Discovery of Ten Anti-HIV Hit Compounds and Preliminary Pharmacological Mechanisms Studies

  • Авторлар: Lian Y.1, Huang Z.2, Liu X.3, Deng Z.4, Gao D.3, Wang X.5
  • Мекемелер:
    1. School of Public Health, Southern Medical University
    2. School of Public Health, Guangdong Medical University
    3. The State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School,, Tsinghua University
    4. The State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University
    5. Department of Prevention and control of infectious diseases, School of Public Health, Southern Medical University
  • Шығарылым: Том 22, № 2 (2024)
  • Беттер: 82-90
  • Бөлім: Medicine
  • URL: https://rjpbr.com/1570-162X/article/view/644018
  • DOI: https://doi.org/10.2174/011570162X301289240320082840
  • ID: 644018

Дәйексөз келтіру

Толық мәтін

Аннотация

Background:The research and development of HIV drugs is very important, but at the same time it is a long cycle and expensive system project. High-throughput drug screening systems and molecular libraries of potential hit compounds remain the main ways for the discovery of hit compounds with anti-HIV activity.

Objective:The aim of this study was to screen out the hit compounds against HIV-1 in the natural product molecule library and the antiviral molecule library, and elucidate the molecular mechanism of their inhibition of HIV-1, so as to provide a new choice for AIDS drug research.

Methods:In this study, a drug screening system using HIV Rev-dependent indicator cell line (Rev-A3R5-GFP reporter cells) with pseudoviruses (pNL4-3) was used. The natural drug molecule library and antiviral molecule library were screened, and preliminary drug mechanism studies were performed.

Results:Ten promising hit compounds were screened. These ten molecules and their drug inhibitory IC50 were as follows: Cephaeline (0.50 µM), Yadanziolide A (8.82 µM), Bruceine D (2.48 µM), Astragaloside IV (4.30 µM), RX-3117 (1.32 µM), Harringtonine (0.63 µM), Tubercidin (0.41 µM), Theaflavine-3, 3'-digallate (0.41 µM), Ginkgetin (10.76 µM), ZK756326 (5.97 µM). The results of the Time of additions showed that except for Astragaloside IV and Theaflavine-3, 3'-digallate had a weak entry inhibition effect, and it was speculated that all ten compounds had an intracellular inhibition effect. Cephaeline, Harringtonine, Astragaloside IV, Bruceine D, and Tubercidin may have pre-reverse transcriptional inhibition. Yadanziolide A, Theaflavine-3, 3'-digallate, Ginkgetin and RX-3117 may be in the post-reverse transcriptional inhibition. The inhibitory effect of ZK 75632 may be in the reverse transcriptional process.

Conclusion:A drug screening system using Rev-A3R5-GFP reporter cells with pseudoviruses (pNL4-3) is highly efficient. This study provided potential hit compounds for new HIV drug research.

Авторлар туралы

Yushan Lian

School of Public Health, Southern Medical University

Email: info@benthamscience.net

Zhimin Huang

School of Public Health, Guangdong Medical University

Email: info@benthamscience.net

Xinyi Liu

The State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School,, Tsinghua University

Email: info@benthamscience.net

Zhicheng Deng

The State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University

Email: info@benthamscience.net

Dan Gao

The State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School,, Tsinghua University

Хат алмасуға жауапты Автор.
Email: info@benthamscience.net

Xiaohui Wang

Department of Prevention and control of infectious diseases, School of Public Health, Southern Medical University

Хат алмасуға жауапты Автор.
Email: info@benthamscience.net

Әдебиет тізімі

  1. Deeks SG. Treatment of antiretroviral-drug-resistant HIV-1 infection. Lancet 2003; 362(9400): 2002-11. doi: 10.1016/S0140-6736(03)15022-2 PMID: 14683662
  2. Blassel L, Zhukova A, Villabona-Arenas CJ, Atkins KE, Hué S, Gascuel O. Drug resistance mutations in HIV: New bioinformatics approaches and challenges. Curr Opin Virol 2021; 51: 56-64. doi: 10.1016/j.coviro.2021.09.009 PMID: 34597873
  3. Gaikwad SY, Phatak P, Mukherjee A. Cutting edge strategies for screening of novel anti-HIV drug candidates against HIV infection: A concise overview of cell based assays. Heliyon 2023; 9(5): e16027. doi: 10.1016/j.heliyon.2023.e16027 PMID: 37215829
  4. Blair WS, Isaacson J, Li X, et al. A novel HIV-1 antiviral high throughput screening approach for the discovery of HIV-1 inhibitors. Antiviral Res 2005; 65(2): 107-16. doi: 10.1016/j.antiviral.2004.11.001 PMID: 15708637
  5. Ellinger B, Pohlmann D, Woens J, et al. A High-throughput HIV-1 drug screening platform, based on lentiviral vectors and compatible with biosafety level-1. Viruses 2020; 12(5): 580. doi: 10.3390/v12050580 PMID: 32466195
  6. Blay V, Tolani B, Ho SP, Arkin MR. High-throughput screening: Today’s biochemical and cell-based approaches. Drug Discov Today 2020; 25(10): 1807-21. doi: 10.1016/j.drudis.2020.07.024 PMID: 32801051
  7. Blanco J, Clotet-Codina I, Bosch B, Armand-Ugón M, Clotet B, Esté JA. Multiparametric assay to screen and dissect the mode of action of anti-human immunodeficiency virus envelope drugs. Antimicrob Agents Chemother 2005; 49(9): 3926-9. doi: 10.1128/AAC.49.9.3926-3929.2005 PMID: 16127073
  8. de Béthune MP. Non-nucleoside reverse transcriptase inhibitors (NNRTIs), their discovery, development, and use in the treatment of HIV-1 infection: A review of the last 20 years (1989–2009). Antiviral Res 2010; 85(1): 75-90. doi: 10.1016/j.antiviral.2009.09.008 PMID: 19781578
  9. Aguilar-Cordova E, Chinen J, Donehower L, Lewis D, Belmont JW. A sensitive reporter cell line for HIV-1 tat activity, HIV-1 inhibitors, and T cell activation effects. AIDS Res Hum Retroviruses 1994; 10(3): 295-301. doi: 10.1089/aid.1994.10.295 PMID: 8018390
  10. Van Loock M, Meersseman G, Van Acker K, et al. A novel high-throughput cellular screening assay for the discovery of HIV-1 integrase inhibitors. J Virol Methods 2012; 179(2): 396-401. doi: 10.1016/j.jviromet.2011.11.029 PMID: 22172974
  11. An WF, Tolliday N. Cell-based assays for high-throughput screening. Mol Biotechnol 2010; 45(2): 180-6. doi: 10.1007/s12033-010-9251-z PMID: 20151227
  12. Jegede O, Khodyakova A, Chernov M, et al. Identification of low-molecular weight inhibitors of HIV-1 reverse transcriptase using a cell-based high-throughput screening system. Antiviral Res 2011; 91(2): 94-8. doi: 10.1016/j.antiviral.2011.05.004 PMID: 21600931
  13. Chiba-Mizutani T, Miura H, Matsuda M, et al. Use of new T-cell-based cell lines expressing two luciferase reporters for accurately evaluating susceptibility to anti-human immunodeficiency virus type 1 drugs. J Clin Microbiol 2007; 45(2): 477-87. doi: 10.1128/JCM.01708-06 PMID: 17182760
  14. Kimpton J, Emerman M. Detection of replication-competent and pseudotyped human immunodeficiency virus with a sensitive cell line on the basis of activation of an integrated beta-galactosidase gene. J Virol 1992; 66(4): 2232-9. doi: 10.1128/jvi.66.4.2232-2239.1992 PMID: 1548759
  15. Spenlehauer C, Gordon CA, Trkola A, Moore JP. A luciferase-reporter gene-expressing T-cell line facilitates neutralization and drug-sensitivity assays that use either R5 or X4 strains of human immunodeficiency virus type 1. Virology 2001; 280(2): 292-300. doi: 10.1006/viro.2000.0780 PMID: 11162843
  16. Westby M, Nakayama G, Butler S, Blair W. Cell-based and biochemical screening approaches for the discovery of novel HIV-1 inhibitors. Antiviral Res 2005; 67(3): 121-40. doi: 10.1016/j.antiviral.2005.06.006 PMID: 16112209
  17. Montefiori DC. Measuring HIV neutralization in a luciferase reporter gene assay. Methods Mol Biol 2009; 485: 395-405. doi: 10.1007/978-1-59745-170-3_26 PMID: 19020839
  18. Sarzotti-Kelsoe M, Bailer RT, Turk E, et al. Optimization and validation of the TZM-bl assay for standardized assessments of neutralizing antibodies against HIV-1. J Immunol Methods 2014; 409: 131-46. doi: 10.1016/j.jim.2013.11.022 PMID: 24291345
  19. Wu Y, Beddall MH, Marsh JW. Rev-dependent lentiviral expression vector. Retrovirology 2007; 4(1): 12. doi: 10.1186/1742-4690-4-12 PMID: 17286866
  20. Shuck-Lee D, Chang H, Sloan EA, Hammarskjold ML, Rekosh D. Single-nucleotide changes in the HIV Rev-response element mediate resistance to compounds that inhibit Rev function. J Virol 2011; 85(8): 3940-9. doi: 10.1128/JVI.02683-10 PMID: 21289114
  21. Prado S, Beltrán M, Coiras M, Bedoya LM, Alcamí J, Gallego J. Bioavailable inhibitors of HIV-1 RNA biogenesis identified through a Rev-based screen. Biochem Pharmacol 2016; 107: 14-28. doi: 10.1016/j.bcp.2016.02.007 PMID: 26896646
  22. Plaza A, Bewley CA. Largamides A-H, unusual cyclic peptides from the marine cyanobacterium Oscillatoria sp. J Org Chem 2006; 71(18): 6898-907. doi: 10.1021/jo061044e PMID: 16930043
  23. Plaza A, Bifulco G, Keffer JL, Lloyd JR, Baker HL, Bewley CA. Celebesides A-C and theopapuamides B-D, depsipeptides from an Indonesian sponge that inhibit HIV-1 entry. J Org Chem 2009; 74(2): 504-12. doi: 10.1021/jo802232u PMID: 19072692
  24. Richard K, Williams D, de Silva E, et al. Identification of novel HIV-1 latency-reversing agents from a library of marine natural products. Viruses 2018; 10(7): 348. doi: 10.3390/v10070348 PMID: 29954099
  25. Garcia JM, Gao A, He PL, et al. High-throughput screening using pseudotyped lentiviral particles: A strategy for the identification of HIV-1 inhibitors in a cell-based assay. Antiviral Res 2009; 81(3): 239-47. doi: 10.1016/j.antiviral.2008.12.004 PMID: 19118579
  26. Adelson ME, Pacchia AL, Kaul M, et al. Toward the development of a virus-cell-based assay for the discovery of novel compounds against human immunodeficiency virus type 1. Antimicrob Agents Chemother 2003; 47(2): 501-8. doi: 10.1128/AAC.47.2.501-508.2003 PMID: 12543650
  27. Richman L, Meylan PRA, Munoz M, Pinaud S, Mirkovitch J. An adenovirus-based fluorescent reporter vector to identify and isolate HIV-infected cells. J Virol Methods 2002; 99(1-2): 9-21. doi: 10.1016/S0166-0934(01)00375-5 PMID: 11684299
  28. Gervaix A, West D, Leoni LM, Richman DD, Wong-Staal F, Corbeil J. A new reporter cell line to monitor HIV infection and drug susceptibility in vitro. Proc Natl Acad Sci 1997; 94(9): 4653-8. doi: 10.1073/pnas.94.9.4653 PMID: 9114046
  29. Yuntao Wu , Beddall MH, Marsh JW. Rev-dependent indicator T cell line. Curr HIV Res 2007; 5(4): 394-402. doi: 10.2174/157016207781024018 PMID: 17627502
  30. Sarzotti-Kelsoe M, Daniell X, Todd CA, et al. Optimization and validation of a neutralizing antibody assay for HIV-1 in A3R5 cells. J Immunol Methods 2014; 409: 147-60. doi: 10.1016/j.jim.2014.02.013 PMID: 24607608
  31. Yi F, Guo J, Dabbagh D, et al. Discovery of novel small-molecule inhibitors of LIM domain kinase for inhibiting HIV-1. J Virol 2017; 91(13): e02418-16. doi: 10.1128/JVI.02418-16 PMID: 28381571
  32. Abookleesh FL, Al-Anzi BS, Ullah A. Potential antiviral action of alkaloids. Molecules 2022; 27(3): 903. doi: 10.3390/molecules27030903 PMID: 35164173
  33. Chowdhury P, Sahuc ME, Rouillé Y, et al. Theaflavins, polyphenols of black tea, inhibit entry of hepatitis C virus in cell culture. PLoS One 2018; 13(11): e0198226. doi: 10.1371/journal.pone.0198226 PMID: 30485282
  34. Wang S, Li J, Huang H, et al. Anti-hepatitis B virus activities of astragaloside IV isolated from radix Astragali. Biol Pharm Bull 2009; 32(1): 132-5. doi: 10.1248/bpb.32.132 PMID: 19122295
  35. Zhang Y, Zhu H, Huang C, et al. Astragaloside IV exerts antiviral effects against coxsackievirus B3 by upregulating interferon-gamma. J Cardiovasc Pharmacol 2006; 47(2): 190-5. doi: 10.1097/01.fjc.0000199683.43448.64 PMID: 16495755
  36. Zhao L, Li C, Zhang Y, Wen Q, Ren D. Phytochemical and biological activities of an anticancer plant medicine: Brucea javanica. Anticancer Agents Med Chem 2014; 14(3): 440-58. doi: 10.2174/18715206113136660336 PMID: 24066797
  37. Zhang J, Xu HX, Dou YX, Huang QH, Xian YF, Lin ZX. Major constituents from brucea javanica and their pharmacological actions. Front Pharmacol 2022; 13: 853119. doi: 10.3389/fphar.2022.853119 PMID: 35370639
  38. Lin Z-X, Lin ZX, Leung PS, Chen LH, Zhao M, Liang J. Involvement of the mitochondrial pathway in bruceine D-induced apoptosis in Capan-2 human pancreatic adenocarcinoma cells. Int J Mol Med 2012; 30(1): 93-9. doi: 10.3892/ijmm.2012.980 PMID: 22552257
  39. Haskell CA, Horuk R, Liang M, et al. Identification and characterization of a potent, selective nonpeptide agonist of the CC chemokine receptor CCR8. Mol Pharmacol 2006; 69(1): 309-16. doi: 10.1124/mol.105.014779 PMID: 16221874
  40. Peters GJ, Smid K, Vecchi L, et al. Metabolism, mechanism of action and sensitivity profile of fluorocyclopentenylcytosine (RX-3117; TV-1360). Invest New Drugs 2013; 31(6): 1444-57. doi: 10.1007/s10637-013-0025-x PMID: 24048768
  41. Choi WJ, Chung HJ, Chandra G, et al. Fluorocyclopentenyl-cytosine with broad spectrum and potent antitumor activity. J Med Chem 2012; 55(9): 4521-5. doi: 10.1021/jm3004009 PMID: 22524616
  42. Yosifov DY, Idler I, Bhattacharya N, et al. Oxidative stress as candidate therapeutic target to overcome microenvironmental protection of CLL. Leukemia 2020; 34(1): 115-27. doi: 10.1038/s41375-019-0513-x PMID: 31300746
  43. De Clercq E, Bergstrom DE, John AH, Montgomery A. Broad-spectrum antiviral activity of adenosine analogues. Antiviral Res 1984; 4(3): 119-33. doi: 10.1016/0166-3542(84)90012-3 PMID: 6476818
  44. Miki K, Nagai T, Suzuki K, et al. Anti-influenza virus activity of biflavonoids. Bioorg Med Chem Lett 2007; 17(3): 772-5. doi: 10.1016/j.bmcl.2006.10.075 PMID: 17110111
  45. Das K, Arnold E. HIV-1 reverse transcriptase and antiviral drug resistance. Part 2. Curr Opin Virol 2013; 3(2): 119-28. doi: 10.1016/j.coviro.2013.03.014 PMID: 23602470
  46. Skoog MT, Hargrave KD, Miglietta JJ, Kopp EB, Merluzzi VJ. Inhibition of HIV‐1 reverse transcriptase and virus replication by a non‐nucleoside dipyridodiazepinone BI‐RG‐587 (nevirapine). Med Res Rev 1992; 12(1): 27-40. doi: 10.1002/med.2610120103 PMID: 1371177
  47. Arion D, Fletcher RS, Borkow G, et al. Differences in the inhibition of human immunodeficiency virus type 1 reverse transcriptase DNA polymerase activity by analogs of nevirapine and 2′,5′-bis-O-(tert-butyldimethylsilyl)-3′-spiro-5"-(4"-amino-1", 2"-oxathiole-2",2"-dioxide (TSAO). Mol Pharmacol 1996; 50(5): 1057-64. PMID: 8913335
  48. Zhou M, Wang H, Zeng X, et al. Mortality, morbidity, and risk factors in China and its provinces, 1990–2017: A systematic analysis for the global burden of disease study 2017. Lancet 2019; 394(10204): 1145-58. doi: 10.1016/S0140-6736(19)30427-1 PMID: 31248666
  49. Kyu HH, Abate D, Abate KH, et al. Global, regional, and national disability-adjusted life-years (DALYs) for 359 diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018; 392(10159): 1859-922. doi: 10.1016/S0140-6736(18)32335-3 PMID: 30415748

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Bentham Science Publishers, 2024