Spatiomolecular Characterization of Dopamine D2 Receptors Cells in the Mouse External Globus Pallidus
- Authors: Espallergues J.1, Boubaker-Vitre J.2, Mignon A.3, Avrillon M.4, Bon-Jego M.5, Baufreton J.5, Valjent E.4
-
Affiliations:
- IGF, University Montpellie
- 1IGF, University Montpellier
- , University Montpellier
- IGF, University Montpellier
- , University Bordeaux
- Issue: Vol 22, No 9 (2024)
- Pages: 1528-1539
- Section: Neurology
- URL: https://rjpbr.com/1570-159X/article/view/644915
- DOI: https://doi.org/10.2174/1570159X21666230720121027
- ID: 644915
Cite item
Full Text
Abstract
The external globus pallidus (GPe) is part of the basal ganglia circuit and plays a key role in controlling the actions. Although, many evidence indicate that dopamine through its activation of dopamine D2 receptors (D2Rs) modulates the GPe neuronal activity, the precise spatiomolecular characterization of cell populations expressing D2Rs in the mouse GPe is still lacking. By combining single molecule in situ hybridization, cell type-specific imaging analyses, and electrophysiology slice recordings, we found that GPe D2R cells are neurons preferentially localized in the caudal portion of GPe. These neurons comprising pallido-striatal, pallido-nigral, and pallido-cortical neurons segregate into two distinct populations displaying molecular and electrophysiological features of GPe GABAergic PV/NKX2.1 and cholinergic neurons respectively. By clarifying the spatial molecular identity of GPe D2R neurons in the mouse, this work provides the basis for future studies aiming at disentangling the action of dopamine within the GPe.
Keywords
About the authors
Julie Espallergues
IGF, University Montpellie
Email: info@benthamscience.net
Jihane Boubaker-Vitre
1IGF, University Montpellier
Email: info@benthamscience.net
Audrey Mignon
, University Montpellier
Email: info@benthamscience.net
Maelle Avrillon
IGF, University Montpellier
Email: info@benthamscience.net
Morgane Bon-Jego
, University Bordeaux
Email: info@benthamscience.net
Jerome Baufreton
, University Bordeaux
Email: info@benthamscience.net
Emmanuel Valjent
IGF, University Montpellier
Author for correspondence.
Email: info@benthamscience.net
References
- Hegeman, D.J.; Hong, E.S.; Hernández, V.M.; Chan, C.S. The external globus pallidus: Progress and perspectives. Eur. J. Neurosci., 2016, 43(10), 1239-1265. doi: 10.1111/ejn.13196 PMID: 26841063
- Dong, J.; Hawes, S.; Wu, J.; Le, W.; Cai, H. Connectivity and functionality of the globus pallidus externa under normal conditions and parkinsons disease. Front. Neural Circuits, 2021, 15, 645287. doi: 10.3389/fncir.2021.645287 PMID: 33737869
- Dodson, P.D.; Larvin, J.T.; Duffell, J.M.; Garas, F.N.; Doig, N.M.; Kessaris, N.; Duguid, I.C.; Bogacz, R.; Butt, S.J.B.; Magill, P.J. Distinct developmental origins manifest in the specialized encoding of movement by adult neurons of the external globus pallidus. Neuron, 2015, 86(2), 501-513. doi: 10.1016/j.neuron.2015.03.007 PMID: 25843402
- Abdi, A.; Mallet, N.; Mohamed, F.Y.; Sharott, A.; Dodson, P.D.; Nakamura, K.C.; Suri, S.; Avery, S.V.; Larvin, J.T.; Garas, F.N.; Garas, S.N.; Vinciati, F.; Morin, S.; Bezard, E.; Baufreton, J.; Magill, P.J. Prototypic and arkypallidal neurons in the dopamine-intact external globus pallidus. J. Neurosci., 2015, 35(17), 6667-6688. doi: 10.1523/JNEUROSCI.4662-14.2015 PMID: 25926446
- Aristieta, A.; Barresi, M.; Azizpour, L.S.; Barrière, G.; Courtand, G.; de la Crompe, B.; Guilhemsang, L.; Gauthier, S.; Fioramonti, S.; Baufreton, J.; Mallet, N.P. A disynaptic circuit in the globus pallidus controls locomotion inhibition. Curr. Biol., 2021, 31(4), 707-721.e7. doi: 10.1016/j.cub.2020.11.019 PMID: 33306949
- Sadek, A.R.; Magill, P.J.; Bolam, J.P. A single-cell analysis of intrinsic connectivity in the rat globus pallidus. J. Neurosci., 2007, 27(24), 6352-6362. doi: 10.1523/JNEUROSCI.0953-07.2007 PMID: 17567796
- Miguelez, C.; Morin, S.; Martinez, A.; Goillandeau, M.; Bezard, E.; Bioulac, B.; Baufreton, J. Altered pallido-pallidal synaptic transmission leads to aberrant firing of globus pallidus neurons in a rat model of Parkinsons disease. J. Physiol., 2012, 590(22), 5861-5875. doi: 10.1113/jphysiol.2012.241331 PMID: 22890706
- Rommelfanger, K.S.; Wichmann, T. Extrastriatal dopaminergic circuits of the basal ganglia. Front. Neuroanat., 2010, 4, 139. doi: 10.3389/fnana.2010.00139 PMID: 21103009
- Mamad, O.; Delaville, C.; Benjelloun, W.; Benazzouz, A. Dopaminergic control of the globus pallidus through activation of D2 receptors and its impact on the electrical activity of subthalamic nucleus and substantia nigra reticulata neurons. PLoS One, 2015, 10(3), e0119152. doi: 10.1371/journal.pone.0119152 PMID: 25742005
- Meszaros, J.; Cheung, T.; Erler, M.M.; Kang, U.J.; Sames, D.; Kellendonk, C.; Sulzer, D. Evoked transients of pH-sensitive fluorescent false neurotransmitter reveal dopamine hot spots in the globus pallidus. eLife, 2018, 7, e42383. doi: 10.7554/eLife.42383 PMID: 30566076
- Lindvall, O.; Björklund, A. Dopaminergic innervation of the globus pallidus by collaterals from the nigrostriatal pathway. Brain Res., 1979, 172(1), 169-173. doi: 10.1016/0006-8993(79)90907-7 PMID: 466461
- Gauthier, J.; Parent, M.; Lévesque, M.; Parent, A. The axonal arborization of single nigrostriatal neurons in rats. Brain Res., 1999, 834(1-2), 228-232. doi: 10.1016/S0006-8993(99)01573-5 PMID: 10407122
- Aransay, A.; Rodríguez-López, C.; García-Amado, M.; Clascá, F.; Prensa, L. Long-range projection neurons of the mouse ventral tegmental area: A single-cell axon tracing analysis. Front. Neuroanat., 2015, 9, 59. doi: 10.3389/fnana.2015.00059 PMID: 26042000
- Hauber, W.; Fuchs, H. Dopamine release in the rat globus pallidus characterised by in vivo microdialysis. Behav. Brain Res., 2000, 111(1-2), 39-44. doi: 10.1016/S0166-4328(99)00197-7 PMID: 10840130
- Napier, T.C.; Simson, P.E.; Givens, B.S. Dopamine electrophysiology of ventral pallidal/substantia innominata neurons: comparison with the dorsal globus pallidus. J. Pharmacol. Exp. Ther., 1991, 258(1), 249-262. PMID: 1677041
- Querejeta, E.; Delgado, A.; Valdiosera, R.; Erlij, D.; Aceves, J. Intrapallidal D2 dopamine receptors control globus pallidus neuron activity in the rat. Neurosci. Lett., 2001, 300(2), 79-82. doi: 10.1016/S0304-3940(01)01550-6 PMID: 11207379
- Hooper, K.C.; Banks, D.A.; Stordahl, L.J.; White, I.M.; Rebec, G.V. Quinpirole inhibits striatal and excites pallidal neurons in freely moving rats. Neurosci. Lett., 1997, 237(2-3), 69-72. doi: 10.1016/S0304-3940(97)00812-4 PMID: 9453217
- Levey, A.I.; Hersch, S.M.; Rye, D.B.; Sunahara, R.K.; Niznik, H.B.; Kitt, C.A.; Price, D.L.; Maggio, R.; Brann, M.R.; Ciliax, B.J. Localization of D1 and D2 dopamine receptors in brain with subtype-specific antibodies. Proc. Natl. Acad. Sci. USA, 1993, 90(19), 8861-8865. doi: 10.1073/pnas.90.19.8861 PMID: 8415621
- Yung, K.K.L.; Bolam, J.P.; Smith, A.D.; Hersch, S.M.; Ciliax, B.J.; Levey, A.I. Immunocytochemical localization of D1 and D2 dopamine receptors in the basal ganglia of the rat: Light and electron microscopy. Neuroscience, 1995, 65(3), 709-730. doi: 10.1016/0306-4522(94)00536-E PMID: 7609871
- Khan, Z.U.; Gutiérrez, A.; Martín, R.; Peñafiel, A.; Rivera, A.; De La Calle, A. Differential regional and cellular distribution of dopamine D2-like receptors: An immunocytochemical study of subtype-specific antibodies in rat and human brain. J. Comp. Neurol., 1998, 402(3), 353-371. doi: 10.1002/(SICI)1096-9861(19981221)402:33.0.CO;2-4 PMID: 9853904
- Hoover, B.R.; Marshall, J.F. Molecular, chemical, and anatomical characterization of globus pallidus dopamine D2 receptor mRNA-containing neurons. Synapse, 2004, 52(2), 100-113. doi: 10.1002/syn.20007 PMID: 15034916
- Bouali-Benazzouz, R.; Tai, C.H.; Chetrit, J.; Benazzouz, A. Intrapallidal injection of 6-hydroxydopamine induced changes in dopamine innervation and neuronal activity of globus pallidus. Neuroscience, 2009, 164(2), 588-596. doi: 10.1016/j.neuroscience.2009.07.034 PMID: 19628021
- Raz, A.; Vaadia, E.; Bergman, H. Firing patterns and correlations of spontaneous discharge of pallidal neurons in the normal and the tremulous 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine vervet model of parkinsonism. J. Neurosci., 2000, 20(22), 8559-8571. doi: 10.1523/JNEUROSCI.20-22-08559.2000 PMID: 11069964
- Nini, A.; Feingold, A.; Slovin, H.; Bergman, H. Neurons in the globus pallidus do not show correlated activity in the normal monkey, but phase-locked oscillations appear in the MPTP model of parkinsonism. J. Neurophysiol., 1995, 74(4), 1800-1805. doi: 10.1152/jn.1995.74.4.1800 PMID: 8989416
- Filion, M.; Tremblay, L. Abnormal spontaneous activity of globus pallidus neurons in monkeys with MPTP-induced parkinsonism. Brain Res., 1991, 547(1), 140-144. doi: 10.1016/0006-8993(91)90585-J PMID: 1677607
- Puighermanal, E.; Castell, L.; Esteve-Codina, A.; Melser, S.; Kaganovsky, K.; Zussy, C.; Boubaker-Vitre, J.; Gut, M.; Rialle, S.; Kellendonk, C.; Sanz, E.; Quintana, A.; Marsicano, G.; Martin, M.; Rubinstein, M.; Girault, J.A.; Ding, J.B.; Valjent, E. Functional and molecular heterogeneity of D2R neurons along dorsal ventral axis in the striatum. Nat. Commun., 2020, 11(1), 1957. doi: 10.1038/s41467-020-15716-9 PMID: 32327644
- Gangarossa, G.; Perroy, J.; Valjent, E. Combinatorial topography and cell-type specific regulation of the ERK pathway by dopaminergic agonists in the mouse striatum. Brain Struct. Funct., 2013, 218(2), 405-419. doi: 10.1007/s00429-012-0405-6 PMID: 22453353
- Bertran-Gonzalez, J.; Håkansson, K.; Borgkvist, A.; Irinopoulou, T.; Brami-Cherrier, K.; Usiello, A.; Greengard, P.; Hervé, D.; Girault, J.A.; Valjent, E.; Fisone, G. Histone H3 phosphorylation is under the opposite tonic control of dopamine D2 and adenosine A2A receptors in striatopallidal neurons. Neuropsychopharmacology, 2009, 34(7), 1710-1720. doi: 10.1038/npp.2008.228 PMID: 19158668
- Puighermanal, E.; Biever, A.; Espallergues, J.; Gangarossa, G.; De Bundel, D.; Valjent, E. drd2-cre:ribotag mouse line unravels the possible diversity of dopamine d2 receptor-expressing cells of the dorsal mouse hippocampus. Hippocampus, 2015, 25(7), 858-875. doi: 10.1002/hipo.22408 PMID: 25545461
- Biever, A.; Puighermanal, E.; Nishi, A.; David, A.; Panciatici, C.; Longueville, S.; Xirodimas, D.; Gangarossa, G.; Meyuhas, O.; Hervé, D.; Girault, J.A.; Valjent, E. PKA-dependent phosphorylation of ribosomal protein S6 does not correlate with translation efficiency in striatonigral and striatopallidal medium-sized spiny neurons. J. Neurosci., 2015, 35(10), 4113-4130. doi: 10.1523/JNEUROSCI.3288-14.2015 PMID: 25762659
- Franklin, K.B.J.; Paxinos, G. The mouse brain in stereotaxic coordinates Compact 3; Elsevier Academic Press, 2008.
- Cutando, L.; Puighermanal, E.; Castell, L.; Tarot, P.; Bertaso, F.; Bonnavion, P.; de Kerchove dExaerde, A.; Isingrini, E.; Galante, M.; Dallerac, G.; Pascoli, V.; Lüscher, C.; Giros, B.; Valjent, E. regulation of GluA1 phosphorylation by d‐amphetamine and methylphenidate in the cerebellum. Addict. Biol., 2021, 26(4), e12995. doi: 10.1111/adb.12995 PMID: 33368923
- Cousineau, J.; Lescouzères, L.; Taupignon, A.; Delgado-Zabalza, L.; Valjent, E.; Baufreton, J.; Le Bon-Jégo, M. Dopamine D2-like receptors modulate intrinsic properties and synaptic transmission of parvalbumin interneurons in the mouse primary motor cortex. eNeuro, 2020, 7(3), ENEURO.0081-20.2020. doi: 10.1523/ENEURO.0081-20.2020
- Marshall, J.F.; Henry, B.L.; Billings, L.M.; Hoover, B.R. The role of the globus pallidus D2 subfamily of dopamine receptors in pallidal immediate early gene expression. Neuroscience, 2001, 105(2), 365-378. doi: 10.1016/S0306-4522(01)00180-4 PMID: 11672604
- Bertran-Gonzalez, J.; Bosch, C.; Maroteaux, M.; Matamales, M.; Hervé, D.; Valjent, E.; Girault, J.A. Opposing patterns of signaling activation in dopamine D1 and D2 receptor-expressing striatal neurons in response to cocaine and haloperidol. J. Neurosci., 2008, 28(22), 5671-5685. doi: 10.1523/JNEUROSCI.1039-08.2008 PMID: 18509028
- Matamales, M.; Bertran-Gonzalez, J.; Salomon, L.; Degos, B.; Deniau, J.M.; Valjent, E.; Hervé, D.; Girault, J.A. Striatal medium-sized spiny neurons: identification by nuclear staining and study of neuronal subpopulations in BAC transgenic mice. PLoS One, 2009, 4(3), e4770. doi: 10.1371/journal.pone.0004770 PMID: 19274089
- Sanz, E.; Yang, L.; Su, T.; Morris, D.R.; McKnight, G.S.; Amieux, P.S. Cell-type-specific isolation of ribosome-associated mRNA from complex tissues. Proc. Natl. Acad. Sci. USA, 2009, 106(33), 13939-13944. doi: 10.1073/pnas.0907143106 PMID: 19666516
- Saunders, A.; Oldenburg, I.A.; Berezovskii, V.K.; Johnson, C.A.; Kingery, N.D.; Elliott, H.L.; Xie, T.; Gerfen, C.R.; Sabatini, B.L. A direct GABAergic output from the basal ganglia to frontal cortex. Nature, 2015, 521(7550), 85-89. doi: 10.1038/nature14179 PMID: 25739505
- Rajakumar, N.; Elisevich, K.; Flumerfelt, B.A. Parvalbumin-containing GABAergic neurons in the basal ganglia output system of the rat. J. Comp. Neurol., 1994, 350(2), 324-336. doi: 10.1002/cne.903500214 PMID: 7884046
- Moriizumi, T.; Hattori, T. Separate neuronal populations of the rat globus pallidus projecting to the subthalamic nucleus, auditory cortex and pedunculopontine tegmental area. Neuroscience, 1992, 46(3), 701-710. doi: 10.1016/0306-4522(92)90156-V PMID: 1372116
- Nóbrega-Pereira, S.; Gelman, D.; Bartolini, G.; Pla, R.; Pierani, A.; Marín, O. Origin and molecular specification of globus pallidus neurons. J. Neurosci., 2010, 30(8), 2824-2834. doi: 10.1523/JNEUROSCI.4023-09.2010 PMID: 20181580
- Gangarossa, G.; Castell, L.; Castro, L.; Tarot, P.; Veyrunes, F.; Vincent, P.; Bertaso, F.; Valjent, E. Contrasting patterns of ERK activation in the tail of the striatum in response to aversive and rewarding signals. J. Neurochem., 2019, 151(2), 204-226. doi: 10.1111/jnc.14804 PMID: 31245856
- Rocchetti, J.; Isingrini, E.; Dal Bo, G.; Sagheby, S.; Menegaux, A.; Tronche, F.; Levesque, D.; Moquin, L.; Gratton, A.; Wong, T.P.; Rubinstein, M.; Giros, B. Presynaptic D2 dopamine receptors control long-term depression expression and memory processes in the temporal hippocampus. Biol. Psychiatry, 2015, 77(6), 513-525. doi: 10.1016/j.biopsych.2014.03.013 PMID: 24742619
- Wei, X.; Ma, T.; Cheng, Y.; Huang, C.C.Y.; Wang, X.; Lu, J.; Wang, J. Dopamine D1 or D2 receptor-expressing neurons in the central nervous system. Addict. Biol., 2018, 23(2), 569-584. doi: 10.1111/adb.12512 PMID: 28436559
- Khlghatyan, J.; Quintana, C.; Parent, M.; Beaulieu, J-M. High sensitivity mapping of cortical dopamine D2 receptor expressing neurons. Cereb. Cortex, 2019, 29(9), 3813-3827. doi: 10.1093/cercor/bhy261
- Cutando, L.; Puighermanal, E.; Castell, L.; Tarot, P.; Belle, M.; Bertaso, F.; Arango-Lievano, M.; Ango, F.; Rubinstein, M.; Quintana, A.; Chédotal, A.; Mameli, M.; Valjent, E. Cerebellar dopamine D2 receptors regulate social behaviors. Nat. Neurosci., 2022, 25(7), 900-911. doi: 10.1038/s41593-022-01092-8 PMID: 35710984
- Bouthenet, M.L.; Martres, M.P.; Sales, N.; Schwartz, J.C. A detailed mapping of dopamine D-2 receptors in rat central nervous system by autoradiography with 125Iiodosulpride. Neuroscience, 1987, 20(1), 117-155. doi: 10.1016/0306-4522(87)90008-X PMID: 2882443
- Bouthenet, M.L.; Souil, E.; Martres, M.P.; Sokoloff, P.; Giros, B.; Schwartz, J.C. Localization of dopamine D3 receptor mRNA in the rat brain using in situ hybridization histochemistry: Comparison with dopamine D2 receptor mRNA. Brain Res., 1991, 564(2), 203-219. doi: 10.1016/0006-8993(91)91456-B PMID: 1839781
- Meador-Woodruff, J.H.; Mansour, A.; Bunzow, J.R.; Van Tol, H.H.; Watson, S.J., Jr; Civelli, O. Distribution of D2 dopamine receptor mRNA in rat brain. Proc. Natl. Acad. Sci. USA, 1989, 86(19), 7625-7628. doi: 10.1073/pnas.86.19.7625 PMID: 2529545
- Shammah-Lagnado, S.J.; Alheid, G.F.; Heimer, L. Efferent connections of the caudal part of the globus pallidus in the rat. J. Comp. Neurol., 1996, 376(3), 489-507. doi: 10.1002/(SICI)1096-9861(19961216)376:33.0.CO;2-H PMID: 8956113
- Valjent, E.; Gangarossa, G. The tail of the striatum: From anatomy to connectivity and function. Trends Neurosci., 2021, 44(3), 203-214. doi: 10.1016/j.tins.2020.10.016 PMID: 33243489
- Mastro, K.J.; Bouchard, R.S.; Holt, H.A.K.; Gittis, A.H. Transgenic mouse lines subdivide external segment of the globus pallidus (GPe) neurons and reveal distinct GPe output pathways. J. Neurosci., 2014, 34(6), 2087-2099. doi: 10.1523/JNEUROSCI.4646-13.2014 PMID: 24501350
- Hernández, V.M.; Hegeman, D.J.; Cui, Q.; Kelver, D.A.; Fiske, M.P.; Glajch, K.E.; Pitt, J.E.; Huang, T.Y.; Justice, N.J.; Chan, C.S. Parvalbumin+ neurons and npas1+ neurons are distinct neuron classes in the mouse external globus pallidus. J. Neurosci., 2015, 35(34), 11830-11847. doi: 10.1523/JNEUROSCI.4672-14.2015 PMID: 26311767
- Abrahao, K.P.; Lovinger, D.M. Classification of GABAergic neuron subtypes from the globus pallidus using wild-type and transgenic mice. J. Physiol., 2018, 596(17), 4219-4235. doi: 10.1113/JP276079 PMID: 29917235
- Pamukcu, A.; Cui, Q.; Xenias, H.S.; Berceau, B.L.; Augustine, E.C.; Fan, I.; Chalasani, S.; Hantman, A.W.; Lerner, T.N.; Boca, S.M.; Chan, C.S. Parvalbumin + and Npas1 + Pallidal Neurons Have Distinct Circuit Topology and Function. J. Neurosci., 2020, 40(41), 7855-7876. doi: 10.1523/JNEUROSCI.0361-20.2020 PMID: 32868462
- Ruskin, D.N.; Marshall, J.F. Differing influences of dopamine agonists and antagonists on fos expression in identified populations of globus pallidus neurons. Neuroscience, 1997, 81(1), 79-92. doi: 10.1016/S0306-4522(97)00113-9 PMID: 9300403
- Billings, L.M.; Marshall, J.F. D2 antagonist-induced c-fos in an identified subpopulation of globus pallidus neurons by a direct intrapallidal action. Brain Res., 2003, 964(2), 237-243. doi: 10.1016/S0006-8993(02)04060-X PMID: 12576184
- Eilam, D.; Szechtman, H. Biphasic effect of D-2 agonist quinpirole on locomotion and movements. Eur. J. Pharmacol., 1989, 161(2-3), 151-157. doi: 10.1016/0014-2999(89)90837-6 PMID: 2566488
- Thorn, L.; Ashmeade, T.E.; Storey, V.J.; Routledge, C.; Reavill, C. Evidence to suggest that agonist modulation of hyperlocomotion is via post-synaptic dopamine D2 or D3 receptors. Neuropharmacology, 1997, 36(6), 787-792. doi: 10.1016/S0028-3908(97)00033-6 PMID: 9225306
- Rodrigo, J.; Fernández, P.; Bentura, M.L.; de Velasco, J.M.; Serrano, J.; Uttenthal, O.; Martínez-Murillo, R. Distribution of catecholaminergic afferent fibres in the rat globus pallidus and their relations with cholinergic neurons. J. Chem. Neuroanat., 1998, 15(1), 1-20. doi: 10.1016/S0891-0618(98)00016-7 PMID: 9710145
- Cui, Q.; Pitt, J.E.; Pamukcu, A.; Poulin, J.F.; Mabrouk, O.S.; Fiske, M.P.; Fan, I.B.; Augustine, E.C.; Young, K.A.; Kennedy, R.T.; Awatramani, R.; Chan, C.S. Blunted mGluR activation disinhibits striatopallidal transmission in parkinsonian mice. Cell Rep., 2016, 17(9), 2431-2444. doi: 10.1016/j.celrep.2016.10.087 PMID: 27880915
- Chazalon, M.; Paredes-Rodriguez, E.; Morin, S.; Martinez, A.; Cristóvão-Ferreira, S.; Vaz, S.; Sebastiao, A.; Panatier, A.; Boué-Grabot, E.; Miguelez, C.; Baufreton, J. GAT-3 dysfunction generates tonic inhibition in external globus pallidus neurons in parkinsonian rodents. Cell Rep., 2018, 23(6), 1678-1690. doi: 10.1016/j.celrep.2018.04.014 PMID: 29742425
- Mastrogiacomo, R.; Trigilio, G.; Dautan, D.; Devroye, C.; Ferretti, V.; Vitali, E.; Orso, G.; Marotta, R.; Maltese, F.; Piras, G. 2021.Astrocytic regulation of basal ganglia dopamine/D2-dependent behaviors (neuroscience). bioRxiv, doi: 10.1101/2021.05.11.443394
Supplementary files
