Inhibitory Pedunculopontine Neurons Gate Dopamine-Mediated Motor Actions of Unsigned Valence
- Authors: Zhang S.1, Mena-Segovia J.1, Gut N.1
-
Affiliations:
- Center for Molecular and Behavioral Neuroscience, Rutgers University
- Issue: Vol 22, No 9 (2024)
- Pages: 1540-1550
- Section: Neurology
- URL: https://rjpbr.com/1570-159X/article/view/644921
- DOI: https://doi.org/10.2174/1570159X21666230911103520
- ID: 644921
Cite item
Full Text
Abstract
Background:The pedunculopontine nucleus (PPN) maintains a bidirectional connectivity with the basal ganglia that supports their shared roles in the selection and execution of motor actions. Previous studies identified a role for PPN neurons in goal-directed behavior, but the cellular substrates underlying this function have not been elucidated. We recently revealed the existence of a monosynaptic GABAergic input from the PPN that inhibits dopamine neurons of the substantia nigra. Activation of this pathway interferes with the execution of learned motor sequences when the actions are rewarded, even though the inhibition of dopamine neurons did not shift the value of the action, hence suggesting executive control over the gating of behavior.
Objective:To test the attributes of the inhibition of dopamine neurons by the PPN in the context of goal-directed behavior regardless of whether the outcome is positive or negative.
Methods:We delivered optogenetic stimulation to PPN GABAergic axon terminals in the substantia nigra during a battery of behavioral tasks with positive and negative valence.
Results:Inhibition of dopamine neurons by PPN optogenetic activation during an appetitive task impaired the initiation and overall execution of the behavioral sequence without affecting the consumption of reward. During an active avoidance task, the same activation impaired the ability of mice to avoid a foot shock, but their escape response was unaffected. In addition, responses to potential threats were significantly attenuated.
Conclusion:Our results show that PPN GABAergic neurons modulate learned, goal-directed behavior of unsigned valence without affecting overall motor behavior.
Keywords
About the authors
Sirin Zhang
Center for Molecular and Behavioral Neuroscience, Rutgers University
Email: info@benthamscience.net
Juan Mena-Segovia
Center for Molecular and Behavioral Neuroscience, Rutgers University
Email: info@benthamscience.net
Nadine Gut
Center for Molecular and Behavioral Neuroscience, Rutgers University
Author for correspondence.
Email: info@benthamscience.net
References
- Marsden, C.D. The mysterious motor function of the basal ganglia: The Robert Wartenberg Lecture. Neurology, 1982, 32(5), 514-539. doi: 10.1212/WNL.32.5.514 PMID: 7200209
- Yin, H.H. The basal ganglia in action. Neuroscientist, 2017, 23(3), 299-313. doi: 10.1177/1073858416654115 PMID: 27306757
- Hikosaka, O.; Kim, H.F.; Yasuda, M.; Yamamoto, S. Basal ganglia circuits for reward value-guided behavior. Annu. Rev. Neurosci., 2014, 37(1), 289-306. doi: 10.1146/annurev-neuro-071013-013924 PMID: 25032497
- Dudman, J.T.; Krakauer, J.W. The basal ganglia: From motor commands to the control of vigor. Curr. Opin. Neurobiol., 2016, 37, 158-166. doi: 10.1016/j.conb.2016.02.005 PMID: 27012960
- Redgrave, P.; Rodriguez, M.; Smith, Y.; Rodriguez-Oroz, M.C.; Lehericy, S.; Bergman, H.; Agid, Y.; DeLong, M.R.; Obeso, J.A. Goal-directed and habitual control in the basal ganglia: Implications for Parkinsons disease. Nat. Rev. Neurosci., 2010, 11(11), 760-772. doi: 10.1038/nrn2915 PMID: 20944662
- Hikosaka, O.; Ghazizadeh, A.; Griggs, W.; Amita, H. Parallel basal ganglia circuits for decision making. J. Neural Transm. (Vienna), 2018, 125(3), 515-529. doi: 10.1007/s00702-017-1691-1 PMID: 28155134
- Schultz, W. Reward functions of the basal ganglia. J. Neural Transm. (Vienna), 2016, 123(7), 679-693. doi: 10.1007/s00702-016-1510-0 PMID: 26838982
- Rice, M.E.; Patel, J.C.; Cragg, S.J. Dopamine release in the basal ganglia. Neuroscience, 2011, 198, 112-137. doi: 10.1016/j.neuroscience.2011.08.066 PMID: 21939738
- Haber, S.N. The place of dopamine in the cortico-basal ganglia circuit. Neuroscience, 2014, 282, 248-257. doi: 10.1016/j.neuroscience.2014.10.008 PMID: 25445194
- Jin, X.; Costa, R.M. Start/stop signals emerge in nigrostriatal circuits during sequence learning. Nature, 2010, 466(7305), 457-462. doi: 10.1038/nature09263 PMID: 20651684
- Jin, X.; Tecuapetla, F.; Costa, R.M. Basal ganglia subcircuits distinctively encode the parsing and concatenation of action sequences. Nat. Neurosci., 2014, 17(3), 423-430. doi: 10.1038/nn.3632 PMID: 24464039
- da Silva, J.A.; Tecuapetla, F.; Paixão, V.; Costa, R.M. Dopamine neuron activity before action initiation gates and invigorates future movements. Nature, 2018, 554(7691), 244-248. doi: 10.1038/nature25457 PMID: 29420469
- Bakhurin, K.I.; Li, X.; Friedman, A.D.; Lusk, N.A.; Watson, G.D.R.; Kim, N.; Yin, H.H. Opponent regulation of action performance and timing by striatonigral and striatopallidal pathways. eLife, 2020, 9, e54831. doi: 10.7554/eLife.54831 PMID: 32324535
- Kravitz, A.V.; Freeze, B.S.; Parker, P.R.L.; Kay, K.; Thwin, M.T.; Deisseroth, K.; Kreitzer, A.C. Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry. Nature, 2010, 466(7306), 622-626. doi: 10.1038/nature09159 PMID: 20613723
- Bartholomew, R.A.; Li, H.; Gaidis, E.J.; Stackmann, M.; Shoemaker, C.T.; Rossi, M.A.; Yin, H.H. Striatonigral control of movement velocity in mice. Eur. J. Neurosci., 2016, 43(8), 1097-1110. doi: 10.1111/ejn.13187 PMID: 27091436
- Schultz, W.; Dayan, P.; Montague, P.R. A neural substrate of prediction and reward. Science, 1997, 275(5306), 1593-1599. doi: 10.1126/science.275.5306.1593 PMID: 9054347
- Watabe-Uchida, M.; Eshel, N.; Uchida, N. Neural circuitry of reward prediction error. Annu. Rev. Neurosci., 2017, 40(1), 373-394. doi: 10.1146/annurev-neuro-072116-031109 PMID: 28441114
- Lerner, T.N.; Holloway, A.L.; Seiler, J.L. Dopamine, updated: Reward prediction error and beyond. Curr. Opin. Neurobiol., 2021, 67, 123-130. doi: 10.1016/j.conb.2020.10.012 PMID: 33197709
- Cohen, J.Y.; Haesler, S.; Vong, L.; Lowell, B.B.; Uchida, N. Neuron-type-specific signals for reward and punishment in the ventral tegmental area. Nature, 2012, 482(7383), 85-88. doi: 10.1038/nature10754 PMID: 22258508
- Tsutsui-Kimura, I.; Matsumoto, H.; Uchida, N.; Watabe-Uchida, M. Distinct temporal difference error signals in dopamine axons in three regions of the striatum in a decision-making task. ELife, 2020, 9, e62390. doi: 10.7554/eLife.62390 PMID: 33345774
- Parker, N.F.; Cameron, C.M.; Taliaferro, J.P.; Lee, J.; Choi, J.Y.; Davidson, T.J.; Daw, N.D.; Witten, I.B. Reward and choice encoding in terminals of midbrain dopamine neurons depends on striatal target. Nat. Neurosci., 2016, 19(6), 845-854. doi: 10.1038/nn.4287 PMID: 27110917
- Moss, M.M.; Zatka-Haas, P.; Harris, K.D.; Carandini, M.; Lak, A. Dopamine axons in dorsal striatum encode contralateral visual stimuli and choices. J. Neurosci., 2021, 41(34), 7197-7205. doi: 10.1523/JNEUROSCI.0490-21.2021 PMID: 34253628
- Galtieri, D.J.; Estep, C.M.; Wokosin, D.L.; Traynelis, S.; Surmeier, D.J. Pedunculopontine glutamatergic neurons control spike patterning in substantia nigra dopaminergic neurons. eLife, 2017, 6, e30352. doi: 10.7554/eLife.30352 PMID: 28980939
- Lavoie, B.; Parent, A. Pedunculopontine nucleus in the squirrel monkey: Cholinergic and glutamatergic projections to the substantia nigra. J. Comp. Neurol., 1994, 344(2), 232-241. doi: 10.1002/cne.903440205 PMID: 7915727
- Clarke, P.B.S.; Hommer, D.W.; Pert, A.; Skirboll, L.R. Innervation of substantia nigra neurons by cholinergic afferents from pedunculopontine nucleus in the rat: Neuroanatomical and electrophysiological evidence. Neuroscience, 1987, 23(3), 1011-1019. doi: 10.1016/0306-4522(87)90176-X PMID: 3437988
- Gould, E.; Woolf, N.J.; Butcher, L.L. Cholinergic projections to the substantia nigra from the pedunculopontine and laterodorsal tegmental nuclei. Neuroscience, 1989, 28(3), 611-623. doi: 10.1016/0306-4522(89)90008-0 PMID: 2710334
- Gut, N.K.; Yilmaz, D.; Kondabolu, K.; Huerta-Ocampo, I.; Mena-Segovia, J. Selective inhibition of goal-directed actions in the mesencephalic locomotor region. BioRxiv, 2022. doi: 10.1101/2022.01.18.476772
- Josset, N.; Roussel, M.; Lemieux, M.; Lafrance-Zoubga, D.; Rastqar, A.; Bretzner, F. Distinct contributions of mesencephalic locomotor region nuclei to locomotor control in the freely behaving mouse. Curr. Biol., 2018, 28(6), 884-901.e3. doi: 10.1016/j.cub.2018.02.007 PMID: 29526593
- Roseberry, T.K.; Lee, A.M.; Lalive, A.L.; Wilbrecht, L.; Bonci, A.; Kreitzer, A.C. Cell-type-specific control of brainstem locomotor circuits by basal ganglia. Cell, 2016, 164(3), 526-537. doi: 10.1016/j.cell.2015.12.037 PMID: 26824660
- Caggiano, V.; Leiras, R.; Goñi-Erro, H.; Masini, D.; Bellardita, C.; Bouvier, J.; Caldeira, V.; Fisone, G.; Kiehn, O. Midbrain circuits that set locomotor speed and gait selection. Nature, 2018, 553(7689), 455-460. doi: 10.1038/nature25448 PMID: 29342142
- Dautan, D.; Kovács, A.; Bayasgalan, T.; Diaz-Acevedo, M.A.; Pal, B.; Mena-Segovia, J. Modulation of motor behavior by the mesencephalic locomotor region. Cell Rep., 2021, 36(8), 109594. doi: 10.1016/j.celrep.2021.109594 PMID: 34433068
- Masini, D.; Kiehn, O. Targeted activation of midbrain neurons restores locomotor function in mouse models of parkinsonism. Nat. Commun., 2022, 13(1), 504. doi: 10.1038/s41467-022-28075-4 PMID: 35082287
- Gut, N.K.; Mena-Segovia, J. Midbrain cholinergic neurons signal negative feedback to promote behavioral flexibility. Trends Neurosci., 2022, 45(7), 502-503. doi: 10.1016/j.tins.2022.04.005 PMID: 35534340
- Dautan, D.; Huerta-Ocampo, I.; Gut, N.K.; Valencia, M.; Kondabolu, K.; Kim, Y.; Gerdjikov, T.V.; Mena-Segovia, J. Cholinergic midbrain afferents modulate striatal circuits and shape encoding of action strategies. Nat. Commun., 2020, 11(1), 1739. doi: 10.1038/s41467-020-15514-3 PMID: 32269213
- MacLaren, D.A.A.; Markovic, T.; Clark, S.D. Assessment of sensorimotor gating following selective lesions of cholinergic pedunculopontine neurons. Eur. J. Neurosci., 2014, 40(10), 3526-3537. doi: 10.1111/ejn.12716 PMID: 25208852
- Ruan, Y.; Li, K.Y.; Zheng, R.; Yan, Y.Q.; Wang, Z.X.; Chen, Y.; Liu, Y.; Tian, J.; Zhu, L.Y.; Lou, H.F.; Yu, Y.Q.; Pu, J.L.; Zhang, B.R. Cholinergic neurons in the pedunculopontine nucleus guide reversal learning by signaling the changing reward contingency. Cell Rep., 2022, 38(9), 110437. doi: 10.1016/j.celrep.2022.110437 PMID: 35235804
- Xiao, C.; Cho, J.R.; Zhou, C.; Treweek, J.B.; Chan, K.; McKinney, S.L.; Yang, B.; Gradinaru, V. Cholinergic mesopontine signals govern locomotion and reward through dissociable midbrain pathways. Neuron, 2016, 90(2), 333-347. doi: 10.1016/j.neuron.2016.03.028 PMID: 27100197
- Blaha, C.D.; Winn, P. Modulation of dopamine efflux in the striatum following cholinergic stimulation of the substantia nigra in intact and pedunculopontine tegmental nucleus-lesioned rats. J. Neurosci., 1993, 13(3), 1035-1044. doi: 10.1523/JNEUROSCI.13-03-01035.1993 PMID: 8441002
- Dautan, D.; Souza, A.S.; Huerta-Ocampo, I.; Valencia, M.; Assous, M.; Witten, I.B.; Deisseroth, K.; Tepper, J.M.; Bolam, J.P.; Gerdjikov, T.V.; Mena-Segovia, J. Segregated cholinergic transmission modulates dopamine neurons integrated in distinct functional circuits. Nat. Neurosci., 2016, 19(8), 1025-1033. doi: 10.1038/nn.4335 PMID: 27348215
- Yoo, J.H.; Zell, V.; Wu, J.; Punta, C.; Ramajayam, N.; Shen, X.; Faget, L.; Lilascharoen, V.; Lim, B.K.; Hnasko, T.S. Activation of pedunculopontine glutamate neurons is reinforcing. J. Neurosci., 2017, 37(1), 38-46. doi: 10.1523/JNEUROSCI.3082-16.2016 PMID: 28053028
- Estakhr, J.; Abazari, D.; Frisby, K.; McIntosh, J.M.; Nashmi, R. Differential control of dopaminergic excitability and locomotion by cholinergic inputs in mouse substantia nigra. Curr. Biol., 2017, 27(13), 1900-1914.e4. doi: 10.1016/j.cub.2017.05.084 PMID: 28648825
- Wilson, D.I.G.; MacLaren, D.A.A.; Winn, P. Bar pressing for food: Differential consequences of lesions to the anterior versus posterior pedunculopontine. Eur. J. Neurosci., 2009, 30(3), 504-513. doi: 10.1111/j.1460-9568.2009.06836.x PMID: 19614747
- MacLaren, D.A.A.; Wilson, D.I.G.; Winn, P. Updating of actionoutcome associations is prevented by inactivation of the posterior pedunculopontine tegmental nucleus. Neurobiol. Learn. Mem., 2013, 102, 28-33. doi: 10.1016/j.nlm.2013.03.002 PMID: 23567109
- Taylor, C.L.; Kozak, R.; Latimer, M.P.; Winn, P. Effects of changing reward on performance of the delayed spatial win-shift radial maze task in pedunculopontine tegmental nucleus lesioned rats. Behav. Brain Res., 2004, 153(2), 431-438. doi: 10.1016/j.bbr.2003.12.019 PMID: 15265639
- Thompson, J.A.; Costabile, J.D.; Felsen, G. Mesencephalic representations of recent experience influence decision making. eLife, 2016, 5, e16572. doi: 10.7554/eLife.16572 PMID: 27454033
- Okada, K.; Kobayashi, Y. Rhythmic firing of pedunculopontine tegmental nucleus neurons in monkeys during eye movement task. PLoS One, 2015, 10(6), e0128147. doi: 10.1371/journal.pone.0128147 PMID: 26030664
- Tian, J.; Huang, R.; Cohen, J.Y.; Osakada, F.; Kobak, D.; Machens, C.K.; Callaway, E.M.; Uchida, N.; Watabe-Uchida, M. Distributed and mixed information in monosynaptic inputs to dopamine neurons. Neuron, 2016, 91(6), 1374-1389. doi: 10.1016/j.neuron.2016.08.018 PMID: 27618675
- Skvortsova, V.; Palminteri, S.; Buot, A.; Karachi, C.; Welter, M.L.; Grabli, D.; Pessiglione, M. A causal role for the pedunculopontine nucleus in human instrumental learning. Curr. Biol., 2021, 31(5), 943-954.e5. doi: 10.1016/j.cub.2020.11.042 PMID: 33352119
- Norton, A.B.W.; Jo, Y.S.; Clark, E.W.; Taylor, C.A.; Mizumori, S.J.Y. Independent neural coding of reward and movement by pedunculopontine tegmental nucleus neurons in freely navigating rats. Eur. J. Neurosci., 2011, 33(10), 1885-1896. doi: 10.1111/j.1460-9568.2011.07649.x PMID: 21395868
- Okada, K.; Toyama, K.; Inoue, Y.; Isa, T.; Kobayashi, Y. Different pedunculopontine tegmental neurons signal predicted and actual task rewards. J. Neurosci., 2009, 29(15), 4858-4870. doi: 10.1523/JNEUROSCI.4415-08.2009 PMID: 19369554
- Hong, S.; Hikosaka, O. Pedunculopontine tegmental nucleus neurons provide reward, sensorimotor, and alerting signals to midbrain dopamine neurons. Neuroscience, 2014, 282, 139-155. doi: 10.1016/j.neuroscience.2014.07.002 PMID: 25058502
- Pan, W.X.; Hyland, B.I. Pedunculopontine tegmental nucleus controls conditioned responses of midbrain dopamine neurons in behaving rats. J. Neurosci., 2005, 25(19), 4725-4732. doi: 10.1523/JNEUROSCI.0277-05.2005 PMID: 15888648
- Kobayashi, Y.; Inoue, Y.; Yamamoto, M.; Isa, T.; Aizawa, H. Contribution of pedunculopontine tegmental nucleus neurons to performance of visually guided saccade tasks in monkeys. J. Neurophysiol., 2002, 88(2), 715-731. doi: 10.1152/jn.2002.88.2.715 PMID: 12163524
- Menegas, W.; Akiti, K.; Amo, R.; Uchida, N.; Watabe-Uchida, M. Dopamine neurons projecting to the posterior striatum reinforce avoidance of threatening stimuli. Nat. Neurosci., 2018, 21(10), 1421-1430. doi: 10.1038/s41593-018-0222-1 PMID: 30177795
- Ungless, M.A.; Argilli, E.; Bonci, A. Effects of stress and aversion on dopamine neurons: Implications for addiction. Neurosci. Biobehav. Rev., 2010, 35(2), 151-156. doi: 10.1016/j.neubiorev.2010.04.006 PMID: 20438754
- Matsumoto, M.; Hikosaka, O. Two types of dopamine neuron distinctly convey positive and negative motivational signals. Nature, 2009, 459(7248), 837-841. doi: 10.1038/nature08028 PMID: 19448610
- Tsutsui-Kimura, I.; Uchida, N.; Watabe-Uchida, M. Dynamical management of potential threats regulated by dopamine and direct- and indirect-pathway neurons in the tail of the striatum. bioRxiv, 2022. doi: 10.1101/2022.02.05.479267
- Poulin, J.F.; Caronia, G.; Hofer, C.; Cui, Q.; Helm, B.; Ramakrishnan, C.; Chan, C.S.; Dombeck, D.A.; Deisseroth, K.; Awatramani, R. Mapping projections of molecularly defined dopamine neuron subtypes using intersectional genetic approaches. Nat. Neurosci., 2018, 21(9), 1260-1271. doi: 10.1038/s41593-018-0203-4 PMID: 30104732
- Ko, D.; Wanat, M.J. Phasic dopamine transmission reflects initiation vigor and exerted effort in an action- and region-specific manner. J. Neurosci., 2016, 36(7), 2202-2211. doi: 10.1523/JNEUROSCI.1279-15.2016 PMID: 26888930
- Augustin, S.M.; Loewinger, G.C.; ONeal, T.J.; Kravitz, A.V.; Lovinger, D.M. Dopamine D2 receptor signaling on iMSNs is required for initiation and vigor of learned actions. Neuropsychopharmacology, 2020, 45(12), 2087-2097. doi: 10.1038/s41386-020-00799-1 PMID: 32811899
- Wassum, K.M.; Ostlund, S.B.; Maidment, N.T. Phasic mesolimbic dopamine signaling precedes and predicts performance of a self-initiated action sequence task. Biol. Psychiatry, 2012, 71(10), 846-854. doi: 10.1016/j.biopsych.2011.12.019 PMID: 22305286
- Markowitz, J.E.; Gillis, W.F.; Jay, M.; Wood, J.; Harris, R.W.; Cieszkowski, R.; Scott, R.; Brann, D.; Koveal, D.; Kula, T.; Weinreb, C.; Osman, M.A.M.; Pinto, S.R.; Uchida, N.; Linderman, S.W.; Sabatini, B.L.; Datta, S.R. Spontaneous behaviour is structured by reinforcement without explicit reward. Nature, 2023, 614(7946), 108-117. doi: 10.1038/s41586-022-05611-2 PMID: 36653449
- Beierholm, U.; Guitart-Masip, M.; Economides, M.; Chowdhury, R.; Düzel, E.; Dolan, R.; Dayan, P. Dopamine modulates reward-related vigor. Neuropsychopharmacology, 2013, 38(8), 1495-1503. doi: 10.1038/npp.2013.48 PMID: 23419875
- Mazzoni, P.; Hristova, A.; Krakauer, J.W. Why dont we move faster? Parkinsons disease, movement vigor, and implicit motivation. J. Neurosci., 2007, 27(27), 7105-7116. doi: 10.1523/JNEUROSCI.0264-07.2007 PMID: 17611263
- Mohebi, A.; Pettibone, J.R.; Hamid, A.A.; Wong, J.M.T.; Vinson, L.T.; Patriarchi, T.; Tian, L.; Kennedy, R.T.; Berke, J.D. Dissociable dopamine dynamics for learning and motivation. Nature, 2019, 570(7759), 65-70. doi: 10.1038/s41586-019-1235-y PMID: 31118513
- Zénon, A.; Devesse, S.; Olivier, E. Dopamine manipulation affects response vigor independently of opportunity cost. J. Neurosci., 2016, 36(37), 9516-9525. doi: 10.1523/JNEUROSCI.4467-15.2016 PMID: 27629704
- Van Wouwe, N.C.; Claassen, D.O.; Neimat, J.S.; Kanoff, K.E.; Wylie, S.A. Dopamine selectively modulates the outcome of learning unnatural action-valence associations. J. Cogn. Neurosci., 2017, 29(5), 816-826. doi: 10.1162/jocn_a_01099 PMID: 28129053
- Koob, G.F. Hedonic valence, dopamine and motivation. Mol. Psychiatry, 1996, 1(3), 186-189. PMID: 9118342
- Hamid, A.A.; Pettibone, J.R.; Mabrouk, O.S.; Hetrick, V.L.; Schmidt, R.; Vander Weele, C.M.; Kennedy, R.T.; Aragona, B.J.; Berke, J.D. Mesolimbic dopamine signals the value of work. Nat. Neurosci., 2016, 19(1), 117-126. doi: 10.1038/nn.4173 PMID: 26595651
- Cui, G.; Jun, S.B.; Jin, X.; Pham, M.D.; Vogel, S.S.; Lovinger, D.M.; Costa, R.M. Concurrent activation of striatal direct and indirect pathways during action initiation. Nature, 2013, 494(7436), 238-242. doi: 10.1038/nature11846 PMID: 23354054
- Tecuapetla, F.; Jin, X.; Lima, S.Q.; Costa, R.M. Complementary contributions of striatal projection pathways to action initiation and execution. Cell, 2016, 166(3), 703-715. doi: 10.1016/j.cell.2016.06.032 PMID: 27453468
- Syed, E.C.J.; Grima, L.L.; Magill, P.J.; Bogacz, R.; Brown, P.; Walton, M.E. Action initiation shapes mesolimbic dopamine encoding of future rewards. Nat. Neurosci., 2016, 19(1), 34-36. doi: 10.1038/nn.4187 PMID: 26642087
- Menegas, W.; Bergan, J.F.; Ogawa, S.K.; Isogai, Y.; Umadevi Venkataraju, K.; Osten, P.; Uchida, N.; Watabe-Uchida, M. Dopamine neurons projecting to the posterior striatum form an anatomically distinct subclass. eLife, 2015, 4, e10032. doi: 10.7554/eLife.10032 PMID: 26322384
- Akiti, K.; Tsutsui-Kimura, I.; Xie, Y.; Mathis, A.; Markowitz, J.E.; Anyoha, R.; Datta, S.R.; Mathis, M.W.; Uchida, N.; Watabe-Uchida, M. Striatal dopamine explains novelty-induced behavioral dynamics and individual variability in threat prediction. Neuron, 2022, 110(22), 3789-3804.e9. doi: 10.1016/j.neuron.2022.08.022 PMID: 36130595
- Gangarossa, G.; Castell, L.; Castro, L.; Tarot, P.; Veyrunes, F.; Vincent, P.; Bertaso, F.; Valjent, E. Contrasting patterns of ERK activation in the tail of the striatum in response to aversive and rewarding signals. J. Neurochem., 2019, 151(2), 204-226. doi: 10.1111/jnc.14804 PMID: 31245856
- Crego, A.C.G. toček, F.; Marchuk, A.G.; Carmichael, J.E.; van der Meer, M.A.A.; Smith, K.S. Complementary control over habits and behavioral vigor by phasic activity in the dorsolateral striatum. J. Neurosci., 2020, 40(10), 2139-2153. doi: 10.1523/JNEUROSCI.1313-19.2019 PMID: 31969469
Supplementary files
