Pathways from the Superior Colliculus to the Basal Ganglia
- Authors: Melleu F.1, Canteras N.1
-
Affiliations:
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo
- Issue: Vol 22, No 9 (2024)
- Pages: 1431-1453
- Section: Neurology
- URL: https://rjpbr.com/1570-159X/article/view/644891
- DOI: https://doi.org/10.2174/1570159X21666230911102118
- ID: 644891
Cite item
Full Text
Abstract
The present work aims to review the structural organization of the mammalian superior colliculus (SC), the putative pathways connecting the SC and the basal ganglia, and their role in organizing complex behavioral output. First, we review how the complex intrinsic connections between the SCs laminae projections allow for the construction of spatially aligned, visual-multisensory maps of the surrounding environment. Moreover, we present a summary of the sensory-motor inputs of the SC, including a description of the integration of multi-sensory inputs relevant to behavioral control. We further examine the major descending outputs toward the brainstem and spinal cord. As the central piece of this review, we provide a thorough analysis covering the putative interactions between the SC and the basal ganglia. To this end, we explore the diverse thalamic routes by which information from the SC may reach the striatum, including the pathways through the lateral posterior, parafascicular, and rostral intralaminar thalamic nuclei. We also examine the interactions between the SC and subthalamic nucleus, representing an additional pathway for the tectal modulation of the basal ganglia. Moreover, we discuss how information from the SC might also be relayed to the basal ganglia through midbrain tectonigral and tectotegmental projections directed at the substantia nigra compacta and ventrotegmental area, respectively, influencing the dopaminergic outflow to the dorsal and ventral striatum. We highlight the vast interplay between the SC and the basal ganglia and raise several missing points that warrant being addressed in future studies.
About the authors
Fernando Melleu
Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo
Author for correspondence.
Email: info@benthamscience.net
Newton Canteras
Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo
Email: info@benthamscience.net
References
- Butler, A.B.; Hodos, W. Comparative vertebrate neuroanatomy: Evolution and adaptation; John Wiley & Sons, 2005. doi: 10.1002/0471733849
- Basso, M.A.; Bickford, M.E.; Cang, J. Unraveling circuits of visual perception and cognition through the superior colliculus. Neuron, 2021, 109(6), 918-937. doi: 10.1016/j.neuron.2021.01.013 PMID: 33548173
- Altman, J.; Carpenter, M.B. Fiber projections of the superior colliculus in the cat. J. Comp. Neurol., 1961, 116(2), 157-177. doi: 10.1002/cne.901160206 PMID: 13682733
- Cajal, S.R. Histology of the nervous system of man and vertebrates; Oxford Univ Press: New York, 1995.
- Werner, W.; Dannenberg, S.; Hoffmann, K.P. Arm-movement-related neurons in the primate superior colliculus and underlying reticular formation: comparison of neuronal activity with EMGs of muscles of the shoulder, arm and trunk during reaching. Exp. Brain Res., 1997, 115(2), 191-205. doi: 10.1007/PL00005690 PMID: 9224849
- Fischer, B.; Ramsperger, E. Human express saccades: Extremely short reaction times of goal directed eye movements. Exp. Brain Res., 1984, 57(1), 191-195. doi: 10.1007/BF00231145 PMID: 6519226
- Savjani, R.R.; Katyal, S.; Halfen, E.; Kim, J.H.; Ress, D. Polar-angle representation of saccadic eye movements in human superior colliculus. Neuroimage, 2018, 171, 199-208. doi: 10.1016/j.neuroimage.2017.12.080 PMID: 29292132
- Frost, B.J.; Wise, L.Z.; Morgan, B.; Bird, D. Retinotopic representation of the bifoveate eye of the kestrel (Falco sparverius) on the optic tectum. Vis. Neurosci., 1990, 5(3), 231-239. doi: 10.1017/S0952523800000304 PMID: 2134846
- Hunt, S.P.; Künzle, H. Observations on the projections and intrinsic organization of the pigeon optic tectum: An autoradiographic study based on anterograde and retrograde, axonal and dendritic flow. J. Comp. Neurol., 1976, 170(2), 153-172. doi: 10.1002/cne.901700203 PMID: 62764
- Qu, J.; Zhou, X.; Zhu, H.; Cheng, G.; Ashwell, K.W.; Lu, F. Development of the human superior colliculus and the retinocollicular projection. Exp. Eye Res., 2006, 82(2), 300-310. doi: 10.1016/j.exer.2005.07.002 PMID: 16125175
- Abplanalp, P. Some subcortical connections of the visual system in tree shrews and squirrels. Brain Behav. Evol., 1970, 3(1-4), 155-168. doi: 10.1159/000125468 PMID: 5522341
- Goldberg, M.E.; Wurtz, R.H. Activity of superior colliculus in behaving monkey. II. Effect of attention on neuronal responses. J. Neurophysiol., 1972, 35(4), 560-574. doi: 10.1152/jn.1972.35.4.560 PMID: 4624740
- Wurtz, R.H.; Mohler, C.W. Organization of monkey superior colliculus: Enhanced visual response of superficial layer cells. J. Neurophysiol., 1976, 39(4), 745-765. doi: 10.1152/jn.1976.39.4.745 PMID: 823303
- Andrade da Costa, B.L.S.; Hokoç, J.N.; Pinaud, R.R.; Gattass, R. GABAergic retinocollicular projection in the new world monkey Cebus apella. Neuroreport, 1997, 8(8), 1797-1802. doi: 10.1097/00001756-199705260-00001 PMID: 9223054
- Apter, J.T. Projection of the retina on superior colliculus of cats. J. Neurophysiol., 1945, 8(2), 123-134. doi: 10.1152/jn.1945.8.2.123
- Berson, D.M. Retinal and cortical inputs to cat superior colliculus: composition, convergence and laminar specificity. Prog. Brain Res., 1988, 75, 17-26. doi: 10.1016/S0079-6123(08)60462-8
- Cusick, C.G.; Kaas, J.H. Retinal projections in adult and newborn grey squirrels. Brain Res. Dev. Brain Res., 1982, 4(3), 275-284. doi: 10.1016/0165-3806(82)90139-0 PMID: 6179578
- Perry, V.H.; Cowey, A. Retinal ganglion cells that project to the superior colliculus and pretectum in the macaque monkey. Neuroscience, 1984, 12(4), 1125-1137. doi: 10.1016/0306-4522(84)90007-1 PMID: 6483194
- Bickford, M.E.; Zhou, N.; Krahe, T.E.; Govindaiah, G.; Guido, W. Retinal and tectal "Driver-Like" inputs converge in the shell of the mouse dorsal lateral geniculate nucleus. J. Neurosci., 2015, 35(29), 10523-10534. doi: 10.1523/JNEUROSCI.3375-14.2015 PMID: 26203147
- Gandhi, N.J.; Katnani, H.A. Motor functions of the superior colliculus. Annu. Rev. Neurosci., 2011, 34(1), 205-231. doi: 10.1146/annurev-neuro-061010-113728 PMID: 21456962
- Ghitani, N.; Bayguinov, P.O.; Vokoun, C.R.; McMahon, S.; Jackson, M.B.; Basso, M.A. Excitatory synaptic feedback from the motor layer to the sensory layers of the superior colliculus. J. Neurosci., 2014, 34(20), 6822-6833. doi: 10.1523/JNEUROSCI.3137-13.2014 PMID: 24828636
- Helmbrecht, T.O.; dal Maschio, M.; Donovan, J.C.; Koutsouli, S.; Baier, H. Topography of a visuomotor transformation. Neuron, 2018, 100(6), 1429-1445.e4. doi: 10.1016/j.neuron.2018.10.021 PMID: 30392799
- Isa, T.; Endo, T.; Saito, Y. The visuo-motor pathway in the local circuit of the rat superior colliculus. J. Neurosci., 1998, 18(20), 8496-8504. doi: 10.1523/JNEUROSCI.18-20-08496.1998 PMID: 9763492
- Wurtz, R.H.; Albano, J.E. Visual-motor function of the primate superior colliculus. Annu. Rev. Neurosci., 1980, 3(1), 189-226. doi: 10.1146/annurev.ne.03.030180.001201 PMID: 6774653
- Ghose, D.; Maier, A.; Nidiffer, A.; Wallace, M.T. Multisensory response modulation in the superficial layers of the superior colliculus. J. Neurosci., 2014, 34(12), 4332-4344. doi: 10.1523/JNEUROSCI.3004-13.2014 PMID: 24647954
- Bednárová, V.; Grothe, B.; Myoga, M.H. Complex and spatially segregated auditory inputs of the mouse superior colliculus. J. Physiol., 2018, 596(21), 5281-5298. doi: 10.1113/JP276370 PMID: 30206945
- Wang, N.; Perkins, E.; Zhou, L.; Warren, S.; May, P.J. Reticular formation connections underlying horizontal gaze: the central mesencephalic reticular formation (cMRF) as a conduit for the collicular saccade signal. Front. Neuroanat., 2017, 11, 36. doi: 10.3389/fnana.2017.00036 PMID: 28487639
- Coimbra, N.C.; De Oliveira, R.; Freitas, R.L.; Ribeiro, S.J.; Borelli, K.G.; Pacagnella, R.C.; Moreira, J.E.; da Silva, L.A.; Melo, L.L.; Lunardi, L.O.; Brandão, M.L. Neuroanatomical approaches of the tectum-reticular pathways and immunohistochemical evidence for serotonin-positive perikarya on neuronal substrates of the superior colliculus and periaqueductal gray matter involved in the elaboration of the defensive behavior and fear-induced analgesia. Exp. Neurol., 2006, 197(1), 93-112. doi: 10.1016/j.expneurol.2005.08.022 PMID: 16303128
- Chen, B.; May, P.J. The feedback circuit connecting the superior colliculus and central mesencephalic reticular formation: a direct morphological demonstration. Exp. Brain Res., 2000, 131(1), 10-21. doi: 10.1007/s002219900280 PMID: 10759167
- Chevalier, G.; Deniau, J.M. Spatio-temporal organization of a branched tecto-spinal/tecto-diencephalic neuronal system. Neuroscience, 1984, 12(2), 427-439. doi: 10.1016/0306-4522(84)90063-0 PMID: 6462457
- Cowie, R.J.; Holstege, G. Dorsal mesencephalic projections to pons, medulla, and spinal cord in the cat: Limbic and non-limbic components. J. Comp. Neurol., 1992, 319(4), 536-559. doi: 10.1002/cne.903190406 PMID: 1619044
- Dean, P.; Redgrave, P.; Sahibzada, N.; Tsuji, K. Head and body movements produced by electrical stimulation of superior colliculus in rats: Effects of interruption of crossed tectoreticulospinal pathway. Neuroscience, 1986, 19(2), 367-380. doi: 10.1016/0306-4522(86)90267-8 PMID: 3774146
- Sahibzada, N.; Yamasaki, D.; Rhoades, R.W. The spinal and commissural projections from the superior colliculus in rat and hamster arise from distinct neuronal populations. Brain Res., 1987, 415(2), 242-256. doi: 10.1016/0006-8993(87)90206-X PMID: 3607496
- Meredith, M.A.; Wallace, M.T.; Stein, B.E. Visual, auditory and somatosensory convergence in output neurons of the cat superior colliculus: multisensory properties of the tecto-reticulo-spinal projection. Exp. Brain Res., 1992, 88(1), 181-186. doi: 10.1007/BF02259139 PMID: 1541354
- Redgrave, P.; Dean, P.; Mitchell, I.J.; Odekunle, A.; Clark, A. The projection from superior colliculus to cuneiform area in the rat I. Anatomical studies. Exp. Brain Res., 1988, 72(3), 611-625. doi: 10.1007/BF00250606 PMID: 2466683
- Benavidez, N.L.; Bienkowski, M.S.; Zhu, M.; Garcia, L.H.; Fayzullina, M.; Gao, L.; Bowman, I.; Gou, L.; Khanjani, N.; Cotter, K.R.; Korobkova, L.; Becerra, M.; Cao, C.; Song, M.Y.; Zhang, B.; Yamashita, S.; Tugangui, A.J.; Zingg, B.; Rose, K.; Lo, D.; Foster, N.N.; Boesen, T.; Mun, H.S.; Aquino, S.; Wickersham, I.R.; Ascoli, G.A.; Hintiryan, H.; Dong, H.W. Organization of the inputs and outputs of the mouse superior colliculus. Nat. Commun., 2021, 12(1), 4004. doi: 10.1038/s41467-021-24241-2 PMID: 34183678
- Redgrave, P.; Mitchell, I.J.; Dean, P. Descending projections from the superior colliculus in rat: a study using orthograde transport of wheatgerm-agglutinin conjugated horseradish peroxidase. Exp. Brain Res., 1987, 68(1), 147-167. doi: 10.1007/BF00255241 PMID: 2826204
- Isa, T.; Marquez-Legorreta, E.; Grillner, S.; Scott, E.K. The tectum/superior colliculus as the vertebrate solution for spatial sensory integration and action. Curr. Biol., 2021, 31(11), R741-R762. doi: 10.1016/j.cub.2021.04.001 PMID: 34102128
- Jay, M.F.; Sparks, D.L. Sensorimotor integration in the primate superior colliculus. I. Motor convergence. J. Neurophysiol., 1987, 57(1), 22-34. doi: 10.1152/jn.1987.57.1.22 PMID: 3559673
- Butler, B.E.; Chabot, N.; Lomber, S.G. A quantitative comparison of the hemispheric, areal, and laminar origins of sensory and motor cortical projections to the superior colliculus of the cat. J. Comp. Neurol., 2016, 524(13), 2623-2642. doi: 10.1002/cne.23980 PMID: 26850989
- Savier, E.; Eglen, S.J.; Bathélémy, A.; Perraut, M.; Pfrieger, F.W.; Lemke, G.; Reber, M. A molecular mechanism for the topographic alignment of convergent neural maps. elife, 2017, 6, e20470.
- Chalupa, L.M.; Rhoades, R.W. Responses of visual, somatosensory, and auditory neurones in the golden hamsters superior colliculus. J. Physiol., 1977, 270(3), 595-626. doi: 10.1113/jphysiol.1977.sp011971 PMID: 903907
- Dräger, U.C.; Hubel, D.H. Responses to visual stimulation and relationship between visual, auditory, and somatosensory inputs in mouse superior colliculus. J. Neurophysiol., 1975, 38(3), 690-713. doi: 10.1152/jn.1975.38.3.690 PMID: 1127462
- Knudsen, E.I. Auditory and visual maps of space in the optic tectum of the owl. J. Neurosci., 1982, 2(9), 1177-1194. doi: 10.1523/JNEUROSCI.02-09-01177.1982 PMID: 7119872
- Palmer, A.R.; King, A.J. The representation of auditory space in the mammalian superior colliculus. Nature, 1982, 299(5880), 248-249. doi: 10.1038/299248a0 PMID: 7110344
- Wise, L.Z.; Irvine, D.R. Auditory response properties of neurons in deep layers of cat superior colliculus. J. Neurophysiol., 1983, 49(3), 674-685. doi: 10.1152/jn.1983.49.3.674 PMID: 6834093
- Tardif, E.; Clarke, S. Commissural connections of human superior colliculus. Neuroscience, 2002, 111(2), 363-372. doi: 10.1016/S0306-4522(01)00600-5 PMID: 11983321
- Jiang, W.; Jiang, H.; Stein, B.E. Two corticotectal areas facilitate multisensory orientation behavior. J. Cogn. Neurosci., 2002, 14(8), 1240-1255. doi: 10.1162/089892902760807230 PMID: 12495529
- Jiang, W.; Stein, B.E. Cortex controls multisensory depression in superior colliculus. J. Neurophysiol., 2003, 90(4), 2123-2135. doi: 10.1152/jn.00369.2003 PMID: 14534263
- Jiang, W.; Wallace, M.T.; Jiang, H.; Vaughan, J.W.; Stein, B.E. Two cortical areas mediate multisensory integration in superior colliculus neurons. J. Neurophysiol., 2001, 85(2), 506-522. doi: 10.1152/jn.2001.85.2.506 PMID: 11160489
- Brecht, M.; Singer, W.; Engel, A.K. Amplitude and direction of saccadic eye movements depend on the synchronicity of collicular population activity. J. Neurophysiol., 2004, 92(1), 424-432. doi: 10.1152/jn.00639.2003 PMID: 14973313
- Stein, B.E.; Clamann, H.P. Control of pinna movements and sensorimotor register in cat superior colliculus. Brain Behav. Evol., 1981, 19(3-4), 180-192. doi: 10.1159/000121641 PMID: 7326575
- Cohen, J.D.; Castro-Alamancos, M.A. Behavioral state dependency of neural activity and sensory (whisker) responses in superior colliculus. J. Neurophysiol., 2010, 104(3), 1661-1672. doi: 10.1152/jn.00340.2010 PMID: 20610783
- Hemelt, M.E.; Keller, A. Superior colliculus control of vibrissa movements. J. Neurophysiol., 2008, 100(3), 1245-1254. doi: 10.1152/jn.90478.2008 PMID: 18562549
- Cowie, R.J.; Robinson, D.L. Subcortical contributions to head movements in macaques. I. Contrasting effects of electrical stimulation of a medial pontomedullary region and the superior colliculus. J. Neurophysiol., 1994, 72(6), 2648-2664. doi: 10.1152/jn.1994.72.6.2648 PMID: 7897481
- Ellard, C.G.; Goodale, M.A. The role of the predorsal bundle in head and body movements elicited by electrical stimulation of the superior colliculus in the Mongolian gerbil. Exp. Brain Res., 1986, 64(3), 421-433. doi: 10.1007/BF00340479 PMID: 3803481
- Pisa, M. Motor functions of the striatum in the rat: Critical role of the lateral region in tongue and forelimb reaching. Neuroscience, 1988, 24(2), 453-463. doi: 10.1016/0306-4522(88)90341-7 PMID: 3362348
- Corneil, B.D.; Olivier, E.; Munoz, D.P. Neck muscle responses to stimulation of monkey superior colliculus. II. Gaze shift initiation and volitional head movements. J. Neurophysiol., 2002, 88(4), 2000-2018. doi: 10.1152/jn.2002.88.4.2000 PMID: 12364524
- Sahibzada, N.; Dean, P.; Redgrave, P. Movements resembling orientation or avoidance elicited by electrical stimulation of the superior colliculus in rats. J. Neurosci., 1986, 6(3), 723-733. doi: 10.1523/JNEUROSCI.06-03-00723.1986 PMID: 3958791
- Courjon, J.H.; Zénon, A.; Clément, G.; Urquizar, C.; Olivier, E.; Pélisson, D. Electrical stimulation of the superior colliculus induces non-topographically organized perturbation of reaching movements in cats. Front. Syst. Neurosci., 2015, 9, 109. doi: 10.3389/fnsys.2015.00109 PMID: 26283933
- Tehovnik, E.J.; Yeomans, J.S. Two converging brainstem pathways mediating circling behavior. Brain Res., 1986, 385(2), 329-342. doi: 10.1016/0006-8993(86)91080-2 PMID: 3779395
- Hu, F.; Dan, Y. An inferior-superior colliculus circuit controls auditory cue-directed visual spatial attention. Neuron, 2022, 110(1), 109-119. e103. doi: 10.1016/j.neuron.2021.10.004
- Zhaoping, L. From the optic tectum to the primary visual cortex: migration through evolution of the saliency map for exogenous attentional guidance. Curr. Opin. Neurobiol., 2016, 40, 94-102. doi: 10.1016/j.conb.2016.06.017 PMID: 27420378
- Favaro, P.D.N.; Gouvêa, T.S.; de Oliveira, S.R.; Vautrelle, N.; Redgrave, P.; Comoli, E. The influence of vibrissal somatosensory processing in rat superior colliculus on prey capture. Neuroscience, 2011, 176, 318-327. doi: 10.1016/j.neuroscience.2010.12.009 PMID: 21163336
- Furigo, I.C.; de Oliveira, W.F.; de Oliveira, A.R.; Comoli, E.; Baldo, M.V.C.; Mota-Ortiz, S.R.; Canteras, N.S. The role of the superior colliculus in predatory hunting. Neuroscience, 2010, 165(1), 1-15. doi: 10.1016/j.neuroscience.2009.10.004 PMID: 19825395
- Comoli, E.; Ribeiro-Barbosa, E.R.; Canteras, N.S. Predatory hunting and exposure to a live predator induce opposite patterns of Fos immunoreactivity in the PAG. Behav. Brain Res., 2003, 138(1), 17-28. doi: 10.1016/S0166-4328(02)00197-3 PMID: 12493627
- Comoli, E.; Ribeiro-Barbosa, É.R.; Negrão, N.; Goto, M.; Canteras, N.S. Functional mapping of the prosencephalic systems involved in organizing predatory behavior in rats. Neuroscience, 2005, 130(4), 1055-1067. doi: 10.1016/j.neuroscience.2004.10.020 PMID: 15653000
- Rossi, M.A.; Li, H.E.; Lu, D.; Kim, I.H.; Bartholomew, R.A.; Gaidis, E.; Barter, J.W.; Kim, N.; Cai, M.T.; Soderling, S.H.; Yin, H.H. A GABAergic nigrotectal pathway for coordination of drinking behavior. Nat. Neurosci., 2016, 19(5), 742-748. doi: 10.1038/nn.4285 PMID: 27043290
- Taha, E.B.; Dean, P.; Redgrave, P. Oral behaviour induced by intranigral muscimol is unaffected by haloperidol but abolished by large lesions of superior colliculus. Psychopharmacology, 1982, 77(3), 272-278. doi: 10.1007/BF00464579 PMID: 6812150
- Mitchell, I.J.; Dean, P.; Redgrave, P. The projection from superior colliculus to cuneiform area in the rat - II. Defence-like responses to stimulation with glutamate in cuneiform nucleus and surrounding structures. Exp. Brain Res., 1988, 72(3), 626-639. doi: 10.1007/BF00250607 PMID: 3234506
- Li, L.; Feng, X.; Zhou, Z.; Zhang, H.; Shi, Q.; Lei, Z.; Shen, P.; Yang, Q.; Zhao, B.; Chen, S.; Li, L.; Zhang, Y.; Wen, P.; Lu, Z.; Li, X.; Xu, F.; Wang, L. Stress accelerates defensive responses to looming in mice and involves a locus coeruleus-superior colliculus projection. Curr. Biol., 2018, 28(6), 859-871.e5. doi: 10.1016/j.cub.2018.02.005 PMID: 29502952
- Dean, P.; Mitchell, I.J.; Redgrave, P. Responses resembling defensive behaviour produced by microinjection of glutamate into superior colliculus of rats. Neuroscience, 1988, 24(2), 501-510. doi: 10.1016/0306-4522(88)90345-4 PMID: 2896313
- Vargas, L.C.; de Azevedo Marques, T.; Schenberg, L.C. Micturition and defensive behaviors are controlled by distinct neural networks within the dorsal periaqueductal gray and deep gray layer of the superior colliculus of the rat. Neurosci. Lett., 2000, 280(1), 45-48. doi: 10.1016/S0304-3940(99)00985-4 PMID: 10696808
- Isa, K.; Sooksawate, T.; Kobayashi, K.; Kobayashi, K.; Redgrave, P.; Isa, T. Dissecting the tectal output channels for orienting and defense responses. eNeuro, 2020, 7(5), ENEURO.0271-20.2020. doi: 10.1523/ENEURO.0271-20.2020 PMID: 32928881
- McHaffie, J.G.; Jiang, H.; May, P.J.; Coizet, V.; Overton, P.G.; Stein, B.E.; Redgrave, P. A direct projection from superior colliculus to substantia nigra pars compacta in the cat. Neuroscience, 2006, 138(1), 221-234. doi: 10.1016/j.neuroscience.2005.11.015 PMID: 16361067
- McHaffie, J.; Stanford, T.; Stein, B.; Coizet, V.; Redgrave, P. Subcortical loops through the basal ganglia. Trends Neurosci., 2005, 28(8), 401-407. doi: 10.1016/j.tins.2005.06.006 PMID: 15982753
- Redgrave, P.; Marrow, L.; Dean, P. Topographical organization of the nigrotectal projection in rat: Evidence for segregated channels. Neuroscience, 1992, 50(3), 571-595. doi: 10.1016/0306-4522(92)90448-B PMID: 1279464
- Redgrave, P.; Coizet, V.; Comoli, E.; McHaffie, J.G.; Leriche, M.; Vautrelle, N.; Hayes, L.M.; Overton, P. Interactions between the midbrain superior colliculus and the basal ganglia. Front. Neuroanat., 2010, 4, 132. doi: 10.3389/fnana.2010.00132 PMID: 20941324
- May, P.J.; Hall, W.C. Relationships between the nigrotectal pathway and the cells of origin of the predorsal bundle. J. Comp. Neurol., 1984, 226(3), 357-376. doi: 10.1002/cne.902260306 PMID: 6747028
- Liu, X.; Huang, H.; Snutch, T.P.; Cao, P.; Wang, L.; Wang, F. The superior colliculus: Cell types, connectivity, and behavior. Neurosci. Bull., 2022, 38(12), 1519-1540. doi: 10.1007/s12264-022-00858-1 PMID: 35484472
- May, P.J. The mammalian superior colliculus: Laminar structure and connections. Prog. Brain Res., 2006, 151, 321-378. doi: 10.1016/S0079-6123(05)51011-2 PMID: 16221594
- Comoli, E.; Das Neves Favaro, P.; Vautrelle, N.; Leriche, M.; Overton, P.G.; Redgrave, P. Segregated anatomical input to sub-regions of the rodent superior colliculus associated with approach and defense. Front. Neuroanat., 2012, 6, 9. doi: 10.3389/fnana.2012.00009 PMID: 22514521
- Boka, K.; Chomsung, R.; Li, J.; Bickford, M.E. Comparison of the ultrastructure of cortical and retinal terminals in the rat superior colliculus. Anat. Rec. A Discov. Mol. Cell. Evol. Biol., 2006, 288A(8), 850-858. doi: 10.1002/ar.a.20359 PMID: 16850432
- Ellis, E.M.; Gauvain, G.; Sivyer, B.; Murphy, G.J. Shared and distinct retinal input to the mouse superior colliculus and dorsal lateral geniculate nucleus. J. Neurophysiol., 2016, 116(2), 602-610. doi: 10.1152/jn.00227.2016 PMID: 27169509
- Harting, J.K.; Huerta, M.F.; Hashikawa, T.; van Lieshout, D.P. Projection of the mammalian superior colliculus upon the dorsal lateral geniculate nucleus: Organization of tectogeniculate pathways in nineteen species. J. Comp. Neurol., 1991, 304(2), 275-306. doi: 10.1002/cne.903040210 PMID: 1707899
- Harting, J.K.; Updyke, B.V.; van Lieshout, D.P. Corticotectal projections in the cat: Anterograde transport studies of twenty-five cortical areas. J. Comp. Neurol., 1992, 324(3), 379-414. doi: 10.1002/cne.903240308 PMID: 1401268
- Graham, J.; Lin, C.S.; Kaas, J.H. Subcortical projections of six visual cortical areas in the owl monkey, Aotus trivirgatus. J. Comp. Neurol., 1979, 187(3), 557-580. doi: 10.1002/cne.901870307 PMID: 114555
- Albano, J.E.; Norton, T.T.; Hall, W.C. Laminar origin of projections from the superficial layers of the superior colliculus in the tree shrew, Tupaia glis. Brain Res., 1979, 173(1), 1-11. doi: 10.1016/0006-8993(79)91090-4 PMID: 90538
- Shang, C.; Liu, Z.; Chen, Z.; Shi, Y.; Wang, Q.; Liu, S.; Li, D.; Cao, P. A parvalbumin-positive excitatory visual pathway to trigger fear responses in mice. Science, 2015, 348(6242), 1472-1477. doi: 10.1126/science.aaa8694 PMID: 26113723
- Gale, S.D.; Murphy, G.J. Active dendritic properties and local inhibitory input enable selectivity for object motion in mouse superior colliculus neurons. J. Neurosci., 2016, 36(35), 9111-9123. doi: 10.1523/JNEUROSCI.0645-16.2016 PMID: 27581453
- Gale, S.D.; Murphy, G.J. Distinct representation and distribution of visual information by specific cell types in mouse superficial superior colliculus. J. Neurosci., 2014, 34(40), 13458-13471. doi: 10.1523/JNEUROSCI.2768-14.2014 PMID: 25274823
- Hunter, P.R.; Lowe, A.S.; Thompson, I.D.; Meyer, M.P. Emergent properties of the optic tectum revealed by population analysis of direction and orientation selectivity. J. Neurosci., 2013, 33(35), 13940-13945. doi: 10.1523/JNEUROSCI.1493-13.2013 PMID: 23986231
- Guitton, D.; Munoz, D.P.; Galiana, H.L. Gaze control in the cat: Studies and modeling of the coupling between orienting eye and head movements in different behavioral tasks. J. Neurophysiol., 1990, 64(2), 509-531. doi: 10.1152/jn.1990.64.2.509 PMID: 2213129
- Guitton, D. Control of eyehead coordination during orienting gaze shifts. Trends Neurosci., 1992, 15(5), 174-179. doi: 10.1016/0166-2236(92)90169-9 PMID: 1377424
- Goodale, M.A.; Murison, R.C.C. The effects of lesions of the superior colliculus on locomotor orientation and the orienting reflex in the rat. Brain Res., 1975, 88(2), 243-261. doi: 10.1016/0006-8993(75)90388-1 PMID: 1148825
- Hall, W.C.; Lee, P. Interlaminar connections of the superior colliculus in the tree shrew. I. The superficial gray layer. J. Comp. Neurol., 1993, 332(2), 213-223. doi: 10.1002/cne.903320206 PMID: 8331213
- Lee, P.; Hall, W.C. Interlaminar connections of the superior colliculus in the tree shrew. II: Projections from the superficial gray to the optic layer. Vis. Neurosci., 1995, 12(3), 573-588. doi: 10.1017/S0952523800008464 PMID: 7544610
- Saito, Y.; Isa, T. Organization of interlaminar interactions in the rat superior colliculus. J. Neurophysiol., 2005, 93(5), 2898-2907. doi: 10.1152/jn.01051.2004 PMID: 15601732
- Basso, M.A.; May, P.J. Circuits for action and cognition: A view from the superior colliculus. Annu. Rev. Vis. Sci., 2017, 3(1), 197-226. doi: 10.1146/annurev-vision-102016-061234 PMID: 28617660
- Behan, M.; Appell, P.P. Intrinsic circuitry in the cat superior colliculus: Projections from the superficial layers. J. Comp. Neurol., 1992, 315(2), 230-243. doi: 10.1002/cne.903150209 PMID: 1372013
- Behan, M.; Kime, N.M. Spatial distribution of tectotectal connec tions in the cat. Prog. Brain Res., 1996, 112, 131-142.
- Helms, M.C.; Özen, G.; Hall, W.C. Organization of the intermediate gray layer of the superior colliculus. I. Intrinsic vertical connections. J. Neurophysiol., 2004, 91(4), 1706-1715. doi: 10.1152/jn.00705.2003 PMID: 15010497
- Rhoades, R.W.; Mooney, R.D.; Rohrer, W.H.; Nikoletseas, M.M.; Fish, S.E. Organization of the projection from the superficial to the deep layers of the hamsters superior colliculus as demonstrated by the anterograde transport of Phaseolus vulgaris leucoagglutinin. J. Comp. Neurol., 1989, 283(1), 54-70. doi: 10.1002/cne.902830106 PMID: 2732361
- Mooney, R.D.; Klein, B.G.; Jacquin, M.F.; Rhoades, R.W. Dendrites of deep layer, somatosensory superior collicular neurons extend into the superficial laminae. Brain Res., 1984, 324(2), 361-365. doi: 10.1016/0006-8993(84)90050-7 PMID: 6529626
- Moschovakis, A.K.; Karabelas, A.B.; Highstein, S.M. Structure-function relationships in the primate superior colliculus. I. Morphological classification of efferent neurons. J. Neurophysiol., 1988, 60(1), 232-262. doi: 10.1152/jn.1988.60.1.232 PMID: 3404219
- Hall, W.C.; Lee, P. Interlaminar connections of the superior colliculus in the tree shrew. III: The optic layer. Vis. Neurosci., 1997, 14(4), 647-661. doi: 10.1017/S095252380001261X PMID: 9278994
- Villalobos, C.A.; Wu, Q.; Lee, P.H.; May, P.J.; Basso, M.A. Parvalbumin and GABA microcircuits in the mouse superior colliculus. Front. Neu. Circ., 2018, 12, 1-35. doi: 10.3389/fncir.2018.00035
- Lee, P.H.; Sooksawate, T.; Yanagawa, Y.; Isa, K.; Isa, T.; Hall, W.C. Identity of a pathway for saccadic suppression. Proc. Natl. Acad. Sci. USA, 2007, 104(16), 6824-6827. doi: 10.1073/pnas.0701934104 PMID: 17420449
- Lee, K.H.; Tran, A.; Turan, Z.; Meister, M. The sifting of visual information in the superior colliculus. elife, 2020, 9, e50678.
- Scholes, C.; McGraw, P.V.; Roach, N.W. Learning to silence saccadic suppression. Proc. Natl. Acad. Sci. USA, 2021, 118(6), e2012937118. doi: 10.1073/pnas.2012937118 PMID: 33526665
- Essig, J.; Hunt, J.B.; Felsen, G. Inhibitory neurons in the superior colliculus mediate selection of spatially-directed movements. Commun. Biol., 2021, 4(1), 719. doi: 10.1038/s42003-021-02248-1 PMID: 34117346
- Phongphanphanee, P.; Mizuno, F.; Lee, P.H.; Yanagawa, Y.; Isa, T.; Hall, W.C. A circuit model for saccadic suppression in the superior colliculus. J. Neurosci., 2011, 31(6), 1949-1954. doi: 10.1523/JNEUROSCI.2305-10.2011 PMID: 21307233
- Kardamakis, A.A.; Saitoh, K.; Grillner, S. Tectal microcircuit generating visual selection commands on gaze-controlling neurons. Proc. Natl. Acad. Sci. USA, 2015, 112(15), E1956-E1965. doi: 10.1073/pnas.1504866112 PMID: 25825743
- Appell, P.P.; Behan, M. Sources of subcortical GABAergic projections to the superior colliculus in the cat. J. Comp. Neurol., 1990, 302(1), 143-158. doi: 10.1002/cne.903020111 PMID: 2086611
- Olivier, E.; Corvisier, J.; Pauluis, Q.; Hardy, O. Evidence for glutamatergic tectotectal neurons in the cat superior colliculus: A comparison with GABAergic tectotectal neurons. Eur. J. Neurosci., 2000, 12(7), 2354-2366. doi: 10.1046/j.1460-9568.2000.00132.x PMID: 10947814
- Zingg, B.; Hintiryan, H.; Gou, L.; Song, M.Y.; Bay, M.; Bienkowski, M.S.; Foster, N.N.; Yamashita, S.; Bowman, I.; Toga, A.W.; Dong, H.W. Neural networks of the mouse neocortex. Cell, 2014, 156(5), 1096-1111. doi: 10.1016/j.cell.2014.02.023 PMID: 24581503
- Vertes, R.P. Differential projections of the infralimbic and prelimbic cortex in the rat. Synapse, 2004, 51(1), 32-58. doi: 10.1002/syn.10279 PMID: 14579424
- de Lima, M.A.X.; Baldo, M.V.C.; Canteras, N.S. Revealing a cortical circuit responsive to predatory threats and mediating contextual fear memory. Cereb. Cortex, 2019, 29(7), 3074-3090. doi: 10.1093/cercor/bhy173 PMID: 30085040
- de Lima, M.A.X.; Baldo, M.V.C.; Oliveira, F.A.; Canteras, N.S. The anterior cingulate cortex and its role in controlling contextual fear memory to predatory threats. elife, 2022, 11, e67007.
- Redgrave, P.; Dean, P. Tonic desynchronisation of cortical electroencephalogram by electrical and chemical stimulation of superior colliculus and surrounding structures in urethane-anaesthetised rats. Neuroscience, 1985, 16(3), 659-671. doi: 10.1016/0306-4522(85)90199-X PMID: 2869444
- Dean, P.; Simkins, M.; Hetherington, L.; Mitchell, I.J.; Redgrave, P. Tectal induction of cortical arousal: Evidence implicating multiple output pathways. Brain Res. Bull., 1991, 26(1), 1-10. doi: 10.1016/0361-9230(91)90184-L PMID: 2015507
- Meredith, M.A.; Stein, B.E. Interactions among converging sensory inputs in the superior colliculus. Science, 1983, 221(4608), 389-391. doi: 10.1126/science.6867718 PMID: 6867718
- Wallace, M.T.; Wilkinson, L.K.; Stein, B.E. Representation and integration of multiple sensory inputs in primate superior colliculus. J. Neurophysiol., 1996, 76(2), 1246-1266. doi: 10.1152/jn.1996.76.2.1246 PMID: 8871234
- Herkenham, M.; Nauta, W.J.H. Efferent connections of the habenular nuclei in the rat. J. Comp. Neurol., 1979, 187(1), 19-47. doi: 10.1002/cne.901870103 PMID: 226566
- Matsumoto, M.; Hikosaka, O. Lateral habenula as a source of negative reward signals in dopamine neurons. Nature, 2007, 447(7148), 1111-1115. doi: 10.1038/nature05860 PMID: 17522629
- Morissette, M.C.; Boye, S.M. Electrolytic lesions of the habenula attenuate brain stimulation reward. Behav. Brain Res., 2008, 187(1), 17-26. doi: 10.1016/j.bbr.2007.08.021 PMID: 17889943
- Shabel, S.J.; Proulx, C.D.; Trias, A.; Murphy, R.T.; Malinow, R. Input to the lateral habenula from the basal ganglia is excitatory, aversive, and suppressed by serotonin. Neuron, 2012, 74(3), 475-481. doi: 10.1016/j.neuron.2012.02.037 PMID: 22578499
- Stamatakis, A.M.; Van Swieten, M.; Basiri, M.L.; Blair, G.A.; Kantak, P.; Stuber, G.D. Lateral hypothalamic area glutamatergic neurons and their projections to the lateral habenula regulate feeding and reward. J. Neurosci., 2016, 36(2), 302-311. doi: 10.1523/JNEUROSCI.1202-15.2016 PMID: 26758824
- Golden, S.A.; Heshmati, M.; Flanigan, M.; Christoffel, D.J.; Guise, K.; Pfau, M.L.; Aleyasin, H.; Menard, C.; Zhang, H.; Hodes, G.E.; Bregman, D.; Khibnik, L.; Tai, J.; Rebusi, N.; Krawitz, B.; Chaudhury, D.; Walsh, J.J.; Han, M.H.; Shapiro, M.L.; Russo, S.J. Basal forebrain projections to the lateral habenula modulate aggression reward. Nature, 2016, 534(7609), 688-692. doi: 10.1038/nature18601 PMID: 27357796
- Hu, H.; Cui, Y.; Yang, Y. Circuits and functions of the lateral habenula in health and in disease. Nat. Rev. Neurosci., 2020, 21(5), 277-295. doi: 10.1038/s41583-020-0292-4 PMID: 32269316
- Canteras, N.S.; Simerly, R.B.; Swanson, L.W. Organization of projections from the ventromedial nucleus of the hypothalamus: APhaseolus vulgaris-Leucoagglutinin study in the rat. J. Comp. Neurol., 1994, 348(1), 41-79. doi: 10.1002/cne.903480103 PMID: 7814684
- Melleu, F.F.; de Oliveira, A.R.; Grego, K.F.; Blanchard, D.C.; Canteras, N.S. Dissecting the brains fear systems responding to snake threats. Eur. J. Neurosci., 2022, 56(6), 4788-4802. doi: 10.1111/ejn.15794 PMID: 35971965
- Kunwar, P.S.; Zelikowsky, M.; Remedios, R.; Cai, H.; Yilmaz, M.; Meister, M.; Anderson, D.J. Ventromedial hypothalamic neurons control a defensive emotion state. elife, 2015, 4, e06633.
- Gross, C.T.; Canteras, N.S. The many paths to fear. Nat. Rev. Neurosci., 2012, 13(9), 651-658. doi: 10.1038/nrn3301 PMID: 22850830
- Canteras, N.S. Hypothalamic survival circuits related to social and predatory defenses and their interactions with metabolic control, reproductive behaviors and memory systems. Curr. Opin. Behav. Sci., 2018, 24, 7-13. doi: 10.1016/j.cobeha.2018.01.017
- Motta, S.C.; Goto, M.; Gouveia, F.V.; Baldo, M.V.C.; Canteras, N.S.; Swanson, L.W. Dissecting the brains fear system reveals the hypothalamus is critical for responding in subordinate conspecific intruders. Proc. Natl. Acad. Sci. USA, 2009, 106(12), 4870-4875. doi: 10.1073/pnas.0900939106 PMID: 19273843
- Falkner, A.L.; Lin, D. Recent advances in understanding the role of the hypothalamic circuit during aggression. Front. Syst. Neurosci., 2014, 8, 168. doi: 10.3389/fnsys.2014.00168 PMID: 25309351
- Wang, L.; Talwar, V.; Osakada, T.; Kuang, A.; Guo, Z.; Yamaguchi, T.; Lin, D. Hypothalamic control of conspecific self-defense. Cell Rep., 2019, 26(7), 1747-1758. doi: 10.1016/j.celrep.2019.01.078
- Yin, L.; Hashikawa, K.; Hashikawa, Y.; Osakada, T.; Lischinsky, J.E.; Diaz, V.; Lin, D. VMHvllCckar cells dynamically control female sexual behaviors over the reproductive cycle. Neuron, 2022, 110(18), 3000-3017.e8. doi: 10.1016/j.neuron.2022.06.026 PMID: 35896109
- Hashikawa, K.; Hashikawa, Y.; Tremblay, R.; Zhang, J.; Feng, J.E.; Sabol, A.; Piper, W.T.; Lee, H.; Rudy, B.; Lin, D. Esr1+ cells in the ventromedial hypothalamus control female aggression. Nat. Neurosci., 2017, 20(11), 1580-1590. doi: 10.1038/nn.4644 PMID: 28920934
- de Almeida, A.P.; Baldo, M.V.C.; Motta, S.C. Dynamics in brain activation and behaviour in acute and repeated social defensive behaviour. Proc. Biol. Sci., 2022, 289(1977), 20220799. doi: 10.1098/rspb.2022.0799 PMID: 35703050
- Motta, S.C.; Guimarães, C.C.; Furigo, I.C.; Sukikara, M.H.; Baldo, M.V.C.; Lonstein, J.S.; Canteras, N.S. Ventral premammillary nucleus as a critical sensory relay to the maternal aggression network. Proc. Natl. Acad. Sci. USA, 2013, 110(35), 14438-14443. doi: 10.1073/pnas.1305581110 PMID: 23918394
- Canteras, N.S.; Swanson, L.W. The dorsal premammillary nucleus: An unusual component of the mammillary body. Proc. Natl. Acad. Sci. USA, 1992, 89(21), 10089-10093. doi: 10.1073/pnas.89.21.10089 PMID: 1279669
- Grobstein, P. Between the retinotectal projection and directed movement: Topography of a sensorimotor interface. Brain Behav. Evol., 1988, 31(1), 34-48. doi: 10.1159/000116574 PMID: 3334904
- Dean, P.; Redgrave, P.; Westby, G.W.M. Event or emergency? Two response systems in the mammalian superior colliculus. Trends Neurosci., 1989, 12(4), 137-147. doi: 10.1016/0166-2236(89)90052-0 PMID: 2470171
- Boehnke, S.E.; Munoz, D.P. On the importance of the transient visual response in the superior colliculus. Curr. Opin. Neurobiol., 2008, 18(6), 544-551. doi: 10.1016/j.conb.2008.11.004 PMID: 19059772
- Felsen, G.; Mainen, Z.F. Neural substrates of sensory-guided locomotor decisions in the rat superior colliculus. Neuron, 2008, 60(1), 137-148. doi: 10.1016/j.neuron.2008.09.019 PMID: 18940594
- Stubblefield, E.A.; Costabile, J.D.; Felsen, G. Optogenetic investigation of the role of the superior colliculus in orienting movements. Behav. Brain Res., 2013, 255, 55-63. doi: 10.1016/j.bbr.2013.04.040 PMID: 23643689
- Wurtz, R.H.; Goldberg, M.E. Superior colliculus cell responses related to eye movements in awake monkeys. Science, 1971, 171(3966), 82-84. doi: 10.1126/science.171.3966.82 PMID: 4992313
- Harris, L.R. The superior colliculus and movements of the head and eyes in cats. J. Physiol., 1980, 300(1), 367-391. doi: 10.1113/jphysiol.1980.sp013167 PMID: 6770082
- Masullo, L.; Mariotti, L.; Alexandre, N.; Freire-Pritchett, P.; Boulanger, J.; Tripodi, M. Genetically defined functional modules for spatial orienting in the mouse superior colliculus. Curr. Biol., 2019, 29(17), 2892-2904.e8. doi: 10.1016/j.cub.2019.07.083 PMID: 31474533
- Wang, S.; Redgrave, P. Microinjections of muscimol into lateral superior colliculus disrupt orienting and oral movements in the formalin model of pain. Neuroscience, 1997, 81(4), 967-988. doi: 10.1016/S0306-4522(97)00191-7 PMID: 9330360
- Dean, P.; Mitchell, I.J.; Redgrave, P. Contralateral head movements produced by microinjection of glutamate into superior colliculus of rats: Evidence for mediation by multiple output pathways. Neuroscience, 1988, 24(2), 491-500. doi: 10.1016/0306-4522(88)90344-2 PMID: 2896312
- Kilpatrick, I.C.; Collingridge, G.L.; Starr, M.S. Evidence for the participation of nigrotectal γ-aminobutyrate-containing neurones in striatal and nigral-derived circling in the rat. Neuroscience, 1982, 7(1), 207-222. doi: 10.1016/0306-4522(82)90161-0 PMID: 7078726
- Huerta, M.F.; Harting, J.K. Connectional organization of the superior colliculus. Trends Neurosci., 1984, 7(8), 286-289. doi: 10.1016/S0166-2236(84)80197-6
- Redgrave, P.; Odekunle, A.; Dean, P. Tectal cells of origin of predorsal bundle in rat: location and segregation from ipsilateral descending pathway. Exp. Brain Res., 1986, 63(2), 279-293. doi: 10.1007/BF00236845 PMID: 3093259
- Coizet, V.; Graham, J.H.; Moss, J.; Bolam, J.P.; Savasta, M.; McHaffie, J.G.; Redgrave, P.; Overton, P.G. Short-latency visual input to the subthalamic nucleus is provided by the midbrain superior colliculus. J. Neurosci., 2009, 29(17), 5701-5709. doi: 10.1523/JNEUROSCI.0247-09.2009 PMID: 19403836
- Comoli, E.; Coizet, V.; Boyes, J.; Bolam, J.P.; Canteras, N.S.; Quirk, R.H.; Overton, P.G.; Redgrave, P. A direct projection from superior colliculus to substantia nigra for detecting salient visual events. Nat. Neurosci., 2003, 6(9), 974-980. doi: 10.1038/nn1113 PMID: 12925855
- May, P.J.; McHaffie, J.G.; Stanford, T.R.; Jiang, H.; Costello, M.G.; Coizet, V.; Hayes, L.M.; Haber, S.N.; Redgrave, P. Tectonigral projections in the primate: a pathway for pre-attentive sensory input to midbrain dopaminergic neurons. Eur. J. Neurosci., 2009, 29(3), 575-587. doi: 10.1111/j.1460-9568.2008.06596.x PMID: 19175405
- Salay, L.D.; Ishiko, N.; Huberman, A.D. A midline thalamic circuit determines reactions to visual threat. Nature, 2018, 557(7704), 183-189. doi: 10.1038/s41586-018-0078-2 PMID: 29720647
- Sommer, M.A.; Wurtz, R.H. What the brain stem tells the frontal cortex. II. Role of the SC-MD-FEF pathway in corollary discharge. J. Neurophysiol., 2004, 91(3), 1403-1423. doi: 10.1152/jn.00740.2003 PMID: 14573557
- Schäfer, C.B.; Hoebeek, F.E. Convergence of primary sensory cortex and cerebellar nuclei pathways in the whisker system. Neuroscience, 2018, 368, 229-239. doi: 10.1016/j.neuroscience.2017.07.036 PMID: 28743454
- Tokuno, H.; Takada, M.; Ikai, Y.; Mizuno, N. Direct projections from the deep layers of the superior colliculus to the subthalamic nucleus in the rat. Brain Res., 1994, 639(1), 156-160. doi: 10.1016/0006-8993(94)91776-0 PMID: 8180831
- Beckstead, R.M.; Domesick, V.B.; Nauta, W.J.H. Efferent connections of the substantia nigra and ventral tegmental area in the rat. Brain Res., 1979, 175(2), 191-217. doi: 10.1016/0006-8993(79)91001-1 PMID: 314832
- Swanson, L.W. The projections of the ventral tegmental area and adjacent regions: A combined fluorescent retrograde tracer and immunofluorescence study in the rat. Brain Res. Bull., 1982, 9(1-6), 321-353. doi: 10.1016/0361-9230(82)90145-9 PMID: 6816390
- Zhou, N.; Maire, P.S.; Masterson, S.P.; Bickford, M. The mouse pulvinar nucleus: Organization of the tectorecipient zones. Vis. Neurosci., 2017, 34, E011. doi: 10.1017/S0952523817000050 PMID: 28965504
- Major, D.E.; Luksch, H.; Karten, H.J. Bottlebrush dendritic endings and large dendritic fields: Motion-detecting neurons in the mammalian tectum. J. Comp. Neurol., 2000, 423(2), 243-260. doi: 10.1002/1096-9861(20000724)423:23.0.CO;2-5 PMID: 10867657
- Hoy, J.L.; Bishop, H.I.; Niell, C.M. Defined cell types in superior colliculus make distinct contributions to prey capture behavior in the mouse. Curr. Biol., 2019, 29(23), 4130-4138. doi: 10.1016/j.cub.2019.10.017
- Harting, J.K.; Updyke, B.V.; Van Lieshout, D.P. Striatal projections from the cat visual thalamus. Eur. J. Neurosci., 2001, 14(5), 893-896. doi: 10.1046/j.0953-816x.2001.01712.x PMID: 11576195
- Takada, M.; Itoh, K.; Yasui, Y.; Sugimoto, T.; Mizuno, N. Topographical projections from the posterior thalamic regions to the striatum in the cat, with reference to possible tecto-thalamo-striatal connections. Exp. Brain Res., 1985, 60(2), 385-396. doi: 10.1007/BF00235934 PMID: 4054280
- Hikosaka, O.; Wurtz, R.H. Visual and oculomotor functions of monkey substantia nigra pars reticulata. I. Relation of visual and auditory responses to saccades. J. Neurophysiol., 1983, 49(5), 1230-1253. doi: 10.1152/jn.1983.49.5.1230 PMID: 6864248
- Hikosaka, O.; Sakamoto, M.; Usui, S. Functional properties of monkey caudate neurons. I. Activities related to saccadic eye movements. J. Neurophysiol., 1989, 61(4), 780-798. doi: 10.1152/jn.1989.61.4.780 PMID: 2723720
- Hikosaka, O.; Sakamoto, M.; Miyashita, N. Effects of caudate nucleus stimulation on substantia nigra cell activity in monkey. Exp. Brain Res., 1993, 95(3), 457-472. doi: 10.1007/BF00227139 PMID: 8224072
- Chevalier, G.; Vacher, S.; Deniau, J.M.; Desban, M. Disinhibition as a basic process in the expression of striatal functions. I. The striato-nigral influence on tecto-spinal/tecto-diencephalic neurons. Brain Res., 1985, 334(2), 215-226. doi: 10.1016/0006-8993(85)90213-6 PMID: 2859912
- Hikosaka, O. Basal ganglia mechanisms of reward-oriented eye movement. Ann. N. Y. Acad. Sci., 2007, 1104(1), 229-249. doi: 10.1196/annals.1390.012 PMID: 17360800
- Wei, P.; Liu, N.; Zhang, Z.; Liu, X.; Tang, Y.; He, X.; Wu, B.; Zhou, Z.; Liu, Y.; Li, J.; Zhang, Y.; Zhou, X.; Xu, L.; Chen, L.; Bi, G.; Hu, X.; Xu, F.; Wang, L. Processing of visually evoked innate fear by a non-canonical thalamic pathway. Nat. Commun., 2015, 6(1), 6756. doi: 10.1038/ncomms7756
- Day-Brown, J.D.; Wei, H.; Chomsung, R.D.; Petry, H.M.; Bickford, M.E. Pulvinar projections to the striatum and amygdala in the tree shrew. Front. Neuroanat., 2010, 4, 143. doi: 10.3389/fnana.2010.00143 PMID: 21120139
- Zhou, N.; Masterson, S.P.; Damron, J.K.; Guido, W.; Bickford, M.E. The mouse pulvinar nucleus links the lateral extrastriate cortex, striatum, and amygdala. J. Neurosci., 2018, 38(2), 347-362. doi: 10.1523/JNEUROSCI.1279-17.2017 PMID: 29175956
- Zingg, B.; Chou, X.; Zhang, Z.; Mesik, L.; Liang, F.; Tao, H.W.; Zhang, L.I. AAV-mediated anterograde transsynaptic tagging: Mapping corticocollicular input-defined neural pathways for defense behaviors. Neuron, 2017, 93(1), 33-47. doi: 10.1016/j.neuron.2016.11.045 PMID: 27989459
- Doron, N.N.; Ledoux, J.E. Organization of projections to the lateral amygdala from auditory and visual areas of the thalamus in the rat. J. Comp. Neurol., 1999, 412(3), 383-409. doi: 10.1002/(SICI)1096-9861(19990927)412:33.0.CO;2-5 PMID: 10441229
- Shang, C.; Chen, Z.; Liu, A.; Li, Y.; Zhang, J.; Qu, B.; Yan, F.; Zhang, Y.; Liu, W.; Liu, Z.; Guo, X.; Li, D.; Wang, Y.; Cao, P. Divergent midbrain circuits orchestrate escape and freezing responses to looming stimuli in mice. Nat. Commun., 2018, 9(1), 1232. doi: 10.1038/s41467-018-03580-7 PMID: 29581428
- Lee, J.; Wang, W.; Sabatini, B.L. Anatomically segregated basal ganglia pathways allow parallel behavioral modulation. Nat. Neurosci., 2020, 23(11), 1388-1398. doi: 10.1038/s41593-020-00712-5 PMID: 32989293
- Mandelbaum, G.; Taranda, J.; Haynes, T.M.; Hochbaum, D.R.; Huang, K.W.; Hyun, M.; Venkataraju, K.U.; Straub, C.; Wang, W.; Robertson, K. Distinct cortical-thalamic-striatal circuits through the parafascicular nucleus. Neuron, 2019, 102(3), 636-652. doi: 10.1016/j.neuron.2019.02.035
- Watson, G.D.R.; Smith, J.B.; Alloway, K.D. The zona incerta regulates communication between the superior colliculus and the posteromedial thalamus: Implications for thalamic interactions with the dorsolateral striatum. J. Neurosci., 2015, 35(25), 9463-9476. doi: 10.1523/JNEUROSCI.1606-15.2015 PMID: 26109669
- Watson, G.D.R.; Alloway, K.D. Opposing collicular influences on the parafascicular (Pf) and posteromedial (POm) thalamic nuclei: relationship to POm-induced inhibition in the substantia nigra pars reticulata (SNR). Brain Struct. Funct., 2018, 223(1), 535-543. doi: 10.1007/s00429-017-1534-8 PMID: 28988338
- Alloway, K.D.; Smith, J.B.; Watson, G.D.R. Thalamostriatal projections from the medial posterior and parafascicular nuclei have distinct topographic and physiologic properties. J. Neurophysiol., 2014, 111(1), 36-50. doi: 10.1152/jn.00399.2013 PMID: 24108793
- Smith, J.B.; Mowery, T.M.; Alloway, K.D. Thalamic POm projections to the dorsolateral striatum of rats: Potential pathway for mediating stimulus-response associations for sensorimotor habits. J. Neurophysiol., 2012, 108(1), 160-174. doi: 10.1152/jn.00142.2012 PMID: 22496533
- Kamishina, H.; Yurcisin, G.H.; Corwin, J.V.; Reep, R.L. Striatal projections from the rat lateral posterior thalamic nucleus. Brain Res., 2008, 1204, 24-39. doi: 10.1016/j.brainres.2008.01.094 PMID: 18342841
- Coizet, V.; Overton, P.G.; Redgrave, P. Collateralization of the tectonigral projection with other major output pathways of superior colliculus in the rat. J. Comp. Neurol., 2007, 500(6), 1034-1049. doi: 10.1002/cne.21202 PMID: 17183537
- Masri, R.; Bezdudnaya, T.; Trageser, J.C.; Keller, A. Encoding of stimulus frequency and sensor motion in the posterior medial thalamic nucleus. J. Neurophysiol., 2008, 100(2), 681-689. doi: 10.1152/jn.01322.2007 PMID: 18234976
- Alloway, K.D.; Smith, J.B.; Mowery, T.M.; Watson, G.D.R. Sensory processing in the dorsolateral striatum: The contribution of thalamostriatal pathways. Front. Syst. Neurosci., 2017, 11, 53. doi: 10.3389/fnsys.2017.00053 PMID: 28790899
- Mowery, T.M.; Harrold, J.B.; Alloway, K.D. Repeated whisker stimulation evokes invariant neuronal responses in the dorsolateral striatum of anesthetized rats: a potential correlate of sensorimotor habits. J. Neurophysiol., 2011, 105(5), 2225-2238. doi: 10.1152/jn.01018.2010 PMID: 21389309
- Reig, R.; Silberberg, G. Multisensory integration in the mouse striatum. Neuron, 2014, 83(5), 1200-1212. doi: 10.1016/j.neuron.2014.07.033 PMID: 25155959
- Yin, H.H.; Knowlton, B.J. The role of the basal ganglia in habit formation. Nat. Rev. Neurosci., 2006, 7(6), 464-476. doi: 10.1038/nrn1919 PMID: 16715055
- Cromwell, H.C.; Berridge, K.C. Implementation of action sequences by a neostriatal site: A lesion mapping study of grooming syntax. J. Neurosci., 1996, 16(10), 3444-3458. doi: 10.1523/JNEUROSCI.16-10-03444.1996 PMID: 8627378
- Berridge, K.; Whishaw, I. Cortex, striatum and cerebellum: control of serial order in a grooming sequence. Exp. Brain Res., 1992, 90(2), 275-290. doi: 10.1007/BF00227239 PMID: 1397142
- Hoover, J.E.; Hoffer, Z.S.; Alloway, K.D. Projections from primary somatosensory cortex to the neostriatum: the role of somatotopic continuity in corticostriatal convergence. J. Neurophysiol., 2003, 89(3), 1576-1587. doi: 10.1152/jn.01009.2002 PMID: 12611938
- Gharaei, S.; Honnuraiah, S.; Arabzadeh, E.; Stuart, G.J. Superior colliculus modulates cortical coding of somatosensory information. Nat. Commun., 2020, 11(1), 1693. doi: 10.1038/s41467-020-15443-1 PMID: 32245963
- Krout, K.E.; Loewy, A.D.; Westby, G.W.M.; Redgrave, P. Superior colliculus projections to midline and intralaminar thalamic nuclei of the rat. J. Comp. Neurol., 2001, 431(2), 198-216. doi: 10.1002/1096-9861(20010305)431:23.0.CO;2-8 PMID: 11170000
- Yamasaki, D.S.G.; Krauthamer, G.M.; Rhoades, R.W. Superior collicular projection to intralaminar thalamus in rat. Brain Res., 1986, 378(2), 223-233. doi: 10.1016/0006-8993(86)90925-X PMID: 3730874
- Fisher, S.D.; Reynolds, J.N.J. The intralaminar thalamusâ"an expressway linking visual stimuli to circuits determining agency and action selection. Front. Behav. Neurosci., 2014, 8, 115. doi: 10.3389/fnbeh.2014.00115 PMID: 24765070
- Van der Werf, Y.D.; Witter, M.P.; Groenewegen, H.J. The intralaminar and midline nuclei of the thalamus. Anatomical and functional evidence for participation in processes of arousal and awareness. Brain Res. Brain Res. Rev., 2002, 39(2-3), 107-140. doi: 10.1016/S0165-0173(02)00181-9 PMID: 12423763
- Vertes, R.P.; Linley, S.B.; Rojas, A.K.P. Structural and functional organization of the midline and intralaminar nuclei of the thalamus. Front. Behav. Neurosci., 2022, 16, 964644. doi: 10.3389/fnbeh.2022.964644 PMID: 36082310
- Berendse, H.W.; Groenewegen, H.J. Organization of the thalamostriatal projections in the rat, with special emphasis on the ventral striatum. J. Comp. Neurol., 1990, 299(2), 187-228. doi: 10.1002/cne.902990206 PMID: 2172326
- McKenna, J.T.; Vertes, R.P. Afferent projections to nucleus reuniens of the thalamus. J. Comp. Neurol., 2004, 480(2), 115-142. doi: 10.1002/cne.20342 PMID: 15514932
- Dolleman-van Der Weel, M.J.; Witter, M.P. Projections from the nucleus reuniens thalami to the entorhinal cortex, hippocampal field CA1, and the subiculum in the rat arise from different populations of neurons. J. Comp. Neurol., 1996, 364(4), 637-650. doi: 10.1002/(SICI)1096-9861(19960122)364:43.0.CO;2-4 PMID: 8821451
- Herkenham, M. The connections of the nucleus reuniens thalami: Evidence for a direct thalamo-hippocampal pathway in the rat. J. Comp. Neurol., 1978, 177(4), 589-609. doi: 10.1002/cne.901770405 PMID: 624792
- Jankowski, M.M.; Islam, M.N.; Wright, N.F.; Vann, S.D.; Erichsen, J.T.; Aggleton, J.P.; O'Mara, S.M. Nucleus reuniens of the thalamus contains head direction cells. elife, 2014, 3, e03075.
- Deniau, J.M.; Chevalier, G. Disinhibition as a basic process in the expression of striatal functions. II. The striato-nigral influence on thalamocortical cells of the ventromedial thalamic nucleus. Brain Res., 1985, 334(2), 227-233. doi: 10.1016/0006-8993(85)90214-8 PMID: 3995318
- Kita, T.; Shigematsu, N.; Kita, H. Intralaminar and tectal projections to the subthalamus in the rat. Eur. J. Neurosci., 2016, 44(11), 2899-2908. doi: 10.1111/ejn.13413 PMID: 27717088
- Hanini-Daoud, M.; Jaouen, F.; Salin, P.; Kerkerian-Le Goff, L.; Maurice, N. Processing of information from the parafascicular nucleus of the thalamus through the basal ganglia. J. Neurosci. Res., 2022, 100(6), 1370-1385. doi: 10.1002/jnr.25046 PMID: 35355316
- Watson, G.D.R.; Hughes, R.N.; Petter, E.A.; Fallon, I.P.; Kim, N.; Severino, F.P.U.; Yin, H.H. Thalamic projections to the subthalamic nucleus contribute to movement initiation and rescue of parkinsonian symptoms. Sci. Adv., 2021, 7(6), eabe9192. doi: 10.1126/sciadv.abe9192 PMID: 33547085
- Buot, A.; Welter, M.L.; Karachi, C.; Pochon, J.B.; Bardinet, E.; Yelnik, J.; Mallet, L. Processing of emotional information in the human subthalamic nucleus. J. Neurol. Neurosurg. Psychiatry, 2013, 84(12), 1331-1339. doi: 10.1136/jnnp-2011-302158 PMID: 23100448
- Baunez, C.; Amalric, M.; Robbins, T.W. Enhanced food-related motivation after bilateral lesions of the subthalamic nucleus. J. Neurosci., 2002, 22(2), 562-568. doi: 10.1523/JNEUROSCI.22-02-00562.2002 PMID: 11784803
- Lardeux, S.; Paleressompoulle, D.; Pernaud, R.; Cador, M.; Baunez, C. Different populations of subthalamic neurons encode cocaine vs. sucrose reward and predict future error. J. Neurophysiol., 2013, 110(7), 1497-1510. doi: 10.1152/jn.00160.2013 PMID: 23864369
- Isoda, M.; Hikosaka, O. Role for subthalamic nucleus neurons in switching from automatic to controlled eye movement. J. Neurosci., 2008, 28(28), 7209-7218. doi: 10.1523/JNEUROSCI.0487-08.2008 PMID: 18614691
- Narayanan, N.S.; Wessel, J.R.; Greenlee, J.D.W. The fastest way to stop: inhibitory control and IFG-STN hyperdirect connectivity. Neuron, 2020, 106(4), 549-551. doi: 10.1016/j.neuron.2020.04.017 PMID: 32437650
- Jahanshahi, M.; Obeso, I.; Rothwell, J.C.; Obeso, J.A. A fronto-striato-subthalamic-pallidal network for goal-directed and habitual inhibition. Nat. Rev. Neurosci., 2015, 16(12), 719-732. doi: 10.1038/nrn4038 PMID: 26530468
- Mirzaei, A.; Kumar, A.; Leventhal, D.; Mallet, N.; Aertsen, A.; Berke, J.; Schmidt, R. Sensorimotor processing in the basal ganglia leads to transient beta oscillations during behavior. J. Neurosci., 2017, 37(46), 11220-11232. doi: 10.1523/JNEUROSCI.1289-17.2017 PMID: 29038241
- Pautrat, A.; Rolland, M.; Barthelemy, M.; Baunez, C.; Sinniger, V.; Piallat, B.; Savasta, M.; Overton, P.G.; David, O.; Coizet, V. Revealing a novel nociceptive network that links the subthalamic nucleus to pain processing. elife, 2018, 7, e36607.
- Hammond, C.; Deniau, J.M.; Rizk, A.; Feger, J. Electrophysiological demonstration of an excitatory subthalamonigral pathway in the rat. Brain Res., 1978, 151(2), 235-244. doi: 10.1016/0006-8993(78)90881-8 PMID: 209862
- Nambu, A.; Tokuno, H.; Takada, M. Functional significance of the cortico-subthalamo-pallidal hyperdirect pathway. Neurosci. Res., 2002, 43(2), 111-117. doi: 10.1016/S0168-0102(02)00027-5 PMID: 12067746
- Al Tannir, R.; Pautrat, A.; Baufreton, J.; Overton, P.; Coizet, V. The subthalamic nucleus: A hub for sensory control via short three-lateral loop connections with the brainstem? Curr. Neuropharmacol., 2022, 21(1), 22-30. PMID: 35850655
- Rolland, M.; Carcenac, C.; Overton, P.G.; Savasta, M.; Coizet, V. Enhanced visual responses in the superior colliculus and subthalamic nucleus in an animal model of Parkinsons disease. Neuroscience, 2013, 252, 277-288. doi: 10.1016/j.neuroscience.2013.07.047 PMID: 23916713
- McElvain, L.E.; Chen, Y.; Moore, J.D.; Brigidi, G.S.; Bloodgood, B.L.; Lim, B.K.; Costa, R.M.; Kleinfeld, D. Specific populations of basal ganglia output neurons target distinct brain stem areas while collateralizing throughout the diencephalon. Neuron, 2021, 109(10), 1721-1738. doi: 10.1016/j.neuron.2021.03.017
- Matsumura, M.; Kojima, J.; Gardiner, T.W.; Hikosaka, O. Visual and oculomotor functions of monkey subthalamic nucleus. J. Neurophysiol., 1992, 67(6), 1615-1632. doi: 10.1152/jn.1992.67.6.1615 PMID: 1629767
- Afsharpour, S. Topographical projections of the cerebral cortex to the subthalamic nucleus. J. Comp. Neurol., 1985, 236(1), 14-28. doi: 10.1002/cne.902360103 PMID: 2414329
- Canteras, N.S.; Shammah-Lagnado, S.J.; Silva, B.A.; Ricardo, J.A. Afferent connections of the subthalamic nucleus: A combined retrograde and anterograde horseradish peroxidase study in the rat. Brain Res., 1990, 513(1), 43-59. doi: 10.1016/0006-8993(90)91087-W PMID: 2350684
- Wiener, M.; Magaro, C.M.; Matell, M.S. Accurate timing but increased impulsivity following excitotoxic lesions of the subthalamic nucleus. Neurosci. Lett., 2008, 440(2), 176-180. doi: 10.1016/j.neulet.2008.05.071 PMID: 18562098
- Hikosaka, O.; Takikawa, Y.; Kawagoe, R. Role of the basal ganglia in the control of purposive saccadic eye movements. Physiol. Rev., 2000, 80(3), 953-978. doi: 10.1152/physrev.2000.80.3.953 PMID: 10893428
- Féger, J.; Bevan, M.; Crossman, A.R. The projections from the parafascicular thalamic nucleus to the subthalamic nucleus and the striatum arise from separate neuronal populations: A comparison with the corticostriatal and corticosubthalamic efferents in a retrograde fluorescent double-labelling study. Neuroscience, 1994, 60(1), 125-132. doi: 10.1016/0306-4522(94)90208-9 PMID: 8052406
- Wang, M.; Qu, Q.; He, T.; Li, M.; Song, Z.; Chen, F.; Zhang, X.; Xie, J.; Geng, X.; Yang, M.; Wang, X.; Lei, C.; Hou, Y. Distinct temporal spike and local field potential activities in the thalamic parafascicular nucleus of parkinsonian rats during rest and limb movement. Neuroscience, 2016, 330, 57-71. doi: 10.1016/j.neuroscience.2016.05.031 PMID: 27238892
- Beatty, J.A.; Sylwestrak, E.L.; Cox, C.L. Two distinct populations of projection neurons in the rat lateral parafascicular thalamic nucleus and their cholinergic responsiveness. Neuroscience, 2009, 162(1), 155-173. doi: 10.1016/j.neuroscience.2009.04.043 PMID: 19393292
- Coizet, V.; Comoli, E.; Westby, G.W.M.; Redgrave, P. Phasic activation of substantia nigra and the ventral tegmental area by chemical stimulation of the superior colliculus: An electrophysiological investigation in the rat. Eur. J. Neurosci., 2003, 17(1), 28-40. doi: 10.1046/j.1460-9568.2003.02415.x PMID: 12534966
- Schultz, W. Predictive reward signal of dopamine neurons. J. Neurophysiol., 1998, 80(1), 1-27. doi: 10.1152/jn.1998.80.1.1 PMID: 9658025
- Schultz, W.; Dayan, P.; Montague, P.R. A neural substrate of prediction and reward. Science, 1997, 275(5306), 1593-1599. doi: 10.1126/science.275.5306.1593 PMID: 9054347
- Freeze, B.S.; Kravitz, A.V.; Hammack, N.; Berke, J.D.; Kreitzer, A.C. Control of basal ganglia output by direct and indirect pathway projection neurons. J. Neurosci., 2013, 33(47), 18531-18539. doi: 10.1523/JNEUROSCI.1278-13.2013 PMID: 24259575
- Grillner, S.; Robertson, B. The basal ganglia over 500 million years. Curr. Biol., 2016, 26(20), R1088-R1100. doi: 10.1016/j.cub.2016.06.041 PMID: 27780050
- Graybiel, A.M. The basal ganglia. Curr. Biol., 2000, 10(14), R509-R511. doi: 10.1016/S0960-9822(00)00593-5 PMID: 10899013
- Redgrave, P.; Gurney, K. The short-latency dopamine signal: A role in discovering novel actions? Nat. Rev. Neurosci., 2006, 7(12), 967-975. doi: 10.1038/nrn2022 PMID: 17115078
- Freeman, A.S.; Meltzer, L.T.; Bunney, B.S. Firing properties of substantia nigra dopaminergic neurons in freely moving rats. Life Sci., 1985, 36(20), 1983-1994. doi: 10.1016/0024-3205(85)90448-5 PMID: 3990520
- Guarraci, F.A.; Kapp, B.S. An electrophysiological characterization of ventral tegmental area dopaminergic neurons during differential pavlovian fear conditioning in the awake rabbit. Behav. Brain Res., 1999, 99(2), 169-179. doi: 10.1016/S0166-4328(98)00102-8 PMID: 10512583
- Overton, P.G.; Clark, D. Burst firing in midbrain dopaminergic neurons. Brain Res. Brain Res. Rev., 1997, 25(3), 312-334. doi: 10.1016/S0165-0173(97)00039-8 PMID: 9495561
- Horvitz, J.C.; Stewart, T.; Jacobs, B.L. Burst activity of ventral tegmental dopamine neurons is elicited by sensory stimuli in the awake cat. Brain Res., 1997, 759(2), 251-258. doi: 10.1016/S0006-8993(97)00265-5 PMID: 9221945
- Ljungberg, T.; Apicella, P.; Schultz, W. Responses of monkey dopamine neurons during learning of behavioral reactions. J. Neurophysiol., 1992, 67(1), 145-163. doi: 10.1152/jn.1992.67.1.145 PMID: 1552316
- Dommett, E.; Coizet, V.; Blaha, C.D.; Martindale, J.; Lefebvre, V.; Walton, N.; Mayhew, J.E.W.; Overton, P.G.; Redgrave, P. How visual stimuli activate dopaminergic neurons at short latency. Science, 2005, 307(5714), 1476-1479. doi: 10.1126/science.1107026 PMID: 15746431
- Horvitz, J.C. Mesolimbocortical and nigrostriatal dopamine responses to salient non-reward events. Neuroscience, 2000, 96(4), 651-656. doi: 10.1016/S0306-4522(00)00019-1 PMID: 10727783
- Redgrave, P.; Prescott, T.J.; Gurney, K. Is the short-latency dopamine response too short to signal reward error? Trends Neurosci., 1999, 22(4), 146-151. doi: 10.1016/S0166-2236(98)01373-3 PMID: 10203849
- Beier, K.T.; Steinberg, E.E.; DeLoach, K.E.; Xie, S.; Miyamichi, K.; Schwarz, L.; Gao, X.J.; Kremer, E.J.; Malenka, R.C.; Luo, L. Circuit architecture of VTA dopamine neurons revealed by systematic input-output mapping. Cell, 2015, 162(3), 622-634. doi: 10.1016/j.cell.2015.07.015 PMID: 26232228
- Bertram, C.; Dahan, L.; Boorman, L.W.; Harris, S.; Vautrelle, N.; Leriche, M.; Redgrave, P.; Overton, P.G. Cortical regulation of dopaminergic neurons: Role of the midbrain superior colliculus. J. Neurophysiol., 2014, 111(4), 755-767. doi: 10.1152/jn.00329.2013 PMID: 24225541
- Cox, J.; Witten, I.B. Striatal circuits for reward learning and decision-making. Nat. Rev. Neurosci., 2019, 20(8), 482-494. doi: 10.1038/s41583-019-0189-2 PMID: 31171839
- Redgrave, P.; Gurney, K.; Reynolds, J. What is reinforced by phasic dopamine signals? Brain Res. Brain Res. Rev., 2008, 58(2), 322-339. doi: 10.1016/j.brainresrev.2007.10.007 PMID: 18055018
- Obeso, J.A.; Rodriguez-Oroz, M.C.; Stamelou, M.; Bhatia, K.P.; Burn, D.J.J.T.L. The expanding universe of disorders of the basal ganglia. Lancet, 2014, 384(9942), 523-531. doi: 10.1016/S0140-6736(13)62418-6
- Moro, E.; Bellot, E.; Meoni, S.; Pelissier, P.; Hera, R.; Dojat, M.; Coizet, V.; Group, S.C.S. Visual dysfunction of the superior colliculus in de novo parkinsonian patients. Ann. Neurol., 2020, 87(4), 533-546. doi: 10.1002/ana.25696 PMID: 32030799
- Terao, Y.; Fukuda, H.; Ugawa, Y.; Hikosaka, O.J.C.n. New perspectives on the pathophysiology of Parkinsons disease as assessed by saccade performance: A clinical review. Clin. Neurophysiol., 2013, 124(8), 1491-1506. doi: 10.1016/j.clinph.2013.01.021
- Meoni, S.; Cury, R.G.; Moro, E.J.P.r. New players in basal ganglia dysfunction in Parkinsons disease. Prog. Brain Res., 2020, 252, 307-327. doi: 10.1016/bs.pbr.2020.01.001
- Bohnen, N.I.; Yarnall, A.J.; Weil, R.S.; Moro, E.; Moehle, M.S.; Borghammer, P.; Bedard, M-A.; Albin, R.L.J.T.L.N. Cholinergic system changes in Parkinsons disease: Emerging therapeutic approaches. Lancet Neurol., 2022, 21(4), 381-392. doi: 10.1016/S1474-4422(21)00377-X
- Shires, J.; Joshi, S.; Basso, M.A.J.C.n. Shedding new light on the role of the basal ganglia-superior colliculus pathway in eye movements. Curr. Opin. Neurobiol., 2010, 20(6), 717-725. doi: 10.1016/j.conb.2010.08.008
- Anderson, T.J.; MacAskill, M.R.J.N.R.N. Eye movements in patients with neurodegenerative disorders. Nat. Rev. Neurol., 2013, 9(2), 74-85. doi: 10.1038/nrneurol.2012.273
- Basso, M.A.; Powers, A.S.; Evinger, C.J.J.N. An explanation for reflex blink hyperexcitability in Parkinsons disease. I. Superior colliculus. J. Neurosci., 1996, 16(22), 7308-7317.
- Nakamura, T.; Bronstein, A.M.; Lueck, C.; Marsden, C.; Rudge, P.J.B. Vestibular, cervical and visual remembered saccades in Parkinsons disease. Brain, 1994, 117(Pt 6), 1423-1432. doi: 10.1093/brain/117.6.1423
- Munoz, M.J.; Reilly, J.L.; Pal, G.D.; Metman, L.V.; Rivera, Y.M.; Drane, Q.H.; Corcos, D.M.; David, F.J.; Goelz, L.C.J.C.N. Medication adversely impacts visually-guided eye movements in Parkinsons disease. Clin. Neurophysiol., 2022, 143, 145-153. doi: 10.1016/j.clinph.2022.07.505
- Hood, A.J.; Amador, S.C.; Cain, A.E.; Briand, K.A.; Al-Refai, A.H.; Schiess, M.C.; Sereno, A.B. Levodopa slows prosaccades and improves antisaccades: An eye movement study in Parkinsons disease. J. Neurol. Neurosurg. Psychiatry, 2007, 78(6), 565-570.
- Basso, M.A.; Liu, P.J.J.n. Context-dependent effects of substantia nigra stimulation on eye movements. J. Neurophysiol., 2007, 97(6), 4129-4142. doi: 10.1152/jn.00094.2007
- Chambers, J.M.; Prescott, T.J.J.N. Response times for visually guided saccades in persons with Parkinsons disease: A meta-analytic review. Neuropsychologia, 2010, 48(4), 887-899. doi: 10.1016/j.neuropsychologia.2009.11.006
- Bakhtiari, S.; Altinkaya, A.; Pack, C.C.; Sadikot, A.F.J.S.R. The role of the subthalamic nucleus in inhibitory control of oculomotor behavior in Parkinsons disease. Sci. Rep., 2020, 10(1), 5429. doi: 10.1038/s41598-020-61572-4
- Pflug, C.; Nienstedt, J.C.; Gulberti, A.; Müller, F.; Vettorazzi, E.; Koseki, J.C.; Niessen, A.; Flügel, T.; Hidding, U.; Buhmann, C.J.A.C.; Neurology, T. Impact of simultaneous subthalamic and nigral stimulation on dysphagia in Parkinsons disease. Ann. Clin. Transl. Neurol., 2020, 7(5), 628-638. doi: 10.1002/acn3.51027
- Su, Z.H.; Patel, S.; Gavine, B.; Buchanan, T.; Bogdanovic, M.; Sarangmat, N.; Green, A.L.; Bloem, B.R.; FitzGerald, J.J.; Antoniades, C.A. Deep brain stimulation and levodopa affect gait variability in Parkinson disease differently. Neuromodulation, 2023, 26(2), 382-393.
- Ossowska, K.J. Zona incerta as a therapeutic target in Parkinsons disease. J. Neurol., 2020, 267(3), 591-606. doi: 10.1007/s00415-019-09486-8
- Hussein, A.; Guevara, C.A.; Del Valle, P.; Gupta, S.; Benson, D.L.; Huntley, G.W.J.T.N. Non-motor symptoms of Parkinsons disease: The neurobiology of early psychiatric and cognitive dysfunction. Neuroscientist., 2023, 29(1), 97.(116). doi: 10.1177/10738584211011979
- Pretegiani, E.; Vanegas‐Arroyave, N.; FitzGibbon, E.J.; Hallett, M.; Optican, L.M.J.M.D. Evidence from Parkinsons disease that the superior colliculus couples action and perception. Mov. Disord., 2019, 34(11), 1680-1689. doi: 10.1002/mds.27861
- Overton, P.G.; Coizet, V.J.M.H. The neuropathological basis of anxiety in Parkinsons disease. Med. Hypotheses, 2020, 144, 110048. doi: 10.1016/j.mehy.2020.110048
- Palmeri, R.; Corallo, F.; Bonanno, L.; Currò, S.; Merlino, P.; Di Lorenzo, G.; Bramanti, P.; Marino, S.; Buono, V.L.J.M. Apathy and impulsiveness in Parkinson disease: Two faces of the same coin? Medicine, 2022, 101(26), e29766.
Supplementary files
