Implicit Selective Attention: The Role of the Mesencephalic-basal Ganglia System


Дәйексөз келтіру

Толық мәтін

Аннотация

The ability of the brain to recognize and orient attention to relevant stimuli appearing in the visual field is highlighted by a tuning process, which involves modulating the early visual system by both cortical and subcortical brain areas. Selective attention is coordinated not only by the output of stimulus-based saliency maps but is also influenced by top-down cognitive factors, such as internal states, goals, or previous experiences. The basal ganglia system plays a key role in implicitly modulating the underlying mechanisms of selective attention, favouring the formation and maintenance of implicit sensory-motor memories that are capable of automatically modifying the output of priority maps in sensory-motor structures of the midbrain, such as the superior colliculus. The article presents an overview of the recent literature outlining the crucial contribution of several subcortical structures to the processing of different sources of salient stimuli. In detail, we will focus on how the mesencephalic- basal ganglia closed loops contribute to implicitly addressing and modulating selective attention to prioritized stimuli. We conclude by discussing implicit behavioural responses observed in clinical populations in which awareness is compromised at some level. Implicit (emergent) awareness in clinical conditions that can be accompanied by manifest anosognosic symptomatology (i.e., hemiplegia) or involving abnormal conscious processing of visual information (i.e., unilateral spatial neglect and blindsight) represents interesting neurocognitive "test cases" for inferences about mesencephalicbasal ganglia closed-loops involvement in the formation of implicit sensory-motor memories.

Авторлар туралы

Matteo Esposito

Department of Psychology, University of Torino

Email: info@benthamscience.net

Sara Palermo

Department of Psychology, University of Torino

Email: info@benthamscience.net

Ylenia Nahi

Department of Psychology, University of Torino

Email: info@benthamscience.net

Marco Tamietto

Department of Psychology, University of Torin

Email: info@benthamscience.net

Alessia Celeghin

Department of Psychology, University of Torino

Хат алмасуға жауапты Автор.
Email: info@benthamscience.net

Әдебиет тізімі

  1. Itti, L.; Koch, C. A saliency-based search mechanism for overt and covert shifts of visual attention. Vision Res., 2000, 40(10-12), 1489-1506. doi: 10.1016/S0042-6989(99)00163-7 PMID: 10788654
  2. Itti, L.; Koch, C. Feature combination strategies for saliency-based visual attention systems. J. Electron. Imaging, 2001, 10(1), 161-169. doi: 10.1117/1.1333677
  3. Itti, L.; Koch, C. Computational modelling of visual attention. Nat. Rev. Neurosci., 2001, 2(3), 194-203. doi: 10.1038/35058500 PMID: 11256080
  4. Lee, D.K.; Itti, L.; Koch, C.; Braun, J. Attention activates winner-take-all competition among visual filters. Nat. Neurosci., 1999, 2(4), 375-381. doi: 10.1038/7286 PMID: 10204546
  5. Fecteau, J.; Munoz, D. Salience, relevance, and firing: A priority map for target selection. Trends Cogn. Sci., 2006, 10(8), 382-390. doi: 10.1016/j.tics.2006.06.011 PMID: 16843702
  6. Klink, P.C.; Jentgens, P.; Lorteije, J.A.M. Priority maps explain the roles of value, attention, and salience in goal-oriented behavior. J. Neurosci., 2014, 34(42), 13867-13869. doi: 10.1523/JNEUROSCI.3249-14.2014 PMID: 25319682
  7. Kim, A.J.; Anderson, B.A. How does threat modulate the motivational effects of reward on attention? Exp. Psychol., 2021, 68(3), 165-172. doi: 10.1027/1618-3169/a000521 PMID: 34711076
  8. Todd, R.M.; Manaligod, M.G.M. Implicit guidance of attention: The priority state space framework. Cortex, 2018, 102, 121-138. doi: 10.1016/j.cortex.2017.08.001 PMID: 28863855
  9. Joshua, M.; Adler, A.; Mitelman, R.; Vaadia, E.; Bergman, H. Midbrain dopaminergic neurons and striatal cholinergic interneurons encode the difference between reward and aversive events at different epochs of probabilistic classical conditioning trials. J. Neurosci., 2008, 28(45), 11673-11684. doi: 10.1523/JNEUROSCI.3839-08.2008 PMID: 18987203
  10. Jiang, Y.V.; Won, B.Y.; Swallow, K.M. First saccadic eye movement reveals persistent attentional guidance by implicit learning. J. Exp. Psychol. Hum. Percept. Perform., 2014, 40(3), 1161-1173. doi: 10.1037/a0035961 PMID: 24512610
  11. Zhao, J.; Al-Aidroos, N.; Turk-Browne, N.B. Attention is spontaneously biased toward regularities. Psychol. Sci., 2013, 24(5), 667-677. doi: 10.1177/0956797612460407 PMID: 23558552
  12. Shomstein, S.; Gottlieb, J. Spatial and non-spatial aspects of visual attention: Interactive cognitive mechanisms and neural underpinnings. Neuropsychologia, 2016, 92, 9-19. doi: 10.1016/j.neuropsychologia.2016.05.021 PMID: 27256592
  13. Shomstein, S.; Behrmann, M. Cortical systems mediating visual attention to both objects and spatial locations. Proc. Natl. Acad. Sci. USA, 2006, 103(30), 11387-11392. doi: 10.1073/pnas.0601813103 PMID: 16840559
  14. Chelazzi, L.; Perlato, A.; Santandrea, E.; Della Libera, C. Rewards teach visual selective attention. Vision Res., 2013, 85, 58-72. doi: 10.1016/j.visres.2012.12.005 PMID: 23262054
  15. Chelazzi, L. E to inova, J.; Calletti, R.; Lo Gerfo, E.; Sani, I.; Della Libera, C.; Santandrea, E. Altering spatial priority maps via reward-based learning. J. Neurosci., 2014, 34(25), 8594-8604. doi: 10.1523/JNEUROSCI.0277-14.2014 PMID: 24948813
  16. Anderson, B.A.; Laurent, P.A.; Yantis, S. Learned value magnifies salience-based attentional capture. PLoS One, 2011, 6(11), e27926. doi: 10.1371/journal.pone.0027926 PMID: 22132170
  17. Raymond, J.E.; O’Brien, J.L. Selective visual attention and motivation: The consequences of value learning in an attentional blink task. Psychol. Sci., 2009, 20(8), 981-988. doi: 10.1111/j.1467-9280.2009.02391.x PMID: 19549080
  18. Markovic, J.; Anderson, A.K.; Todd, R.M. Tuning to the significant: Neural and genetic processes underlying affective enhancement of visual perception and memory. Behav. Brain Res., 2014, 259, 229-241. doi: 10.1016/j.bbr.2013.11.018 PMID: 24269973
  19. Mather, M.; Sutherland, M.R. Arousal-biased competition in perception and memory. Perspect. Psychol. Sci., 2011, 6(2), 114-133. doi: 10.1177/1745691611400234 PMID: 21660127
  20. Todd, R.M.; Cunningham, W.A.; Anderson, A.K.; Thompson, E. Affect-biased attention as emotion regulation. Trends Cogn. Sci., 2012, 16(7), 365-372. doi: 10.1016/j.tics.2012.06.003 PMID: 22717469
  21. Vuilleumier, P. Affective and motivational control of vision. Curr. Opin. Neurol., 2015, 28(1), 29-35. doi: 10.1097/WCO.0000000000000159 PMID: 25490197
  22. Anderson, B.A. Value-driven attentional priority is context specific. Psychon. Bull. Rev., 2015, 22(3), 750-756. doi: 10.3758/s13423-014-0724-0 PMID: 25199468
  23. McHaffie, J.; Stanford, T.; Stein, B.; Coizet, V.; Redgrave, P. Subcortical loops through the basal ganglia. Trends Neurosci., 2005, 28(8), 401-407. doi: 10.1016/j.tins.2005.06.006 PMID: 15982753
  24. Redgrave, P.; Coizet, V.; Comoli, E.; McHaffie, J.G.; Leriche, M.; Vautrelle, N.; Hayes, L.M.; Overton, P. Interactions between the midbrain superior colliculus and the basal ganglia. Front. Neuroanat., 2010, 4, 4. doi: 10.3389/fnana.2010.00132 PMID: 20941324
  25. May, P.J. The mammalian superior colliculus: Laminar structure and connections. Prog. Brain Res., 2006, 151, 321-378. doi: 10.1016/S0079-6123(05)51011-2 PMID: 16221594
  26. Schiller, P.H.; Sandell, J.H. Interactions between visually and electrically elicited saccades before and after superior colliculus and frontal eye field ablations in the rhesus monkey. Exp. Brain Res., 1983, 49(3), 381-392. doi: 10.1007/BF00238780 PMID: 6641836
  27. Albano, J.E.; Norton, T.T.; Hall, W.C. Laminar origin of projections from the superficial layers of the superior colliculus in the tree shrew, Tupaia glis. Brain Res., 1979, 173(1), 1-11. doi: 10.1016/0006-8993(79)91090-4 PMID: 90538
  28. Harting, J.K.; Huerta, M.F.; Hashikawa, T.; van Lieshout, D.P. Projection of the mammalian superior colliculus upon the dorsal lateral geniculate nucleus: Organization of tectogeniculate pathways in nineteen species. J. Comp. Neurol., 1991, 304(2), 275-306. doi: 10.1002/cne.903040210 PMID: 1707899
  29. Basso, M.A.; Bickford, M.E.; Cang, J. Unraveling circuits of visual perception and cognition through the superior colliculus. Neuron, 2021, 109(6), 918-937. doi: 10.1016/j.neuron.2021.01.013 PMID: 33548173
  30. Isa, T.; Marquez-Legorreta, E.; Grillner, S.; Scott, E.K. The tectum/superior colliculus as the vertebrate solution for spatial sensory integration and action. Curr. Biol., 2021, 31(11), R741-R762. doi: 10.1016/j.cub.2021.04.001 PMID: 34102128
  31. Chen, C.Y.; Hafed, Z.M. Orientation and contrast tuning properties and temporal flicker fusion characteristics of primate superior colliculus neurons. Front. Neural Circuits, 2018, 12, 58. doi: 10.3389/fncir.2018.00058 PMID: 30087598
  32. Veale, R.; Hafed, Z.M.; Yoshida, M. How is visual salience computed in the brain? Insights from behaviour, neurobiology and modelling. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2017, 372(1714), 20160113. doi: 10.1098/rstb.2016.0113 PMID: 28044023
  33. White, B.J.; Berg, D.J.; Kan, J.Y.; Marino, R.A.; Itti, L.; Munoz, D.P. Superior colliculus neurons encode a visual saliency map during free viewing of natural dynamic video. Nat. Commun., 2017, 8(1), 14263. doi: 10.1038/ncomms14263 PMID: 28117340
  34. White, B.J.; Kan, J.Y.; Levy, R.; Itti, L.; Munoz, D.P. Superior colliculus encodes visual saliency before the primary visual cortex. Proc. Natl. Acad. Sci. USA, 2017, 114(35), 9451-9456. doi: 10.1073/pnas.1701003114 PMID: 28808026
  35. Basso, M.A.; Wurtz, R.H. Modulation of neuronal activity in superior colliculus by changes in target probability. J. Neurosci., 1998, 18(18), 7519-7534. doi: 10.1523/JNEUROSCI.18-18-07519.1998 PMID: 9736670
  36. Krauzlis, R.J.; Lovejoy, L.P.; Zénon, A. Superior colliculus and visual spatial attention. Annu. Rev. Neurosci., 2013, 36(1), 165-182. doi: 10.1146/annurev-neuro-062012-170249 PMID: 23682659
  37. Kustov, A.A.; Lee Robinson, D. Shared neural control of attentional shifts and eye movements. Nature, 1996, 384(6604), 74-77. doi: 10.1038/384074a0 PMID: 8900281
  38. Müller, J.R.; Philiastides, M.G.; Newsome, W.T. Microstimulation of the superior colliculus focuses attention without moving the eyes. Proc. Natl. Acad. Sci. USA, 2005, 102(3), 524-529. doi: 10.1073/pnas.0408311101 PMID: 15601760
  39. Lovejoy, L.P.; Krauzlis, R.J. Changes in perceptual sensitivity related to spatial cues depends on subcortical activity. Proc. Natl. Acad. Sci. USA, 2017, 114(23), 6122-6126. doi: 10.1073/pnas.1609711114 PMID: 28533384
  40. Basso, M.A.; May, P.J. Circuits for Action and Cognition: A View from the Superior colliculus. Annu. Rev. Vis. Sci., 2017, 3(1), 197-226. doi: 10.1146/annurev-vision-102016-061234 PMID: 28617660
  41. Koch, C.; Ullman, S. Selecting One Among the Many: A Simple Network Implementing Shifts in Selective Visual Attention; Massachusetts Inst Of Tech Cambridge Artificial Intelligence Lab, 1984.
  42. Itti, L.; Koch, C.; Niebur, E. A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. Pattern Anal. Mach. Intell., 1998, 20(11), 1254-1259. doi: 10.1109/34.730558
  43. Mendez, C.A.; Celeghin, A.; Diano, M.; Orsenigo, D.; Ocak, B.; Tamietto, M. A deep neural network model of the primate superior colliculus for emotion recognition. Philos. Trans. R. Soc. Lond. B. Biol. Sci., 2022, 377(1863), 20210512. doi: 10.1098/rstb.2021.0512
  44. Soares, S.C.; Maior, R.S.; Isbell, L.A.; Tomaz, C.; Nishijo, H. Fast detector/first responder: Interactions between the superior colliculus-pulvinar pathway and stimuli relevant to primates. Front. Neurosci., 2017, 11, 67. doi: 10.3389/fnins.2017.00067 PMID: 28261046
  45. Romanski, L.M.; Giguere, M.; Bates, J.F.; Goldman-Rakic, P.S. Topographic organization of medial pulvinar connections with the prefrontal cortex in the rhesus monkey. J. Comp. Neurol., 1997, 379(3), 313-332. doi: 10.1002/(SICI)1096-9861(19970317)379:33.0.CO;2-6 PMID: 9067827
  46. Bisley, J.W.; Goldberg, M.E. Attention, intention, and priority in the parietal lobe. Annu. Rev. Neurosci., 2010, 33(1), 1-21. doi: 10.1146/annurev-neuro-060909-152823 PMID: 20192813
  47. Sommer, M.A.; Wurtz, R.H. What the brain stem tells the frontal cortex. I. Oculomotor signals sent from superior colliculus to frontal eye field via mediodorsal thalamus. J. Neurophysiol., 2004, 91(3), 1381-1402. doi: 10.1152/jn.00738.2003 PMID: 14573558
  48. Johnson, J.A.; Strafella, A.P.; Zatorre, R.J. The role of the dorsolateral prefrontal cortex in bimodal divided attention: Two transcranial magnetic stimulation studies. J. Cogn. Neurosci., 2007, 19(6), 907-920. doi: 10.1162/jocn.2007.19.6.907 PMID: 17536962
  49. Loose, R.; Kaufmann, C.; Tucha, O.; Auer, D.P.; Lange, K.W. Neural networks of response shifting: Influence of task speed and stimulus material. Brain Res., 2006, 1090(1), 146-155. doi: 10.1016/j.brainres.2006.03.039 PMID: 16643867
  50. Esposito, M.; Tamietto, M.; Geminiani, G.C.; Celeghin, A. A subcortical network for implicit visuo-spatial attention: Implications for Parkinson’s Disease. Cortex, 2021, 141, 421-435. doi: 10.1016/j.cortex.2021.05.003 PMID: 34144272
  51. Anderson, B.A. The attention habit: how reward learning shapes attentional selection. Ann. N. Y. Acad. Sci., 2016, 1369(1), 24-39. doi: 10.1111/nyas.12957 PMID: 26595376
  52. Deijen, J.B.; Stoffers, D.; Berendse, H.W.; Wolters, E.C.; Theeuwes, J. Abnormal susceptibility to distracters hinders perception in early stage Parkinson’s disease: A controlled study. BMC Neurol., 2006, 6(1), 43. doi: 10.1186/1471-2377-6-43 PMID: 17156486
  53. Lee, E.Y.; Cowan, N.; Vogel, E.K.; Rolan, T.; Valle-Inclán, F.; Hackley, S.A. Visual working memory deficits in patients with Parkinson’s disease are due to both reduced storage capacity and impaired ability to filter out irrelevant information. Brain, 2010, 133(9), 2677-2689. doi: 10.1093/brain/awq197 PMID: 20688815
  54. McNab, F.; Klingberg, T. Prefrontal cortex and basal ganglia control access to working memory. Nat. Neurosci., 2008, 11(1), 103-107. doi: 10.1038/nn2024 PMID: 18066057
  55. Tommasi, G.; Fiorio, M.; Yelnik, J.; Krack, P.; Sala, F.; Schmitt, E.; Fraix, V.; Bertolasi, L.; Le Bas, J.F.; Ricciardi, G.K.; Fiaschi, A.; Theeuwes, J.; Pollak, P.; Chelazzi, L. Disentangling the role of cortico-basal ganglia loops in top-down and bottom-up visual attention: An investigation of attention deficits in parkinson disease. J. Cogn. Neurosci., 2015, 27(6), 1215-1237. doi: 10.1162/jocn_a_00770 PMID: 25514652
  56. van Schouwenburg, M.R.; den Ouden, H.E.M.; Cools, R. The human basal ganglia modulate frontal-posterior connectivity during attention shifting. J. Neurosci., 2010, 30(29), 9910-9918. doi: 10.1523/JNEUROSCI.1111-10.2010 PMID: 20660273
  57. van Schouwenburg, M.R.; den Ouden, H.E.M.; Cools, R. Selective attentional enhancement and inhibition of fronto-posterior connectivity by the basal ganglia during attention switching. Cereb. Cortex, 2015, 25(6), 1527-1534. doi: 10.1093/cercor/bht345 PMID: 24343891
  58. Ravizza, S.M.; Ivry, R.B. Comparison of the basal ganglia and cerebellum in shifting attention. J. Cogn. Neurosci., 2001, 13(3), 285-297. doi: 10.1162/08989290151137340 PMID: 11371307
  59. Shulman, G.L.; Astafiev, S.V.; Franke, D.; Pope, D.L.W.; Snyder, A.Z.; McAvoy, M.P.; Corbetta, M. Interaction of stimulus-driven reorienting and expectation in ventral and dorsal frontoparietal and basal ganglia-cortical networks. J. Neurosci., 2009, 29(14), 4392-4407. doi: 10.1523/JNEUROSCI.5609-08.2009 PMID: 19357267
  60. Alexander, G.E.; DeLong, M.R.; Strick, P.L. Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu. Rev. Neurosci., 1986, 9(1), 357-381. doi: 10.1146/annurev.ne.09.030186.002041 PMID: 3085570
  61. Nakano, K.; Kayahara, T.; Tsutsumi, T.; Ushiro, H. Neural circuits and functional organization of the striatum. J. Neurol., 2000, 247(S5)(Suppl. 5), V1-V15. doi: 10.1007/PL00007778 PMID: 11081799
  62. Postuma, R.B.; Dagher, A. Basal ganglia functional connectivity based on a meta-analysis of 126 positron emission tomography and functional magnetic resonance imaging publications. Cereb. Cortex, 2006, 16(10), 1508-1521. doi: 10.1093/cercor/bhj088 PMID: 16373457
  63. Comoli, E.; Coizet, V.; Boyes, J.; Bolam, J.P.; Canteras, N.S.; Quirk, R.H.; Overton, P.G.; Redgrave, P. A direct projection from superior colliculus to substantia nigra for detecting salient visual events. Nat. Neurosci., 2003, 6(9), 974-980. doi: 10.1038/nn1113 PMID: 12925855
  64. May, P.J.; McHaffie, J.G.; Stanford, T.R.; Jiang, H.; Costello, M.G.; Coizet, V.; Hayes, L.M.; Haber, S.N.; Redgrave, P. Tectonigral projections in the primate: A pathway for pre-attentive sensory input to midbrain dopaminergic neurons. Eur. J. Neurosci., 2009, 29(3), 575-587. doi: 10.1111/j.1460-9568.2008.06596.x PMID: 19175405
  65. McHaffie, J.G.; Jiang, H.; May, P.J.; Coizet, V.; Overton, P.G.; Stein, B.E.; Redgrave, P. A direct projection from superior colliculus to substantia nigra pars compacta in the cat. Neuroscience, 2006, 138(1), 221-234. doi: 10.1016/j.neuroscience.2005.11.015 PMID: 16361067
  66. Coizet, V.; Graham, J.H.; Moss, J.; Bolam, J.P.; Savasta, M.; McHaffie, J.G.; Redgrave, P.; Overton, P.G. Short-latency visual input to the subthalamic nucleus is provided by the midbrain superior colliculus. J. Neurosci., 2009, 29(17), 5701-5709. doi: 10.1523/JNEUROSCI.0247-09.2009 PMID: 19403836
  67. Tokuno, H.; Takada, M.; Ikai, Y.; Mizuno, N. Direct projections from the deep layers of the superior colliculus to the subthalamic nucleus in the rat. Brain Res., 1994, 639(1), 156-160. doi: 10.1016/0006-8993(94)91776-0 PMID: 8180831
  68. Nambu, A. Seven problems on the basal ganglia. Curr. Opin. Neurobiol., 2008, 18(6), 595-604. doi: 10.1016/j.conb.2008.11.001 PMID: 19081243
  69. Nambu, A.; Tokuno, H.; Takada, M. Functional significance of the cortico-subthalamo-pallidal ‘hyperdirect’ pathway. Neurosci. Res., 2002, 43(2), 111-117. doi: 10.1016/S0168-0102(02)00027-5 PMID: 12067746
  70. Bočková, M.; Chládek, J.; Jurák, P.; Halámek, J.; Baláž, M.; Rektor, I. Involvement of the subthalamic nucleus and globus pallidus internus in attention. J. Neural Transm. (Vienna), 2011, 118(8), 1235-1245. doi: 10.1007/s00702-010-0575-4 PMID: 21191623
  71. Wessel, J.R.; Jenkinson, N.; Brittain, J.S.; Voets, S.H.E.M.; Aziz, T.Z.; Aron, A.R. Surprise disrupts cognition via a fronto-basal ganglia suppressive mechanism. Nat. Commun., 2016, 7(1), 11195. doi: 10.1038/ncomms11195 PMID: 27088156
  72. Fife, K.H.; Gutierrez-Reed, N.A.; Zell, V.; Bailly, J.; Lewis, C.M.; Aron, A.R.; Hnasko, T.S. Causal role for the subthalamic nucleus in interrupting behavior. eLife, 2017, 6, e27689. doi: 10.7554/eLife.27689 PMID: 28742497
  73. Failing, M.; Feldmann-Wüstefeld, T.; Wang, B.; Olivers, C.; Theeuwes, J. Statistical regularities induce spatial as well as feature-specific suppression. J. Exp. Psychol. Hum. Percept. Perform., 2019, 45(10), 1291-1303. doi: 10.1037/xhp0000660 PMID: 31157536
  74. Ferrante, O.; Patacca, A.; Di Caro, V.; Della Libera, C.; Santandrea, E.; Chelazzi, L. Altering spatial priority maps via statistical learning of target selection and distractor filtering. Cortex, 2018, 102, 67-95. doi: 10.1016/j.cortex.2017.09.027 PMID: 29096874
  75. Leber, A.B.; Gwinn, R.E.; Hong, Y.; O’Toole, R.J. Implicitly learned suppression of irrelevant spatial locations. Psychon. Bull. Rev., 2016, 23(6), 1873-1881. doi: 10.3758/s13423-016-1065-y PMID: 27225635
  76. Mukai, I.; Kim, D.; Fukunaga, M.; Japee, S.; Marrett, S.; Ungerleider, L.G. Activations in visual and attention-related areas predict and correlate with the degree of perceptual learning. J. Neurosci., 2007, 27(42), 11401-11411. doi: 10.1523/JNEUROSCI.3002-07.2007 PMID: 17942734
  77. Graybiel, A.M. Habits, rituals, and the evaluative brain. Annu. Rev. Neurosci., 2008, 31(1), 359-387. doi: 10.1146/annurev.neuro.29.051605.112851 PMID: 18558860
  78. Redgrave, P.; Rodriguez, M.; Smith, Y.; Rodriguez-Oroz, M.C.; Lehericy, S.; Bergman, H.; Agid, Y.; DeLong, M.R.; Obeso, J.A. Goal-directed and habitual control in the basal ganglia: Implications for Parkinson’s disease. Nat. Rev. Neurosci., 2010, 11(11), 760-772. doi: 10.1038/nrn2915 PMID: 20944662
  79. Krauzlis, R.J.; Bogadhi, A.R.; Herman, J.P.; Bollimunta, A. Selective attention without a neocortex. Cortex, 2018, 102, 161-175. doi: 10.1016/j.cortex.2017.08.026 PMID: 28958417
  80. Hikosaka, O.; Yasuda, M.; Nakamura, K.; Isoda, M.; Kim, H.F.; Terao, Y.; Amita, H.; Maeda, K. Multiple neuronal circuits for variable object–action choices based on short- and long-term memories. Proc. Natl. Acad. Sci. USA, 2019, 116(52), 26313-26320. doi: 10.1073/pnas.1902283116 PMID: 31871157
  81. Kim, H.F.; Hikosaka, O. Distinct basal ganglia circuits controlling behaviors guided by flexible and stable values. Neuron, 2013, 79(5), 1001-1010. doi: 10.1016/j.neuron.2013.06.044 PMID: 23954031
  82. Ragozzino, M.E. Role of the striatum in learning and memory. Neurobiol. Learn. Mem., 2007, 355-379.
  83. Yasuda, M.; Hikosaka, O. Functional territories in primate substantia nigra pars reticulata separately signaling stable and flexible values. J. Neurophysiol., 2015, 113(6), 1681-1696. doi: 10.1152/jn.00674.2014 PMID: 25540224
  84. Anderson, B.A.; Laurent, P.A.; Yantis, S. Value-driven attentional priority signals in human basal ganglia and visual cortex. Brain Res., 2014, 1587, 88-96. doi: 10.1016/j.brainres.2014.08.062 PMID: 25171805
  85. Kim, H.F.; Amita, H.; Hikosaka, O. Indirect pathway of caudal basal ganglia for rejection of valueless visual objects. Neuron, 2017, 94(4), 920-930.e3. doi: 10.1016/j.neuron.2017.04.033 PMID: 28521141
  86. Kunimatsu, J.; Maeda, K.; Hikosaka, O. The caudal part of putamen represents the historical object value information. J. Neurosci., 2019, 39(9), 1709-1719. PMID: 30573645
  87. Yamamoto, S.; Kim, H.F.; Hikosaka, O. Reward value-contingent changes of visual responses in the primate caudate tail associated with a visuomotor skill. J. Neurosci., 2013, 33(27), 11227-11238. doi: 10.1523/JNEUROSCI.0318-13.2013 PMID: 23825426
  88. Kim, H.F.; Ghazizadeh, A.; Hikosaka, O. Separate groups of dopamine neurons innervate caudate head and tail encoding flexible and stable value memories. Front. Neuroanat., 2014, 8, 120. doi: 10.3389/fnana.2014.00120 PMID: 25400553
  89. Herman, J.P.; Arcizet, F.; Krauzlis, R.J. Attention-related modulation of caudate neurons depends on superior colliculus activity. eLife, 2020, 9e53998. doi: 10.7554/eLife.53998 PMID: 32940607
  90. Kang, J.; Kim, H.; Hwang, S.H.; Han, M.; Lee, S.H.; Kim, H.F. Primate ventral striatum maintains neural representations of the value of previously rewarded objects for habitual seeking. Nat. Commun., 2021, 12(1), 2100. doi: 10.1038/s41467-021-22335-5 PMID: 33833228
  91. Codispoti, M.; De Cesarei, A.; Biondi, S.; Ferrari, V. The fate of unattended stimuli and emotional habituation: Behavioral interference and cortical changes. Cogn. Affect. Behav. Neurosci., 2016, 16(6), 1063-1073. doi: 10.3758/s13415-016-0453-0 PMID: 27557884
  92. Micucci, A.; Ferrari, V.; De Cesarei, A.; Codispoti, M. Contextual modulation of emotional distraction: Attentional capture and motivational significance. J. Cogn. Neurosci., 2020, 32(4), 621-633. doi: 10.1162/jocn_a_01505 PMID: 31765599
  93. Diano, M.; Celeghin, A.; Bagnis, A.; Tamietto, M. Amygdala response to emotional stimuli without awareness: Facts and interpretations. Front. Psychol., 2017, 7, 2029. doi: 10.3389/fpsyg.2016.02029 PMID: 28119645
  94. Nishijo, H.; Rafal, R.; Tamietto, M. Editorial: Limbic-Brainstem roles in perception, cognition, emotion, and behavior. Front. Neurosci., 2018, 12, 395. doi: 10.3389/fnins.2018.00395 PMID: 29946232
  95. Pourtois, G.; Schettino, A.; Vuilleumier, P. Brain mechanisms for emotional influences on perception and attention: What is magic and what is not. Biol. Psychol., 2013, 92(3), 492-512. doi: 10.1016/j.biopsycho.2012.02.007 PMID: 22373657
  96. Tamietto, M.; de Gelder, B. Neural bases of the non-conscious perception of emotional signals. Nat. Rev. Neurosci., 2010, 11(10), 697-709. doi: 10.1038/nrn2889 PMID: 20811475
  97. Le Doux, J. Emotional networks and motor control: a fearful view. Prog. Brain Res., 1996, 107, 437-446. doi: 10.1016/s0079-6123(08)61880-4
  98. Phelps, E.A.; LeDoux, J.E. Contributions of the amygdala to emotion processing: From animal models to human behavior. Neuron, 2005, 48(2), 175-187. doi: 10.1016/j.neuron.2005.09.025 PMID: 16242399
  99. LeDoux, J.E. Emotion circuits in the brain. Annu. Rev. Neurosci., 2000, 23(1), 155-184. doi: 10.1146/annurev.neuro.23.1.155 PMID: 10845062
  100. LeDoux, J.E. Emotion, memory and the brain. Sci. Am., 1994, 270(6), 50-57. doi: 10.1038/scientificamerican0694-50 PMID: 8023118
  101. Morris, J.S.; Öhman, A.; Dolan, R.J. A subcortical pathway to the right amygdala mediating "unseen" fear. Proc. Natl. Acad. Sci. USA, 1999, 96(4), 1680-1685. doi: 10.1073/pnas.96.4.1680 PMID: 9990084
  102. Rafal, R.D.; Koller, K.; Bultitude, J.H.; Mullins, P.; Ward, R.; Mitchell, A.S.; Bell, A.H. Connectivity between the superior colliculus and the amygdala in humans and macaque monkeys: virtual dissection with probabilistic DTI tractography. J. Neurophysiol., 2015, 114(3), 1947-1962. doi: 10.1152/jn.01016.2014 PMID: 26224780
  103. Vuilleumier, P.; Armony, J.L.; Driver, J.; Dolan, R.J. Distinct spatial frequency sensitivities for processing faces and emotional expressions. Nat. Neurosci., 2003, 6(6), 624-631. doi: 10.1038/nn1057 PMID: 12740580
  104. Koller, K.; Rafal, R.D.; Platt, A.; Mitchell, N.D. Orienting toward threat: Contributions of a subcortical pathway transmitting retinal afferents to the amygdala via the superior colliculus and pulvinar. Neuropsychologia, 2019, 128, 78-86. doi: 10.1016/j.neuropsychologia.2018.01.027 PMID: 29410291
  105. Pegna, A.J.; Khateb, A.; Lazeyras, F.; Seghier, M.L. Discriminating emotional faces without primary visual cortices involves the right amygdala. Nat. Neurosci., 2005, 8(1), 24-25. doi: 10.1038/nn1364 PMID: 15592466
  106. Burra, N.; Hervais-Adelman, A.; Celeghin, A.; de Gelder, B.; Pegna, A.J. Affective blindsight relies on low spatial frequencies. Neuropsychologia, 2019, 128, 44-49. doi: 10.1016/j.neuropsychologia.2017.10.009 PMID: 28993236
  107. de Gelder, B.; Tamietto, M.; Pegna, A.J.; Van den Stock, J. Visual imagery influences brain responses to visual stimulation in bilateral cortical blindness. Cortex, 2015, 72, 15-26. doi: 10.1016/j.cortex.2014.11.009 PMID: 25571770
  108. McFadyen, J.; Mattingley, J.B.; Garrido, M.I. An afferent white matter pathway from the pulvinar to the amygdala facilitates fear recognition. eLife, 2019, 8e40766. doi: 10.7554/eLife.40766 PMID: 30648533
  109. Morris, J.; Friston, K.J.; Büchel, C.; Frith, C.D.; Young, A.W.; Calder, A.J.; Dolan, R.J. A neuromodulatory role for the human amygdala in processing emotional facial expressions. Brain, 1998, 121(1), 47-57. doi: 10.1093/brain/121.1.47 PMID: 9549487
  110. Whalen, P.J.; Rauch, S.L.; Etcoff, N.L.; McInerney, S.C.; Lee, M.B.; Jenike, M.A. Masked presentations of emotional facial expressions modulate amygdala activity without explicit knowledge. J. Neurosci., 1998, 18(1), 411-418. doi: 10.1523/JNEUROSCI.18-01-00411.1998 PMID: 9412517
  111. Critchley, H.D.; Mathias, C.J.; Dolan, R.J. Fear conditioning in humans: The influence of awareness and autonomic arousal on functional neuroanatomy. Neuron, 2002, 33(4), 653-663. doi: 10.1016/S0896-6273(02)00588-3 PMID: 11856537
  112. Killgore, W.D.S.; Yurgelun-Todd, D.A. Activation of the amygdala and anterior cingulate during nonconscious processing of sad versus happy faces. Neuroimage, 2004, 21(4), 1215-1223. doi: 10.1016/j.neuroimage.2003.12.033 PMID: 15050549
  113. Pasley, B.N.; Mayes, L.C.; Schultz, R.T. Subcortical discrimination of unperceived objects during binocular rivalry. Neuron, 2004, 42(1), 163-172. doi: 10.1016/S0896-6273(04)00155-2 PMID: 15066273
  114. Williams, L.M.; Das, P.; Liddell, B.J.; Kemp, A.H.; Rennie, C.J.; Gordon, E. Mode of functional connectivity in amygdala pathways dissociates level of awareness for signals of fear. J. Neurosci., 2006, 26(36), 9264-9271. doi: 10.1523/JNEUROSCI.1016-06.2006 PMID: 16957082
  115. Williams, L.M.; Liddell, B.J.; Rathjen, J.; Brown, K.J.; Gray, J.; Phillips, M.; Young, A.; Gordon, E. Mapping the time course of nonconscious and conscious perception of fear: An integration of central and peripheral measures. Hum. Brain Mapp., 2004, 21(2), 64-74. doi: 10.1002/hbm.10154 PMID: 14755594
  116. Liddell, B.J.; Brown, K.J.; Kemp, A.H.; Barton, M.J.; Das, P.; Peduto, A.; Gordon, E.; Williams, L.M. A direct brainstem-amygdala-cortical ‘alarm’ system for subliminal signals of fear. Neuroimage, 2005, 24(1), 235-243. doi: 10.1016/j.neuroimage.2004.08.016 PMID: 15588615
  117. Williams, L.M.; Liddell, B.J.; Kemp, A.H.; Bryant, R.A.; Meares, R.A.; Peduto, A.S.; Gordon, E. Amygdala–prefrontal dissociation of subliminal and supraliminal fear. Hum. Brain Mapp., 2006, 27(8), 652-661. doi: 10.1002/hbm.20208 PMID: 16281289
  118. Carlson, J.M.; Reinke, K.S.; Habib, R. A left amygdala mediated network for rapid orienting to masked fearful faces. Neuropsychologia, 2009, 47(5), 1386-1389. doi: 10.1016/j.neuropsychologia.2009.01.026 PMID: 19428403
  119. Yoon, K.L.; Hong, S.W.; Joormann, J.; Kang, P. Perception of facial expressions of emotion during binocular rivalry. Emotion, 2009, 9(2), 172-182. doi: 10.1037/a0014714 PMID: 19348530
  120. Juruena, M.F.; Giampietro, V.P.; Smith, S.D.; Surguladze, S.A.; Dalton, J.A.; Benson, P.J.; Cleare, A.J.; Fu, C.H. Amygdala activation to masked happy facial expressions. J. Int. Neuropsychol. Soc., 2010, 16(2), 383-387. doi: 10.1017/S1355617709991172 PMID: 19958569
  121. Troiani, V.; Schultz, R.T. Amygdala, pulvinar, and inferior parietal cortex contribute to early processing of faces without awareness. Front. Hum. Neurosci., 2013, 7, 241. doi: 10.3389/fnhum.2013.00241 PMID: 23761748
  122. Stepniewska, I.; Qi, H-X.; Kaas, J.H. Projections of the superior colliculus to subdivisions of the inferior pulvinar in New World and Old World monkeys. Vis. Neurosci., 2000, 17(4), 529-549. doi: 10.1017/S0952523800174048 PMID: 11016573
  123. Benevento, L.A.; Standage, G.P. The organization of projections of the retinorecipient and nonretinorecipient nuclei of the pretectal complex and layers of the superior colliculus to the lateral pulvinar and medial pulvinar in the macaque monkey. J. Comp. Neurol., 1983, 217(3), 307-336. doi: 10.1002/cne.902170307 PMID: 6886056
  124. Benevento, L.A.; Fallon, J.H. The ascending projections of the superior colliculus in the rhesus monkey (Macaca mulatta). J. Comp. Neurol., 1975, 160(3), 339-361. doi: 10.1002/cne.901600306 PMID: 1112928
  125. Jacobson, S.; Trojanowski, J.Q. Corticothalamic neurons and thalamocortical terminal fields: An investigation in rat using horseradish peroxidase and autoradiography. Brain Res., 1975, 85(3), 385-401. doi: 10.1016/0006-8993(75)90815-X PMID: 46175
  126. Elorette, C.; Forcelli, P.A.; Saunders, R.C.; Malkova, L. Colocalization of tectal inputs with amygdala-projecting neurons in the macaque pulvinar. Front. Neural Circuits, 2018, 12, 91. doi: 10.3389/fncir.2018.00091 PMID: 30405362
  127. Locke, S. The projection of the medical pulvinar of the macaque. J. Comp. Neurol., 1960, 115(2), 155-169. doi: 10.1002/cne.901150205 PMID: 13762988
  128. Jones, E.G.; Burton, H. A projection from the medial pulvinar to the amygdala in primates. Brain Res., 1976, 104(1), 142-147. doi: 10.1016/0006-8993(76)90654-5 PMID: 813820
  129. Aggleton, J.P.; Burton, M.J.; Passingham, R.E. Cortical and subcortical afferents to the amygdala of the rhesus monkey (Macaca mulatta). Brain Res., 1980, 190(2), 347-368. doi: 10.1016/0006-8993(80)90279-6 PMID: 6768425
  130. Norita, M.; Kawamura, K. Subcortical afferents to the monkey amygdala: An HRP study. Brain Res., 1980, 190(1), 225-230. doi: 10.1016/0006-8993(80)91171-3 PMID: 6769534
  131. Stefanacci, L.; Amaral, D.G. Topographic organization of cortical inputs to the lateral nucleus of the macaque monkey amygdala: A retrograde tracing study. J. Comp. Neurol., 2000, 421(1), 52-79. doi: 10.1002/(SICI)1096-9861(20000522)421:13.0.CO;2-O PMID: 10813772
  132. Amaral, D.G.; Price, J.L. Amygdalo-cortical projections in the monkey (Macaca fascicularis). J. Comp. Neurol., 1984, 230(4), 465-496. doi: 10.1002/cne.902300402 PMID: 6520247
  133. Gattass, R.; Soares, J.G.M.; Lima, B. Connectivity of the Pulvinar. Adv. Anat. Embryol. Cell Biol., 2018, 225, 19-29. doi: 10.1007/978-3-319-70046-5_5 PMID: 29116446
  134. Fudge, J.L.; Haber, S.N. The central nucleus of the amygdala projection to dopamine subpopulations in primates. Neuroscience, 2000, 97(3), 479-494. doi: 10.1016/S0306-4522(00)00092-0 PMID: 10828531
  135. Griggs, W.S.; Kim, H.F.; Ghazizadeh, A.; Costello, M.G.; Wall, K.M.; Hikosaka, O. Flexible and stable value coding areas in caudate head and tail receive anatomically distinct cortical and subcortical inputs. Front. Neuroanat., 2017, 11, 106. doi: 10.3389/fnana.2017.00106 PMID: 29225570
  136. Price, J.L.; Amaral, D.G. An autoradiographic study of the projections of the central nucleus of the monkey amygdala. J. Neurosci., 1981, 1(11), 1242-1259. doi: 10.1523/JNEUROSCI.01-11-01242.1981 PMID: 6171630
  137. Shinonaga, Y.; Takada, M.; Mizuno, N. Direct projections from the central amygdaloid nucleus to the globus pallidus and substantia nigra in the cat. Neuroscience, 1992, 51(3), 691-703. doi: 10.1016/0306-4522(92)90308-O PMID: 1283209
  138. Vankova, M.; Arluison, M.; Leviel, V.; Tramu, G. Afferent connections of the rat substantia nigra pars lateralis with special reference to peptide-containing neurons of the amygdalo-nigral pathway. J. Chem. Neuroanat., 1992, 5(1), 39-50. doi: 10.1016/0891-0618(92)90032-L PMID: 1376607
  139. Maeda, K.; Inoue, K.; Kunimatsu, J.; Takada, M.; Hikosaka, O. Primate amygdalo-nigral pathway for boosting oculomotor action in motivating situations. iScience, 2020, 23(6), 101194. doi: 10.1016/j.isci.2020.101194 PMID: 32516719
  140. Maeda, K.; Kunimatsu, J.; Hikosaka, O. Amygdala activity for the modulation of goal-directed behavior in emotional contexts. PLoS Biol., 2018, 16(6), e2005339. doi: 10.1371/journal.pbio.2005339 PMID: 29870524
  141. Mograbi, D.C.; Morris, R.G. The developing concept of implicit awareness: A rejoinder and reply to commentaries on Mograbi and Morris. Cogn. Neurosci., 2014, 5(3-4), 138-142. doi: 10.1080/17588928.2014.905522 PMID: 24717089
  142. Starkstein, S.E.; Jorge, R.E.; Robinson, R.G. The frequency, clinical correlates, and mechanism of anosognosia after stroke. Can. J. Psychiatry, 2010, 55(6), 355-361. doi: 10.1177/070674371005500604 PMID: 20540830
  143. McGlynn, S.M.; Schacter, D.L. Unawareness of deficits in neuropsychological syndromes. J. Clin. Exp. Neuropsychol., 1989, 11(2), 143-205. doi: 10.1080/01688638908400882 PMID: 2647781
  144. Prigatano, G.P. The study of anosognosia; Oxford University Press, 2010.
  145. Celeghin, A.; Diano, M.; de Gelder, B.; Weiskrantz, L.; Marzi, C.A.; Tamietto, M. Intact hemisphere and corpus callosum compensate for visuomotor functions after early visual cortex damage. Proc. Natl. Acad. Sci. USA, 2017, 114(48), E10475-E10483. doi: 10.1073/pnas.1714801114 PMID: 29133428
  146. Celeghin, A.; Tamietto, M. Blindsight: Functions, methods and neural substrates; Reference Module in Neuroscience and Biobehavioral Psychology, 2021.
  147. Weiskrantz, L.; Warrington, E.K.; Sanders, M.D.; Marshall, J. Visual capacity in the hemianopic field following a restricted occipital ablation. Brain, 1974, 97(1), 709-728. doi: 10.1093/brain/97.1.709 PMID: 4434190
  148. Georgy, L.; Celeghin, A.; Marzi, C.A.; Tamietto, M.; Ptito, A. The superior colliculus is sensitive to gestalt-like stimulus configuration in hemispherectomy patients. Cortex, 2016, 81, 151-161. doi: 10.1016/j.cortex.2016.04.018 PMID: 27208816
  149. Celeghin, A.; Barabas, M.; Mancini, F.; Bendini, M.; Pedrotti, E.; Prior, M.; Cantagallo, A.; Savazzi, S.; Marzi, C.A. Speeded manual responses to unseen visual stimuli in hemianopic patients: What kind of blindsight? Conscious. Cogn., 2015, 32, 6-14. doi: 10.1016/j.concog.2014.07.010 PMID: 25123328
  150. Celeghin, A.; de Gelder, B.; Tamietto, M. From affective blindsight to emotional consciousness. Conscious. Cogn., 2015, 36, 414-425. doi: 10.1016/j.concog.2015.05.007 PMID: 26058355
  151. Celeghin, A.; Savazzi, S.; Barabas, M.; Bendini, M.; Marzi, C.A. Blindsight is sensitive to stimulus numerosity and configuration: evidence from the redundant signal effect. Exp. Brain Res., 2015, 233(5), 1617-1623. doi: 10.1007/s00221-015-4236-6 PMID: 25712088
  152. Tamietto, M.; Morrone, M.C. Visual plasticity: blindsight bridges anatomy and function in the visual system. Curr. Biol., 2016, 26(2), R70-R73. doi: 10.1016/j.cub.2015.11.026 PMID: 26811892
  153. Kinoshita, M.; Kato, R.; Isa, K.; Kobayashi, K.; Kobayashi, K.; Onoe, H.; Isa, T. Dissecting the circuit for blindsight to reveal the critical role of pulvinar and superior colliculus. Nat. Commun., 2019, 10(1), 135. doi: 10.1038/s41467-018-08058-0 PMID: 30635570
  154. Kato, R.; Takaura, K.; Ikeda, T.; Yoshida, M.; Isa, T. Contribution of the retino-tectal pathway to visually guided saccades after lesion of the primary visual cortex in monkeys. Eur. J. Neurosci., 2011, 33(11), 1952-1960. doi: 10.1111/j.1460-9568.2011.07729.x PMID: 21645091
  155. Bisiach, E.; Rusconi, M.L. Break-down of perceptual awareness in unilateral neglect. Cortex, 1990, 26(4), 643-649. doi: 10.1016/S0010-9452(13)80313-9 PMID: 2081401
  156. Làdavas, E.; Paladini, R.; Cubelli, R. Implicit associative priming in a patient with left visual neglect. Neuropsychologia, 1993, 31(12), 1307-1320. doi: 10.1016/0028-3932(93)90100-E PMID: 8127429
  157. Shaqiri, A.; Anderson, B. Priming and statistical learning in right brain damaged patients. Neuropsychologia, 2013, 51(13), 2526-2533. doi: 10.1016/j.neuropsychologia.2013.09.024 PMID: 24075841
  158. Wansard, M.; Bartolomeo, P.; Vanderaspoilden, V.; Geurten, M.; Meulemans, T. Can the exploration of left space be induced implicitly in unilateral neglect? Conscious. Cogn., 2015, 31, 115-123. doi: 10.1016/j.concog.2014.11.004 PMID: 25460245
  159. Brown, C.R.H. The prioritisation of motivationally salient stimuli in hemi-spatial neglect may be underpinned by goal-relevance: A meta-analytic review. Cortex, 2022, 150, 85-107. doi: 10.1016/j.cortex.2022.03.001 PMID: 35381470
  160. Domínguez-Borràs, J.; Saj, A.; Armony, J.L.; Vuilleumier, P. Emotional processing and its impact on unilateral neglect and extinction. Neuropsychologia, 2012, 50(6), 1054-1071. doi: 10.1016/j.neuropsychologia.2012.03.003 PMID: 22406694
  161. Tamietto, M.; Latini, C.L.; Pia, L.; Zettin, M.; Gionco, M.; Geminiani, G. Effects of emotional face cueing on line bisection in neglect: A single case study. Neurocase, 2005, 11(6), 399-404. doi: 10.1080/13554790500259717 PMID: 16393753
  162. Tamietto, M.; Cauda, F.; Celeghin, A.; Diano, M.; Costa, T.; Cossa, F.M.; Sacco, K.; Duca, S.; Geminiani, G.C.; de Gelder, B. Once you feel it, you see it: Insula and sensory-motor contribution to visual awareness for fearful bodies in parietal neglect. Cortex, 2015, 62, 56-72. doi: 10.1016/j.cortex.2014.10.009 PMID: 25465122
  163. Tamietto, M.; Geminiani, G.; Genero, R.; de Gelder, B. Seeing fearful body language overcomes attentional deficits in patients with neglect. J. Cogn. Neurosci., 2007, 19(3), 445-454. doi: 10.1162/jocn.2007.19.3.445 PMID: 17335393
  164. Domínguez-Borràs, J.; Armony, J.L.; Maravita, A.; Driver, J.; Vuilleumier, P. Partial recovery of visual extinction by pavlovian conditioning in a patient with hemispatial neglect. Cortex, 2013, 49(3), 891-898. doi: 10.1016/j.cortex.2012.11.005 PMID: 23337458
  165. Lucas, N.; Schwartz, S.; Leroy, R.; Pavin, S.; Diserens, K.; Vuilleumier, P. Gambling against neglect: Unconscious spatial biases induced by reward reinforcement in healthy people and brain-damaged patients. Cortex, 2013, 49(10), 2616-2627. doi: 10.1016/j.cortex.2013.06.004 PMID: 23969194
  166. Geng, J.J.; Behrmann, M. Probability cuing of target location facilitates visual search implicitly in normal participants and patients with hemispatial neglect. Psychol. Sci., 2002, 13(6), 520-525. doi: 10.1111/1467-9280.00491 PMID: 12430835
  167. Jiang, Y.; Chun, M.M. Selective attention modulates implicit learning. Q. J. Exp. Psychol. A, 2001, 54(4), 1105-1124. doi: 10.1080/713756001 PMID: 11765735
  168. Chun, M.M.; Jiang, Y. Contextual cueing: implicit learning and memory of visual context guides spatial attention. Cognit. Psychol., 1998, 36(1), 28-71. doi: 10.1006/cogp.1998.0681 PMID: 9679076
  169. Hoffmann, J.; Kunde, W. Location-specific target expectancies in visual search. J. Exp. Psychol. Hum. Percept. Perform., 1999, 25(4), 1127-1141. doi: 10.1037/0096-1523.25.4.1127
  170. Mograbi, D.C.; Morris, R.G. Implicit awareness in anosognosia: Clinical observations, experimental evidence, and theoretical implications. Cogn. Neurosci., 2013, 4(3-4), 181-197. doi: 10.1080/17588928.2013.833899 PMID: 24251606
  171. Nardone, I.B.; Ward, R.; Fotopoulou, A.; Turnbull, O.H. Attention and emotion in anosognosia: evidence of implicit awareness and repression? Neurocase, 2007, 13(5), 438-445. PMID: 18781443
  172. LeDoux, J.E.; Brown, R. A higher-order theory of emotional consciousness. Proc. Natl. Acad. Sci. USA, 2017, 114(10), E2016-E2025. doi: 10.1073/pnas.1619316114 PMID: 28202735
  173. Rafee, S.; O’Keeffe, F.; O’Riordan, S.; Reilly, R.; Hutchinson, M. Adult onset dystonia: A disorder of the collicular–pulvinar–amygdala network. Cortex, 2021, 143, 282-289. doi: 10.1016/j.cortex.2021.05.010 PMID: 34148640
  174. Hutchinson, M.; Isa, T.; Molloy, A.; Kimmich, O.; Williams, L.; Molloy, F.; Moore, H.; Healy, D.G.; Lynch, T.; Walsh, C.; Butler, J.; Reilly, R.B.; Walsh, R.; O’Riordan, S. Cervical dystonia: A disorder of the midbrain network for covert attentional orienting. Front. Neurol., 2014, 5, 54. doi: 10.3389/fneur.2014.00054 PMID: 24803911
  175. Palermo, S. What is reduced self-awareness? An overview of interpretative models, bioethical issues and neuroimaging findings. In: Influences and Importance of Self-Awareness, Self-Evaluation and Self-Esteem; Thomas, H.R., Ed.; Nova Medicine & Health, 2022; pp. 65-88.
  176. Gainotti, G. The relations between cognitive and motivational components of anosognosia for left-sided hemiplegia and the right hemisphere dominance for emotions: A historical survey. Conscious. Cogn., 2021, 94, 103180. doi: 10.1016/j.concog.2021.103180 PMID: 34392025
  177. Pia, L.; Neppi-Modona, M.; Ricci, R.; Berti, A. The anatomy of anosognosia for hemiplegia: A meta-analysis. Cortex, 2004, 40(2), 367-377. doi: 10.1016/S0010-9452(08)70131-X PMID: 15156794
  178. Orfei, M.D.; Robinson, R.G.; Prigatano, G.P.; Starkstein, S.; Rüsch, N.; Bria, P.; Caltagirone, C.; Spalletta, G. Anosognosia for hemiplegia after stroke is a multifaceted phenomenon: A systematic review of the literature. Brain, 2007, 130(12), 3075-3090. doi: 10.1093/brain/awm106 PMID: 17533170
  179. Berti, A.; Bottini, G.; Gandola, M.; Pia, L.; Smania, N.; Stracciari, A.; Castiglioni, I.; Vallar, G.; Paulesu, E. Shared cortical anatomy for motor awareness and motor control. Science, 2005, 309(5733), 488-491. doi: 10.1126/science.1110625 PMID: 16020740
  180. Kortte, K.; Hillis, A.E. Recent advances in the understanding of neglect and anosognosia following right hemisphere stroke. Curr. Neurol. Neurosci. Rep., 2009, 9(6), 459-465. doi: 10.1007/s11910-009-0068-8 PMID: 19818233
  181. Grattan, E.S.; Skidmore, E.R.; Woodbury, M.L. Examining anosognosia of neglect. OTJR (Thorofare, N.J.), 2018, 38(2), 113-120. doi: 10.1177/1539449217747586 PMID: 29251546
  182. Carota, A.; Bianchini, F.; Pizzamiglio, L.; Calabrese, P. The "Altitudinal Anton’s syndrome": coexistence of anosognosia, blindsight and left inattention. Behav. Neurol., 2013, 26(1-2), 157-163. doi: 10.1155/2013/241715 PMID: 22713392
  183. Moro, V.; Scandola, M.; Bulgarelli, C.; Avesani, R.; Fotopoulou, A. Error-based training and emergent awareness in anosognosia for hemiplegia. Neuropsychol. Rehabil., 2015, 25(4), 593-616. doi: 10.1080/09602011.2014.951659 PMID: 25142215
  184. D’Imperio, D.; Bulgarelli, C.; Bertagnoli, S.; Avesani, R.; Moro, V. Modulating anosognosia for hemiplegia: The role of dangerous actions in emergent awareness. Cortex, 2017, 92, 187-203. doi: 10.1016/j.cortex.2017.04.009 PMID: 28501758
  185. Saj, A.; Vocat, R.; Vuilleumier, P. On the contribution of unconscious processes to implicit anosognosia. Cogn. Neurosci., 2013, 4(3-4), 198-199. doi: 10.1080/17588928.2013.854760 PMID: 24251607
  186. Michel, M.; Beck, D.; Block, N.; Blumenfeld, H.; Brown, R.; Carmel, D.; Carrasco, M.; Chirimuuta, M.; Chun, M.; Cleeremans, A.; Dehaene, S.; Fleming, S.M.; Frith, C.; Haggard, P.; He, B.J.; Heyes, C.; Goodale, M.A.; Irvine, L.; Kawato, M.; Kentridge, R.; King, J.R.; Knight, R.T.; Kouider, S.; Lamme, V.; Lamy, D.; Lau, H.; Laureys, S.; LeDoux, J.; Lin, Y.T.; Liu, K.; Macknik, S.L.; Martinez-Conde, S.; Mashour, G.A.; Melloni, L.; Miracchi, L.; Mylopoulos, M.; Naccache, L.; Owen, A.M.; Passingham, R.E.; Pessoa, L.; Peters, M.A.K.; Rahnev, D.; Ro, T.; Rosenthal, D.; Sasaki, Y.; Sergent, C.; Solovey, G.; Schiff, N.D.; Seth, A.; Tallon-Baudry, C.; Tamietto, M.; Tong, F.; van Gaal, S.; Vlassova, A.; Watanabe, T.; Weisberg, J.; Yan, K.; Yoshida, M. Opportunities and challenges for a maturing science of consciousness. Nat. Hum. Behav., 2019, 3(2), 104-107. doi: 10.1038/s41562-019-0531-8 PMID: 30944453
  187. Lehrer, D.S.; Lorenz, J. Anosognosia in schizophrenia: hidden in plain sight. Innov. Clin. Neurosci., 2014, 11(5-6), 10-17. PMID: 25152841
  188. Jenkinson, P.M.; Preston, C.; Ellis, S.J. Unawareness after stroke: A review and practical guide to understanding, assessing, and managing anosognosia for hemiplegia. J. Clin. Exp. Neuropsychol., 2011, 33(10), 1079-1093. doi: 10.1080/13803395.2011.596822 PMID: 21936643
  189. Wickens, J.R.; Reynolds, J.N.J.; Hyland, B.I. Neural mechanisms of reward-related motor learning. Curr. Opin. Neurobiol., 2003, 13(6), 685-690. doi: 10.1016/j.conb.2003.10.013 PMID: 14662369
  190. Maier, M.; Ballester, B.R.; Verschure, P.F.M.J. Principles of neurorehabilitation after stroke based on motor learning and brain plasticity mechanisms. Front. Syst. Neurosci., 2019, 13, 74. doi: 10.3389/fnsys.2019.00074 PMID: 31920570
  191. Abe, M.; Schambra, H.; Wassermann, E.M.; Luckenbaugh, D.; Schweighofer, N.; Cohen, L.G. Reward improves long-term retention of a motor memory through induction of offline memory gains. Curr. Biol., 2011, 21(7), 557-562. doi: 10.1016/j.cub.2011.02.030 PMID: 21419628

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Bentham Science Publishers, 2024