid carriers as delivery systems: Evidences in mice and non-human primates. NPJ Vaccines 2018; 3(1): 46. doi: 10.1038/s41541-018-0086-0 PMID: 30302284
  49. Davoodi S, Bolhassani A, Namazi F. In vivo delivery of a multiepitope peptide and Nef protein using novel cell-penetrating peptides for development of HIV-1 vaccine candidate. Biotechnol Lett 2021; 43(3): 547-59. doi: 10.1007/s10529-020-03060-3 PMID: 33386500
  50. Hel Z, Johnson JM, Tryniszewska E, et al. A novel chimeric Rev, Tat, and Nef (Retanef) antigen as a component of an SIV/HIV vaccine. Vaccine 2002; 20(25-26): 3171-86. doi: 10.1016/S0264-410X(02)00258-X PMID: 12163269
  51. Wilson NA, Reed J, Napoe GS, et al. Vaccine-induced cellular immune responses reduce plasma viral concentrations after repeated low-dose challenge with pathogenic simian immunodeficiency virus SIVmac239. J Virol 2006; 80(12): 5875-85. doi: 10.1128/JVI.00171-06 PMID: 16731926
  52. Hansen SG, Vieville C, Whizin N, Coyne-Johnson L, Siess DC, Drummond DD. Effector-memory T cell responses are associated with protection of rhesus monkeys from mucosal SIV challenge. Nat Med 2009; 15(3): 293-9. doi: 10.1038/nm.1935 PMID: 19219024
  53. Ensoli B, Nchabeleng M, Ensoli F, et al. HIV-Tat immunization induces cross-clade neutralizing antibodies and CD4+ T cell increases in antiretroviral-treated South African volunteers: A randomized phase II clinical trial. Retrovirology 2016; 13(1): 34. doi: 10.1186/s12977-016-0261-1 PMID: 27277839
  54. Cosma A, Nagaraj R, Bühler S, et al. Therapeutic vaccination with MVA-HIV-1 nef elicits Nef-specific T-helper cell responses in chronically HIV-1 infected individuals. Vaccine 2003; 22(1): 21-9. doi: 10.1016/S0264-410X(03)00538-3 PMID: 14604567
  55. Harrer E, Bäuerle M, Ferstl B, et al. Therapeutic vaccination of HIV-1-infected patients on HAART with a recombinant HIV-1 nef-expressing MVA: Safety, immunogenicity and influence on viral load during treatment interruption. Antivir Ther 2005; 10(2): 285-300. doi: 10.1177/135965350501000212 PMID: 15865223
  56. Ensoli B, Fiorelli V, Ensoli F, et al. Candidate HIV-1 Tat vaccine development: From basic science to clinical trials. AIDS 2006; 20(18): 2245-61. doi: 10.1097/QAD.0b013e3280112cd1 PMID: 17117011
  57. Fanales-Belasio E, Moretti S, Nappi F, et al. Native HIV-1 Tat protein targets monocyte-derived dendritic cells and enhances their maturation, function, and antigen-specific T cell responses. J Immunol 2002; 168(1): 197-206. doi: 10.4049/jimmunol.168.1.197 PMID: 11751963
  58. Fanales-Belasio E, Moretti S, Fiorelli V, et al. HIV-1 Tat addresses dendritic cells to induce a predominant Th1-type adaptive immune response that appears prevalent in the asymptomatic stage of infection. J Immunol 2009; 182(5): 2888-97. doi: 10.4049/jimmunol.0711406 PMID: 19234184
  59. Ensoli B, Cafaro A, Caputo A, et al. Vaccines based on the native HIV Tat protein and on the combination of Tat and the structural HIV protein variant ΔV2 Env. Microbes Infect 2005; 7(14): 1392-9. doi: 10.1016/j.micinf.2005.07.016 PMID: 16243561
  60. Ensoli B, Moretti S, Borsetti A, et al. New insights into pathogenesis point to HIV-1 Tat as a key vaccine target. Arch Virol 2021; 166(11): 2955-74. doi: 10.1007/s00705-021-05158-z PMID: 34390393
  61. Campbell GR, Loret EP. What does the structure-function relationship of the HIV-1 Tat protein teach us about developing an AIDS vaccine? Retrovirology 2009; 6(1): 50. doi: 10.1186/1742-4690-6-50 PMID: 19467159
  62. Spector C, Mele AR, Wigdahl B, Nonnemacher MR. Genetic variation and function of the HIV-1 Tat protein. Med Microbiol Immunol (Berl) 2019; 208(2): 131-69. doi: 10.1007/s00430-019-00583-z PMID: 30834965
  63. Kuznetsova AI, Gromov KB, Kireev DE, et al. Analysis of Tat protein characteristics in human immunodeficiency virus type 1 sub-subtype A6 (Retroviridae: Orthoretrovirinae: Lentivirus: Human immunodeficiency virus-1). Probl Virol 2022; 66(6): 452-64. doi: 10.36233/0507-4088-83 PMID: 35019252
  64. Cafaro A, Tripiciano A, Picconi O, et al. Anti-Tat immunity in HIV-1 infection: Effects of naturally occurring and vaccine-induced antibodies against Tat on the course of the disease. Vaccines (Basel) 2019; 7(3): 99. doi: 10.3390/vaccines7030099 PMID: 31454973
  65. Cafaro A, Schietroma I, Sernicola L, et al. Role of HIV-1 Tat protein interactions with host receptors in HIV infection and pathogenesis. Int J Mol Sci 2024; 25(3): 1704. doi: 10.3390/ijms25031704 PMID: 38338977
  66. Kukkonen S, Martinez-Viedma MDP, Kim N, Manrique M, Aldovini A. HIV-1 Tat second exon limits the extent of Tat-mediated modulation of interferon-stimulated genes in antigen presenting cells. Retrovirology 2014; 11(1): 30. doi: 10.1186/1742-4690-11-30 PMID: 24742347
  67. Ferrantelli F, Maggiorella MT, Schiavoni I, et al. A combination HIV vaccine based on Tat and Env proteins was immunogenic and protected macaques from mucosal SHIV challenge in a pilot study. Vaccine 2011; 29(16): 2918-32. doi: 10.1016/j.vaccine.2011.02.006 PMID: 21338681
  68. Ensoli B, Fiorelli V, Ensoli F, et al. The therapeutic phase I trial of the recombinant native HIV-1 Tat protein. AIDS 2008; 22(16): 2207-9. doi: 10.1097/QAD.0b013e32831392d4 PMID: 18832884
  69. Ensoli B, Fiorelli V, Ensoli F, et al. The preventive phase I trial with the HIV-1 Tat-based vaccine. Vaccine 2009; 28(2): 371-8. doi: 10.1016/j.vaccine.2009.10.038 PMID: 19879233
  70. Foster JL, Garcia JV. Role of Nef in HIV-1 replication and pathogenesis. Adv Pharmacol 2007; 55: 389-409. doi: 10.1016/S1054-3589(07)55011-8 PMID: 17586321
  71. Foster JL, Garcia JV. HIV-1 Nef: At the crossroads. Retrovirology 2008; 5(1): 84. doi: 10.1186/1742-4690-5-84 PMID: 18808677
  72. Johnson AL, Dirk BS, Coutu M, et al. A highly conserved residue in HIV-1 Nef alpha helix 2 modulates protein expression. MSphere 2016; 1(6): e00288-16. doi: 10.1128/mSphere.00288-16 PMID: 27840851
  73. Naicker D, Sonela N, Jin SW, et al. HIV-1 subtype C Nef-mediated SERINC5 down-regulation significantly contributes to overall Nef activity. Retrovirology 2023; 20(1): 3. doi: 10.1186/s12977-023-00618-7 PMID: 37004071
  74. Wen J, Hao W, Fan Y, et al. Co-delivery of LIGHT expression plasmid enhances humoral and cellular immune responses to HIV-1 Nef in mice. Arch Virol 2014; 159(7): 1663-9. doi: 10.1007/s00705-014-1981-y PMID: 24435162
  75. Kim J, Vasan S, Kim JH, Ake JA. Current approaches to HIV vaccine development: A narrative review. J Int AIDS Soc 2021; 24(S7) (Suppl. 7): e25793. doi: 10.1002/jia2.25793 PMID: 34806296
  76. Margolis DM, Koup RA, Ferrari G. HIV antibodies for treatment of HIV infection. Immunol Rev 2017; 275(1): 313-23. doi: 10.1111/imr.12506 PMID: 28133794
  77. Lu S. Heterologous prime–boost vaccination. Curr Opin Immunol 2009; 21(3): 346-51. doi: 10.1016/j.coi.2009.05.016 PMID: 19500964
  78. Ferraro B, Morrow MP, Hutnick NA, Shin TH, Lucke CE, Weiner DB. Clinical applications of DNA vaccines: Current progress. Clin Infect Dis 2011; 53(3): 296-302. doi: 10.1093/cid/cir334 PMID: 21765081
  79. Wang S, Kennedy JS, West K, et al. Cross-subtype antibody and cellular immune responses induced by a polyvalent DNA prime–protein boost HIV-1 vaccine in healthy human volunteers. Vaccine 2008; 26(31): 3947-57. doi: 10.1016/j.vaccine.2007.12.060 PMID: 18724414
  80. Ewen CL, Rong J, Kokaji AI, Bleackley RC, Kane KP. Evaluating antigen-specific cytotoxic T lymphocyte responses by a novel mouse granzyme B ELISPOT assay. J Immunol Methods 2006; 308(1-2): 156-66. doi: 10.1016/j.jim.2005.10.009 PMID: 16375915
  81. Soleymani S, Zabihollahi R, Shahbazi S, Bolhassani A. Antiviral effects of saffron and its major ingredients. Curr Drug Deliv 2018; 15(5): 698-704. doi: 10.2174/1567201814666171129210654 PMID: 29189153

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Bentham Science Publishers, 2024