Spatiomolecular Characterization of Dopamine D2 Receptors Cells in the Mouse External Globus Pallidus


Cite item

Full Text

Abstract

The external globus pallidus (GPe) is part of the basal ganglia circuit and plays a key role in controlling the actions. Although, many evidence indicate that dopamine through its activation of dopamine D2 receptors (D2Rs) modulates the GPe neuronal activity, the precise spatiomolecular characterization of cell populations expressing D2Rs in the mouse GPe is still lacking. By combining single molecule in situ hybridization, cell type-specific imaging analyses, and electrophysiology slice recordings, we found that GPe D2R cells are neurons preferentially localized in the caudal portion of GPe. These neurons comprising pallido-striatal, pallido-nigral, and pallido-cortical neurons segregate into two distinct populations displaying molecular and electrophysiological features of GPe GABAergic PV/NKX2.1 and cholinergic neurons respectively. By clarifying the spatial molecular identity of GPe D2R neurons in the mouse, this work provides the basis for future studies aiming at disentangling the action of dopamine within the GPe.

About the authors

Julie Espallergues

IGF, University Montpellie

Email: info@benthamscience.net

Jihane Boubaker-Vitre

1IGF, University Montpellier

Email: info@benthamscience.net

Audrey Mignon

, University Montpellier

Email: info@benthamscience.net

Maelle Avrillon

IGF, University Montpellier

Email: info@benthamscience.net

Morgane Bon-Jego

, University Bordeaux

Email: info@benthamscience.net

Jerome Baufreton

, University Bordeaux

Email: info@benthamscience.net

Emmanuel Valjent

IGF, University Montpellier

Author for correspondence.
Email: info@benthamscience.net

References

  1. Hegeman, D.J.; Hong, E.S.; Hernández, V.M.; Chan, C.S. The external globus pallidus: Progress and perspectives. Eur. J. Neurosci., 2016, 43(10), 1239-1265. doi: 10.1111/ejn.13196 PMID: 26841063
  2. Dong, J.; Hawes, S.; Wu, J.; Le, W.; Cai, H. Connectivity and functionality of the globus pallidus externa under normal conditions and parkinson’s disease. Front. Neural Circuits, 2021, 15, 645287. doi: 10.3389/fncir.2021.645287 PMID: 33737869
  3. Dodson, P.D.; Larvin, J.T.; Duffell, J.M.; Garas, F.N.; Doig, N.M.; Kessaris, N.; Duguid, I.C.; Bogacz, R.; Butt, S.J.B.; Magill, P.J. Distinct developmental origins manifest in the specialized encoding of movement by adult neurons of the external globus pallidus. Neuron, 2015, 86(2), 501-513. doi: 10.1016/j.neuron.2015.03.007 PMID: 25843402
  4. Abdi, A.; Mallet, N.; Mohamed, F.Y.; Sharott, A.; Dodson, P.D.; Nakamura, K.C.; Suri, S.; Avery, S.V.; Larvin, J.T.; Garas, F.N.; Garas, S.N.; Vinciati, F.; Morin, S.; Bezard, E.; Baufreton, J.; Magill, P.J. Prototypic and arkypallidal neurons in the dopamine-intact external globus pallidus. J. Neurosci., 2015, 35(17), 6667-6688. doi: 10.1523/JNEUROSCI.4662-14.2015 PMID: 25926446
  5. Aristieta, A.; Barresi, M.; Azizpour, L.S.; Barrière, G.; Courtand, G.; de la Crompe, B.; Guilhemsang, L.; Gauthier, S.; Fioramonti, S.; Baufreton, J.; Mallet, N.P. A disynaptic circuit in the globus pallidus controls locomotion inhibition. Curr. Biol., 2021, 31(4), 707-721.e7. doi: 10.1016/j.cub.2020.11.019 PMID: 33306949
  6. Sadek, A.R.; Magill, P.J.; Bolam, J.P. A single-cell analysis of intrinsic connectivity in the rat globus pallidus. J. Neurosci., 2007, 27(24), 6352-6362. doi: 10.1523/JNEUROSCI.0953-07.2007 PMID: 17567796
  7. Miguelez, C.; Morin, S.; Martinez, A.; Goillandeau, M.; Bezard, E.; Bioulac, B.; Baufreton, J. Altered pallido-pallidal synaptic transmission leads to aberrant firing of globus pallidus neurons in a rat model of Parkinson’s disease. J. Physiol., 2012, 590(22), 5861-5875. doi: 10.1113/jphysiol.2012.241331 PMID: 22890706
  8. Rommelfanger, K.S.; Wichmann, T. Extrastriatal dopaminergic circuits of the basal ganglia. Front. Neuroanat., 2010, 4, 139. doi: 10.3389/fnana.2010.00139 PMID: 21103009
  9. Mamad, O.; Delaville, C.; Benjelloun, W.; Benazzouz, A. Dopaminergic control of the globus pallidus through activation of D2 receptors and its impact on the electrical activity of subthalamic nucleus and substantia nigra reticulata neurons. PLoS One, 2015, 10(3), e0119152. doi: 10.1371/journal.pone.0119152 PMID: 25742005
  10. Meszaros, J.; Cheung, T.; Erler, M.M.; Kang, U.J.; Sames, D.; Kellendonk, C.; Sulzer, D. Evoked transients of pH-sensitive fluorescent false neurotransmitter reveal dopamine hot spots in the globus pallidus. eLife, 2018, 7, e42383. doi: 10.7554/eLife.42383 PMID: 30566076
  11. Lindvall, O.; Björklund, A. Dopaminergic innervation of the globus pallidus by collaterals from the nigrostriatal pathway. Brain Res., 1979, 172(1), 169-173. doi: 10.1016/0006-8993(79)90907-7 PMID: 466461
  12. Gauthier, J.; Parent, M.; Lévesque, M.; Parent, A. The axonal arborization of single nigrostriatal neurons in rats. Brain Res., 1999, 834(1-2), 228-232. doi: 10.1016/S0006-8993(99)01573-5 PMID: 10407122
  13. Aransay, A.; Rodríguez-López, C.; García-Amado, M.; Clascá, F.; Prensa, L. Long-range projection neurons of the mouse ventral tegmental area: A single-cell axon tracing analysis. Front. Neuroanat., 2015, 9, 59. doi: 10.3389/fnana.2015.00059 PMID: 26042000
  14. Hauber, W.; Fuchs, H. Dopamine release in the rat globus pallidus characterised by in vivo microdialysis. Behav. Brain Res., 2000, 111(1-2), 39-44. doi: 10.1016/S0166-4328(99)00197-7 PMID: 10840130
  15. Napier, T.C.; Simson, P.E.; Givens, B.S. Dopamine electrophysiology of ventral pallidal/substantia innominata neurons: comparison with the dorsal globus pallidus. J. Pharmacol. Exp. Ther., 1991, 258(1), 249-262. PMID: 1677041
  16. Querejeta, E.; Delgado, A.; Valdiosera, R.; Erlij, D.; Aceves, J. Intrapallidal D2 dopamine receptors control globus pallidus neuron activity in the rat. Neurosci. Lett., 2001, 300(2), 79-82. doi: 10.1016/S0304-3940(01)01550-6 PMID: 11207379
  17. Hooper, K.C.; Banks, D.A.; Stordahl, L.J.; White, I.M.; Rebec, G.V. Quinpirole inhibits striatal and excites pallidal neurons in freely moving rats. Neurosci. Lett., 1997, 237(2-3), 69-72. doi: 10.1016/S0304-3940(97)00812-4 PMID: 9453217
  18. Levey, A.I.; Hersch, S.M.; Rye, D.B.; Sunahara, R.K.; Niznik, H.B.; Kitt, C.A.; Price, D.L.; Maggio, R.; Brann, M.R.; Ciliax, B.J. Localization of D1 and D2 dopamine receptors in brain with subtype-specific antibodies. Proc. Natl. Acad. Sci. USA, 1993, 90(19), 8861-8865. doi: 10.1073/pnas.90.19.8861 PMID: 8415621
  19. Yung, K.K.L.; Bolam, J.P.; Smith, A.D.; Hersch, S.M.; Ciliax, B.J.; Levey, A.I. Immunocytochemical localization of D1 and D2 dopamine receptors in the basal ganglia of the rat: Light and electron microscopy. Neuroscience, 1995, 65(3), 709-730. doi: 10.1016/0306-4522(94)00536-E PMID: 7609871
  20. Khan, Z.U.; Gutiérrez, A.; Martín, R.; Peñafiel, A.; Rivera, A.; De La Calle, A. Differential regional and cellular distribution of dopamine D2-like receptors: An immunocytochemical study of subtype-specific antibodies in rat and human brain. J. Comp. Neurol., 1998, 402(3), 353-371. doi: 10.1002/(SICI)1096-9861(19981221)402:33.0.CO;2-4 PMID: 9853904
  21. Hoover, B.R.; Marshall, J.F. Molecular, chemical, and anatomical characterization of globus pallidus dopamine D2 receptor mRNA-containing neurons. Synapse, 2004, 52(2), 100-113. doi: 10.1002/syn.20007 PMID: 15034916
  22. Bouali-Benazzouz, R.; Tai, C.H.; Chetrit, J.; Benazzouz, A. Intrapallidal injection of 6-hydroxydopamine induced changes in dopamine innervation and neuronal activity of globus pallidus. Neuroscience, 2009, 164(2), 588-596. doi: 10.1016/j.neuroscience.2009.07.034 PMID: 19628021
  23. Raz, A.; Vaadia, E.; Bergman, H. Firing patterns and correlations of spontaneous discharge of pallidal neurons in the normal and the tremulous 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine vervet model of parkinsonism. J. Neurosci., 2000, 20(22), 8559-8571. doi: 10.1523/JNEUROSCI.20-22-08559.2000 PMID: 11069964
  24. Nini, A.; Feingold, A.; Slovin, H.; Bergman, H. Neurons in the globus pallidus do not show correlated activity in the normal monkey, but phase-locked oscillations appear in the MPTP model of parkinsonism. J. Neurophysiol., 1995, 74(4), 1800-1805. doi: 10.1152/jn.1995.74.4.1800 PMID: 8989416
  25. Filion, M.; Tremblay, L. Abnormal spontaneous activity of globus pallidus neurons in monkeys with MPTP-induced parkinsonism. Brain Res., 1991, 547(1), 140-144. doi: 10.1016/0006-8993(91)90585-J PMID: 1677607
  26. Puighermanal, E.; Castell, L.; Esteve-Codina, A.; Melser, S.; Kaganovsky, K.; Zussy, C.; Boubaker-Vitre, J.; Gut, M.; Rialle, S.; Kellendonk, C.; Sanz, E.; Quintana, A.; Marsicano, G.; Martin, M.; Rubinstein, M.; Girault, J.A.; Ding, J.B.; Valjent, E. Functional and molecular heterogeneity of D2R neurons along dorsal ventral axis in the striatum. Nat. Commun., 2020, 11(1), 1957. doi: 10.1038/s41467-020-15716-9 PMID: 32327644
  27. Gangarossa, G.; Perroy, J.; Valjent, E. Combinatorial topography and cell-type specific regulation of the ERK pathway by dopaminergic agonists in the mouse striatum. Brain Struct. Funct., 2013, 218(2), 405-419. doi: 10.1007/s00429-012-0405-6 PMID: 22453353
  28. Bertran-Gonzalez, J.; Håkansson, K.; Borgkvist, A.; Irinopoulou, T.; Brami-Cherrier, K.; Usiello, A.; Greengard, P.; Hervé, D.; Girault, J.A.; Valjent, E.; Fisone, G. Histone H3 phosphorylation is under the opposite tonic control of dopamine D2 and adenosine A2A receptors in striatopallidal neurons. Neuropsychopharmacology, 2009, 34(7), 1710-1720. doi: 10.1038/npp.2008.228 PMID: 19158668
  29. Puighermanal, E.; Biever, A.; Espallergues, J.; Gangarossa, G.; De Bundel, D.; Valjent, E. drd2-cre:ribotag mouse line unravels the possible diversity of dopamine d2 receptor-expressing cells of the dorsal mouse hippocampus. Hippocampus, 2015, 25(7), 858-875. doi: 10.1002/hipo.22408 PMID: 25545461
  30. Biever, A.; Puighermanal, E.; Nishi, A.; David, A.; Panciatici, C.; Longueville, S.; Xirodimas, D.; Gangarossa, G.; Meyuhas, O.; Hervé, D.; Girault, J.A.; Valjent, E. PKA-dependent phosphorylation of ribosomal protein S6 does not correlate with translation efficiency in striatonigral and striatopallidal medium-sized spiny neurons. J. Neurosci., 2015, 35(10), 4113-4130. doi: 10.1523/JNEUROSCI.3288-14.2015 PMID: 25762659
  31. Franklin, K.B.J.; Paxinos, G. The mouse brain in stereotaxic coordinates Compact 3; Elsevier Academic Press, 2008.
  32. Cutando, L.; Puighermanal, E.; Castell, L.; Tarot, P.; Bertaso, F.; Bonnavion, P.; de Kerchove d’Exaerde, A.; Isingrini, E.; Galante, M.; Dallerac, G.; Pascoli, V.; Lüscher, C.; Giros, B.; Valjent, E. regulation of GluA1 phosphorylation by d‐amphetamine and methylphenidate in the cerebellum. Addict. Biol., 2021, 26(4), e12995. doi: 10.1111/adb.12995 PMID: 33368923
  33. Cousineau, J.; Lescouzères, L.; Taupignon, A.; Delgado-Zabalza, L.; Valjent, E.; Baufreton, J.; Le Bon-Jégo, M. Dopamine D2-like receptors modulate intrinsic properties and synaptic transmission of parvalbumin interneurons in the mouse primary motor cortex. eNeuro, 2020, 7(3), ENEURO.0081-20.2020. doi: 10.1523/ENEURO.0081-20.2020
  34. Marshall, J.F.; Henry, B.L.; Billings, L.M.; Hoover, B.R. The role of the globus pallidus D2 subfamily of dopamine receptors in pallidal immediate early gene expression. Neuroscience, 2001, 105(2), 365-378. doi: 10.1016/S0306-4522(01)00180-4 PMID: 11672604
  35. Bertran-Gonzalez, J.; Bosch, C.; Maroteaux, M.; Matamales, M.; Hervé, D.; Valjent, E.; Girault, J.A. Opposing patterns of signaling activation in dopamine D1 and D2 receptor-expressing striatal neurons in response to cocaine and haloperidol. J. Neurosci., 2008, 28(22), 5671-5685. doi: 10.1523/JNEUROSCI.1039-08.2008 PMID: 18509028
  36. Matamales, M.; Bertran-Gonzalez, J.; Salomon, L.; Degos, B.; Deniau, J.M.; Valjent, E.; Hervé, D.; Girault, J.A. Striatal medium-sized spiny neurons: identification by nuclear staining and study of neuronal subpopulations in BAC transgenic mice. PLoS One, 2009, 4(3), e4770. doi: 10.1371/journal.pone.0004770 PMID: 19274089
  37. Sanz, E.; Yang, L.; Su, T.; Morris, D.R.; McKnight, G.S.; Amieux, P.S. Cell-type-specific isolation of ribosome-associated mRNA from complex tissues. Proc. Natl. Acad. Sci. USA, 2009, 106(33), 13939-13944. doi: 10.1073/pnas.0907143106 PMID: 19666516
  38. Saunders, A.; Oldenburg, I.A.; Berezovskii, V.K.; Johnson, C.A.; Kingery, N.D.; Elliott, H.L.; Xie, T.; Gerfen, C.R.; Sabatini, B.L. A direct GABAergic output from the basal ganglia to frontal cortex. Nature, 2015, 521(7550), 85-89. doi: 10.1038/nature14179 PMID: 25739505
  39. Rajakumar, N.; Elisevich, K.; Flumerfelt, B.A. Parvalbumin-containing GABAergic neurons in the basal ganglia output system of the rat. J. Comp. Neurol., 1994, 350(2), 324-336. doi: 10.1002/cne.903500214 PMID: 7884046
  40. Moriizumi, T.; Hattori, T. Separate neuronal populations of the rat globus pallidus projecting to the subthalamic nucleus, auditory cortex and pedunculopontine tegmental area. Neuroscience, 1992, 46(3), 701-710. doi: 10.1016/0306-4522(92)90156-V PMID: 1372116
  41. Nóbrega-Pereira, S.; Gelman, D.; Bartolini, G.; Pla, R.; Pierani, A.; Marín, O. Origin and molecular specification of globus pallidus neurons. J. Neurosci., 2010, 30(8), 2824-2834. doi: 10.1523/JNEUROSCI.4023-09.2010 PMID: 20181580
  42. Gangarossa, G.; Castell, L.; Castro, L.; Tarot, P.; Veyrunes, F.; Vincent, P.; Bertaso, F.; Valjent, E. Contrasting patterns of ERK activation in the tail of the striatum in response to aversive and rewarding signals. J. Neurochem., 2019, 151(2), 204-226. doi: 10.1111/jnc.14804 PMID: 31245856
  43. Rocchetti, J.; Isingrini, E.; Dal Bo, G.; Sagheby, S.; Menegaux, A.; Tronche, F.; Levesque, D.; Moquin, L.; Gratton, A.; Wong, T.P.; Rubinstein, M.; Giros, B. Presynaptic D2 dopamine receptors control long-term depression expression and memory processes in the temporal hippocampus. Biol. Psychiatry, 2015, 77(6), 513-525. doi: 10.1016/j.biopsych.2014.03.013 PMID: 24742619
  44. Wei, X.; Ma, T.; Cheng, Y.; Huang, C.C.Y.; Wang, X.; Lu, J.; Wang, J. Dopamine D1 or D2 receptor-expressing neurons in the central nervous system. Addict. Biol., 2018, 23(2), 569-584. doi: 10.1111/adb.12512 PMID: 28436559
  45. Khlghatyan, J.; Quintana, C.; Parent, M.; Beaulieu, J-M. High sensitivity mapping of cortical dopamine D2 receptor expressing neurons. Cereb. Cortex, 2019, 29(9), 3813-3827. doi: 10.1093/cercor/bhy261
  46. Cutando, L.; Puighermanal, E.; Castell, L.; Tarot, P.; Belle, M.; Bertaso, F.; Arango-Lievano, M.; Ango, F.; Rubinstein, M.; Quintana, A.; Chédotal, A.; Mameli, M.; Valjent, E. Cerebellar dopamine D2 receptors regulate social behaviors. Nat. Neurosci., 2022, 25(7), 900-911. doi: 10.1038/s41593-022-01092-8 PMID: 35710984
  47. Bouthenet, M.L.; Martres, M.P.; Sales, N.; Schwartz, J.C. A detailed mapping of dopamine D-2 receptors in rat central nervous system by autoradiography with 125Iiodosulpride. Neuroscience, 1987, 20(1), 117-155. doi: 10.1016/0306-4522(87)90008-X PMID: 2882443
  48. Bouthenet, M.L.; Souil, E.; Martres, M.P.; Sokoloff, P.; Giros, B.; Schwartz, J.C. Localization of dopamine D3 receptor mRNA in the rat brain using in situ hybridization histochemistry: Comparison with dopamine D2 receptor mRNA. Brain Res., 1991, 564(2), 203-219. doi: 10.1016/0006-8993(91)91456-B PMID: 1839781
  49. Meador-Woodruff, J.H.; Mansour, A.; Bunzow, J.R.; Van Tol, H.H.; Watson, S.J., Jr; Civelli, O. Distribution of D2 dopamine receptor mRNA in rat brain. Proc. Natl. Acad. Sci. USA, 1989, 86(19), 7625-7628. doi: 10.1073/pnas.86.19.7625 PMID: 2529545
  50. Shammah-Lagnado, S.J.; Alheid, G.F.; Heimer, L. Efferent connections of the caudal part of the globus pallidus in the rat. J. Comp. Neurol., 1996, 376(3), 489-507. doi: 10.1002/(SICI)1096-9861(19961216)376:33.0.CO;2-H PMID: 8956113
  51. Valjent, E.; Gangarossa, G. The tail of the striatum: From anatomy to connectivity and function. Trends Neurosci., 2021, 44(3), 203-214. doi: 10.1016/j.tins.2020.10.016 PMID: 33243489
  52. Mastro, K.J.; Bouchard, R.S.; Holt, H.A.K.; Gittis, A.H. Transgenic mouse lines subdivide external segment of the globus pallidus (GPe) neurons and reveal distinct GPe output pathways. J. Neurosci., 2014, 34(6), 2087-2099. doi: 10.1523/JNEUROSCI.4646-13.2014 PMID: 24501350
  53. Hernández, V.M.; Hegeman, D.J.; Cui, Q.; Kelver, D.A.; Fiske, M.P.; Glajch, K.E.; Pitt, J.E.; Huang, T.Y.; Justice, N.J.; Chan, C.S. Parvalbumin+ neurons and npas1+ neurons are distinct neuron classes in the mouse external globus pallidus. J. Neurosci., 2015, 35(34), 11830-11847. doi: 10.1523/JNEUROSCI.4672-14.2015 PMID: 26311767
  54. Abrahao, K.P.; Lovinger, D.M. Classification of GABAergic neuron subtypes from the globus pallidus using wild-type and transgenic mice. J. Physiol., 2018, 596(17), 4219-4235. doi: 10.1113/JP276079 PMID: 29917235
  55. Pamukcu, A.; Cui, Q.; Xenias, H.S.; Berceau, B.L.; Augustine, E.C.; Fan, I.; Chalasani, S.; Hantman, A.W.; Lerner, T.N.; Boca, S.M.; Chan, C.S. Parvalbumin + and Npas1 + Pallidal Neurons Have Distinct Circuit Topology and Function. J. Neurosci., 2020, 40(41), 7855-7876. doi: 10.1523/JNEUROSCI.0361-20.2020 PMID: 32868462
  56. Ruskin, D.N.; Marshall, J.F. Differing influences of dopamine agonists and antagonists on fos expression in identified populations of globus pallidus neurons. Neuroscience, 1997, 81(1), 79-92. doi: 10.1016/S0306-4522(97)00113-9 PMID: 9300403
  57. Billings, L.M.; Marshall, J.F. D2 antagonist-induced c-fos in an identified subpopulation of globus pallidus neurons by a direct intrapallidal action. Brain Res., 2003, 964(2), 237-243. doi: 10.1016/S0006-8993(02)04060-X PMID: 12576184
  58. Eilam, D.; Szechtman, H. Biphasic effect of D-2 agonist quinpirole on locomotion and movements. Eur. J. Pharmacol., 1989, 161(2-3), 151-157. doi: 10.1016/0014-2999(89)90837-6 PMID: 2566488
  59. Thorn, L.; Ashmeade, T.E.; Storey, V.J.; Routledge, C.; Reavill, C. Evidence to suggest that agonist modulation of hyperlocomotion is via post-synaptic dopamine D2 or D3 receptors. Neuropharmacology, 1997, 36(6), 787-792. doi: 10.1016/S0028-3908(97)00033-6 PMID: 9225306
  60. Rodrigo, J.; Fernández, P.; Bentura, M.L.; de Velasco, J.M.; Serrano, J.; Uttenthal, O.; Martínez-Murillo, R. Distribution of catecholaminergic afferent fibres in the rat globus pallidus and their relations with cholinergic neurons. J. Chem. Neuroanat., 1998, 15(1), 1-20. doi: 10.1016/S0891-0618(98)00016-7 PMID: 9710145
  61. Cui, Q.; Pitt, J.E.; Pamukcu, A.; Poulin, J.F.; Mabrouk, O.S.; Fiske, M.P.; Fan, I.B.; Augustine, E.C.; Young, K.A.; Kennedy, R.T.; Awatramani, R.; Chan, C.S. Blunted mGluR activation disinhibits striatopallidal transmission in parkinsonian mice. Cell Rep., 2016, 17(9), 2431-2444. doi: 10.1016/j.celrep.2016.10.087 PMID: 27880915
  62. Chazalon, M.; Paredes-Rodriguez, E.; Morin, S.; Martinez, A.; Cristóvão-Ferreira, S.; Vaz, S.; Sebastiao, A.; Panatier, A.; Boué-Grabot, E.; Miguelez, C.; Baufreton, J. GAT-3 dysfunction generates tonic inhibition in external globus pallidus neurons in parkinsonian rodents. Cell Rep., 2018, 23(6), 1678-1690. doi: 10.1016/j.celrep.2018.04.014 PMID: 29742425
  63. Mastrogiacomo, R.; Trigilio, G.; Dautan, D.; Devroye, C.; Ferretti, V.; Vitali, E.; Orso, G.; Marotta, R.; Maltese, F.; Piras, G. 2021.Astrocytic regulation of basal ganglia dopamine/D2-dependent behaviors (neuroscience). bioRxiv, doi: 10.1101/2021.05.11.443394

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers