Sensory Reinforced Corticostriatal Plasticity


Цитировать

Полный текст

Аннотация

Background:Regional changes in corticostriatal transmission induced by phasic dopaminergic signals are an essential feature of the neural network responsible for instrumental reinforcement during discovery of an action. However, the timing of signals that are thought to contribute to the induction of corticostriatal plasticity is difficult to reconcile within the framework of behavioural reinforcement learning, because the reinforcer is normally delayed relative to the selection and execution of causally-related actions.

Objective:While recent studies have started to address the relevance of delayed reinforcement signals and their impact on corticostriatal processing, our objective was to establish a model in which a sensory reinforcer triggers appropriately delayed reinforcement signals relayed to the striatum via intact neuronal pathways and to investigate the effects on corticostriatal plasticity.

Methods:We measured corticostriatal plasticity with electrophysiological recordings using a light flash as a natural sensory reinforcer, and pharmacological manipulations were applied in an in vivo anesthetized rat model preparation.

Results:We demonstrate that the spiking of striatal neurons evoked by single-pulse stimulation of the motor cortex can be potentiated by a natural sensory reinforcer, operating through intact afferent pathways, with signal timing approximating that required for behavioural reinforcement. The pharmacological blockade of dopamine receptors attenuated the observed potentiation of corticostriatal neurotransmission.

Conclusion:This novel in vivo model of corticostriatal plasticity offers a behaviourally relevant framework to address the physiological, anatomical, cellular, and molecular bases of instrumental reinforcement learning.

Ключевые слова

Об авторах

Nicolas Vautrelle

Department of Anatomy, Brain Health Research Centre, University of Otago

Email: info@benthamscience.net

Véronique Coizet

Department of Psychology, University of Sheffield

Email: info@benthamscience.net

Mariana Leriche

Department of Anatomy, Brain Health Research Centre, University of Otago

Email: info@benthamscience.net

Lionel Dahan

Department of Psychology, University of Sheffield

Email: info@benthamscience.net

Jan Schulz

Department of Anatomy, Brain Health Research Centre, University of Otago

Email: info@benthamscience.net

Yan-Feng Zhang

Department of Anatomy, Brain Health Research Centre, University of Otago

Email: info@benthamscience.net

Abdelhafid Zeghbib

Department of Psychology, University of Sheffield

Email: info@benthamscience.net

Paul Overton

Department of Psychology, University of Sheffield

Email: info@benthamscience.net

Enrico Bracci

Department of Psychology, University of Sheffield

Email: info@benthamscience.net

Peter Redgrave

Department of Psychology, University of Sheffield

Email: info@benthamscience.net

John Reynolds

Department of Anatomy, Brain Health Research Centre, University of Otago

Автор, ответственный за переписку.
Email: info@benthamscience.net

Список литературы

  1. Thorndike, E.L. Animal intelligence; Macmillan: New York, 1911.
  2. Bar-Gad, I.; Havazelet-Heimer, G.; Goldberg, J.A.; Ruppin, E.; Bergman, H. Reinforcement-driven dimensionality reduction-a model for information processing in the basal ganglia. J. Basic Clin. Physiol. Pharmacol., 2000, 11(4), 305-320. doi: 10.1515/JBCPP.2000.11.4.305 PMID: 11248944
  3. Cataldi, S.; Stanley, A.T.; Miniaci, M.C.; Sulzer, D. Interpreting the role of the striatum during multiple phases of motor learning. FEBS J., 2022, 289(8), 2263-2281. PMID: 33977645
  4. Hart, G.; Leung, B.K.; Balleine, B.W. Dorsal and ventral streams: The distinct role of striatal subregions in the acquisition and performance of goal-directed actions. Neurobiol. Learn. Mem., 2014, 108, 104-118. doi: 10.1016/j.nlm.2013.11.003 PMID: 24231424
  5. Redgrave, P.; Gurney, K. The short-latency dopamine signal: A role in discovering novel actions? Nat. Rev. Neurosci., 2006, 7(12), 967-975. doi: 10.1038/nrn2022 PMID: 17115078
  6. Redgrave, P.; Vautrelle, N.; Reynolds, J.N.J. Functional properties of the basal ganglia’s re-entrant loop architecture: Selection and reinforcement. Neuroscience, 2011, 198, 138-151. doi: 10.1016/j.neuroscience.2011.07.060 PMID: 21821101
  7. Balleine, B.W.; Delgado, M.R.; Hikosaka, O. The role of the dorsal striatum in reward and decision-making. J. Neurosci., 2007, 27(31), 8161-8165. doi: 10.1523/JNEUROSCI.1554-07.2007 PMID: 17670959
  8. Graybiel, A.M. The basal ganglia: Learning new tricks and loving it. Curr. Opin. Neurobiol., 2005, 15(6), 638-644. doi: 10.1016/j.conb.2005.10.006 PMID: 16271465
  9. Gurney, K.N.; Humphries, M.D.; Redgrave, P. A new framework for cortico-striatal plasticity: Behavioural theory meets in vitro data at the reinforcement-action interface. PLoS Biol., 2015, 13(1), e1002034. doi: 10.1371/journal.pbio.1002034 PMID: 25562526
  10. Redgrave, P.; Gurney, K.; Reynolds, J. What is reinforced by phasic dopamine signals? Brain Res. Brain Res. Rev., 2008, 58(2), 322-339. doi: 10.1016/j.brainresrev.2007.10.007 PMID: 18055018
  11. Barto, A.; Mirolli, M.; Baldassarre, G. Novelty or surprise? Front. Psychol., 2013, 4, 907. doi: 10.3389/fpsyg.2013.00907 PMID: 24376428
  12. Bromberg-Martin, E.S.; Matsumoto, M.; Hikosaka, O. Dopamine in motivational control: rewarding, aversive, and alerting. Neuron, 2010, 68(5), 815-834. doi: 10.1016/j.neuron.2010.11.022 PMID: 21144997
  13. Lloyd, D.R.; Gancarz, A.M.; Ashrafioun, L.; Kausch, M.A.; Richards, J.B. Habituation and the reinforcing effectiveness of visual stimuli. Behav. Processes, 2012, 91(2), 184-191. doi: 10.1016/j.beproc.2012.07.007 PMID: 22868172
  14. Menegas, W.; Babayan, B.M.; Uchida, N.; Watabe-Uchida, M. Opposite initialization to novel cues in dopamine signaling in ventral and posterior striatum in mice. eLife, 2017, 6, e21886. doi: 10.7554/eLife.21886 PMID: 28054919
  15. Reynolds, J.N.J.; Hyland, B.I.; Wickens, J.R. A cellular mechanism of reward-related learning. Nature, 2001, 413(6851), 67-70. doi: 10.1038/35092560 PMID: 11544526
  16. Schultz, W. Behavioral theories and the neurophysiology of reward. Annu. Rev. Psychol., 2006, 57(1), 87-115. doi: 10.1146/annurev.psych.56.091103.070229 PMID: 16318590
  17. Wickens, J.R. Synaptic plasticity in the basal ganglia. Behav. Brain Res., 2009, 199(1), 119-128. doi: 10.1016/j.bbr.2008.10.030 PMID: 19026691
  18. Calabresi, P.; Picconi, B.; Tozzi, A.; Di Filippo, M. Dopamine-mediated regulation of corticostriatal synaptic plasticity. Trends Neurosci., 2007, 30(5), 211-219. doi: 10.1016/j.tins.2007.03.001 PMID: 17367873
  19. Fino, E.; Glowinski, J.; Venance, L. Bidirectional activity-dependent plasticity at corticostriatal synapses. J. Neurosci., 2005, 25(49), 11279-11287. doi: 10.1523/JNEUROSCI.4476-05.2005 PMID: 16339023
  20. Fino, E.; Venance, L. Spike-timing dependent plasticity in the striatum. Front. Synaptic Neurosci., 2010, 2, 6. PMID: 21423492
  21. Pawlak, V.; Kerr, J.N.D. Dopamine receptor activation is required for corticostriatal spike-timing-dependent plasticity. J. Neurosci., 2008, 28(10), 2435-2446. doi: 10.1523/JNEUROSCI.4402-07.2008 PMID: 18322089
  22. Shen, W.; Flajolet, M.; Greengard, P.; Surmeier, D.J. Dichotomous dopaminergic control of striatal synaptic plasticity. Science, 2008, 321(5890), 848-851. doi: 10.1126/science.1160575 PMID: 18687967
  23. Dickinson, A. The 28th Bartlett Memorial Lecture Causal learning: An associative analysis. Q. J. Exp. Psychol. B, 2001, 54(1), 3-25. doi: 10.1080/02724990042000010 PMID: 11216300
  24. Foncelle, A.; Mendes, A. Jędrzejewska-Szmek, J.; Valtcheva, S.; Berry, H.; Blackwell, K.T.; Venance, L. Modulation of spike-timing dependent plasticity: Towards the inclusion of a third factor in computational models. Front. Comput. Neurosci., 2018, 12, 49. doi: 10.3389/fncom.2018.00049 PMID: 30018546
  25. Frémaux, N.; Gerstner, W. Neuromodulated spike-timing-dependent plasticity, and theory of three-factor learning rules. Front. Neural Circuits, 2016, 9, 85. doi: 10.3389/fncir.2015.00085 PMID: 26834568
  26. Izhikevich, E.M. Solving the distal reward problem through linkage of STDP and dopamine signaling. Cereb. Cortex, 2007, 17(10), 2443-2452. doi: 10.1093/cercor/bhl152 PMID: 17220510
  27. Cacciapaglia, F.; Saddoris, M.P.; Wightman, R.M.; Carelli, R.M. Differential dopamine release dynamics in the nucleus accumbens core and shell track distinct aspects of goal-directed behavior for sucrose. Neuropharmacology, 2012, 62(5-6), 2050-2056. doi: 10.1016/j.neuropharm.2011.12.027 PMID: 22261383
  28. Howard, C.D.; Li, H.; Geddes, C.E.; Jin, X. Dynamic nigrostriatal dopamine biases action selection. Neuron, 2017, 93(6), 1436-1450.e8. doi: 10.1016/j.neuron.2017.02.029 PMID: 28285820
  29. Phillips, P.E.M.; Stuber, G.D.; Heien, M.L.A.V.; Wightman, R.M.; Carelli, R.M. Subsecond dopamine release promotes cocaine seeking. Nature, 2003, 422(6932), 614-618. doi: 10.1038/nature01476 PMID: 12687000
  30. Roitman, M.F.; Stuber, G.D.; Phillips, P.E.; Wightman, R.M.; Carelli, R.M. Dopamine operates as a subsecond modulator of food seeking. J. Neurosci., 2004, 24(6), 1265-1271. doi: 10.1523/JNEUROSCI.3823-03.2004 PMID: 14960596
  31. Stopper, C.M.; Tse, M.T.L.; Montes, D.R.; Wiedman, C.R.; Floresco, S.B. Overriding phasic dopamine signals redirects action selection during risk/reward decision making. Neuron, 2014, 84(1), 177-189. doi: 10.1016/j.neuron.2014.08.033 PMID: 25220811
  32. Stuber, G.D.; Roitman, M.F.; Phillips, P.E.M.; Carelli, R.M.; Wightman, R.M. Rapid dopamine signaling in the nucleus accumbens during contingent and noncontingent cocaine administration. Neuropsychopharmacology, 2005, 30(5), 853-863. doi: 10.1038/sj.npp.1300619 PMID: 15549053
  33. Yagishita, S.; Hayashi-Takagi, A.; Ellis-Davies, G.C.R.; Urakubo, H.; Ishii, S.; Kasai, H. A critical time window for dopamine actions on the structural plasticity of dendritic spines. Science, 2014, 345(6204), 1616-1620. doi: 10.1126/science.1255514 PMID: 25258080
  34. Fisher, S.D.; Robertson, P.B.; Black, M.J.; Redgrave, P.; Sagar, M.A.; Abraham, W.C.; Reynolds, J.N.J. Reinforcement determines the timing dependence of corticostriatal synaptic plasticity in vivo. Nat. Commun., 2017, 8(1), 334. doi: 10.1038/s41467-017-00394-x PMID: 28839128
  35. Schulz, J.M.; Redgrave, P.; Reynolds, J.N. Cortico-striatal spike-timing dependent plasticity after activation of subcortical pathways. Front. Synaptic Neurosci., 2010, 2, 23. doi: 10.3389/fnsyn.2010.00023 PMID: 21423509
  36. Shindou, T.; Shindou, M.; Watanabe, S.; Wickens, J. A silent eligibility trace enables dopamine‐dependent synaptic plasticity for reinforcement learning in the mouse striatum. Eur. J. Neurosci., 2019, 49(5), 726-736. doi: 10.1111/ejn.13921 PMID: 29603470
  37. Reynolds, J.N.J.; Avvisati, R.; Dodson, P.D.; Fisher, S.D.; Oswald, M.J.; Wickens, J.R.; Zhang, Y.F. Coincidence of cholinergic pauses, dopaminergic activation and depolarisation of spiny projection neurons drives synaptic plasticity in the striatum. Nat. Commun., 2022, 13(1), 1296. doi: 10.1038/s41467-022-28950-0 PMID: 35277506
  38. Gerstner, W.; Lehmann, M.; Liakoni, V.; Corneil, D.; Brea, J. Eligibility traces and plasticity on behavioral time scales: Experimental support of neoHebbian three-Factor learning rules. Front. Neural Circuits, 2018, 12, 53. doi: 10.3389/fncir.2018.00053 PMID: 30108488
  39. Reiner, A.; Jiao, Y.; Del Mar, N.; Laverghetta, A.V.; Lei, W.L. Differential morphology of pyramidal tract-type and intratelencephalically projecting-type corticostriatal neurons and their intrastriatal terminals in rats. J. Comp. Neurol., 2003, 457(4), 420-440. doi: 10.1002/cne.10541 PMID: 12561080
  40. Hunnicutt, B.J.; Jongbloets, B.C.; Birdsong, W.T.; Gertz, K.J.; Zhong, H.; Mao, T. A comprehensive excitatory input map of the striatum reveals novel functional organization. eLife, 2016, 5, e19103. doi: 10.7554/eLife.19103 PMID: 27892854
  41. Ding, J.B.; Guzman, J.N.; Peterson, J.D.; Goldberg, J.A.; Surmeier, D.J. Thalamic gating of corticostriatal signaling by cholinergic interneurons. Neuron, 2010, 67(2), 294-307. doi: 10.1016/j.neuron.2010.06.017 PMID: 20670836
  42. Matsumoto, N.; Minamimoto, T.; Graybiel, A.M.; Kimura, M. Neurons in the thalamic CM-Pf complex supply striatal neurons with information about behaviorally significant sensory events. J. Neurophysiol., 2001, 85(2), 960-976. doi: 10.1152/jn.2001.85.2.960 PMID: 11160526
  43. Schulz, J.M.; Redgrave, P.; Mehring, C.; Aertsen, A.; Clements, K.M.; Wickens, J.R.; Reynolds, J.N.J. Short-latency activation of striatal spiny neurons via subcortical visual pathways. J. Neurosci., 2009, 29(19), 6336-6347. doi: 10.1523/JNEUROSCI.4815-08.2009 PMID: 19439610
  44. Dommett, E.; Coizet, V.; Blaha, C.D.; Martindale, J.; Lefebvre, V.; Walton, N.; Mayhew, J.E.W.; Overton, P.G.; Redgrave, P. How visual stimuli activate dopaminergic neurons at short latency. Science, 2005, 307(5714), 1476-1479. doi: 10.1126/science.1107026 PMID: 15746431
  45. Benavidez, N.L.; Bienkowski, M.S.; Zhu, M.; Garcia, L.H.; Fayzullina, M.; Gao, L.; Bowman, I.; Gou, L.; Khanjani, N.; Cotter, K.R.; Korobkova, L.; Becerra, M.; Cao, C.; Song, M.Y.; Zhang, B.; Yamashita, S.; Tugangui, A.J.; Zingg, B.; Rose, K.; Lo, D.; Foster, N.N.; Boesen, T.; Mun, H.S.; Aquino, S.; Wickersham, I.R.; Ascoli, G.A.; Hintiryan, H.; Dong, H.W. Organization of the inputs and outputs of the mouse superior colliculus. Nat. Commun., 2021, 12(1), 4004. doi: 10.1038/s41467-021-24241-2 PMID: 34183678
  46. Coizet, V.; Overton, P.G.; Redgrave, P. Collateralization of the tectonigral projection with other major output pathways of superior colliculus in the rat. J. Comp. Neurol., 2007, 500(6), 1034-1049. doi: 10.1002/cne.21202 PMID: 17183537
  47. Comoli, E.; Coizet, V.; Boyes, J.; Bolam, J.P.; Canteras, N.S.; Quirk, R.H.; Overton, P.G.; Redgrave, P. A direct projection from superior colliculus to substantia nigra for detecting salient visual events. Nat. Neurosci., 2003, 6(9), 974-980. doi: 10.1038/nn1113 PMID: 12925855
  48. Valjent, E.; Pascoli, V.; Svenningsson, P.; Paul, S.; Enslen, H.; Corvol, J.C.; Stipanovich, A.; Caboche, J.; Lombroso, P.J.; Nairn, A.C.; Greengard, P.; Hervé, D.; Girault, J.A. Regulation of a protein phosphatase cascade allows convergent dopamine and glutamate signals to activate ERK in the striatum. Proc. Natl. Acad. Sci. USA, 2005, 102(2), 491-496. doi: 10.1073/pnas.0408305102 PMID: 15608059
  49. Katsuta, H.; Isa, T. Release from GABAA receptor-mediated inhibition unmasks interlaminar connection within superior colliculus in anesthetized adult rats. Neurosci. Res., 2003, 46(1), 73-83. doi: 10.1016/S0168-0102(03)00029-4 PMID: 12725914
  50. Sgambato, V.; Abo, V.; Rogard, M.; Besson, M.J.; Deniau, J.M. Effect of electrical stimulation of the cerebral cortex on the expression of the fos protein in the basal ganglia. Neuroscience, 1997, 81(1), 93-112. doi: 10.1016/S0306-4522(97)00179-6 PMID: 9300404
  51. Manly, B.F.J. Randomization and Monte Carlo methods in biology; Chapman and Hall: London, 1991, p. 281. doi: 10.1007/978-1-4899-2995-2
  52. Coizet, V.; Graham, J.H.; Moss, J.; Bolam, J.P.; Savasta, M.; McHaffie, J.G.; Redgrave, P.; Overton, P.G. Short-latency visual input to the subthalamic nucleus is provided by the midbrain superior colliculus. J. Neurosci., 2009, 29(17), 5701-5709. doi: 10.1523/JNEUROSCI.0247-09.2009 PMID: 19403836
  53. Alexander, G.E.; DeLong, M.R.; Strick, P.L. Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu. Rev. Neurosci., 1986, 9(1), 357-381. doi: 10.1146/annurev.ne.09.030186.002041 PMID: 3085570
  54. McHaffie, J.; Stanford, T.; Stein, B.; Coizet, V.; Redgrave, P. Subcortical loops through the basal ganglia. Trends Neurosci., 2005, 28(8), 401-407. doi: 10.1016/j.tins.2005.06.006 PMID: 15982753
  55. Wilson, C.J. Postsynaptic potentials evoked in spiny neostriatal projection neurons by stimulation of ipsilateral and contralateral neocortex. Brain Res., 1986, 367(1-2), 201-213. doi: 10.1016/0006-8993(86)91593-3 PMID: 3008920
  56. Brown, J.R.; Arbuthnott, G.W. The electrophysiology of dopamine (D2) receptors: A study of the actions of dopamine on corticostriatal transmission. Neuroscience, 1983, 10(2), 349-355. doi: 10.1016/0306-4522(83)90138-0 PMID: 6138732
  57. Balleine, B.W.; Liljeholm, M.; Ostlund, S.B. The integrative function of the basal ganglia in instrumental conditioning. Behav. Brain Res., 2009, 199(1), 43-52. doi: 10.1016/j.bbr.2008.10.034 PMID: 19027797
  58. Peak, J.; Hart, G.; Balleine, B.W. From learning to action: The integration of dorsal striatal input and output pathways in instrumental conditioning. Eur. J. Neurosci., 2019, 49(5), 658-671. doi: 10.1111/ejn.13964 PMID: 29791051
  59. Kato, S.; Fukabori, R.; Nishizawa, K.; Okada, K.; Yoshioka, N.; Sugawara, M.; Maejima, Y.; Shimomura, K.; Okamoto, M.; Eifuku, S.; Kobayashi, K. Action selection and flexible switching controlled by the intralaminar thalamic neurons. Cell Rep., 2018, 22(9), 2370-2382. doi: 10.1016/j.celrep.2018.02.016 PMID: 29490273
  60. Klaus, A.; Alves da Silva, J.; Costa, R.M. What, if, and when to move: Basal ganglia circuits and self-paced action initiation. Annu. Rev. Neurosci., 2019, 42(1), 459-483. doi: 10.1146/annurev-neuro-072116-031033 PMID: 31018098
  61. Mink, J.W. The basal ganglia: Focused selection and inhibition of competing motor programs. Prog. Neurobiol., 1996, 50(4), 381-425. doi: 10.1016/S0301-0082(96)00042-1 PMID: 9004351
  62. Redgrave, P.; Prescott, T.J.; Gurney, K. The basal ganglia: A vertebrate solution to the selection problem? Neuroscience, 1999, 89(4), 1009-1023. doi: 10.1016/S0306-4522(98)00319-4 PMID: 10362291
  63. Chevalier, G.; Deniau, J.M. Disinhibition as a basic process in the expression of striatal functions. Trends Neurosci., 1990, 13(7), 277-280. doi: 10.1016/0166-2236(90)90109-N PMID: 1695403
  64. Humphries, M.D.; Stewart, R.D.; Gurney, K.N. A physiologically plausible model of action selection and oscillatory activity in the basal ganglia. J. Neurosci., 2006, 26(50), 12921-12942. doi: 10.1523/JNEUROSCI.3486-06.2006 PMID: 17167083
  65. Prescott, T.J.; Montes González, F.M.; Gurney, K.; Humphries, M.D.; Redgrave, P. A robot model of the basal ganglia: Behavior and intrinsic processing. Neural Netw., 2006, 19(1), 31-61. doi: 10.1016/j.neunet.2005.06.049 PMID: 16153803
  66. Arbuthnott, G.W.; Wickens, J. Space, time and dopamine. Trends Neurosci., 2007, 30(2), 62-69. doi: 10.1016/j.tins.2006.12.003 PMID: 17173981
  67. Menegas, W.; Bergan, J.F.; Ogawa, S.K.; Isogai, Y.; Umadevi Venkataraju, K.; Osten, P.; Uchida, N.; Watabe-Uchida, M. Dopamine neurons projecting to the posterior striatum form an anatomically distinct subclass. eLife, 2015, 4, e10032. doi: 10.7554/eLife.10032 PMID: 26322384
  68. Schultz, W. Predictive reward signal of dopamine neurons. J. Neurophysiol., 1998, 80(1), 1-27. doi: 10.1152/jn.1998.80.1.1 PMID: 9658025
  69. Van der Werf, Y.D.; Witter, M.P.; Groenewegen, H.J. The intralaminar and midline nuclei of the thalamus. Anatomical and functional evidence for participation in processes of arousal and awareness. Brain Res. Brain Res. Rev., 2002, 39(2-3), 107-140. doi: 10.1016/S0165-0173(02)00181-9 PMID: 12423763
  70. Fino, E.; Deniau, J.M.; Venance, L. Brief subthreshold events can act as Hebbian signals for long-term plasticity. PLoS One, 2009, 4(8), e6557. doi: 10.1371/journal.pone.0006557 PMID: 19675683
  71. Cui, Y.; Paillé, V.; Xu, H.; Genet, S.; Delord, B.; Fino, E.; Berry, H.; Venance, L. Endocannabinoids mediate bidirectional striatal spike-timing-dependent plasticity. J. Physiol., 2015, 593(13), 2833-2849. doi: 10.1113/JP270324 PMID: 25873197
  72. Cui, Y.; Prokin, I.; Xu, H.; Delord, B.; Genet, S.; Venance, L.; Berry, H. Endocannabinoid dynamics gate spike-timing dependent depression and potentiation. eLife, 2016, 5, e13185. doi: 10.7554/eLife.13185 PMID: 26920222
  73. Fino, E.; Deniau, J.M.; Venance, L. Cell-specific spike-timing-dependent plasticity in GABAergic and cholinergic interneurons in corticostriatal rat brain slices. J. Physiol., 2008, 586(1), 265-282. doi: 10.1113/jphysiol.2007.144501 PMID: 17974593
  74. Fino, E.; Paille, V.; Deniau, J.M.; Venance, L. Asymmetric spike-timing dependent plasticity of striatal nitric oxide-synthase interneurons. Neuroscience, 2009, 160(4), 744-754. doi: 10.1016/j.neuroscience.2009.03.015 PMID: 19303912
  75. Peters, A.J.; Fabre, J.M.J.; Steinmetz, N.A.; Harris, K.D.; Carandini, M. Striatal activity topographically reflects cortical activity. Nature, 2021, 591(7850), 420-425. doi: 10.1038/s41586-020-03166-8 PMID: 33473213
  76. Sharott, A.; Doig, N.M.; Mallet, N.; Magill, P.J. Relationships between the firing of identified striatal interneurons and spontaneous and driven cortical activities in vivo. J. Neurosci., 2012, 32(38), 13221-13236. doi: 10.1523/JNEUROSCI.2440-12.2012 PMID: 22993438
  77. Sharott, A.; Moll, C.K.E.; Engler, G.; Denker, M.; Grün, S.; Engel, A.K. Different subtypes of striatal neurons are selectively modulated by cortical oscillations. J. Neurosci., 2009, 29(14), 4571-4585. doi: 10.1523/JNEUROSCI.5097-08.2009 PMID: 19357282
  78. Martiros, N.; Burgess, A.A.; Graybiel, A.M. Inversely active striatal projection neurons and interneurons selectively delimit useful behavioral sequences. Curr. Biol., 2018, 28(4), 560-573.e5. doi: 10.1016/j.cub.2018.01.031 PMID: 29429614
  79. Centonze, D.; Grande, C.; Saulle, E.; Martín, A.B.; Gubellini, P.; Pavón, N.; Pisani, A.; Bernardi, G.; Moratalla, R.; Calabresi, P. Distinct roles of D1 and D5 dopamine receptors in motor activity and striatal synaptic plasticity. J. Neurosci., 2003, 23(24), 8506-8512. doi: 10.1523/JNEUROSCI.23-24-08506.2003 PMID: 13679419
  80. Kerr, J.N.D.; Wickens, J.R. Dopamine D-1/D-5 receptor activation is required for long-term potentiation in the rat neostriatum in vitro. J. Neurophysiol., 2001, 85(1), 117-124. doi: 10.1152/jn.2001.85.1.117 PMID: 11152712
  81. Suzuki, T.; Miura, M.; Nishimura, K.; Aosaki, T. Dopamine-dependent synaptic plasticity in the striatal cholinergic interneurons. J. Neurosci., 2001, 21(17), 6492-6501. doi: 10.1523/JNEUROSCI.21-17-06492.2001 PMID: 11517238
  82. Flajolet, M.; Wang, Z.; Futter, M.; Shen, W.; Nuangchamnong, N.; Bendor, J.; Wallach, I.; Nairn, A.C.; Surmeier, D.J.; Greengard, P. FGF acts as a co-transmitter through adenosine A2A receptor to regulate synaptic plasticity. Nat. Neurosci., 2008, 11(12), 1402-1409. doi: 10.1038/nn.2216 PMID: 18953346
  83. Sciamanna, G.; Ponterio, G.; Mandolesi, G.; Bonsi, P.; Pisani, A. Optogenetic stimulation reveals distinct modulatory properties of thalamostriatal vs corticostriatal glutamatergic inputs to fast-spiking interneurons. Sci. Rep., 2015, 5(1), 16742. doi: 10.1038/srep16742 PMID: 26572101
  84. Saunders, B.T.; Richard, J.M.; Margolis, E.B.; Janak, P.H. Dopamine neurons create Pavlovian conditioned stimuli with circuit-defined motivational properties. Nat. Neurosci., 2018, 21(8), 1072-1083. doi: 10.1038/s41593-018-0191-4 PMID: 30038277
  85. Saunders, BT; Richard, JM; Janak, PH Contemporary approaches to neural circuit manipulation and mapping: Focus on reward and addiction. Philos Trans. R Soc. Lond B Biol. Sci., 2015, 370(1677), 20140210. doi: 10.1098/rstb.2014.0210
  86. Huang, M.; Li, D.; Cheng, X.; Pei, Q.; Xie, Z.; Gu, H.; Zhang, X.; Chen, Z.; Liu, A.; Wang, Y.; Sun, F.; Li, Y.; Zhang, J.; He, M.; Xie, Y.; Zhang, F.; Qi, X.; Shang, C.; Cao, P. The tectonigral pathway regulates appetitive locomotion in predatory hunting in mice. Nat. Commun., 2021, 12(1), 4409. doi: 10.1038/s41467-021-24696-3 PMID: 34285209
  87. Voon, V.; Fernagut, P.O.; Wickens, J.; Baunez, C.; Rodriguez, M.; Pavon, N.; Juncos, J.L.; Obeso, J.A.; Bezard, E. Chronic dopaminergic stimulation in Parkinson’s disease: From dyskinesias to impulse control disorders. Lancet Neurol., 2009, 8(12), 1140-1149. doi: 10.1016/S1474-4422(09)70287-X PMID: 19909912
  88. Ziauddeen, H.; Murray, G.K. The relevance of reward pathways for schizophrenia. Curr. Opin. Psychiatry, 2010, 23(2), 91-96. doi: 10.1097/YCO.0b013e328336661b PMID: 20051858
  89. Sciamanna, G.; Tassone, A.; Mandolesi, G.; Puglisi, F.; Ponterio, G.; Martella, G.; Madeo, G.; Bernardi, G.; Standaert, D.G.; Bonsi, P.; Pisani, A. Cholinergic dysfunction alters synaptic integration between thalamostriatal and corticostriatal inputs in DYT1 dystonia. J. Neurosci., 2012, 32(35), 11991-12004. doi: 10.1523/JNEUROSCI.0041-12.2012 PMID: 22933784
  90. Russo, S.J.; Dietz, D.M.; Dumitriu, D.; Morrison, J.H.; Malenka, R.C.; Nestler, E.J. The addicted synapse: mechanisms of synaptic and structural plasticity in nucleus accumbens. Trends Neurosci., 2010, 33(6), 267-276. doi: 10.1016/j.tins.2010.02.002 PMID: 20207024

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Bentham Science Publishers, 2024