Human Immunodeficiency Virus-1 Drug Resistance Mutations in Iranian Treatment-experienced Individuals


Цитировать

Полный текст

Аннотация

Background:Human immunodeficiency virus-1 infection still remains a global health threat. While antiretroviral therapy is the primary treatment option, concerns about the emergence of drug-resistance mutations and treatment failure in HIV-infected patients persist.

Objective:In this study, we investigated the development of drug resistance in HIV-1-infected individuals receiving antiretroviral therapy for 6-10 years.

Methods:In this cross-sectional study, we evaluated 144 people living with HIV-1 who had received antiretroviral therapy for at least 6 years. Plasma specimens were collected, and the HIV-1 viral load and drug-resistance mutations were assessed using molecular techniques.

Results:The demographic and epidemiological characteristics of the participants were also analyzed: Twelve [8.3%) of the studied patients showed a viral load over 1000 copies per/mL, which indicates the suboptimal response to antiretroviral therapy. Significant correlations were found between viral load and CD4 count, as well as epidemiological factors, such as vertical transmission, history of imprisonment, and needle stick injuries. Drug resistance mutations were detected in 10 (83.3%) of patients who failed on antiretroviral therapy, with the most common mutations observed against nucleoside reverse transcriptase inhibitors (5 (41.7%)) and non-nucleoside reverse transcriptase inhibitors (9 (75%)). Phylogenetic analysis revealed that 12 patients who failed treatment were infected with CRF35_AD.

Conclusion:Our study provides important insights into the characteristics and development of drug resistance in HIV-1-infected individuals receiving long-term antiretroviral therapy in Iran. The findings underline the need for regular viral load monitoring, individualized treatment selection, and targeted interventions to optimize treatment outcomes and prevent the further spread of drug-resistant strains.

Об авторах

Farah Bokharaei-Salim

Department of Virology, School of Medicine, Iran University of Medical Sciences

Автор, ответственный за переписку.
Email: info@benthamscience.net

Khadijeh Khanaliha

Research Center of Pediatric Infectious Diseases, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences

Email: info@benthamscience.net

Seyed Monavari

Department of Virology, School of Medicine, Iran University of Medical Sciences

Email: info@benthamscience.net

Seyed Kiani

Department of Virology, School of Medicine, Iran University of Medical Sciences

Email: info@benthamscience.net

Ahmad Tavakoli

Department of Virology, School of Medicine, Iran University of Medical Sciences

Email: info@benthamscience.net

Ensieh jafari

Department of Biology, Faculty of Basic Sciences, Noor Danesh University

Email: info@benthamscience.net

Sara Chavoshpour

Department of Virology, School of Medicine, Iran University of Medical Sciences

Email: info@benthamscience.net

Mohammad Razizadeh

Department of Virology, School of Medicine, Iran University of Medical Sciences

Email: info@benthamscience.net

Saeed Kalantari

Departments of Infectious Diseases and Tropical Medicine, Iran University of Medical Sciences

Email: info@benthamscience.net

Список литературы

  1. van Heuvel Y, Schatz S, Rosengarten JF, Stitz J. Infectious RNA: Human immunodeficiency virus (HIV) biology, therapeutic intervention, and the quest for a vaccine. Toxins 2022; 14(2): 138. doi: 10.3390/toxins14020138 PMID: 35202165
  2. Feinberg J, Keeshin S. Prevention and initial management of HIV infection. Ann Intern Med 2022; 175(6): ITC81-96. doi: 10.7326/AITC202206210 PMID: 35696682
  3. Millar AJW, Cox SG. Surgical implications of HIV infection. Pediatr Surg Int 2022; 39(1): 39. doi: 10.1007/s00383-022-05333-6 PMID: 36482099
  4. Urakovna NN, Sultanovna MG, Yunusovich MA, Fakhridinovna AM, Toshtemirovna XN, Vlademirovna BE. Epidemiological analysis of the human immunodeficiency virus. World Bulletin of Public Health 2023; 21: 95-8.
  5. Rangwala HS, Anwar Z, Ovais MH, Fatima H, Siddiq MA. Rising HIV cases in Pakistan: Start of a pandemic? Ann Med Surg 2022; 82: 104791. doi: 10.1016/j.amsu.2022.104791 PMID: 36268456
  6. Al-Tawfiq JA, Alhumaid S, Altawfiq KJ, Bearman G. 2022 World AIDS day: Past achievements and future optimism. New Microbes New Infect 2023; 51: 101067. doi: 10.1016/j.nmni.2022.101067 PMID: 36593884
  7. Hargrave A, Mustafa AS, Hanif A, Tunio JH, Hanif SNM. Current status of HIV-1 vaccines. Vaccines 2021; 9(9): 1026. doi: 10.3390/vaccines9091026 PMID: 34579263
  8. García Deltoro M. Rapid initiation of antiretroviral therapy after HIV diagnosis. AIDS Rev 2019; 21(2): 55-64. doi: 10.24875/AIDSRev.M19000027 PMID: 31332395
  9. Kirichenko A, Kireev D, Lopatukhin A, et al. Prevalence of HIV-1 drug resistance in Eastern European and Central Asian countries. PLoS One 2022; 17(1): e0257731. doi: 10.1371/journal.pone.0257731 PMID: 35061671
  10. Garshasbi S, Marjani A, Alipour A, et al. The frequency of HIV-1 infection and surveillance drug-resistant mutations determination among Iranians with high-risk behaviors, during 2014 to 2020. Iran J Microbiol 2021; 13(6): 878-86. doi: 10.18502/ijm.v13i6.8094 PMID: 35222867
  11. Wang Y, Wu G, Wen Z, Lei H, Lin F. Highly active antiretroviral therapy-related effects on morphological connectivity in HIV. AIDS 2024; 38(2): 207-15. doi: 10.1097/QAD.0000000000003759 PMID: 37861678
  12. Boender TS, Kityo CM, Boerma RS, et al. Accumulation of HIV-1 drug resistance after continued virological failure on first-line ART in adults and children in sub-Saharan Africa. J Antimicrob Chemother 2016; 71(10): 2918-27. doi: 10.1093/jac/dkw218 PMID: 27342546
  13. Bokharaei-Salim F, Kalantari S, Gholamypour Z, et al. Investigation of the effects of a prevention of mother-to-child HIV transmission program among Iranian neonates. Arch Virol 2018; 163(5): 1179-85. doi: 10.1007/s00705-017-3661-1 PMID: 29383588
  14. Agosto LM, Zhong P, Munro J, Mothes W. Highly active antiretroviral therapies are effective against HIV-1 cell-to-cell transmission. PLoS Pathog 2014; 10(2): e1003982. doi: 10.1371/journal.ppat.1003982 PMID: 24586176
  15. Jarchi M, Bokharaei-Salim F, Esghaei M, et al. The frequency of HIV-1 infection in iranian children and determination of the transmitted drug resistance in treatment-naïve children. Curr HIV Res 2020; 17(6): 397-407. doi: 10.2174/1570162X17666191106111211 PMID: 31702525
  16. Arrieta-Martínez JA, Estrada-Acevedo JI, Gómez CA, et al. Related factors to non-adherence to antiretroviral therapy in HIV/AIDS patients. Farm Hosp 2022; 46(6): 319-26. PMID: 36520570
  17. Kim SH, Gerver SM, Fidler S, Ward H. Adherence to antiretroviral therapy in adolescents living with HIV. AIDS 2014; 28(13): 1945-56. doi: 10.1097/QAD.0000000000000316 PMID: 24845154
  18. Bokharaei-Salim F, Esghaei M, Khanaliha K, et al. HIV-1 reverse transcriptase and protease mutations for drug-resistance detection among treatment-experienced and naïve HIV-infected individuals. PLoS One 2020; 15(3): e0229275. doi: 10.1371/journal.pone.0229275 PMID: 32119691
  19. Vahabpour R, Bokharaei-Salim F, Kalantari S, et al. HIV-1 genetic diversity and transmitted drug resistance frequency among Iranian treatment-naive, sexually infected individuals. Arch Virol 2017; 162(6): 1477-85. doi: 10.1007/s00705-017-3228-1 PMID: 28181034
  20. Nasiri-Tajabadi Z, Bokharaei Salim F, Najafzadeh MJ, et al. A surveillance on protease inhibitor resistance-associated mutations among iranian hiv-1 patients. Arch Clin Infect Dis 2018; 13(6) doi: 10.5812/archcid.69153
  21. Wensing AM, Calvez V, Ceccherini-Silberstein F, et al. 2022 update of the drug resistance mutations in HIV-1. Top Antivir Med 2022; 30(4): 559-74. PMID: 36375130
  22. Bakhouch K, Oulad-Lahcen A, Bensghir R, et al. The prevalence of resistance-associated mutations to protease and reverse transcriptase inhibitors in treatment-naïve (HIV1)-infected individuals in Casablanca, Morocco. J Infect Dev Ctries 2009; 3(5): 380-91. doi: 10.3855/jidc.247 PMID: 19759509
  23. Baesi K, Abbasian L, Farrokhi M, Gholami M, Mohraz M, McFarland W. HIV drug resistance among naïve HIV-infected patients in Iran. J Res Med Sci 2019; 24(1): 31. doi: 10.4103/jrms.JRMS_689_18 PMID: 31143232
  24. Ghafari S, Memarnejadian A, Samarbaf-zadeh A, et al. Prevalence of HIV-1 transmitted drug resistance in recently infected, treatment-naïve persons in the Southwest of Iran, 2014-2015. Arch Virol 2017; 162(9): 2737-45. doi: 10.1007/s00705-017-3431-0 PMID: 28589513
  25. Bennett DE, Camacho RJ, Otelea D, et al. Drug resistance mutations for surveillance of transmitted HIV-1 drug-resistance: 2009 update. PLoS One 2009; 4(3): e4724. doi: 10.1371/journal.pone.0004724 PMID: 19266092
  26. Habib Z, Bokharaei-Salim F, Kiani SJ, et al. Non detection of HIV-1 proviral DNA in PBMCs of the neonates born to Iranian HIV-infected mothers in PMTCT program. Arch Pediatr Infect Dis 2021; 9(2) doi: 10.5812/pedinfect.105098
  27. Marjani A, Bokharaei-Salim F, Jahanbakhshi F, et al. HIV-1 integrase drug-resistance mutations in Iranian treatment-experienced HIV-1-infected patients. Arch Virol 2020; 165(1): 115-25. doi: 10.1007/s00705-019-04463-y PMID: 31741096
  28. Zaccarelli M, Perno CF, Forbici F, et al. Using a database of HIV patients undergoing genotypic resistance test after HAART failure to understand the dynamics of M184V mutation. Antivir Ther 2003; 8(1): 51-6. doi: 10.1177/135965350300800107 PMID: 12713064
  29. Hung M, Tokarsky EJ, Lagpacan L, Zhang L, Suo Z, Lansdon EB. Elucidating molecular interactions of L-nucleotides with HIV-1 reverse transcriptase and mechanism of M184V-caused drug resistance. Commun Biol 2019; 2(1): 469. doi: 10.1038/s42003-019-0706-x PMID: 31872074
  30. Brehm JH, Mellors JW, Sluis-Cremer N. Mechanism by which a glutamine to leucine substitution at residue 509 in the ribonuclease H domain of HIV-1 reverse transcriptase confers zidovudine resistance. Biochemistry 2008; 47(52): 14020-7. doi: 10.1021/bi8014778 PMID: 19067547
  31. Menéndez-Arias L. Mechanisms of resistance to nucleoside analogue inhibitors of HIV-1 reverse transcriptase. Virus Res 2008; 134(1-2): 124-46. doi: 10.1016/j.virusres.2007.12.015 PMID: 18272247
  32. Olearo F, Nguyen H, Bonnet F, et al. Impact of the M184V/I mutation on the efficacy of abacavir/lamivudine/dolutegravir therapy in HIV treatment-experienced patients. Open Forum Infect Dis 2019; 6(10): ofz330. doi: 10.1093/ofid/ofz330 PMID: 31660328
  33. Bokharaei-Salim F, Jamshidi S, Nahand JS, et al. Evaluation of the expression pattern of 4 microRNAs and their correlation with cellular/viral factors in PBMCs of long term non-progressors and HIV infected naïve individuals. Curr HIV Res 2022; 20(1): 42-53. doi: 10.2174/1570162X19666210906143136 PMID: 34493187
  34. Hull MW, Montaner JSG. Ritonavir-boosted protease inhibitors in HIV therapy. Ann Med 2011; 43(5): 375-88. doi: 10.3109/07853890.2011.572905 PMID: 21501034
  35. Pasquau J, de Jesus SE, Arazo P, et al. Effectiveness and safety of dual therapy with rilpivirine and boosted darunavir in treatment-experienced patients with advanced HIV infection: A preliminary 24 week analysis (RIDAR study). BMC Infect Dis 2019; 19(1): 207. doi: 10.1186/s12879-019-3817-6 PMID: 30819101
  36. Paredes R, Puertas MC, Bannister W, et al. A376S in the connection subdomain of HIV-1 reverse transcriptase confers increased risk of virological failure to nevirapine therapy. J Infect Dis 2011; 204(5): 741-52. doi: 10.1093/infdis/jir385 PMID: 21844300
  37. Sasadeusz J, Audsley J, Mijch A, et al. The anti-HIV activity of entecavir: A multicentre evaluation of lamivudine-experienced and lamivudine-naive patients. AIDS 2008; 22(8): 947-55. doi: 10.1097/QAD.0b013e3282ffde91 PMID: 18453854
  38. Jiang D, Wang J, Zhao X, et al. Entecavir resistance mutations rtL180M/T184L/M204V combined with rtA200V lead to tenofovir resistance. Liver Int 2020; 40(1): 83-91. doi: 10.1111/liv.14241 PMID: 31498528
  39. Guo JJ, Li QL, Shi XF, et al. Dynamics of hepatitis B virus resistance to entecavir in a nucleoside/nucleotide-naïve patient. Antiviral Res 2009; 81(2): 180-3. doi: 10.1016/j.antiviral.2008.09.004 PMID: 18948142
  40. Metzner KJ, Bonhoeffer S, Fischer M, et al. Emergence of minor populations of human immunodeficiency virus type 1 carrying the M184V and L90M mutations in subjects undergoing structured treatment interruptions. J Infect Dis 2003; 188(10): 1433-43. doi: 10.1086/379215 PMID: 14624368
  41. Lange CM, Hué S, Violari A, et al. Single genome analysis for the detection of linked multiclass drug resistance mutations in HIV-1-infected children after failure of protease inhibitor-based first-line therapy. J Acquir Immune Defic Syndr 2015; 69(2): 138-44. doi: 10.1097/QAI.0000000000000568 PMID: 25923117
  42. Mascolini M, Boucher C, Larder B, Mellors J, Richman D. Key reports from the XV international HIV drug resistance workshop 2006. Antivir Ther 2007; 12(1): 131-46. doi: 10.1177/135965350701200118 PMID: 17503758
  43. Bacheler LT, Anton ED, Kudish P, et al. Human immunodeficiency virus type 1 mutations selected in patients failing efavirenz combination therapy. Antimicrob Agents Chemother 2000; 44(9): 2475-84. doi: 10.1128/AAC.44.9.2475-2484.2000 PMID: 10952598
  44. Rhee S-Y, Schapiro JM, Saladini F, Zazzi M, Khoo S, Shafer RW. Potential role of doravirine for the treatment of HIV-1-infected persons with transmitted drug resistance. AIDS Res Ther 2022; 20(1): 8. doi: 10.21203/rs.3.rs-1976150/v1
  45. Pham HT, Xiao MA, Principe MAV, Wong A, Mesplède T. Pharmaceutical, clinical, and resistance information on doravirine, a novel non-nucleoside reverse transcriptase inhibitor for the treatment of HIV-1 infection. Drugs Context 2020; 9: 1-11. doi: 10.7573/dic.2019-11-4 PMID: 32180823
  46. Blevins SR, Hester EK, Chastain DB, Cluck DB. Doravirine: A return of the NNRTI class? Ann Pharmacother 2020; 54(1): 64-74. doi: 10.1177/1060028019869641 PMID: 31416335
  47. Millar JR, Bengu N, Fillis R, et al. HIGH-FREQUENCY failure of combination antiretroviral therapy in paediatric HIV infection is associated with unmet maternal needs causing maternal NON-ADHERENCE. EClinicalMedicine 2020; 22: 100344. doi: 10.1016/j.eclinm.2020.100344 PMID: 32510047
  48. Kuriakose S, George J, Dee N, Stoll P, Agan BK, Dewar RL, Eds. High level resistance to dolutegravir (DTG) after emergence of T97A mutation. Conference on Retroviruses and Opportunistic Infections (CROI).
  49. Stellbrink HJ, Le Fevre E, Carr A, et al. Once-daily maraviroc versus tenofovir/emtricitabine each combined with darunavir/ritonavir for initial HIV-1 treatment. AIDS 2016; 30(8): 1229-38. doi: 10.1097/QAD.0000000000001058 PMID: 26854810
  50. Deutschmann E, Bucher HC, Jaeckel S, et al. Prevalence of potential drug–drug interactions in patients of the Swiss HIV Cohort Study in the era of HIV integrase inhibitors. Clin Infect Dis 2021; 73(7): e2145-52. doi: 10.1093/cid/ciaa918 PMID: 32634832
  51. Cattaneo D, Capetti A, Rizzardini G. Drug–drug interactions of a two-drug regimen of dolutegravir and lamivudine for HIV treatment. Expert Opin Drug Metab Toxicol 2019; 15(3): 245-52. doi: 10.1080/17425255.2019.1577821 PMID: 30704313
  52. Hodge D, Hodel EM, Hughes E, Hazenberg P, Castillo SG, Gibbons S. Prevalence of potentially clinically significant drug-drug interactions with antiretrovirals against HIV over three decades: A systematic review of the literature. J Acquir Immune Defic Syndr 2022; 10: 1097. PMID: 36625857
  53. Mondleki E, Maartens G. Dolutegravir drug-drug interactions. S Afr Med J 2022; 112(3): 194-5. doi: 10.7196/SAMJ.2021.v112i3.16316
  54. Lewis JM, Stott KE, Monnery D, et al. Managing potential drug-drug interactions between gastric acid-reducing agents and antiretroviral therapy: Experience from a large HIV-positive cohort. Int J STD AIDS 2016; 27(2): 105-9. doi: 10.1177/0956462415574632 PMID: 25721922
  55. Sajadi MM, Pulijala R, Redfield RR, Talwani R. Chronic immune activation and decreased CD4 cell counts associated with hepatitis C infection in HIV-1 natural viral suppressors. AIDS 2012; 26(15): 1879-84. doi: 10.1097/QAD.0b013e328357f5d1 PMID: 22824629
  56. Grønborg HL, Jespersen S, Hønge BL, Jensen-Fangel S, Wejse C. Review of cytomegalovirus coinfection in HIV-infected individuals in Africa. Rev Med Virol 2017; 27(1): e1907. doi: 10.1002/rmv.1907 PMID: 27714898
  57. Lindoso JAL, Moreira CHV, Cunha MA, Queiroz IT. Visceral leishmaniasis and HIV coinfection: Current perspectives. HIV/AIDS - Res Palliat Care 2018; 10: 193-201. doi: 10.2147/HIV.S143929
  58. de Castro S, Camarasa MJ. Polypharmacology in HIV inhibition: Can a drug with simultaneous action against two relevant targets be an alternative to combination therapy? Eur J Med Chem 2018; 150: 206-27. doi: 10.1016/j.ejmech.2018.03.007 PMID: 29529501
  59. Hu R, Yan H, Liu M, et al. Brief report: Virologic and immunologic outcomes for HIV patients with coronavirus disease 2019. J Acquir Immune Defic Syndr 2021; 86(2): 213-8. doi: 10.1097/QAI.0000000000002540 PMID: 33079905
  60. Cong B, Deng S, Wang X, Li Y. The role of respiratory co-infection with influenza or respiratory syncytial virus in the clinical severity of COVID-19 patients: A systematic review and meta-analysis. J Glob Health 2022; 12: 05040. doi: 10.7189/jogh.12.05040 PMID: 36112521
  61. Donyavi T, Bokharaei-Salim F, Baghi HB, et al. Acute and post-acute phase of COVID-19: Analyzing expression patterns of miRNA-29a-3p, 146a-3p, 155-5p, and let-7b-3p in PBMC. Int Immunopharmacol 2021; 97: 107641. doi: 10.1016/j.intimp.2021.107641 PMID: 33895478
  62. Garshasbi S, Bokharaei-Salim F, Khanaliha K, et al. SARS-CoV-2 infection in Iranian people living with human immunodeficiency virus-1 infection. Jundishapur J Microbiol 2022; 15(1) doi: 10.5812/jjm.121929
  63. Ambrosioni J, Blanco JL, Reyes-Urueña JM, et al. Overview of SARS-CoV-2 infection in adults living with HIV. Lancet HIV 2021; 8(5): e294-305. doi: 10.1016/S2352-3018(21)00070-9 PMID: 33915101
  64. Noe S, Ochana N, Wiese C, et al. Humoral response to SARS-CoV-2 vaccines in people living with HIV. Infection 2022; 50(3): 617-23. doi: 10.1007/s15010-021-01721-7 PMID: 34694595
  65. Ao L, Lu T, Cao Y, et al. Safety and immunogenicity of inactivated SARS-CoV-2 vaccines in people living with HIV. Emerg Microbes Infect 2022; 11(1): 1126-34. doi: 10.1080/22221751.2022.2059401 PMID: 35369854
  66. Rock AE, DeMarais PL, Vergara-Rodriguez PT, Max BE. HIV-1 virologic rebound due to coadministration of divalent cations and bictegravir. Infect Dis Ther 2020; 9(3): 691-6. doi: 10.1007/s40121-020-00307-4 PMID: 32623580
  67. Easterbrook PJ, Ives N, Waters A, et al. The natural history and clinical significance of intermittent viraemia in patients with initial viral suppression tp < 000 copies/ml. AIDS 2002; 16(11): 1521-7. doi: 10.1097/00002030-200207260-00009 PMID: 12131190
  68. Zamora FJ, Dowers E, Yasin F, Ogbuagu O. Dolutegravir and lamivudine combination for the treatment of HIV-1 infection. HIV AIDS 2019; 11: 255-63.
  69. Lu CH, Bednarczyk EM, Catanzaro LM, Shon A, Xu JC, Ma Q. Pharmacokinetic drug interactions of integrase strand transfer inhibitors. Curr Res Pharmacol Drug Discov 2021; 2: 100044. doi: 10.1016/j.crphar.2021.100044 PMID: 34909672
  70. Capetti AF, Astuti N, Cattaneo D, Rizzardini G. Pharmacokinetic drug evaluation of dolutegravir plus rilpivirine for the treatment of HIV. Expert Opin Drug Metab Toxicol 2017; 13(11): 1183-92. doi: 10.1080/17425255.2017.1361929 PMID: 28854832
  71. He X. Integration of physical, chemical, mechanical, and biopharmaceutical properties in solid oral dosage form development. Developing solid oral dosage forms. Elsevier 2009; pp. 407-41.
  72. Morsica G, Galli L, Messina E, et al. Risk of HIV viral rebound in HIV infected patients on direct acting antivirals (DAAs) treatment for HCV. PLoS One 2022; 17(2): e0262917. doi: 10.1371/journal.pone.0262917 PMID: 35113890
  73. Havlir DV, Hellmann NS, Petropoulos CJ, et al. Drug susceptibility in HIV infection after viral rebound in patients receiving indinavir-containing regimens. JAMA 2000; 283(2): 229-34. doi: 10.1001/jama.283.2.229 PMID: 10634339

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Bentham Science Publishers, 2024