Disease Modifying Strategies in Multiple Sclerosis: New Rays of Hope to Combat Disability?


Цитировать

Полный текст

Аннотация

Multiple sclerosis (MS) is the most prevalent chronic autoimmune inflammatory- demyelinating disorder of the central nervous system (CNS). It usually begins in young adulthood, mainly between the second and fourth decades of life. Usually, the clinical course is characterized by the involvement of multiple CNS functional systems and by different, often overlapping phenotypes. In the last decades, remarkable results have been achieved in the treatment of MS, particularly in the relapsing- remitting (RRMS) form, thus improving the long-term outcome for many patients. As deeper knowledge of MS pathogenesis and respective molecular targets keeps growing, nowadays, several lines of disease-modifying treatments (DMT) are available, an impressive change compared to the relative poverty of options available in the past. Current MS management by DMTs is aimed at reducing relapse frequency, ameliorating symptoms, and preventing clinical disability and progression. Notwithstanding the relevant increase in pharmacological options for the management of RRMS, research is now increasingly pointing to identify new molecules with high efficacy, particularly in progressive forms. Hence, future efforts should be concentrated on achieving a more extensive, if not exhaustive, understanding of the pathogenetic mechanisms underlying this phase of the disease in order to characterize novel molecules for therapeutic intervention. The purpose of this review is to provide a compact overview of the numerous currently approved treatments and future innovative approaches, including neuroprotective treatments as anti-LINGO-1 monoclonal antibody and cell therapies, for effective and safe management of MS, potentially leading to a cure for this disease.

Об авторах

Carlo Bellanca

epartment of Biomedical and Biotechnological Sciences (BIOMETEC), Section of Pharmacology, University of Catani

Email: info@benthamscience.net

Egle Augello

Department of Biomedical and Biotechnological Sciences (BIOMETEC), Section of Pharmacology, University of Catania

Email: info@benthamscience.net

Alice Mariottini

Department of Neurosciences Drugs and Child Health, University of Florence

Email: info@benthamscience.net

Gabriele Bonaventura

Institute for Biomedical Research and Innovation (IRIB, Italian National Research Council

Email: info@benthamscience.net

Valentina La Cognata

Institute for Biomedical Research and Innovation (IRIB), Italian National Research Council

Email: info@benthamscience.net

Giulia Di Benedetto

Department of Biomedical and Biotechnological Sciences (BIOMETEC), Section of Pharmacology, University of Catania

Email: info@benthamscience.net

Anna Cantone

Department of Biomedical and Biotechnological Sciences (BIOMETEC), Section of Pharmacology, University of Catania

Email: info@benthamscience.net

Giuseppe Attaguile

Department of Biomedical and Biotechnological Sciences (BIOMETEC), Section of Pharmacology, University of Catania

Email: info@benthamscience.net

Rosaria Di Mauro

Department of Biomedical and Biotechnological Sciences (BIOMETEC), Section of Pharmacology, University of Catania

Email: info@benthamscience.net

Giuseppina Cantarella

Department of Biomedical and Biotechnological Sciences (BIOMETEC), Section of Pharmacology, University of Catania

Автор, ответственный за переписку.
Email: info@benthamscience.net

Luca Massacesi

Department of Neurosciences Drugs and Child Health, University of Florence

Email: info@benthamscience.net

Renato Bernardini

Department of Biomedical and Biotechnological Sciences (BIOMETEC), Section of Pharmacology, University of Catania

Email: info@benthamscience.net

Список литературы

  1. Didonna, A.; Oksenberg, J.R. The Genetics of Multiple Sclerosis.Codon Publications: Brisbane, 2017. doi: 10.15586/codon.multiplesclerosis.2017.ch1
  2. Belbasis, L.; Bellou, V.; Evangelou, E.; Ioannidis, J.P.A.; Tzoulaki, I. Environmental risk factors and multiple sclerosis : An umbrella review of systematic reviews and meta-analyses. Lancet Neurol., 2015, 14(3), 263-273. doi: 10.1016/S1474-4422(14)70267-4 PMID: 25662901
  3. Reich, D.S.; Lucchinetti, C.F.; Calabresi, P.A. Multiple Sclerosis. N. Engl. J. Med., 2018, 378(2), 169-180. doi: 10.1056/NEJMra1401483 PMID: 29320652
  4. Multiple Sclerosis: Facts, Statistics, and You. Available at: https://www.healthline.com/health/multiple-sclerosis/facts-statistics-infographic
  5. Adelman, G.; Rane, S.G.; Villa, K.F. The cost burden of multiple sclerosis in the United States : A systematic review of the literature. J. Med. Econ., 2013, 16(5), 639-647. doi: 10.3111/13696998.2013.778268 PMID: 23425293
  6. Amato, M.P.; Derfuss, T.; Hemmer, B.; Liblau, R.; Montalban, X.; Soelberg, S.P.; Miller, D.H. 2016 ECTRIMS focused workshop group environmental modifiable risk factors for multiple sclerosis: Report from the 2016 ECTRIMS focused workshop. Mult. Scler., 2018, 24(5), 590-603. doi: 10.1177/1352458516686847 PMID: 28671487
  7. Thormann, A.; Sørensen, P.S.; Koch-Henriksen, N.; Laursen, B.; Magyari, M. Comorbidity in multiple sclerosis is associated with diagnostic delays and increased mortality. Neurology, 2017, 89(16), 1668-1675. doi: 10.1212/WNL.0000000000004508 PMID: 28931645
  8. Patsopoulos, N.A. Genetics of multiple sclerosis : An overview and new directions. Cold Spring Harb. Perspect. Med., 2018, 8(7), a028951. doi: 10.1101/cshperspect.a028951 PMID: 29440325
  9. Moghbeli, M. Genetic and molecular biology of multiple sclerosis among iranian patients : An overview. Cell. Mol. Neurobiol., 2020, 40(1), 65-85. doi: 10.1007/s10571-019-00731-2 PMID: 31482432
  10. Ascherio, A. Environmental factors in multiple sclerosis. Expert Rev. Neurother., 2013, 13(sup2), 3-9. doi: 10.1586/14737175.2013.865866 PMID: 24289836
  11. Sintzel, M.B.; Rametta, M.; Reder, A.T. Vitamin D and multiple sclerosis: A comprehensive review. Neurol. Ther., 2018, 7(1), 59-85. doi: 10.1007/s40120-017-0086-4 PMID: 29243029
  12. Kim, W.; Patsopoulos, N.A. Genetics and functional genomics of multiple sclerosis. Semin. Immunopathol., 2022, 44(1), 63-79. doi: 10.1007/s00281-021-00907-3 PMID: 35022889
  13. Mahad, D.H.; Trapp, B.D.; Lassmann, H. Pathological mechanisms in progressive multiple sclerosis. Lancet Neurol., 2015, 14(2), 183-193. doi: 10.1016/S1474-4422(14)70256-X PMID: 25772897
  14. Stadelmann, C. Multiple sclerosis as a neurodegenerative disease: Pathology, mechanisms and therapeutic implications. Curr. Opin. Neurol., 2011, 24(3), 224-229. doi: 10.1097/WCO.0b013e328346056f PMID: 21455066
  15. Hohlfeld, R.; Londei, M.; Massacesi, L.; Salvetti, M. T-cell autoimmunity in multiple sclerosis. Immunol. Today, 1995, 16(6), 259-261. doi: 10.1016/0167-5699(95)80176-6 PMID: 7544976
  16. Gaitán, M.I.; Shea, C.D.; Evangelou, I.E.; Stone, R.D.; Fenton, K.M.; Bielekova, B.; Massacesi, L.; Reich, D.S. Evolution of the blood-brain barrier in newly forming multiple sclerosis lesions. Ann. Neurol., 2011, 70(1), 22-29. doi: 10.1002/ana.22472 PMID: 21710622
  17. Lassmann, H. Pathogenic mechanisms associated with different clinical courses of multiple sclerosis. Front. Immunol., 2019, 9, 3116. doi: 10.3389/fimmu.2018.03116 PMID: 30687321
  18. Wiendl, H.; Hohlfeld, R. Multiple sclerosis therapeutics: Unexpected outcomes clouding undisputed successes. Neurology, 2009, 72(11), 1008-1015. doi: 10.1212/01.wnl.0000344417.42972.54 PMID: 19289741
  19. Friese, M.A.; Schattling, B.; Fugger, L. Mechanisms of neurodegeneration and axonal dysfunction in multiple sclerosis. Nat. Rev. Neurol., 2014, 10(4), 225-238. doi: 10.1038/nrneurol.2014.37 PMID: 24638138
  20. Fazeli, A.S.; Nasrabadi, D.; Sanati, M.H.; Pouya, A.; Ibrahim, S.M.; Baharvand, H.; Salekdeh, G.H. Proteome analysis of brain in murine experimental autoimmune encephalomyelitis. Proteomics, 2010, 10(15), 2822-2832. doi: 10.1002/pmic.200900507 PMID: 20540118
  21. Rajani, R.M.; Quick, S.; Ruigrok, S.R.; Graham, D.; Harris, S.E.; Verhaaren, B.F.J.; Fornage, M.; Seshadri, S.; Atanur, S.S.; Dominiczak, A.F.; Smith, C.; Wardlaw, J.M.; Williams, A. Reversal of endothelial dysfunction reduces white matter vulnerability in cerebral small vessel disease in rats. Sci. Transl. Med., 2018, 10(448), eaam9507. doi: 10.1126/scitranslmed.aam9507 PMID: 29973407
  22. Saab, A.S.; Nave, K.A. Myelin dynamics: Protecting and shaping neuronal functions. Curr. Opin. Neurobiol., 2017, 47, 104-112. doi: 10.1016/j.conb.2017.09.013 PMID: 29065345
  23. Philips, T.; Rothstein, J.D. Oligodendroglia: Metabolic supporters of neurons. J. Clin. Invest., 2017, 127(9), 3271-3280. doi: 10.1172/JCI90610 PMID: 28862639
  24. Dombrowski, Y.; O’Hagan, T.; Dittmer, M.; Penalva, R.; Mayoral, S.R.; Bankhead, P.; Fleville, S.; Eleftheriadis, G.; Zhao, C.; Naughton, M.; Hassan, R.; Moffat, J.; Falconer, J.; Boyd, A.; Hamilton, P.; Allen, I.V.; Kissenpfennig, A.; Moynagh, P.N.; Evergren, E.; Perbal, B.; Williams, A.C.; Ingram, R.J.; Chan, J.R.; Franklin, R.J.M.; Fitzgerald, D.C. Regulatory T cells promote myelin regeneration in the central nervous system. Nat. Neurosci., 2017, 20(5), 674-680. doi: 10.1038/nn.4528 PMID: 28288125
  25. Fünfschilling, U.; Supplie, L.M.; Mahad, D.; Boretius, S.; Saab, A.S.; Edgar, J.; Brinkmann, B.G.; Kassmann, C.M.; Tzvetanova, I.D.; Möbius, W.; Diaz, F.; Meijer, D.; Suter, U.; Hamprecht, B.; Sereda, M.W.; Moraes, C.T.; Frahm, J.; Goebbels, S.; Nave, K.A. Glycolytic oligodendrocytes maintain myelin and long-term axonal integrity. Nature, 2012, 485(7399), 517-521. doi: 10.1038/nature11007 PMID: 22622581
  26. Craner, M.J.; Newcombe, J.; Black, J.A.; Hartle, C.; Cuzner, M.L.; Waxman, S.G. Molecular changes in neurons in multiple sclerosis: Altered axonal expression of Nav 1.2 and Nav 1.6 sodium channels and Na+ /Ca2+ exchanger. Proc. Natl. Acad. Sci., 2004, 101(21), 8168-8173. doi: 10.1073/pnas.0402765101 PMID: 15148385
  27. Waxman, S.G.; Craner, M.J.; Black, J.A. Na+ channel expression along axons in multiple sclerosis and its models. Trends Pharmacol. Sci., 2004, 25(11), 584-591. doi: 10.1016/j.tips.2004.09.001 PMID: 15491781
  28. Lublin, F.D.; Reingold, S.C. Defining the clinical course of multiple sclerosis: Results of an international survey. Neurology, 1996, 46(4), 907-911. doi: 10.1212/WNL.46.4.907 PMID: 8780061
  29. Lublin, F.D.; Reingold, S.C.; Cohen, J.A.; Cutter, G.R.; Sørensen, P.S.; Thompson, A.J.; Wolinsky, J.S.; Balcer, L.J.; Banwell, B.; Barkhof, F.; Bebo, B., Jr; Calabresi, P.A.; Clanet, M.; Comi, G.; Fox, R.J.; Freedman, M.S.; Goodman, A.D.; Inglese, M.; Kappos, L.; Kieseier, B.C.; Lincoln, J.A.; Lubetzki, C.; Miller, A.E.; Montalban, X.; O’Connor, P.W.; Petkau, J.; Pozzilli, C.; Rudick, R.A.; Sormani, M.P.; Stüve, O.; Waubant, E.; Polman, C.H. Defining the clinical course of multiple sclerosis : The 2013 revisions. Neurology, 2014, 83(3), 278-286. doi: 10.1212/WNL.0000000000000560 PMID: 24871874
  30. Miller, D.; Barkhof, F.; Montalban, X.; Thompson, A.; Filippi, M. Clinically isolated syndromes suggestive of multiple sclerosis, part I : Natural history, pathogenesis, diagnosis, and prognosis. Lancet Neurol., 2005, 4(5), 281-288. doi: 10.1016/S1474-4422(05)70071-5 PMID: 15847841
  31. Okuda, D.T.; Mowry, E.M.; Beheshtian, A.; Waubant, E.; Baranzini, S.E.; Goodin, D.S.; Hauser, S.L.; Pelletier, D. Incidental MRI anomalies suggestive of multiple sclerosis : The radiologically isolated syndrome. Neurology, 2009, 72(9), 800-805. doi: 10.1212/01.wnl.0000335764.14513.1a PMID: 19073949
  32. Klineova, S.; Lublin, F.D. Clinical course of multiple sclerosis. Cold Spring Harb. Perspect. Med., 2018, 8(9), a028928. doi: 10.1101/cshperspect.a028928 PMID: 29358317
  33. Alroughani, R.; Yamout, B. Multiple Sclerosis. Semin. Neurol., 2018, 38(2), 212-225. doi: 10.1055/s-0038-1649502 PMID: 29791948
  34. Rovaris, M.; Confavreux, C.; Furlan, R.; Kappos, L.; Comi, G.; Filippi, M. Secondary progressive multiple sclerosis : Current knowledge and future challenges. Lancet Neurol., 2006, 5(4), 343-354. doi: 10.1016/S1474-4422(06)70410-0 PMID: 16545751
  35. Kappos, L.; Wolinsky, J.S.; Giovannoni, G.; Arnold, D.L.; Wang, Q.; Bernasconi, C.; Model, F.; Koendgen, H.; Manfrini, M.; Belachew, S.; Hauser, S.L. Contribution of relapseindependent progression vs relapseassociated worsening to overall confirmed disability accumulation in typical relapsing multiple sclerosis in a pooled analysis of 2 randomized clinical trials. JAMA Neurol., 2020, 77(9), 1132-1140. doi: 10.1001/jamaneurol.2020.1568 PMID: 32511687
  36. Katz Sand, I. Classification, diagnosis, and differential diagnosis of multiple sclerosis. Curr. Opin. Neurol., 2015, 28(3), 193-205. doi: 10.1097/WCO.0000000000000206 PMID: 25887774
  37. Oh, J.; Vidal-Jordana, A.; Montalban, X. Multiple sclerosis: Clinical aspects. Curr. Opin. Neurol., 2018, 31(6), 752-759. doi: 10.1097/WCO.0000000000000622 PMID: 30300239
  38. Cree, B.A.C.; Hollenbach, J.A.; Bove, R.; Kirkish, G.; Sacco, S.; Caverzasi, E.; Bischof, A.; Gundel, T.; Zhu, A.H.; Papinutto, N.; Stern, W.A.; Bevan, C.; Romeo, A.; Goodin, D.S.; Gelfand, J.M.; Graves, J.; Green, A.J.; Wilson, M.R.; Zamvil, S.S.; Zhao, C.; Gomez, R.; Ragan, N.R.; Rush, G.Q.; Barba, P.; Santaniello, A.; Baranzini, S.E.; Oksenberg, J.R.; Henry, R.G.; Hauser, S.L. Silent progression in disease activityfree relapsing multiple sclerosis. Ann. Neurol., 2019, 85(5), 653-666. doi: 10.1002/ana.25463 PMID: 30851128
  39. Portaccio, E.; Bellinvia, A.; Fonderico, M.; Pastò, L.; Razzolini, L.; Totaro, R.; Spitaleri, D.; Lugaresi, A.; Cocco, E.; Onofrj, M.; Di Palma, F.; Patti, F.; Maimone, D.; Valentino, P.; Confalonieri, P.; Protti, A.; Sola, P.; Lus, G.; Maniscalco, G.T.; Brescia Morra, V.; Salemi, G.; Granella, F.; Pesci, I.; Bergamaschi, R.; Aguglia, U.; Vianello, M.; Simone, M.; Lepore, V.; Iaffaldano, P.; Filippi, M.; Trojano, M.; Amato, M.P. Progression is independent of relapse activity in early multiple sclerosis: A real-life cohort study. Brain, 2022, 145(8), 2796-2805. doi: 10.1093/brain/awac111 PMID: 35325059
  40. Vollmer, T.L.; Nair, K.V.; Williams, I.M.; Alvarez, E. Multiple sclerosis phenotypes as a continuum. Neurol. Clin. Pract., 2021, 11(4), 342-351. doi: 10.1212/CPJ.0000000000001045 PMID: 34476126
  41. ’t Hart, B.A.; Bauer, J.; Muller, H.J.; Melchers, B.; Nicolay, K.; Brok, H.; Bontrop, R.E.; Lassmann, H.; Massacesi, L. Histopathological characterization of magnetic resonance imaging-detectable brain white matter lesions in a primate model of multiple sclerosis: A correlative study in the experimental autoimmune encephalomyelitis model in common marmosets (Callithrix jacchus). Am. J. Pathol., 1998, 153(2), 649-663. doi: 10.1016/S0002-9440(10)65606-4 PMID: 9708823
  42. ’t Hart, B.A.; Massacesi, L. Clinical, pathological, and immunologic aspects of the multiple sclerosis model in common marmosets (Callithrix jacchus). J. Neuropathol. Exp. Neurol., 2009, 68(4), 341-355. doi: 10.1097/NEN.0b013e31819f1d24 PMID: 19337065
  43. Frischer, J.M.; Weigand, S.D.; Guo, Y.; Kale, N.; Parisi, J.E.; Pirko, I.; Mandrekar, J.; Bramow, S.; Metz, I.; Brück, W.; Lassmann, H.; Lucchinetti, C.F. Clinical and pathological insights into the dynamic nature of the white matter multiple sclerosis plaque. Ann. Neurol., 2015, 78(5), 710-721. doi: 10.1002/ana.24497 PMID: 26239536
  44. Massacesi, L. Compartmentalization of the immune response in the central nervous system and natural history of multiple sclerosis. implications for therapy. Clin. Neurol. Neurosurg., 2002, 104(3), 177-181. doi: 10.1016/S0303-8467(02)00035-5 PMID: 12127651
  45. Machado-Santos, J.; Saji, E.; Tröscher, A.R.; Paunovic, M.; Liblau, R.; Gabriely, G.; Bien, C.G.; Bauer, J.; Lassmann, H. The compartmentalized inflammatory response in the multiple sclerosis brain is composed of tissue-resident CD8+ T lymphocytes and B cells. Brain, 2018, 141(7), 2066-2082. doi: 10.1093/brain/awy151 PMID: 29873694
  46. Serafini, B.; Rosicarelli, B.; Magliozzi, R.; Stigliano, E.; Aloisi, F. Detection of ectopic B-cell follicles with germinal centers in the meninges of patients with secondary progressive multiple sclerosis. Brain Pathol., 2004, 14(2), 164-174. doi: 10.1111/j.1750-3639.2004.tb00049.x PMID: 15193029
  47. Magliozzi, R.; Howell, O.; Vora, A.; Serafini, B.; Nicholas, R.; Puopolo, M.; Reynolds, R.; Aloisi, F. Meningeal B-cell follicles in secondary progressive multiple sclerosis associate with early onset of disease and severe cortical pathology. Brain, 2006, 130(4), 1089-1104. doi: 10.1093/brain/awm038 PMID: 17438020
  48. Absinta, M.; Vuolo, L.; Rao, A.; Nair, G.; Sati, P.; Cortese, I.C.M.; Ohayon, J.; Fenton, K.; Reyes-Mantilla, M.I.; Maric, D.; Calabresi, P.A.; Butman, J.A.; Pardo, C.A.; Reich, D.S. Gadolinium-based MRI characterization of leptomeningeal inflammation in multiple sclerosis. Neurology, 2015, 85(1), 18-28. doi: 10.1212/WNL.0000000000001587 PMID: 25888557
  49. Brownlee, W.J.; Swanton, J.K.; Altmann, D.R.; Ciccarelli, O.; Miller, D.H. Earlier and more frequent diagnosis of multiple sclerosis using the McDonald criteria: Figure 1. J. Neurol. Neurosurg. Psychiatry, 2015, 86(5), 584-585. doi: 10.1136/jnnp-2014-308675 PMID: 25412872
  50. McDonald, W.I.; Compston, A.; Edan, G.; Goodkin, D.; Hartung, H.P.; Lublin, F.D.; McFarland, H.F.; Paty, D.W.; Polman, C.H.; Reingold, S.C.; Sandberg-Wollheim, M.; Sibley, W.; Thompson, A.; Van Den Noort, S.; Weinshenker, B.Y.; Wolinsky, J.S. Recommended diagnostic criteria for multiple sclerosis: Guidelines from the international panel on the diagnosis of multiple sclerosis. Ann. Neurol., 2001, 50(1), 121-127. doi: 10.1002/ana.1032 PMID: 11456302
  51. Polman, C.H.; Reingold, S.C.; Edan, G.; Filippi, M.; Hartung, H.P.; Kappos, L.; Lublin, F.D.; Metz, L.M.; McFarland, H.F.; O’Connor, P.W.; Sandberg-Wollheim, M.; Thompson, A.J.; Weinshenker, B.G.; Wolinsky, J.S. Diagnostic criteria for multiple sclerosis: 2005 Revisions to the "McDonald Criteria". Ann. Neurol., 2005, 58(6), 840-846. doi: 10.1002/ana.20703 PMID: 16283615
  52. Polman, C.H.; Reingold, S.C.; Banwell, B.; Clanet, M.; Cohen, J.A.; Filippi, M.; Fujihara, K.; Havrdova, E.; Hutchinson, M.; Kappos, L.; Lublin, F.D.; Montalban, X.; O’Connor, P.; Sandberg-Wollheim, M.; Thompson, A.J.; Waubant, E.; Weinshenker, B.; Wolinsky, J.S. Diagnostic criteria for multiple sclerosis: 2010 Revisions to the McDonald criteria. Ann. Neurol., 2011, 69(2), 292-302. doi: 10.1002/ana.22366 PMID: 21387374
  53. Thompson, A.J.; Banwell, B.L.; Barkhof, F.; Carroll, W.M.; Coetzee, T.; Comi, G.; Correale, J.; Fazekas, F.; Filippi, M.; Freedman, M.S.; Fujihara, K.; Galetta, S.L.; Hartung, H.P.; Kappos, L.; Lublin, F.D.; Marrie, R.A.; Miller, A.E.; Miller, D.H.; Montalban, X.; Mowry, E.M.; Sorensen, P.S.; Tintoré, M.; Traboulsee, A.L.; Trojano, M.; Uitdehaag, B.M.J.; Vukusic, S.; Waubant, E.; Weinshenker, B.G.; Reingold, S.C.; Cohen, J.A. Diagnosis of multiple sclerosis: 2017 Revisions of the McDonald criteria. Lancet Neurol., 2018, 17(2), 162-173. doi: 10.1016/S1474-4422(17)30470-2 PMID: 29275977
  54. Montalban, X.; Tintoré, M.; Swanton, J.; Barkhof, F.; Fazekas, F.; Filippi, M.; Frederiksen, J.; Kappos, L.; Palace, J.; Polman, C.; Rovaris, M.; de Stefano, N.; Thompson, A.; Yousry, T.; Rovira, A.; Miller, D.H. MRI criteria for MS in patients with clinically isolated syndromes. Neurology, 2010, 74(5), 427-434. doi: 10.1212/WNL.0b013e3181cec45c PMID: 20054006
  55. Solomon, A.J.; Bourdette, D.N.; Cross, A.H.; Applebee, A.; Skidd, P.M.; Howard, D.B.; Spain, R.I.; Cameron, M.H.; Kim, E.; Mass, M.K.; Yadav, V.; Whitham, R.H.; Longbrake, E.E.; Naismith, R.T.; Wu, G.F.; Parks, B.J.; Wingerchuk, D.M.; Rabin, B.L.; Toledano, M.; Tobin, W.O.; Kantarci, O.H.; Carter, J.L.; Keegan, B.M.; Weinshenker, B.G. The contemporary spectrum of multiple sclerosis misdiagnosis. Neurology, 2016, 87(13), 1393-1399. doi: 10.1212/WNL.0000000000003152 PMID: 27581217
  56. Brownlee, W.J.; Hardy, T.A.; Fazekas, F.; Miller, D.H. Diagnosis of multiple sclerosis: Progress and challenges. Lancet, 2017, 389(10076), 1336-1346. doi: 10.1016/S0140-6736(16)30959-X PMID: 27889190
  57. Solomon, A.J.; Naismith, R.T.; Cross, A.H. Misdiagnosis of multiple sclerosis. Neurology, 2019, 92(1), 26-33. doi: 10.1212/WNL.0000000000006583 PMID: 30381369
  58. Filippi, M.; Danesi, R.; Derfuss, T.; Duddy, M.; Gallo, P.; Gold, R.; Havrdová, E.K.; Kornek, B.; Saccà, F.; Tintoré, M.; Weber, J.; Trojano, M. Early and unrestricted access to high-efficacy disease-modifying therapies: A consensus to optimize benefits for people living with multiple sclerosis. J. Neurol., 2022, 269(3), 1670-1677. doi: 10.1007/s00415-021-10836-8 PMID: 34626224
  59. Dawson, J.W. The histology of disseminated sclerosis. Edinburgh Med. J., 1916, 17(4), 229-241.
  60. Banwell, B.; Giovannoni, G.; Hawkes, C.; Lublin, F. Editors’ welcome and a working definition for a multiple sclerosis cure. Mult. Scler. Relat. Disord., 2013, 2(2), 65-67. doi: 10.1016/j.msard.2012.12.001 PMID: 25877624
  61. Giovannoni, G.; Turner, B.; Gnanapavan, S.; Offiah, C.; Schmierer, K.; Marta, M. Is it time to target no evident disease activity (NEDA) in multiple sclerosis? Mult. Scler. Relat. Disord., 2015, 4(4), 329-333. doi: 10.1016/j.msard.2015.04.006 PMID: 26195051
  62. Laurson-Doube, J.; Rijke, N.; Helme, A.; Baneke, P.; Banwell, B.; Viswanathan, S.; Hemmer, B.; Yamout, B. Ethical use of off-label disease-modifying therapies for multiple sclerosis. Mult. Scler., 2021, 27(9), 1403-1410. doi: 10.1177/13524585211030207 PMID: 34304636
  63. Marjolein, W.; Lisman, J.; Hoebert, J.; Moltó Puigmarti, C.; Dijk, L.; Langedijk, J.; Marchange, S.; Damen, N.; Vervloet, M. Directorate- general for health and food safety (European Commission); study on off-label use of medicinal products in the European union: Report: Publications office of the European union: LU, 2019. doi: 10.2875/464022
  64. Mcgeown, M.; Donaldson, R.A.; Kennedy, J.A.; Douglas, J.F.; Hill, C.M.; Loughridge, W.G.G.; Middleton, D. Ten-year results of renal transplantation with azathioprine and prednisolone as only immunosuppression. Lancet, 1988, 331(8592), 983-985. doi: 10.1016/S0140-6736(88)91792-8 PMID: 2896839
  65. Andreone, P.A.; Olivari, M.T.; Elick, B.; Arentzen, C.E.; Sibley, R.K.; Bolman, R.M.; Simmons, R.L.; Ring, W.S. Reduction of infectious complications following heart transplantation with triple-drug immunotherapy. J. Heart Transplant., 1986, 5(1), 13-19. PMID: 3302153
  66. British and Dutch Multiple Sclerosis Azathioprine Trial Group. Double-masked trial of azathioprine in multiple sclerosis. Lancet, 1988, 2(8604), 179-183. PMID: 2899660
  67. De Silva, M.; Hazleman, B.L. Long-term azathioprine in rheumatoid arthritis: A double-blind study. Ann. Rheum. Dis., 1981, 40(6), 560-563. doi: 10.1136/ard.40.6.560 PMID: 7036921
  68. Ginzler, E.; Sharon, E.; Diamond, H.; Kaplan, D. Long-term maintenance therapy with azathioprine in systemic lupus erythematosus. Arthritis Rheum., 1975, 18(1), 27-34. doi: 10.1002/art.1780180106 PMID: 1115745
  69. Christensen, E.; Neuberger, J.; Crowe, J.; Altman, D.G.; Popper, H.; Portmann, B.; Doniach, D.; Ranek, L.; Tygstrup, N.; Williams, R. Beneficial effect of azathioprine and prediction of prognosis in primary biliary cirrhosis. Gastroenterology, 1985, 89(5), 1084-1091. doi: 10.1016/0016-5085(85)90213-6 PMID: 3899841
  70. Candy, S.; Wright, J.; Gerber, M.; Adams, G.; Gerig, M.; Goodman, R. A controlled double blind study of azathioprine in the management of crohn’s disease. Gut, 1995, 37(5), 674-678. doi: 10.1136/gut.37.5.674 PMID: 8549944
  71. Bouhnik, Y.; Scemama, G.; Taï, R.; Matuchansky, C.; Rambaud, J-C.; Lémann, M.; Modigliani, R.; Mary, J-Y. Long-term followup of patients with crohn’s disease treated with azathioprine or 6-mercaptopurine. Lancet, 1996, 347(8996), 215-219. doi: 10.1016/S0140-6736(96)90402-X PMID: 8551879
  72. Lewis, J.D.; Schwartz, J.S.; Lichtenstein, G.R. Azathioprine for maintenance of remission in crohn’s disease: Benefits outweigh the risk of lymphoma. Gastroenterology, 2000, 118(6), 1018-1024. doi: 10.1016/S0016-5085(00)70353-2 PMID: 10833475
  73. Present, D.H.; Korelitz, B.I.; Wisch, N.; Glass, J.L.; Sachar, D.B.; Pasternack, B.S. Treatment of crohn’s disease with 6-mercaptopurine. A long-term, randomized, double-blind study. N. Engl. J. Med., 1980, 302(18), 981-987. doi: 10.1056/NEJM198005013021801 PMID: 6102739
  74. Dimitriu, A.; Fauci, A.S. Activation of human B lymphocytes. XI. Differential effects of azathioprine on B lymphocytes and lymphocyte subpopulations regulating B cell function. J. Immunol., 1978, 121(6), 2335-2339. doi: 10.4049/jimmunol.121.6.2335 PMID: 363943
  75. Lennard, L. The clinical pharmacology of 6-mercaptopurine. Eur. J. Clin. Pharmacol., 1992, 43(4), 329-339. doi: 10.1007/BF02220605 PMID: 1451710
  76. Röllinghoff, M.; Schrader, J.; Wagner, H. Effect of azathioprine and cytosine arabinoside on humoral and cellular immunity in vitro. Clin. Exp. Immunol., 1973, 15(2), 261-269. PMID: 4543428
  77. Abdou, N.I.; Zweiman, B.; Casella, S.R. Effects of azathioprine therapy on bone marrow-dependent and thymus-dependent cells in man. Clin. Exp. Immunol., 1973, 13(1), 55-64. PMID: 4271771
  78. Bach, M.A.; Bach, J.F. Activities of immunosuppressive agents in vitro. II. Different timing of azathioprine and methotrexate in inhibition and stimulation of mixed lymphocyte reaction. Clin. Exp. Immunol., 1972, 11(1), 89-98. PMID: 5038773
  79. Maltzman, J.S.; Koretzky, G.A. Azathioprine: Old drug, new actions. J. Clin. Invest., 2003, 111(8), 1122-1124. doi: 10.1172/JCI200318384 PMID: 12697731
  80. Ellison, G.W.; Myers, L.W.; Mickey, M.R.; Graves, M.C.; Tourtellotte, W.W.; Syndulko, K.; Holevoet-Howson, M.I.; Lerner, C.D.; Frane, M.V.; Pettier-Jennings, P. A placebo‐controlled, randomized, double‐masked, variable dosage, clinical trial of azathioprine with and without methylprednisolone in multiple sclerosis. Neurology, 1989, 39(8), 1018-1026. doi: 10.1212/WNL.39.8.1018 PMID: 2668784
  81. Goodkin, D.E.; Bailly, R.C.; Teetzen, M.L.; Hertsgaard, D.; Beatty, W.W. The efficacy of azathioprine in relapsing : Remitting multiple sclerosis. Neurology, 1991, 41(1), 20-25. doi: 10.1212/WNL.41.1.20 PMID: 1985289
  82. Milanese, C.; La Mantia, L.; Salmaggi, A.; Eoli, M. A double blind study on azathioprine efficacy in multiple sclerosis: Final report. J. Neurol., 1993, 240(5), 295-298. doi: 10.1007/BF00838165 PMID: 8326334
  83. Clegg, A.; Bryant, J.; Milne, R. Disease-modifying drugs for multiple sclerosis: A rapid and systematic review. Health Technol. Assess., 2000, 4(9), i-iv, 1-101. doi: 10.3310/hta4090 PMID: 10944743
  84. Yudkin, P.L.; Ellison, G.W.; Ghezzi, A.; Goodkin, D.E.; Hughes, R.A.C.; McPherson, K.; Mertin, J.; Milanese, C. Overview of azathioprine treatment in multiple sclerosis. Lancet, 1991, 338(8774), 1051-1055. doi: 10.1016/0140-6736(91)91909-E PMID: 1681364
  85. Goodin, D.S.; Frohman, E.M.; Garmany, G.P., Jr; Halper, J.; Likosky, W.H.; Lublin, F.D.; Silberberg, D.H.; Stuart, W.H.; van den Noort, S. Disease modifying therapies in multiple sclerosis: Report of the therapeutics and technology assessment subcommittee of the american academy of neurology and the ms council for clinical practice guidelines. Neurology, 2002, 58(2), 169-178. doi: 10.1212/WNL.58.2.169 PMID: 11805241
  86. Casetta, I.; Iuliano, G.; Filippini, G. Azathioprine for multiple sclerosis. Cochrane Libr., 2007, 2007(4), CD003982. doi: 10.1002/14651858.CD003982.pub2 PMID: 17943809
  87. Filippini, G.; Munari, L.; Incorvaia, B.; Ebers, G.C.; Polman, C.; D’Amico, R.; Rice, G.P.A. Interferons in relapsing remitting multiple sclerosis: A systematic review. Lancet, 2003, 361(9357), 545-552. doi: 10.1016/S0140-6736(03)12512-3 PMID: 12598138
  88. Palace, J.; Rothwell, P. New treatments and azathioprine in multiple sclerosis. Lancet, 1997, 350(9073), 261. doi: 10.1016/S0140-6736(97)24030-4 PMID: 9242805
  89. Etemadifar, M.; Janghorbani, M.; Shaygannejad, V. Comparison of interferon beta products and azathioprine in the treatment of relapsing-remitting multiple sclerosis. J. Neurol., 2007, 254(12), 1723-1728. doi: 10.1007/s00415-007-0637-1 PMID: 18074075
  90. Milanese, C.; La Mantia, L.; Salmaggi, A.; Caputo, D. Azathioprine and interferon beta-1b treatment in relapsing-remitting multiple sclerosis. J. Neurol. Neurosurg. Psychiatry, 2001, 70(3), 413-414. doi: 10.1136/jnnp.70.3.413 PMID: 11181879
  91. Cavazzuti, M.; Merelli, E.; Tassone, G.; Mavilla, L. Lesion load quantification in serial MR of early relapsing multiple sclerosis patients in azathioprine treatment. A retrospective study. Eur. Neurol., 1997, 38(4), 284-290. doi: 10.1159/000113395 PMID: 9434087
  92. Massacesi, L.; Parigi, A.; Barilaro, A.; Repice, A.M.; Pellicanò, G.; Konze, A.; Siracusa, G.; Taiuti, R.; Amaducci, L. Efficacy of azathioprine on multiple sclerosis new brain lesions evaluated using magnetic resonance imaging. Arch. Neurol., 2005, 62(12), 1843-1847. doi: 10.1001/archneur.62.12.1843 PMID: 16344342
  93. Massacesi, L.; Tramacere, I.; Amoroso, S.; Battaglia, M.A.; Benedetti, M.D.; Filippini, G.; La Mantia, L.; Repice, A.; Solari, A.; Tedeschi, G.; Milanese, C. Azathioprine versus beta interferons for relapsing-remitting multiple sclerosis: A multicentre randomized non-inferiority trial. PLoS One, 2014, 9(11), e113371. doi: 10.1371/journal.pone.0113371 PMID: 25402490
  94. Confavreux, C.; Saddier, P.; Grimaud, J.; Moreau, T.; Adeleine, P.; Aimard, G. Risk of cancer from azathioprine therapy in multiple sclerosis. Neurology, 1996, 46(6), 1607-1612. doi: 10.1212/WNL.46.6.1607 PMID: 8649558
  95. La Mantia, L.; Benedetti, M.D.; Sant, M.; d’Arma, A.; Di Tella, S.; Lillini, R.; Mendozzi, L.; Marangi, A.; Turatti, M.; Caputo, D.; Rovaris, M. Cancer risk for multiple sclerosis patients treated with azathioprine and disease-modifying therapies: an Italian observational study. Neurol. Sci., 2021, 42(12), 5157-5163. doi: 10.1007/s10072-021-05216-z PMID: 33791892
  96. EMA Jayempi. Available from: https://www.ema.europa.eu/en/medicines/human/EPAR/jayempi
  97. Ali, R.; Nicholas, R.S.J.; Muraro, P.A. Drugs in development for relapsing multiple sclerosis. Drugs, 2013, 73(7), 625-650. doi: 10.1007/s40265-013-0030-6 PMID: 23609782
  98. Muraro, P.A.; Leist, T.; Bielekova, B.; McFarland, H.F. VLA-4/CD49d downregulated on primed T lymphocytes during interferon-β therapy in multiple sclerosis. J. Neuroimmunol., 2000, 111(1-2), 186-194. doi: 10.1016/S0165-5728(00)00362-3 PMID: 11063837
  99. Jiang, H.; Milo, R.; Swoveland, P.; Johnson, K.P.; Panitch, H.; Dhib-Jalbut, S. Interferon β-lb reduces Interferon γ-induced antigen-presenting capacity of human glial and B cells. J. Neuroimmunol., 1995, 61(1), 17-25. doi: 10.1016/0165-5728(95)00072-A PMID: 7560008
  100. Kieseier, B.C. The mechanism of action of interferon-β in relapsing multiple sclerosis. CNS Drugs, 2011, 25(6), 491-502. doi: 10.2165/11591110-000000000-00000 PMID: 21649449
  101. Durelli, L.; Verdun, E.; Barbero, P.; Bergui, M.; Versino, E.; Ghezzi, A.; Montanari, E.; Zaffaroni, M. Every-other-day interferon beta-1b versus once-weekly interferon beta-1a for multiple sclerosis: Results of a 2-year prospective randomised multicentre study (INCOMIN). Lancet, 2002, 359(9316), 1453-1460. doi: 10.1016/S0140-6736(02)08430-1 PMID: 11988242
  102. Panitch, H.; Goodin, D.S.; Francis, G.; Chang, P.; Coyle, P.K.; O’Connor, P.; Monaghan, E.; Li, D.; Weinshenker, B. Randomized, comparative study of interferon -1a treatment regimens in MS: The EVIDENCE trial. Neurology, 2002, 59(10), 1496-1506. doi: 10.1212/01.WNL.0000034080.43681.DA PMID: 12451188
  103. A study to evaluate the safety, tolerability, and efficacy of BIIB017 (peginterferon beta-1a) in pediatric participants for the treatment of relapsing-remitting multiple sclerosis. NCT03958877, 2014.
  104. Harris, J.M.; Martin, N.E.; Modi, M. Pegylation. Clin. Pharmacokinet., 2001, 40(7), 539-551. doi: 10.2165/00003088-200140070-00005 PMID: 11510630
  105. Dhib-Jalbut, S. Mechanisms of action of interferons and glatiramer acetate in multiple sclerosis. Neurology, 2002, 58(8, Supplement 4)(4), S3-S9. doi: 10.1212/WNL.58.8_suppl_4.S3 PMID: 11971121
  106. Fridkis-Hareli, M.; Teitelbaum, D.; Gurevich, E.; Pecht, I.; Brautbar, C.; Kwon, O.J.; Brenner, T.; Arnon, R.; Sela, M. Direct binding of myelin basic protein and synthetic copolymer 1 to class II major histocompatibility complex molecules on living antigen-presenting cells : Specificity and promiscuity. Proc. Natl. Acad. Sci., 1994, 91(11), 4872-4876. doi: 10.1073/pnas.91.11.4872 PMID: 7515181
  107. Rommer, P.S.; Milo, R.; Han, M.H.; Satyanarayan, S.; Sellner, J.; Hauer, L.; Illes, Z.; Warnke, C.; Laurent, S.; Weber, M.S.; Zhang, Y.; Stuve, O. Immunological aspects of approved ms therapeutics. Front. Immunol., 2019, 10, 1564. doi: 10.3389/fimmu.2019.01564 PMID: 31354720
  108. Ziemssen, T.; Kümpfel, T.; Klinkert, W.E.F.; Neuhaus, O.; Hohlfeld, R. Glatiramer acetate-specific T-helper 1- and 2-type cell lines produce BDNF: Implications for multiple sclerosis therapy. Brain, 2002, 125(11), 2381-2391. doi: 10.1093/brain/awf252 PMID: 12390966
  109. Kuerten, S.; Jackson, L.J.; Kaye, J.; Vollmer, T.L. Impact of glatiramer acetate on B cell-mediated pathogenesis of multiple sclerosis. CNS Drugs, 2018, 32(11), 1039-1051. doi: 10.1007/s40263-018-0567-8 PMID: 30315499
  110. In: LiverTox: Clinical and Research Information on Drug-Induced Liver Injury Internet. Bethesda (MD): National Institute of Diabetes and Digestive and Kidney Diseases; 2012. 2018 Mar 14.https://pubmed.ncbi.nlm.nih.gov/31644036/ PMID: 31644036
  111. Phase III Randomized. Double-Blind, Placebo-Controlled Study of Copolymer 1 for Relapsing-Remitting Multiple Sclerosis. Available from: https://clinicaltrials.gov/ct2/show/NCT00004814
  112. Johnson, K.P.; Brooks, B.R.; Cohen, J.A.; Ford, C.C.; Goldstein, J.; Lisak, R.P.; Myers, L.W.; Panitch, H.S.; Rose, J.W.; Schiffer, R.B.; Vollmer, T.; Weiner, L.P.; Wolinsky, J.S. Copolymer 1 reduces relapse rate and improves disability in relapsing-remitting multiple sclerosis: Results of a phase III multicenter, double-blind, placebo-controlled trial. Neurology, 1995, 45(7), 1268-1276. doi: 10.1212/WNL.45.7.1268 PMID: 7617181
  113. Johnson, K.P.; Brooks, B.R.; Cohen, J.A.; Ford, C.C.; Goldstein, J.; Lisak, R.P.; Myers, L.W.; Panitch, H.S.; Rose, J.W.; Schiffer, R.B.; Vollmer, T.; Weiner, L.P.; Wolinsky, J.S. Extended use of glatiramer acetate (Copaxone) is well tolerated and maintains its clinical effect on multiple sclerosis relapse rate and degree of disability. Neurology, 1998, 50(3), 701-708. doi: 10.1212/WNL.50.3.701 PMID: 9521260
  114. Bell, C.; Anderson, J.; Ganguly, T.; Prescott, J.; Capila, I.; Lansing, J.C.; Sachleben, R.; Iyer, M.; Fier, I.; Roach, J.; Storey, K.; Miller, P.; Hall, S.; Kantor, D.; Greenberg, B.M.; Nair, K.; Glajch, J. Development of glatopa® (glatiramer acetate): The first fda-approved generic disease-modifying therapy for relapsing forms of multiple sclerosis. J. Pharm. Pract., 2018, 31(5), 481-488. doi: 10.1177/0897190017725984 PMID: 28847230
  115. Teva branded pharmaceutical products RD, inc. A multinational, multicenter, randomized, parallel-group study performed in subjects with relapsing-remitting multiple sclerosis (RRMS) to assess the efficacy, safety and tolerability of glatiramer acetate (GA) injection 40 mg administered three times a week compared to placebo in a double-blind design; clinicaltrials.gov. NCT01067521, 2021.
  116. Constantinescu, C.; Tanasescu; Evangelou Role of oral teriflunomide in the management of multiple sclerosis. Neuropsychiatr. Dis. Treat., 2013, 9, 539-553. doi: 10.2147/NDT.S31248 PMID: 23637535
  117. Xu, X.; Williams, J.W.; Bremer, E.G.; Finnegan, A.; Chong, A.S.F. Inhibition of protein tyrosine phosphorylation in T cells by a novel immunosuppressive agent, leflunomide. J. Biol. Chem., 1995, 270(21), 12398-12403. doi: 10.1074/jbc.270.21.12398 PMID: 7759480
  118. Siemasko, K.; Chong, A.S.F.; Jäck, H.M.; Gong, H.; Williams, J.W.; Finnegan, A. Inhibition of JAK3 and STAT6 tyrosine phosphorylation by the immunosuppressive drug leflunomide leads to a block in IgG1 production. J. Immunol., 1998, 160(4), 1581-1588. doi: 10.4049/jimmunol.160.4.1581 PMID: 9469413
  119. Dimitrova, P.; Skapenko, A.; Herrmann, M.L.; Schleyerbach, R.; Kalden, J.R.; Schulze-Koops, H. Restriction of de novo pyrimidine biosynthesis inhibits Th1 cell activation and promotes Th2 cell differentiation. J. Immunol., 2002, 169(6), 3392-3399. doi: 10.4049/jimmunol.169.6.3392 PMID: 12218161
  120. Claussen, M.C.; Korn, T. Immune mechanisms of new therapeutic strategies in MS Teriflunomide. Clin. Immunol., 2012, 142(1), 49-56. doi: 10.1016/j.clim.2011.02.011 PMID: 21367665
  121. Comi, G.; Freedman, M.S.; Kappos, L.; Olsson, T.P.; Miller, A.E.; Wolinsky, J.S.; O’Connor, P.W.; Benamor, M.; Dukovic, D.; Truffinet, P.; Leist, T.P. Pooled safety and tolerability data from four placebocontrolled teriflunomide studies and extensions. Mult. Scler. Relat. Disord., 2016, 5, 97-104. doi: 10.1016/j.msard.2015.11.006 PMID: 26856952
  122. EMA Aubagio. Available at: https://www.ema.europa.eu/en/medicines/human/EPAR/aubagio
  123. Sanofi a randomized, double-blind, placebo-controlled, parallel group design study to evaluate the efficacy and safety of teriflunomide in reducing the frequency of relapses and delaying the accumulation of physical disability in subjects with multiple sclerosis with relapses; clinicaltrials.gov. NCT01252355, 2013.
  124. O’Connor, P.; Wolinsky, J.S.; Confavreux, C.; Comi, G.; Kappos, L.; Olsson, T.P.; Benzerdjeb, H.; Truffinet, P.; Wang, L.; Miller, A.; Freedman, M.S. Randomized trial of oral teriflunomide for relapsing multiple sclerosis. N. Engl. J. Med., 2011, 365(14), 1293-1303. doi: 10.1056/NEJMoa1014656 PMID: 21991951
  125. Sanofi a multi-center double-blind parallel-group placebo-controlled study of the efficacy and safety of teriflunomide in patients with relapsing multiple sclerosis; clinicaltrials.gov. NCT01252355, 2016.
  126. Confavreux, C.; O’Connor, P.; Comi, G.; Freedman, M.S.; Miller, A.E.; Olsson, T.P.; Wolinsky, J.S.; Bagulho, T.; Delhay, J.L.; Dukovic, D.; Truffinet, P.; Kappos, L. Oral teriflunomide for patients with relapsing multiple sclerosis (TOWER): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Neurol., 2014, 13(3), 247-256. doi: 10.1016/S1474-4422(13)70308-9 PMID: 24461574
  127. Scannevin, R.H.; Chollate, S.; Jung, M.; Shackett, M.; Patel, H.; Bista, P.; Zeng, W.; Ryan, S.; Yamamoto, M.; Lukashev, M.; Rhodes, K.J. Fumarates promote cytoprotection of central nervous system cells against oxidative stress via the nuclear factor (erythroid-derived 2)-like 2 pathway. J. Pharmacol. Exp. Ther., 2012, 341(1), 274-284. doi: 10.1124/jpet.111.190132 PMID: 22267202
  128. Ma, Q. Role of nrf2 in oxidative stress and toxicity. Annu. Rev. Pharmacol. Toxicol., 2013, 53(1), 401-426. doi: 10.1146/annurev-pharmtox-011112-140320 PMID: 23294312
  129. Hammer, A.; Waschbisch, A.; Kuhbandner, K.; Bayas, A.; Lee, D.H.; Duscha, A.; Haghikia, A.; Gold, R.; Linker, R.A. The NRF 2 pathway as potential biomarker for dimethyl fumarate treatment in multiple sclerosis. Ann. Clin. Transl. Neurol., 2018, 5(6), 668-676. doi: 10.1002/acn3.553 PMID: 29928650
  130. Havrdova, E.; Hutchinson, M.; Kurukulasuriya, N.C.; Raghupathi, K.; Sweetser, M.T.; Dawson, K.T.; Gold, R. Oral BG-12 (dimethyl fumarate) for relapsing-remitting multiple sclerosis: A review of define and confirm. evaluation of: Gold R, Kappos L, Arnold D, et al. placebo-controlled phase 3 study of oral BG-12 for relapsing multiple sclerosis. N Engl J Med 2012;367:1098-107; and Fox RJ, Miller DH, Phillips JT, et al. Placebo-controlled phase 3 study of oral BG-12 or glatiramer in multiple sclerosis. N Engl J Med 2012;367:1087-97. Expert Opin. Pharmacother., 2013, 14(15), 2145-2156. doi: 10.1517/14656566.2013.826190 PMID: 23971970
  131. Biogen a randomized, multicenter, double-blind, placebo-controlled, dose-comparison study to determine the efficacy and safety of BG00012 in subjects with relapsing-remitting multiple sclerosis; clinicaltrials.gov. NCT00451451, 2015.
  132. Gold, R.; Kappos, L.; Arnold, D.L.; Bar-Or, A.; Giovannoni, G.; Selmaj, K.; Tornatore, C.; Sweetser, M.T.; Yang, M.; Sheikh, S.I.; Dawson, K.T. Placebocontrolled phase 3 study of oral BG-12 for relapsing multiple sclerosis. N. Engl. J. Med., 2012, 367(12), 1098-1107. doi: 10.1056/NEJMoa1114287 PMID: 22992073
  133. Biogen a randomized, multicenter, placebo-controlled and active reference (Glatiramer Acetate) comparison study to evaluate the efficacy and safety of BG00012 in subjects with relapsing-remitting multiple sclerosis; clinicaltrials.gov. NCT00451451, 2015.
  134. Fox, R.J.; Miller, D.H.; Phillips, J.T.; Hutchinson, M.; Havrdova, E.; Kita, M.; Yang, M.; Raghupathi, K.; Novas, M.; Sweetser, M.T.; Viglietta, V.; Dawson, K.T. Placebo-controlled phase 3 study of oral BG-12 or glatiramer in multiple sclerosis. N. Engl. J. Med., 2012, 367(12), 1087-1097. doi: 10.1056/NEJMoa1206328 PMID: 22992072
  135. Aktas, O.; Küry, P.; Kieseier, B.; Hartung, H.P. Fingolimod is a potential novel therapy for multiple sclerosis. Nat. Rev. Neurol., 2010, 6(7), 373-382. doi: 10.1038/nrneurol.2010.76 PMID: 20551946
  136. Brinkmann, V.; Davis, M.D.; Heise, C.E.; Albert, R.; Cottens, S.; Hof, R.; Bruns, C.; Prieschl, E.; Baumruker, T.; Hiestand, P.; Foster, C.A.; Zollinger, M.; Lynch, K.R. The immune modulator FTY720 targets sphingosine 1-phosphate receptors. J. Biol. Chem., 2002, 277(24), 21453-21457. doi: 10.1074/jbc.C200176200 PMID: 11967257
  137. EMA Gilenya Available at: https://www.ema.europa.eu/en/medicines/human/EPAR/gilenya
  138. Novartis a 24-month, double-blind, randomized, multicenter, placebo-controlled, parallel-group study comparing the efficacy and safety of fingolimod 1.25 mg and 0.5 mg administered orally once daily versus placebo in patients with relapsing-remitting multiple sclerosis; clinicaltrials.gov. NCT00731692, 2012.
  139. Novartis a 12-month double-blind, randomized, multicenter, active-controlled, parallel-group study comparing the efficacy and safety of 0.5 mg and 1.25 mg fingolimod (FTY720) administered orally once daily versus interferon ß-1a (avonex) administered im once weekly in patients with relapsing-remitting multiple sclerosis with optional extension phase; clinicaltrials.gov. NCT00670449, 2017.
  140. Kappos, L.; Radue, E.W.; O’Connor, P.; Polman, C.; Hohlfeld, R.; Calabresi, P.; Selmaj, K.; Agoropoulou, C.; Leyk, M.; Zhang-Auberson, L.; Burtin, P. A placebo-controlled trial of oral fingolimod in relapsing multiple sclerosis. N. Engl. J. Med., 2010, 362(5), 387-401. doi: 10.1056/NEJMoa0909494 PMID: 20089952
  141. Novartis double-blind, randomized, placebo-controlled, parallel-group, multicenter study evaluating the safety,tolerability and effect on MRI lesion parameters of FTY720 vs placebo in patients with relapsing multiple sclerosis including 18 month extension phase. clinicaltrials.gov. 2017.
  142. Kappos, L.; Antel, J.; Comi, G.; Montalban, X.; O’Connor, P.; Polman, C.H.; Haas, T.; Korn, A.A.; Karlsson, G.; Radue, E.W. Oral fingolimod (FTY720) for relapsing multiple sclerosis. N. Engl. J. Med., 2006, 355(11), 1124-1140. doi: 10.1056/NEJMoa052643 PMID: 16971719
  143. Gergely, P.; Nuesslein-Hildesheim, B.; Guerini, D.; Brinkmann, V.; Traebert, M.; Bruns, C.; Pan, S.; Gray, N.S.; Hinterding, K.; Cooke, N.G.; Groenewegen, A.; Vitaliti, A.; Sing, T.; Luttringer, O.; Yang, J.; Gardin, A.; Wang, N.; Crumb, W.J., Jr; Saltzman, M.; Rosenberg, M.; Wallström, E. The selective sphingosine 1‐phosphate receptor modulator BAF312 redirects lymphocyte distribution and has species‐specific effects on heart rate. Br. J. Pharmacol., 2012, 167(5), 1035-1047. doi: 10.1111/j.1476-5381.2012.02061.x PMID: 22646698
  144. Chun, J.; Hartung, H.P. Mechanism of action of oral fingolimod (FTY720) in multiple sclerosis. Clin. Neuropharmacol., 2010, 33(2), 91-101. doi: 10.1097/WNF.0b013e3181cbf825 PMID: 20061941
  145. Tavares, A.; Barret, O.; Alagille, D.; Morley, T.; Papin, C.; Maguire, R.; Briard, E.; Auberson, Y.; Tamagnan, G. Brain distribution of MS565, an imaging analogue of siponimod (BAF312), in nonhuman primates (P1.168). Neurology, 2014, 82.
  146. Brana, C.; Frossard, M.J.; Pescini Gobert, R.; Martinier, N.; Boschert, U.; Seabrook, T.J. Immunohistochemical detection of sphingosine-1-phosphate receptor 1 and 5 in human multiple sclerosis lesions. Neuropathol. Appl. Neurobiol., 2014, 40(5), 564-578. doi: 10.1111/nan.12048 PMID: 23551178
  147. Kappos, L.; Li, D.K.B.; Stüve, O.; Hartung, H.P.; Freedman, M.S.; Hemmer, B.; Rieckmann, P.; Montalban, X.; Ziemssen, T.; Hunter, B.; Arnould, S.; Wallström, E.; Selmaj, K. Safety and efficacy of siponimod (BAF312) in patients with relapsing-remitting multiple sclerosis. JAMA Neurol., 2016, 73(9), 1089-1098. doi: 10.1001/jamaneurol.2016.1451 PMID: 27380540
  148. EMA Mayzent. Available at: https://www.ema.europa.eu/en/medicines/human/EPAR/mayzent
  149. Novartis Pharmaceuticals. Novartis pharmaceuticals a dose blinded extension study to the CBAF312A2201 study to evaluate long-term safety, tolerability and efficacy of BAF312 given orally once daily in patients with relapsing-remitting multiple sclerosis; clinicaltrials.gov. NCT00879658, 2018.
  150. Novartis Pharmaceuticals. Novartis pharmaceuticals a multicenter, randomized, double-blind, parallel-group, placebo-controlled variable treatment duration study evaluating the efficacy and safety of siponimod (BAF312) in patients with secondary progressive multiple sclerosis followed by extended treatment with open-label BAF312.; clinicaltrials.gov. NCT01665144, 2022.
  151. Kappos, L.; Bar-Or, A.; Cree, B.A.C.; Fox, R.J.; Giovannoni, G.; Gold, R.; Vermersch, P.; Arnold, D.L.; Arnould, S.; Scherz, T.; Wolf, C.; Wallström, E.; Dahlke, F.; Achiron, A.; Achtnichts, L.; Agan, K.; Akman-Demir, G.; Allen, A.B.; Antel, J.P.; Antiguedad, A.R.; Apperson, M.; Applebee, A.M.; Ayuso, G.I.; Baba, M.; Bajenaru, O.; Balasa, R.; Balci, B.P.; Barnett, M.; Bass, A.; Becker, V.U.; Bejinariu, M.; Bergh, F.T.; Bergmann, A.; Bernitsas, E.; Berthele, A.; Bhan, V.; Bischof, F.; Bjork, R.J.; Blevins, G.; Boehringer, M.; Boerner, T.; Bonek, R.; Bowen, J.D.; Bowling, A.; Boyko, A.N.; Boz, C.; Bracknies, V.; Braune, S.; Brescia Morra, V.; Brochet, B.; Brola, W.; Brownstone, P.K.; Brozman, M.; Brunet, D.; Buraga, I.; Burnett, M.; Buttmann, M.; Butzkueven, H.; Cahill, J.; Calkwood, J.C.; Camu, W.; Cascione, M.; Castelnovo, G.; Centonze, D.; Cerqueira, J.; Chan, A.; Cimprichova, A.; Cohan, S.; Comi, G.; Conway, J.; Cooper, J.A.; Corboy, J.; Correale, J.; Costell, B.; Cottrell, D.A.; Coyle, P.K.; Craner, M.; Cui, L.; Cunha, L.; Czlonkowska, A.; da Silva, A.M.; de Sa, J.; de Seze, J.; Debouverie, M.; Debruyne, J.; Decoo, D.; Defer, G.; Derfuss, T.; Deri, N.H.; Dihenia, B.; Dioszeghy, P.; Donath, V.; Dubois, B.; Duddy, M.; Duquette, P.; Edan, G.; Efendi, H.; Elias, S.; Emrich, P.J.; Estruch, B.C.; Evdoshenko, E.P.; Faiss, J.; Fedyanin, A.S.; Feneberg, W.; Fermont, J.; Fernandez, O.F.; Ferrer, F.C.; Fink, K.; Ford, H.; Ford, C.; Francia, A.; Freedman, M.; Frishberg, B.; Galgani, S.; Garmany, G.P.; Gehring, K.; Gitt, J.; Gobbi, C.; Goldstick, L.P.; Gonzalez, R.A.; Grandmaison, F.; Grigoriadis, N.; Grigorova, O.; Grimaldi, L.M.E.; Gross, J.; Gross-Paju, K.; Gudesblatt, M.; Guillaume, D.; Haas, J.; Hancinova, V.; Hancu, A.; Hardiman, O.; Harmjanz, A.; Heidenreich, F.R.; Hengstman, G.J.D.; Herbert, J.; Herring, M.; Hodgkinson, S.; Hoffmann, O.M.; Hofmann, W.E.; Honeycutt, W.D.; Hua, L.H.; Huang, D.; Huang, Y.; Huang, D.R.; Hupperts, R.; Imre, P.; Jacobs, A.K.; Jakab, G.; Jasinska, E.; Kaida, K.; Kalnina, J.; Kaprelyan, A.; Karelis, G.; Karussis, D.; Katz, A.; Khabirov, F.A.; Khatri, B.; Kimura, T.; Kister, I.; Kizlaitiene, R.; Klimova, E.; Koehler, J.; Komatineni, A.; Kornhuber, A.; Kovacs, K.; Koves, A.; Kozubski, W.; Krastev, G.; Krupp, L.B.; Kurca, E.; Lassek, C.; Laureys, G.; Lee, L.; Lensch, E.; Leutmezer, F.; Li, H.; Linker, R.A.; Linnebank, M.; Liskova, P.; Llanera, C.; Lu, J.; Lutterotti, A.; Lycke, J.; Macdonell, R.; Maciejowski, M.; Maeurer, M.; Magzhanov, R.V.; Maida, E-M.; Malciene, L.; Mao-Draayer, Y.; Marfia, G.A.; Markowitz, C.; Mastorodimos, V.; Matyas, K.; Meca-Lallana, J.; Merino, J.A.G.; Mihetiu, I.G.; Milanov, I.; Miller, A.E.; Millers, A.; Mirabella, M.; Mizuno, M.; Montalban, X.; Montoya, L.; Mori, M.; Mueller, S.; Nakahara, J.; Nakatsuji, Y.; Newsome, S.; Nicholas, R.; Nielsen, A.S.; Nikfekr, E.; Nocentini, U.; Nohara, C.; Nomura, K.; Odinak, M.M.; Olsson, T.; van Oosten, B.W.; Oreja-Guevara, C.; Oschmann, P.; Overell, J.; Pachner, A.; Panczel, G.; Pandolfo, M.; Papeix, C.; Patrucco, L.; Pelletier, J.; Piedrabuena, R.; Pless, M.; Polzer, U.; Pozsegovits, K.; Rastenyte, D.; Rauer, S.; Reifschneider, G.; Rey, R.; Rizvi, S.A.; Robertson, D.; Rodriguez, J.M.; Rog, D.; Roshanisefat, H.; Rowe, V.; Rozsa, C.; Rubin, S.; Rusek, S.; Saccà, F.; Saida, T.; Salgado, A.V.; Sanchez, V.E.F.; Sanders, K.; Satori, M.; Sazonov, D.V.; Scarpini, E.A.; Schlegel, E.; Schluep, M.; Schmidt, S.; Scholz, E.; Schrijver, H.M.; Schwab, M.; Schwartz, R.; Scott, J.; Selmaj, K.; Shafer, S.; Sharrack, B.; Shchukin, I.A.; Shimizu, Y.; Shotekov, P.; Siever, A.; Sigel, K-O.; Silliman, S.; Simo, M.; Simu, M.; Sinay, V.; Siquier, A.E.; Siva, A.; Skoda, O.; Solomon, A.; Stangel, M.; Stefoski, D.; Steingo, B.; Stolyarov, I.D.; Stourac, P.; Strassburger-Krogias, K.; Strauss, E.; Stuve, O.; Tarnev, I.; Tavernarakis, A.; Tello, C.R.; Terzi, M.; Ticha, V.; Ticmeanu, M.; Tiel-Wilck, K.; Toomsoo, T.; Tubridy, N.; Tullman, M.J.; Tumani, H.; Turcani, P.; Turner, B.; Uccelli, A.; Urtaza, F.J.O.; Vachova, M.; Valikovics, A.; Walter, S.; Van Wijmeersch, B.; Vanopdenbosch, L.; Weber, J.R.; Weiss, S.; Weissert, R.; Vermersch, P.; West, T.; Wiendl, H.; Wiertlewski, S.; Wildemann, B.; Willekens, B.; Visser, L.H.; Vorobeychik, G.; Xu, X.; Yamamura, T.; Yang, Y.N.; Yelamos, S.M.; Yeung, M.; Zacharias, A.; Zelkowitz, M.; Zettl, U.; Zhang, M.; Zhou, H.; Zieman, U.; Ziemssen, T. Siponimod versus placebo in secondary progressive multiple sclerosis (EXPAND): A double-blind, randomised, phase 3 study. Lancet, 2018, 391(10127), 1263-1273. doi: 10.1016/S0140-6736(18)30475-6 PMID: 29576505
  152. Lassiter, G.; Melancon, C.; Rooney, T.; Murat, A.M.; Kaye, J.S.; Kaye, A.M.; Kaye, R.J.; Cornett, E.M.; Kaye, A.D.; Shah, R.J.; Viswanath, O.; Urits, I. Ozanimod to treat relapsing forms of multiple sclerosis: A comprehensive review of disease, drug efficacy and side effects. Neurol. Int., 2020, 12(3), 89-108. doi: 10.3390/neurolint12030016 PMID: 33287177
  153. Scott, F.L.; Clemons, B.; Brooks, J.; Brahmachary, E.; Powell, R.; Dedman, H.; Desale, H.G.; Timony, G.A.; Martinborough, E.; Rosen, H.; Roberts, E.; Boehm, M.F.; Peach, R.J. Ozanimod (RPC1063) is a potent sphingosine-1-phosphate receptor-1 (S1P1) and receptor-5 (S1P5) agonist with autoimmune disease-modifying activity. Br. J. Pharmacol., 2016, 173(11), 1778-1792. doi: 10.1111/bph.13476 PMID: 26990079
  154. Tran, J.Q.; Hartung, J.P.; Peach, R.J.; Boehm, M.F.; Rosen, H.; Smith, H.; Brooks, J.L.; Timony, G.A.; Olson, A.D.; Gujrathi, S.; Frohna, P.A. Results from the firstinhuman study with ozanimod, a Novel, selective sphingosine-1-phosphate receptor modulator. J. Clin. Pharmacol., 2017, 57(8), 988-996. doi: 10.1002/jcph.887 PMID: 28398597
  155. Lamb, Y.N. Ozanimod: First Approval. Drugs, 2020, 80(8), 841-848. doi: 10.1007/s40265-020-01319-7 PMID: 32385738
  156. EMA Zeposia. Available at: https://www.ema.europa.eu/en/medicines/human/EPAR/zeposia
  157. Celgene a phase 2/3, multi-center, randomized, double-blind, placebo-controlled (Part A) and double-blind, double-dummy, active-controlled (Part B), parallel group study to evaluate the efficacy and safety of RPC1063 administered orally to relapsing multiple sclerosis patients; clinicaltrials.gov. 2021.
  158. Celgene a phase 3, multi-center, randomized, double-blind, double-dummy, active controlled, parallel group study to evaluate the efficacy and safety of RPC1063 administered orally to relapsing multiple sclerosis patients; clinicaltrials.gov. NCT01628393, 2020.
  159. Cohen, J.A.; Comi, G.; Selmaj, K.W.; Bar-Or, A.; Arnold, D.L.; Steinman, L.; Hartung, H.P.; Montalban, X.; Kubala Havrdová, E.; Cree, B.A.C.; Sheffield, J.K.; Minton, N.; Raghupathi, K.; Huang, V.; Kappos, L. Safety and efficacy of ozanimod versus interferon beta1a in relapsing multiple sclerosis (RADIANCE): A multicentre, randomised, 24-month, phase 3 trial. Lancet Neurol., 2019, 18(11), 1021-1033. doi: 10.1016/S1474-4422(19)30238-8 PMID: 31492652
  160. Cohen, J.A.; Comi, G.; Arnold, D.L.; Bar-Or, A.; Selmaj, K.W.; Steinman, L.; Havrdová, E.K.; Cree, B.A.C.; Montalbán, X.; Hartung, H.P.; Huang, V.; Frohna, P.; Skolnick, B.E.; Kappos, L. Efficacy and safety of ozanimod in multiple sclerosis: Dose-blinded extension of a randomized phase II study. Mult. Scler., 2019, 25(9), 1255-1262. doi: 10.1177/1352458518789884 PMID: 30043658
  161. Comi, G.; Kappos, L.; Selmaj, K.W.; Bar-Or, A.; Arnold, D.L.; Steinman, L.; Hartung, H.P.; Montalban, X.; Kubala Havrdová, E.; Cree, B.A.C.; Sheffield, J.K.; Minton, N.; Raghupathi, K.; Ding, N.; Cohen, J.A. Safety and efficacy of ozanimod versus interferon beta-1a in relapsing multiple sclerosis (SUNBEAM) : A multicentre, randomised, minimum 12-month, phase 3 trial. Lancet Neurol., 2019, 18(11), 1009-1020. doi: 10.1016/S1474-4422(19)30239-X PMID: 31492651
  162. Baldin, E.; Lugaresi, A. Ponesimod for the treatment of relapsing multiple sclerosis. Expert Opin. Pharmacother., 2020, 21(16), 1955-1964. doi: 10.1080/14656566.2020.1799977 PMID: 32808832
  163. D’Ambrosio, D.; Steinmann, J.; Brossard, P.; Dingemanse, J. Differential effects of ponesimod, a selective S1P 1 receptor modulator, on blood-circulating human T cell subpopulations. Immunopharmacol. Immunotoxicol., 2015, 37(1), 103-109. doi: 10.3109/08923973.2014.993084 PMID: 25519470
  164. EMA Ponvory. Available at: https://www.ema.europa.eu/en/medicines/human/EPAR/ponvory
  165. Markham, A. Ponesimod: First approval. Drugs, 2021, 81(8), 957-962. doi: 10.1007/s40265-021-01523-z PMID: 33939119
  166. Olsson, T.; Boster, A.; Fernández, O.; Freedman, M.S.; Pozzilli, C.; Bach, D.; Berkani, O.; Mueller, M.S.; Sidorenko, T.; Radue, E.W.; Melanson, M. Oral ponesimod in relapsingremitting multiple sclerosis: A randomised phase II trial. J. Neurol. Neurosurg. Psychiatry., 2014, 85(11), 1198-1208. doi: 10.1136/jnnp-2013-307282 PMID: 24659797
  167. Actelion multicenter, randomized, double-blind, placebo-controlled, parallel-group, dose-finding study to evaluate the efficacy, safety, and tolerability of three doses of ACT-128800, an oral s1p1 receptor agonist, administered for twenty-four weeks in patients with relapsing-remitting multiple sclerosis; clinicaltrials.gov. NCT01006265, 2022.
  168. Kappos, L.; Fox, R.J.; Burcklen, M.; Freedman, M.S.; Havrdová, E.K.; Hennessy, B.; Hohlfeld, R.; Lublin, F.; Montalban, X.; Pozzilli, C.; Scherz, T.; D’Ambrosio, D.; Linscheid, P.; Vaclavkova, A.; Pirozek-Lawniczek, M.; Kracker, H.; Sprenger, T. Ponesimod compared with teriflunomide in patients with relapsing multiple sclerosis in the active-comparator phase 3 optimum study. JAMA Neurol., 2021, 78(5), 558-567. doi: 10.1001/jamaneurol.2021.0405 PMID: 33779698
  169. Actelion multicenter, randomized, double-blind, parallel-group, active-controlled, superiority study to compare the efficacy and safety of ponesimod to teriflunomide in subjects with relapsing multiple sclerosis; clinicaltrials.gov. NCT02425644, 2023.
  170. Stüve, O.; Bennett, J.L. Pharmacological properties, toxicology and scientific rationale for the use of natalizumab (Tysabri) in inflammatory diseases. CNS Drug Rev., 2007, 13(1), 79-95. doi: 10.1111/j.1527-3458.2007.00003.x PMID: 17461891
  171. Sheremata, W.A.; Minagar, A.; Alexander, J.S.; Vollmer, T. The role of alpha-4 integrin in the aetiology of multiple sclerosis: Current knowledge and therapeutic implications. CNS Drugs, 2005, 19(11), 909-922. doi: 10.2165/00023210-200519110-00002 PMID: 16268663
  172. Biogen a randomized, double-blind, placebo-controlled, parallel-group, multicenter study to determine the safety and efficacy of natalizumab in subjects with relapsing-remitting multiple sclerosis; clinicaltrials.gov. NCT01440101, 2017.
  173. Polman, C.H.; O’Connor, P.W.; Havrdova, E.; Hutchinson, M.; Kappos, L.; Miller, D.H.; Phillips, J.T.; Lublin, F.D.; Giovannoni, G.; Wajgt, A.; Toal, M.; Lynn, F.; Panzara, M.A.; Sandrock, A.W. A randomized, placebocontrolled trial of natalizumab for relapsing multiple sclerosis. N. Engl. J. Med., 2006, 354(9), 899-910. doi: 10.1056/NEJMoa044397 PMID: 16510744
  174. Miller, D.H.; Soon, D.; Fernando, K.T.; MacManus, D.G.; Barker, G.J.; Yousry, T.A.; Fisher, E.; O’Connor, P.W.; Phillips, J.T.; Polman, C.H.; Kappos, L.; Hutchinson, M.; Havrdova, E.; Lublin, F.D.; Giovannoni, G.; Wajgt, A.; Rudick, R.; Lynn, F.; Panzara, M.A.; Sandrock, A.W. MRI outcomes in a placebo-controlled trial of natalizumab in relapsing MS. Neurology, 2007, 68(17), 1390-1401. doi: 10.1212/01.wnl.0000260064.77700.fd PMID: 17452584
  175. Biogen a randomized, double-blind, placebo-controlled, parallel-group, multicenter study to determine the safety and efficacy of natalizumab, when added to avonex® (Interferon Beta-1a), in subjects with relapsing-remitting multiple sclerosis; clinicaltrials.gov. NCT00030966, 2009.
  176. Rudick, R.A.; Stuart, W.H.; Calabresi, P.A.; Confavreux, C.; Galetta, S.L.; Radue, E.W.; Lublin, F.D.; Weinstock-Guttman, B.; Wynn, D.R.; Lynn, F.; Panzara, M.A.; Sandrock, A.W. Natalizumab plus interferon beta-1a for relapsing multiple sclerosis. N. Engl. J. Med., 2006, 354(9), 911-923. doi: 10.1056/NEJMoa044396 PMID: 16510745
  177. EMA Tysabri Available at: https://www.ema.europa.eu/en/medicines/human/EPAR/tysabri
  178. Clerico, M.; Artusi, C.A.; Di Liberto, A.; Rolla, S.; Bardina, V.; Barbero, P.; De Mercanti, S.F.; Durelli, L. Long-term safety evaluation of natalizumab for the treatment of multiple sclerosis. Expert Opin. Drug Saf., 2017, 16(8), 963-972. doi: 10.1080/14740338.2017.1346082 PMID: 28641055
  179. Major, E.O.; Yousry, T.A.; Clifford, D.B. Pathogenesis of progressive multifocal leukoencephalopathy and risks associated with treatments for multiple sclerosis: A decade of lessons learned. Lancet Neurol., 2018, 17(5), 467-480. doi: 10.1016/S1474-4422(18)30040-1 PMID: 29656742
  180. Ruck, T.; Bittner, S.; Wiendl, H.; Meuth, S. Alemtuzumab in multiple sclerosis: Mechanism of action and beyond. Int. J. Mol. Sci., 2015, 16(7), 16414-16439. doi: 10.3390/ijms160716414 PMID: 26204829
  181. Hale, G. The CD52 antigen and development of the CAMPATH antibodies. Cytotherapy, 2001, 3(3), 137-143. doi: 10.1080/146532401753174098 PMID: 12171721
  182. Ginaldi, L.; De Martinis, M.; Matutes, E.; Farahat, N.; Morilla, R.; Dyer, M.J.S.; Catovsky, D. Levels of expression of CD52 in normal and leukemic B and T cells : Correlation with in vivo therapeutic responses to Campath-1H. Leuk. Res., 1998, 22(2), 185-191. doi: 10.1016/S0145-2126(97)00158-6 PMID: 9593475
  183. Gribben, J.G.; Hallek, M. Rediscovering alemtuzumab: Current and emerging therapeutic roles. Br. J. Haematol., 2009, 144(6), 818-831. doi: 10.1111/j.1365-2141.2008.07557.x PMID: 19183194
  184. Alireza, M.; J Steven, A.; Mohammad Ali, S.; Robert, Z. Alemtuzumab and multiple sclerosis: Therapeutic application. Expert Opin. Biol. Ther., 2010, 10(3), 421-429. doi: 10.1517/14712591003586806 PMID: 20095876
  185. Watanabe, T.; Masuyama, J.; Sohma, Y.; Inazawa, H.; Horie, K.; Kojima, K.; Uemura, Y.; Aoki, Y.; Kaga, S.; Minota, S.; Tanaka, T.; Yamaguchi, Y.; Kobayashi, T.; Serizawa, I. CD52 is a novel costimulatory molecule for induction of CD4+ regulatory T cells. Clin. Immunol., 2006, 120(3), 247-259. doi: 10.1016/j.clim.2006.05.006 PMID: 16797237
  186. Rao, S.P.; Sancho, J.; Campos-Rivera, J.; Boutin, P.M.; Severy, P.B.; Weeden, T.; Shankara, S.; Roberts, B.L.; Kaplan, J.M. Human peripheral blood mononuclear cells exhibit heterogeneous CD52 expression levels and show differential sensitivity to alemtuzumab mediated cytolysis. PLoS One, 2012, 7(6), e39416. doi: 10.1371/journal.pone.0039416 PMID: 22761788
  187. EMA Lemtrada Available at: https://www.ema.europa.eu/en/medicines/human/EPAR/lemtrada
  188. Genzyme, a sanofi company a phase II, randomized, open-label, three-arm study comparing low- and high-dose alemtuzumab and high-dose subcutaneous interferon beta-1a (Rebif®) in patients with early, active relapsing-remitting multiple sclerosis; clinicaltrials.go. NCT00050778, 2015.
  189. CAMMS223 Trial Investigators. Alemtuzumab vs. Interferon Beta-1a in early multiple sclerosis. N. Engl. J. Med., 2008, 359(17), 1786-1801. doi: 10.1056/NEJMoa0802670
  190. Coles, A.J.; Fox, E.; Vladic, A.; Gazda, S.K.; Brinar, V.; Selmaj, K.W.; Skoromets, A.; Stolyarov, I.; Bass, A.; Sullivan, H.; Margolin, D.H.; Lake, S.L.; Moran, S.; Palmer, J.; Smith, M.S.; Compston, D.A.S. Alemtuzumab more effective than interferon -1a at 5-year follow-up of CAMMS223 clinical Trial. Neurology, 2012, 78(14), 1069-1078. doi: 10.1212/WNL.0b013e31824e8ee7 PMID: 22442431
  191. Genzyme, a sanofi company a phase 3 randomized, rater-blinded study comparing two annual cycles of intravenous alemtuzumab to three-times weekly subcutaneous interferon Beta-1a (Rebif®) in treatment-naïve patients with relapsing-remitting multiple sclerosis; clinicaltrials.gov. NCT00530348, 2014.
  192. Genzyme, a sanofi company a phase 3, randomized, rater- and dose-blinded study comparing two annual cycles of intravenous low- and high-dose alemtuzumab to three-times weekly subcutaneous interferon beta 1a (Rebif®) in patients with relapsing remitting multiple sclerosis who have relapsed on therapy; clinicaltrials.gov. NCT00548405, 2017.
  193. Cohen, J.A.; Coles, A.J.; Arnold, D.L.; Confavreux, C.; Fox, E.J.; Hartung, H.P.; Havrdova, E.; Selmaj, K.W.; Weiner, H.L.; Fisher, E.; Brinar, V.V.; Giovannoni, G.; Stojanovic, M.; Ertik, B.I.; Lake, S.L.; Margolin, D.H.; Panzara, M.A.; Compston, D.A.S. Alemtuzumab versus interferon beta 1a as first-line treatment for patients with relapsing-remitting multiple sclerosis: A randomised controlled phase 3 trial. Lancet, 2012, 380(9856), 1819-1828. doi: 10.1016/S0140-6736(12)61769-3 PMID: 23122652
  194. Coles, A.J.; Twyman, C.L.; Arnold, D.L.; Cohen, J.A.; Confavreux, C.; Fox, E.J.; Hartung, H.P.; Havrdova, E.; Selmaj, K.W.; Weiner, H.L.; Miller, T.; Fisher, E.; Sandbrink, R.; Lake, S.L.; Margolin, D.H.; Oyuela, P.; Panzara, M.A.; Compston, D.A.S. Alemtuzumab for patients with relapsing multiple sclerosis after disease-modifying therapy: A randomised controlled phase 3 trial. Lancet, 2012, 380(9856), 1829-1839. doi: 10.1016/S0140-6736(12)61768-1 PMID: 23122650
  195. EMA MabThera. Available from: https://www.ema.europa.eu/en/medicines/human/EPAR/mabthera
  196. Genentech, Inc.. Genentech, inc. a phase ii, randomized, double-blind, parallel-group, placebo-controlled, multicenter study to evaluate the safety and efficacy of rituximab (Mabthera/Rituxan) in adults with relapsing remitting multiple sclerosis; clinicaltrials.gov. NCT00097188, 2014.
  197. Hauser, S.L.; Waubant, E.; Arnold, D.L.; Vollmer, T.; Antel, J.; Fox, R.J.; Bar-Or, A.; Panzara, M.; Sarkar, N.; Agarwal, S.; Langer-Gould, A.; Smith, C.H. B-cell depletion with rituximab in relapsing-remitting multiple sclerosis. N. Engl. J. Med., 2008, 358(7), 676-688. doi: 10.1056/NEJMoa0706383 PMID: 18272891
  198. A Study to Evaluate the Safety and Efficacy of Rituximab in Adults With Primary Progressive Multiple Sclerosis (OLYMPUS), Available at: https://clinicaltrials.gov/study/NCT00087529
  199. Hawker, K.; O’Connor, P.; Freedman, M.S.; Calabresi, P.A.; Antel, J.; Simon, J.; Hauser, S.; Waubant, E.; Vollmer, T.; Panitch, H.; Zhang, J.; Chin, P.; Smith, C.H. Rituximab in patients with primary progressive multiple sclerosis: Results of a randomized double-blind placebo-controlled multicenter trial. Ann. Neurol., 2009, 66(4), 460-471. doi: 10.1002/ana.21867 PMID: 19847908
  200. Sorensen, P.S.; Blinkenberg, M. The potential role for ocrelizumab in the treatment of multiple sclerosis: Current evidence and future prospects. Ther. Adv. Neurol. Disord., 2016, 9(1), 44-52. doi: 10.1177/1756285615601933 PMID: 26788130
  201. Genovese, M.C.; Kaine, J.L.; Lowenstein, M.B.; Giudice, J.D.; Baldassare, A.; Schechtman, J.; Fudman, E.; Kohen, M.; Gujrathi, S.; Trapp, R.G.; Sweiss, N.J.; Spaniolo, G.; Dummer, W. Ocrelizumab, a humanized anti-CD20 monoclonal antibody, in the treatment of patients with rheumatoid arthritis: A phase I/II randomized, blinded, placebo-controlled, dose-ranging study. Arthritis Rheum., 2008, 58(9), 2652-2661. doi: 10.1002/art.23732 PMID: 18759293
  202. Kausar, F.; Mustafa, K.; Sweis, G.; Sawaqed, R.; Alawneh, K.; Salloum, R.; Badaracco, M.; Niewold, T.B.; Sweiss, N.J. Ocrelizumab: A step forward in the evolution of B-cell therapy. Expert Opin. Biol. Ther., 2009, 9(7), 889-895. doi: 10.1517/14712590903018837 PMID: 19463076
  203. Morschhauser, F.; Marlton, P.; Vitolo, U.; Lindén, O.; Seymour, J.F.; Crump, M.; Coiffier, B.; Foà, R.; Wassner, E.; Burger, H.U.; Brennan, B.; Mendila, M. Results of a phase I/II study of ocrelizumab, a fully humanized anti-CD20 mAb, in patients with relapsed/refractory follicular lymphoma. Ann. Oncol., 2010, 21(9), 1870-1876. doi: 10.1093/annonc/mdq027 PMID: 20157180
  204. Li, R.; Patterson, K.R.; Bar-Or, A.; Reassessing, B. Reassessing B cell contributions in multiple sclerosis. Nat. Immunol., 2018, 19(7), 696-707. doi: 10.1038/s41590-018-0135-x PMID: 29925992
  205. Sabatino, J.J., Jr; Pröbstel, A.K.; Zamvil, S.S. B cells in autoimmune and neurodegenerative central nervous system diseases. Nat. Rev. Neurosci., 2019, 20(12), 728-745. doi: 10.1038/s41583-019-0233-2 PMID: 31712781
  206. Hoffmann-La Roche. Hoffmann-la roche a randomized, double-blind, double-dummy, parallel-group study to evaluate the efficacy and safety of ocrelizumab in comparison to interferon beta-1a (Rebif®) in patients with relapsing multiple sclerosis; clinicaltrials.gov. NCT01412333, 2022.
  207. Hoffmann-La Roche. A Randomized, double-blind, double-dummy, parallel-group study to evaluate the efficacy and safety of ocrelizumab in comparison to interferon beta-1a (Rebif) in patients with relapsing multiple sclerosis; clinicaltrials.gov NCT01412333, 2022.
  208. Hauser, S.L.; Bar-Or, A.; Comi, G.; Giovannoni, G.; Hartung, H.P.; Hemmer, B.; Lublin, F.; Montalban, X.; Rammohan, K.W.; Selmaj, K.; Traboulsee, A.; Wolinsky, J.S.; Arnold, D.L.; Klingelschmitt, G.; Masterman, D.; Fontoura, P.; Belachew, S.; Chin, P.; Mairon, N.; Garren, H.; Kappos, L. Ocrelizumab versus Interferon Beta-1a in relapsing multiple sclerosis. N. Engl. J. Med., 2017, 376(3), 221-234. doi: 10.1056/NEJMoa1601277 PMID: 28002679
  209. Hoffmann-La Roche. A Phase III, Multicentre, Randomized, Parallel-Group, Double-Blind, Placebo Controlled Study to Evaluate the Efficacy and Safety of Ocrelizumab in Adults With Primary Progressive Multiple Sclerosis; clinicaltrials.gov NCT01194570, 2022.
  210. Montalban, X.; Hauser, S.L.; Kappos, L.; Arnold, D.L.; Bar-Or, A.; Comi, G.; de Seze, J.; Giovannoni, G.; Hartung, H.P.; Hemmer, B.; Lublin, F.; Rammohan, K.W.; Selmaj, K.; Traboulsee, A.; Sauter, A.; Masterman, D.; Fontoura, P.; Belachew, S.; Garren, H.; Mairon, N.; Chin, P.; Wolinsky, J.S. Ocrelizumab versus placebo in primary progressive multiple sclerosis. N. Engl. J. Med., 2017, 376(3), 209-220. doi: 10.1056/NEJMoa1606468 PMID: 28002688
  211. EMA Ocrevus Available at: https://www.ema.europa.eu/en/medicines/human/EPAR/ocrevus
  212. Hoffmann-La Roche. Hoffmann-la roche an open-label, single-arm study to evaluate the effectiveness and safety of ocrelizumab in patients with early stage relapsing remitting multiple sclerosis; clinicaltrials.gov. NCT03085810, 2022.
  213. Hartung, H-P.; Berger, T.; Bermel, R.A.; Brochet, B.; Carroll, W.M.; Holmøy, T.; Karabudak, R.; Killestein, J.; Nos, C.; Patti, F.; Ross, A.P.; Vanopdenbosch, L.; Vollmer, T.; Buffels, R.; Garas, M.; Kadner, K.; Manfrini, M.; Wang, Q.; Freedman, M.S. Shorter infusion time of ocrelizumab: Results from the randomized, double-blind ensemble plus substudy in patients with relapsing-remitting multiple sclerosis. Mult. Scler. Relat. Disord., 2020, 46, 102492. doi: 10.1016/j.msard.2020.102492 PMID: 33039944
  214. Hauser, S.L.; Cross, A.H.; Winthrop, K.; Wiendl, H.; Nicholas, J.; Meuth, S.G.; Giacomini, P.S.; Saccà, F.; Mancione, L.; Zielman, R.; Bagger, M.; Gupta, A.D.; Häring, D.A.; Jehl, V.; Kieseier, B.C.; Pingili, R.; Stoneman, D.; Su, W.; Willi, R.; Kappos, L. Safety experience with continued exposure to ofatumumab in patients with relapsing forms of multiple sclerosis for up to 3.5 years. Mult Scler, 2022, 28(10), 1576-1590. doi: 10.1177/13524585221079731 PMID: 35229668
  215. Sorensen, P.S.; Lisby, S.; Grove, R.; Derosier, F.; Shackelford, S.; Havrdova, E.; Drulovic, J.; Filippi, M. Safety and efficacy of ofatumumab in relapsing-remitting multiple sclerosis: A phase 2 study. Neurology, 2014, 82(7), 573-581. doi: 10.1212/WNL.0000000000000125 PMID: 24453078
  216. EMA Kesimpta. Available at: https://www.ema.europa.eu/en/medicines/human/EPAR/kesimpta
  217. Novartis Pharmaceuticals. A randomized, double-blind, doubledummy, parallel-group study comparing the efficacy and safety of ofatumumab versus teriflunomide in patients with relapsing multiple sclerosis; clinicaltrials.gov NCT02792218, 2021.
  218. Novartis Pharmaceuticals. A Randomized, double-blind, doubledummy, parallel-group study comparing the efficacy and safety of ofatumumab versus teriflunomide in patients with relapsing multiple sclerosis.; clinicaltrials.gov. NCT02792231, 2021.
  219. Hauser, S.L.; Bar-Or, A.; Cohen, J.A.; Comi, G.; Correale, J.; Coyle, P.K.; Cross, A.H.; de Seze, J.; Leppert, D.; Montalban, X.; Selmaj, K.; Wiendl, H.; Kerloeguen, C.; Willi, R.; Li, B.; Kakarieka, A.; Tomic, D.; Goodyear, A.; Pingili, R.; Häring, D.A.; Ramanathan, K.; Merschhemke, M.; Kappos, L. Ofatumumab versus teriflunomide in multiple sclerosis. N. Engl. J. Med., 2020, 383(6), 546-557. doi: 10.1056/NEJMoa1917246 PMID: 32757523
  220. Kang, C.; Blair, H.A. Ofatumumab: A review in relapsing forms of multiple sclerosis. Drugs, 2022, 82(1), 55-62. doi: 10.1007/s40265-021-01650-7 PMID: 34897575
  221. Snowden, J.A.; Sánchez-Ortega, I.; Corbacioglu, S.; Basak, G.W.; Chabannon, C.; de la Camara, R.; Dolstra, H.; Duarte, R.F.; Glass, B.; Greco, R.; Lankester, A.C.; Mohty, M.; Neven, B.; de Latour, R.P.; Pedrazzoli, P.; Peric, Z.; Yakoub-Agha, I.; Sureda, A.; Kröger, N. Indications for haematopoietic cell transplantation for haematological diseases, solid tumours and immune disorders: Current practice in Europe, 2022. Bone Marrow Transplant., 2022, 57(8), 1217-1239. doi: 10.1038/s41409-022-01691-w PMID: 35589997
  222. Sharrack, B.; Saccardi, R.; Alexander, T.; Badoglio, M.; Burman, J.; Farge, D.; Greco, R.; Jessop, H.; Kazmi, M.; Kirgizov, K.; Labopin, M.; Mancardi, G.; Martin, R.; Moore, J.; Muraro, P.A.; Rovira, M.; Sormani, M.P.; Snowden, J.A. Autologous haematopoietic stem cell transplantation and other cellular therapy in multiple sclerosis and immune-mediated neurological diseases: Updated guidelines and recommendations from the EBMT autoimmune diseases working party (ADWP) and the joint accreditation committee of EBMT and ISCT (JACIE). Bone Marrow Transplant., 2020, 55(2), 283-306. doi: 10.1038/s41409-019-0684-0 PMID: 31558790
  223. Muraro, P.A.; Martin, R.; Mancardi, G.L.; Nicholas, R.; Sormani, M.P.; Saccardi, R. Autologous haematopoietic stem cell transplantation for treatment of multiple sclerosis. Nat. Rev. Neurol., 2017, 13(7), 391-405. doi: 10.1038/nrneurol.2017.81 PMID: 28621766
  224. Cencioni, M.T.; Genchi, A.; Brittain, G.; de Silva, T.I.; Sharrack, B.; Snowden, J.A.; Alexander, T.; Greco, R.; Muraro, P.A. Immune reconstitution following autologous hematopoietic stem cell transplantation for multiple sclerosis: A review on behalf of the EBMT autoimmune diseases working party. Front. Immunol., 2022, 12, 813957. doi: 10.3389/fimmu.2021.813957 PMID: 35178046
  225. Mariottini, A.; De Matteis, E.; Muraro, P.A. Haematopoietic stem cell transplantation for multiple sclerosis: Current status. BioDrugs, 2020, 34(3), 307-325. doi: 10.1007/s40259-020-00414-1 PMID: 32166703
  226. Larsson, D.; Åkerfeldt, T.; Carlson, K.; Burman, J. Intrathecal immunoglobulins and neurofilament light after autologous haematopoietic stem cell transplantation for multiple sclerosis. Mult. Scler., 2020, 26(11), 1351-1359. doi: 10.1177/1352458519863983 PMID: 31347948
  227. Tolf, A.; Fagius, J.; Carlson, K.; Åkerfeldt, T.; Granberg, T.; Larsson, E.M.; Burman, J. Sustained remission in multiple sclerosis after hematopoietic stem cell transplantation. Acta Neurol. Scand., 2019, 140(5), 320-327. doi: 10.1111/ane.13147 PMID: 31297793
  228. Burt, R.K.; Muraro, P.A.; Farge, D.; Oliveira, M.C.; Snowden, J.A.; Saccardi, R.; Han, X.; Quigley, K.; Bueno, V.; Frasca, D.; Fedorenko, D.; Burman, J. New autoimmune diseases after autologous hematopoietic stem cell transplantation for multiple sclerosis. Bone Marrow Transplant., 2021, 56(7), 1509-1517. doi: 10.1038/s41409-021-01277-y PMID: 33911200
  229. Daikeler, T.; Labopin, M.; Di Gioia, M.; Abinun, M.; Alexander, T.; Miniati, I.; Gualandi, F.; Fassas, A.; Martin, T.; Schwarze, C.P.; Wulffraat, N.; Buch, M.; Sampol, A.; Carreras, E.; Dubois, B.; Gruhn, B.; Güngör, T.; Pohlreich, D.; Schuerwegh, A.; Snarski, E.; Snowden, J.; Veys, P.; Fasth, A.; Lenhoff, S.; Messina, C.; Voswinkel, J.; Badoglio, M.; Henes, J.; Launay, D.; Tyndall, A.; Gluckman, E.; Farge, D. Secondary autoimmune diseases occurring after HSCT for an autoimmune disease: A retrospective study of the EBMT autoimmune disease working party. Blood, 2011, 118(6), 1693-1698. doi: 10.1182/blood-2011-02-336156 PMID: 21596847
  230. Snarski, E.; Snowden, J.A.; Oliveira, M.C.; Simoes, B.; Badoglio, M.; Carlson, K.; Burman, J.; Moore, J.; Rovira, M.; Clark, R.E.; Saiz, A.; Hadj-Khelifa, S.; Tan, J.; Crescimanno, A.; Musso, M.; Martin, T.; Farge, D. Onset and outcome of pregnancy after autologous haematopoietic SCT (AHSCT) for autoimmune diseases: A retrospective study of the EBMT autoimmune diseases working party (ADWP). Bone Marrow Transplant., 2015, 50(2), 216-220. doi: 10.1038/bmt.2014.248 PMID: 25387098
  231. Massarotti, C.; Sbragia, E.; Boffa, G.; Vercelli, C.; Zimatore, G.B.; Cottone, S.; Frau, J.; Raiola, A.; Varaldo, R.; Mancardi, G.; Inglese, M.; Anserini, P. Menstrual cycle resumption and female fertility after autologous hematopoietic stem cell transplantation for multiple sclerosis. Mult. Scler., 2021, 27(13), 2103-2107. doi: 10.1177/13524585211000616 PMID: 33709839
  232. Muraro, P.A.; Pasquini, M.; Atkins, H.L.; Bowen, J.D.; Farge, D.; Fassas, A.; Freedman, M.S.; Georges, G.E.; Gualandi, F.; Hamerschlak, N.; Havrdova, E.; Kimiskidis, V.K.; Kozak, T.; Mancardi, G.L.; Massacesi, L.; Moraes, D.A.; Nash, R.A.; Pavletic, S.; Ouyang, J.; Rovira, M.; Saiz, A.; Simoes, B.; Trnený, M.; Zhu, L.; Badoglio, M.; Zhong, X.; Sormani, M.P.; Saccardi, R. Long-term outcomes after autologous hematopoietic stem cell transplantation for multiple sclerosis. JAMA Neurol., 2017, 74(4), 459-469. doi: 10.1001/jamaneurol.2016.5867 PMID: 28241268
  233. Atkins, H.L.; Bowman, M.; Allan, D.; Anstee, G.; Arnold, D.L.; Bar-Or, A.; Bence-Bruckler, I.; Birch, P.; Bredeson, C.; Chen, J.; Fergusson, D.; Halpenny, M.; Hamelin, L.; Huebsch, L.; Hutton, B.; Laneuville, P.; Lapierre, Y.; Lee, H.; Martin, L.; McDiarmid, S.; O’Connor, P.; Ramsay, T.; Sabloff, M.; Walker, L.; Freedman, M.S. Immunoablation and autologous haemopoietic stem-cell transplantation for aggressive multiple sclerosis: A multicentre single-group phase 2 trial. Lancet, 2016, 388(10044), 576-585. doi: 10.1016/S0140-6736(16)30169-6 PMID: 27291994
  234. Moore, J.J.; Massey, J.C.; Ford, C.D.; Khoo, M.L.; Zaunders, J.J.; Hendrawan, K.; Barnett, Y.; Barnett, M.H.; Kyle, K.A.; Zivadinov, R.; Ma, K.C.; Milliken, S.T.; Sutton, I.J.; Ma, D.D.F. Prospective phase II clinical trial of autologous haematopoietic stem cell transplant for treatment refractory multiple sclerosis. J. Neurol. Neurosurg. Psychiatry, 2019, 90(5), 514-521. doi: 10.1136/jnnp-2018-319446 PMID: 30538138
  235. Nash, R.A.; Hutton, G.J.; Racke, M.K.; Popat, U.; Devine, S.M.; Steinmiller, K.C.; Griffith, L.M.; Muraro, P.A.; Openshaw, H.; Sayre, P.H.; Stuve, O.; Arnold, D.L.; Wener, M.H.; Georges, G.E.; Wundes, A.; Kraft, G.H.; Bowen, J.D. High-dose immunosuppressive therapy and autologous HCT for relapsing-remitting MS. Neurology, 2017, 88(9), 842-852. doi: 10.1212/WNL.0000000000003660 PMID: 28148635
  236. Autologous haematopoietic stem cell transplantation for aggressive multiple sclerosis: The swedish experience cochrane library Available at: https://www.cochranelibrary.com/central/doi/10.1002/central/CN-01771281/full
  237. Burt, R.K.; Balabanov, R.; Han, X.; Sharrack, B.; Morgan, A.; Quigley, K.; Yaung, K.; Helenowski, I.B.; Jovanovic, B.; Spahovic, D.; Arnautovic, I.; Lee, D.C.; Benefield, B.C.; Futterer, S.; Oliveira, M.C.; Burman, J. Association of nonmyeloablative hematopoietic stem cell transplantation with neurological disability in patients with relapsing-remitting multiple sclerosis. JAMA, 2015, 313(3), 275-284. doi: 10.1001/jama.2014.17986 PMID: 25602998
  238. Lee, H.; Nakamura, K.; Narayanan, S.; Brown, R.; Chen, J.; Atkins, H.L.; Freedman, M.S.; Arnold, D.L. Impact of immunoablation and autologous hematopoietic stem cell transplantation on gray and white matter atrophy in multiple sclerosis. Mult. Scler., 2018, 24(8), 1055-1066. doi: 10.1177/1352458517715811 PMID: 28617152
  239. Mariottini, A.; Filippini, S.; Innocenti, C.; Forci, B.; Mechi, C.; Barilaro, A.; Fani, A.; Carlucci, G.; Saccardi, R.; Massacesi, L.; Repice, A.M. Impact of autologous haematopoietic stem cell transplantation on disability and brain atrophy in secondary progressive multiple sclerosis. Mult. Scler., 2021, 27(1), 61-70. doi: 10.1177/1352458520902392 PMID: 32008439
  240. Burt, R.K.; Balabanov, R.; Burman, J.; Sharrack, B.; Snowden, J.A.; Oliveira, M.C.; Fagius, J.; Rose, J.; Nelson, F.; Barreira, A.A.; Carlson, K.; Han, X.; Moraes, D.; Morgan, A.; Quigley, K.; Yaung, K.; Buckley, R.; Alldredge, C.; Clendenan, A.; Calvario, M.A.; Henry, J.; Jovanovic, B.; Helenowski, I.B. Effect of nonmyeloablative hematopoietic stem cell transplantation vs continued disease-modifying therapy on disease progression in patients with relapsing-remitting multiple sclerosis. JAMA, 2019, 321(2), 165-174. doi: 10.1001/jama.2018.18743 PMID: 30644983
  241. Burt, R.K.; Han, X.; Quigley, K.; Helenowski, I.B.; Balabanov, R. Real-world application of autologous hematopoietic stem cell transplantation in 507 patients with multiple sclerosis. J. Neurol., 2022, 269(5), 2513-2526. doi: 10.1007/s00415-021-10820-2 PMID: 34633525
  242. Cohen, J.A.; Baldassari, L.E.; Atkins, H.L.; Bowen, J.D.; Bredeson, C.; Carpenter, P.A.; Corboy, J.R.; Freedman, M.S.; Griffith, L.M.; Lowsky, R.; Majhail, N.S.; Muraro, P.A.; Nash, R.A.; Pasquini, M.C.; Sarantopoulos, S.; Savani, B.N.; Storek, J.; Sullivan, K.M.; Georges, G.E. Autologous hematopoietic cell transplantation for treatment-refractory relapsing multiple sclerosis: Position statement from the American society for blood and marrow transplantation. Biol. Blood Marrow Transplant., 2019, 25(5), 845-854. doi: 10.1016/j.bbmt.2019.02.014 PMID: 30794930
  243. Kim, Y.H.; Choi, B.K.; Oh, H.S.; Kang, W.J.; Mittler, R.S.; Kwon, B.S. Mechanisms involved in synergistic anticancer effects of anti-4-1BB and cyclophosphamide therapy. Mol. Cancer Ther., 2009, 8(2), 469-478. doi: 10.1158/1535-7163.MCT-08-0993 PMID: 19190115
  244. Awad, A.; Stüve, O. Review: Cyclophosphamide in multiple sclerosis: Scientific rationale, history and novel treatment paradigms. Ther. Adv. Neurol. Disord., 2009, 2(6), 357-368. doi: 10.1177/1756285609344375 PMID: 21180630
  245. Juma, F.D.; Rogers, H.J.; Trounce, J.R. Pharmacokinetics of cyclophosphamide and alkylating activity in man after intravenous and oral administration. Br. J. Clin. Pharmacol., 1979, 8(3), 209-217. doi: 10.1111/j.1365-2125.1979.tb01004.x PMID: 497087
  246. Bahr, U.; Schulten, H.R.; Hommes, O.R.; Aerts, F. Determination of cyclophosphamide in urine, serum and cerebrospinal fluid of multiple sclerosis patients by field desorption mass spectrometry. Clin. Chim. Acta, 1980, 103(2), 183-192. doi: 10.1016/0009-8981(80)90212-0 PMID: 7371197
  247. Egorin, M.J.; Kaplan, R.S.; Salcman, M.; Aisner, J.; Colvin, M.; Wiernik, P.H.; Bachur, N.R. Cyclophosphamide plasma and cerebrospinal fluid kinetics with and without dimethyl sulfoxide. Clin. Pharmacol. Ther., 1982, 32(1), 122-128. doi: 10.1038/clpt.1982.135 PMID: 7083726
  248. Farmaci con uso consolidato nel trattamento di patologie neurologiche per indicazioni anche differenti da quelle previste dal provvedimento di autorizzazione all’immissione in commercio. 2021. Available at: Https://Www.Aifa.Gov
  249. Aimard, G.; Girard, P.F.; Raveau, J. Multiple sclerosis and the autoimmunization process. Treatment by antimitotics. Lyon Med., 1966, 215(6), 345-352. PMID: 5906182
  250. Brochet, B.; Deloire, M.S.A.; Perez, P.; Loock, T.; Baschet, L.; Debouverie, M.; Pittion, S.; Ouallet, J.C.; Clavelou, P.; de Sèze, J.; Collongues, N.; Vermersch, P.; Zéphir, H.; Castelnovo, G.; Labauge, P.; Lebrun, C.; Cohen, M.; Ruet, A. Double-blind controlled randomized trial of cyclophosphamide versus methylprednisolone in secondary progressive multiple sclerosis. PLoS One, 2017, 12(1), e0168834. doi: 10.1371/journal.pone.0168834 PMID: 28045953
  251. Zephir, H.; de Seze, J.; Duhamel, A.; Debouverie, M.; Hautecoeur, P.; Lebrun, C.; Malikova, I.; Pelletier, J.; Sénéchal, O.; Vermersch, P. Treatment of progressive forms of multiple sclerosis by cyclophosphamide: A cohort study of 490 patients. J. Neurol. Sci., 2004, 218(1-2), 73-77. doi: 10.1016/j.jns.2003.11.004 PMID: 14759636
  252. Ab, B.; Ut, B.; M, T. Long-term remissions with use of high dose cyclophosphamide in multiple sclerosis. J. Mult. Scler., 2016, 3(4) doi: 10.4172/2376-0389.1000185
  253. The Canadian Cooperative Multiple Sclerosis Study Group. The canadian cooperative trial of cyclophosphamide and plasma exchange in progressive multiple sclerosis. Lancet, 1991, 337(8739), 441-446. doi: 10.1016/0140-6736(91)93389-Q PMID: 1671468
  254. Perini, P.; Calabrese, M.; Tiberio, M.; Ranzato, F.; Battistin, L.; Gallo, P. Mitoxantrone versus cyclophosphamide in secondary-progressive multiple sclerosis. J. Neurol., 2006, 253(8), 1034-1040. doi: 10.1007/s00415-006-0154-7 PMID: 16609811
  255. Hartung, H.P.; Gonsette, R.; König, N.; Kwiecinski, H.; Guseo, A.; Morrissey, S.P.; Krapf, H.; Zwingers, T. Mitoxantrone in progressive multiple sclerosis: A placebo-controlled, double-blind, randomised, multicentre trial. Lancet, 2002, 360(9350), 2018-2025. doi: 10.1016/S0140-6736(02)12023-X PMID: 12504397
  256. Gómez-Figueroa, E.; Gutierrez-Lanz, E.; Alvarado-Bolaños, A.; Casallas-Vanegas, A.; Garcia-Estrada, C.; Zabala-Angeles, I.; Cadena-Fernandez, A.; Veronica, R.A.; Irene, T.F.; Flores-Rivera, J. Cyclophosphamide treatment in active multiple sclerosis. Neurol. Sci., 2021, 42(9), 3775-3780. doi: 10.1007/s10072-021-05052-1 PMID: 33452657
  257. Rotstein, D.; Montalban, X. Reaching an evidence-based prognosis for personalized treatment of multiple sclerosis. Nat. Rev. Neurol., 2019, 15(5), 287-300. doi: 10.1038/s41582-019-0170-8 PMID: 30940920
  258. Montalban, X.; Gold, R.; Thompson, A.J.; Otero-Romero, S.; Amato, M.P.; Chandraratna, D.; Clanet, M.; Comi, G.; Derfuss, T.; Fazekas, F.; Hartung, H.P.; Havrdova, E.; Hemmer, B.; Kappos, L.; Liblau, R.; Lubetzki, C.; Marcus, E.; Miller, D.H.; Olsson, T.; Pilling, S.; Selmaj, K.; Siva, A.; Sorensen, P.S.; Sormani, M.P.; Thalheim, C.; Wiendl, H.; Zipp, F. ECTRIMS/EAN Guideline on the pharmacological treatment of people with multiple sclerosis. Mult. Scler., 2018, 24(2), 96-120. doi: 10.1177/1352458517751049 PMID: 29353550
  259. Rae-Grant, A.; Day, G.S.; Marrie, R.A.; Rabinstein, A.; Cree, B.A.C.; Gronseth, G.S.; Haboubi, M.; Halper, J.; Hosey, J.P.; Jones, D.E.; Lisak, R.; Pelletier, D.; Potrebic, S.; Sitcov, C.; Sommers, R.; Stachowiak, J.; Getchius, T.S.D.; Merillat, S.A.; Pringsheim, T. Practice guideline recommendations summary: Disease-modifying therapies for adults with multiple sclerosis. Neurology, 2018, 90(17), 777-788. doi: 10.1212/WNL.0000000000005347 PMID: 29686116
  260. Prosperini, L.; Mancinelli, C.R.; Solaro, C.M.; Nociti, V.; Haggiag, S.; Cordioli, C.; De Giglio, L.; De Rossi, N.; Galgani, S.; Rasia, S.; Ruggieri, S.; Tortorella, C.; Capra, R.; Mirabella, M.; Gasperini, C. Induction versus escalation in multiple sclerosis: A 10-year real world study. Neurotherapeutics, 2020, 17(3), 994-1004. doi: 10.1007/s13311-020-00847-0 PMID: 32236822
  261. Weideman, A.M.; Tapia-Maltos, M.A.; Johnson, K.; Greenwood, M.; Bielekova, B. Meta-analysis of the age-dependent efficacy of multiple sclerosis treatments. Front. Neurol., 2017, 8, 577. doi: 10.3389/fneur.2017.00577 PMID: 29176956
  262. Ms, F. Managing multiple sclerosis: Treatment initiation, modification, and sequencing. Can J Neurol Sci, 2018, 45(5), 489-503. doi: 10.1017/cjn.2018.17
  263. Freeman, L.; Longbrake, E.E.; Coyle, P.K.; Hendin, B.; Vollmer, T. High-efficacy therapies for treatment-naïve individuals with relapsing–remitting multiple sclerosis. CNS Drugs, 2022, 36(12), 1285-1299. doi: 10.1007/s40263-022-00965-7 PMID: 36350491
  264. Harding, K.; Williams, O.; Willis, M.; Hrastelj, J.; Rimmer, A.; Joseph, F.; Tomassini, V.; Wardle, M.; Pickersgill, T.; Robertson, N.; Tallantyre, E. Clinical outcomes of escalation vs early intensive disease-modifying therapy in patients with multiple sclerosis. JAMA Neurol., 2019, 76(5), 536-541. doi: 10.1001/jamaneurol.2018.4905 PMID: 30776055
  265. Pipek, L.Z.; Mahler, J.V.; Nascimento, R.F.V.; Apóstolos-Pereira, S.L.; Silva, G.D.; Callegaro, D. Cost, efficacy, and safety comparison between early intensive and escalating strategies for multiple sclerosis: A systematic review and meta-analysis. Mult. Scler. Relat. Disord., 2023, 71, 104581. doi: 10.1016/j.msard.2023.104581 PMID: 36848839
  266. Iaffaldano, P.; Lucisano, G.; Caputo, F.; Paolicelli, D.; Patti, F.; Zaffaroni, M.; Brescia Morra, V.; Pozzilli, C.; De Luca, G.; Inglese, M.; Salemi, G.; Maniscalco, G.T.; Cocco, E.; Sola, P.; Lus, G.; Conte, A.; Amato, M.P.; Granella, F.; Gasperini, C.; Bellantonio, P.; Totaro, R.; Rovaris, M.; Salvetti, M.; Torri Clerici, V.L.A.; Bergamaschi, R.; Maimone, D.; Scarpini, E.; Capobianco, M.; Comi, G.; Filippi, M.; Trojano, M. Long-term disability trajectories in relapsing multiple sclerosis patients treated with early intensive or escalation treatment strategies. Ther. Adv. Neurol. Disord., 2021, 14 doi: 10.1177/17562864211019574 PMID: 34104220
  267. Simpson, A.; Mowry, E.M.; Newsome, S.D. Early aggressive treatment approaches for multiple sclerosis. Curr. Treat. Options Neurol., 2021, 23(7), 19. doi: 10.1007/s11940-021-00677-1 PMID: 34025110
  268. Le Page, E.; Edan, G. Induction or escalation therapy for patients with multiple sclerosis? Rev. Neurol., 2018, 174(6), 449-457. doi: 10.1016/j.neurol.2018.04.004 PMID: 29799415
  269. Comi, G.; Radaelli, M.; Soelberg Sørensen, P. Evolving concepts in the treatment of relapsing multiple sclerosis. Lancet, 2017, 389(10076), 1347-1356. doi: 10.1016/S0140-6736(16)32388-1 PMID: 27889192
  270. Corboy, J.R.; Weinshenker, B.G.; Wingerchuk, D.M. Comment on 2018 American academy of neurology guidelines on disease-modifying therapies in MS. Neurology, 2018, 90(24), 1106-1112. doi: 10.1212/WNL.0000000000005574 PMID: 29685920
  271. Filippi, M.; Amato, M.P.; Centonze, D.; Gallo, P.; Gasperini, C.; Inglese, M.; Patti, F.; Pozzilli, C.; Preziosa, P.; Trojano, M. Early use of high-efficacy disease‑modifying therapies makes the difference in people with multiple sclerosis: An expert opinion. J. Neurol., 2022, 269(10), 5382-5394. doi: 10.1007/s00415-022-11193-w PMID: 35608658
  272. Linker, R.A.; Chan, A. Navigating choice in multiple sclerosis management. Neurol. Res. Pract., 2019, 1(1), 5. doi: 10.1186/s42466-019-0005-5 PMID: 33324871
  273. Zhang, T.; Tremlett, H.; Leung, S.; Zhu, F.; Kingwell, E.; Fisk, J.D.; Bhan, V.; Campbell, T.L.; Stadnyk, K.; Yu, B.N.; Marrie, R.A. Examining the effects of comorbidities on disease-modifying therapy use in multiple sclerosis. Neurology, 2016, 86(14), 1287-1295. doi: 10.1212/WNL.0000000000002543 PMID: 26944268
  274. Singer, B.A. Initiating oral fingolimod treatment in patients with multiple sclerosis. Ther. Adv. Neurol. Disord., 2013, 6(4), 269-275. doi: 10.1177/1756285613491520 PMID: 23858329
  275. Magyari, M.; Sorensen, P.S. Comorbidity in multiple sclerosis. Front. Neurol., 2020, 11, 851. doi: 10.3389/fneur.2020.00851 PMID: 32973654
  276. Dema, M.; Eixarch, H.; Villar, L.M.; Montalban, X.; Espejo, C. Immunosenescence in multiple sclerosis: The identification of new therapeutic targets. Autoimmun. Rev., 2021, 20(9), 102893. doi: 10.1016/j.autrev.2021.102893 PMID: 34237417
  277. Vaughn, C.B.; Jakimovski, D.; Kavak, K.S.; Ramanathan, M.; Benedict, R.H.B.; Zivadinov, R.; Weinstock-Guttman, B. Epidemiology and treatment of multiple sclerosis in elderly populations. Nat. Rev. Neurol., 2019, 15(6), 329-342. doi: 10.1038/s41582-019-0183-3 PMID: 31000816
  278. Confavreux, C.; Hutchinson, M.; Hours, M.M.; Cortinovis-Tourniaire, P.; Moreau, T. Rate of pregnancy-related relapse in multiple sclerosis. N. Engl. J. Med., 1998, 339(5), 285-291. doi: 10.1056/NEJM199807303390501 PMID: 9682040
  279. Houtchens, M.K.; Kolb, C.M. Multiple sclerosis and pregnancy: Therapeutic considerations. J. Neurol., 2013, 260(5), 1202-1214. doi: 10.1007/s00415-012-6653-9 PMID: 22926165
  280. Voskuhl, R.; Momtazee, C. Pregnancy: Effect on multiple sclerosis, treatment considerations, and breastfeeding. Neurotherapeutics, 2017, 14(4), 974-984. doi: 10.1007/s13311-017-0562-7 PMID: 28766273
  281. Slowly expanding/evolving lesions as a magnetic resonance imaging marker of chronic active multiple sclerosis lesions. Mult Scler, 2019, 25(14) doi: 10.1177/1352458518814117
  282. Altokhis, A.I.; Hibbert, A.M.; Allen, C.M.; Mougin, O.; Alotaibi, A.; Lim, S.Y.; Constantinescu, C.S.; Abdel-Fahim, R.; Evangelou, N. Longitudinal clinical study of patients with iron rim lesions in multiple sclerosis. Mult. Scler., 2022, 28(14), 2202-2211. doi: 10.1177/13524585221114750 PMID: 36000485
  283. Dal-Bianco, A.; Grabner, G.; Kronnerwetter, C.; Weber, M.; Höftberger, R.; Berger, T.; Auff, E.; Leutmezer, F.; Trattnig, S.; Lassmann, H.; Bagnato, F.; Hametner, S. Slow expansion of multiple sclerosis iron rim lesions: Pathology and 7 T magnetic resonance imaging. Acta Neuropathol., 2017, 133(1), 25-42. doi: 10.1007/s00401-016-1636-z PMID: 27796537
  284. Zhang, Y.; Gauthier, S.A.; Gupta, A.; Chen, W.; Comunale, J.; Chiang, G.C.Y.; Zhou, D.; Askin, G.; Zhu, W.; Pitt, D.; Wang, Y. Quantitative susceptibility mapping and R2* measured changes during white matter lesion development in multiple sclerosis: Myelin breakdown, myelin debris degradation and removal, and iron accumulation. AJNR Am. J. Neuroradiol., 2016, 37(9), 1629-1635. doi: 10.3174/ajnr.A4825 PMID: 27256856
  285. Absinta, M.; Sati, P.; Masuzzo, F.; Nair, G.; Sethi, V.; Kolb, H.; Ohayon, J.; Wu, T.; Cortese, I.C.M.; Reich, D.S. Association of chronic active multiple sclerosis lesions with disability In Vivo. JAMA Neurol., 2019, 76(12), 1474-1483. doi: 10.1001/jamaneurol.2019.2399 PMID: 31403674
  286. Calvi, A.; Carrasco, F.P.; Tur, C.; Chard, D.T.; Stutters, J.; De Angelis, F.; John, N.; Williams, T.; Doshi, A.; Samson, R.S.; MacManus, D.; Gandini Wheeler-Kingshott, C.A.; Ciccarelli, O.; Chataway, J.; Barkhof, F. Association of slowly expanding lesions on mri with disability in people with secondary progressive multiple sclerosis. Neurology, 2022, 98(17), e1783-e1793. doi: 10.1212/WNL.0000000000200144 PMID: 35277438
  287. Maggi, P.; Kuhle, J.; Schädelin, S.; van der Meer, F.; Weigel, M.; Galbusera, R.; Mathias, A.; Lu, P.J.; Rahmanzadeh, R.; Benkert, P.; La Rosa, F.; Bach Cuadra, M.; Sati, P.; Théaudin, M.; Pot, C.; van Pesch, V.; Leppert, D.; Stadelmann, C.; Kappos, L.; Du Pasquier, R.; Reich, D.S.; Absinta, M.; Granziera, C. Chronic white matter inflammation and serum neurofilament levels in multiple sclerosis. Neurology, 2021, 97(6), e543-e553. doi: 10.1212/WNL.0000000000012326 PMID: 34088875
  288. Elliott, C.; Belachew, S.; Wolinsky, J.S.; Hauser, S.L.; Kappos, L.; Barkhof, F.; Bernasconi, C.; Fecker, J.; Model, F.; Wei, W.; Arnold, D.L. Chronic white matter lesion activity predicts clinical progression in primary progressive multiple sclerosis. Brain, 2019, 142(9), 2787-2799. doi: 10.1093/brain/awz212 PMID: 31497864
  289. Beynon, V.; George, I.C.; Elliott, C.; Arnold, D.L.; Ke, J.; Chen, H.; Zhu, L.; Ke, C.; Giovannoni, G.; Scaramozza, M.; Campbell, N.; Bradley, D.P.; Franchimont, N.; Gafson, A.; Belachew, S. Chronic lesion activity and disability progression in secondary progressive multiple sclerosis. BMJ Neurology Open, 2022, 4(1), e000240. doi: 10.1136/bmjno-2021-000240 PMID: 35720980
  290. Dal-Bianco, A.; Grabner, G.; Kronnerwetter, C.; Weber, M.; Kornek, B.; Kasprian, G.; Berger, T.; Leutmezer, F.; Rommer, P.S.; Trattnig, S.; Lassmann, H.; Hametner, S. Long-term evolution of multiple sclerosis iron rim lesions in 7 T MRI. Brain, 2021, 144(3), 833-847. doi: 10.1093/brain/awaa436 PMID: 33484118
  291. Zhang, S.; Nguyen, T.D.; Hurtado Rúa, S.M.; Kaunzner, U.W.; Pandya, S.; Kovanlikaya, I.; Spincemaille, P.; Wang, Y.; Gauthier, S.A. Quantitative susceptibility mapping of time-dependent susceptibility changes in multiple sclerosis lesions. AJNR Am. J. Neuroradiol., 2019, 40(6), 987-993. doi: 10.3174/ajnr.A6071 PMID: 31097429
  292. Reich, D.S.; Arnold, D.L.; Vermersch, P.; Bar-Or, A.; Fox, R.J.; Matta, A.; Turner, T.; Wallström, E.; Zhang, X.; Mareš, M.; Khabirov, F.A.; Traboulsee, A.; Grand’Maison, F.; Jacques, F.; Traboulsee, A.; Tyblova, M.; Meluzinova, E.; Ampapa, R.; Valis, M.; Hradilke, P.; Mareš, M.; Stourac, P.; Gross-Paju, K.; Laplaud, D.; Mathey, G.; Uitdehaag, B.; Evdoshenkoo, E.; Popova, E.; Zakharova, M.; Totolyan, N.; Litvinenko, I.; Khabirov, F.; Sivertseva, S.; Hancinova, V.; Kantorova, E.; Gines, M.L.M.; Montalban, X.; Maduano, S.E.; Meca-Lallana, J.; Ramió-Torrentà, L.; Nehrych, T.; Pashkovskyy, V.; Moskovko, S.; Kalbus, O.; Khavunka, M.; Pryshchepa, V.; Goloborodko, A.; Wynn, D.; Honeycutt, W.; Wray, S.; Steingo, B.; LaGanke, C.; Huang, D.; Hemphill, J.M.; Goldstick, L.; Robertson, D. Safety and efficacy of tolebrutinib, an oral brain-penetrant BTK inhibitor, in relapsing multiple sclerosis: A phase 2b, randomised, double-blind, placebo-controlled trial. Lancet Neurol., 2021, 20(9), 729-738. doi: 10.1016/S1474-4422(21)00237-4 PMID: 34418400
  293. Zinger, N.; Ponath, G.; Sweeney, E.; Nguyen, T.D.; Lo, C.H.; Diaz, I.; Dimov, A.; Teng, L.; Zexter, L.; Comunale, J.; Wang, Y.; Pitt, D.; Gauthier, S.A. Dimethyl fumarate reduces inflammation in chronic active multiple sclerosis lesions. Neurol. Neuroimmunol. Neuroinflamm., 2022, 9(2), e1138. doi: 10.1212/NXI.0000000000001138 PMID: 35046083
  294. Preziosa, P.; Pagani, E.; Moiola, L.; Rodegher, M.; Filippi, M.; Rocca, M.A. Occurrence and microstructural features of slowly expanding lesions on fingolimod or natalizumab treatment in multiple sclerosis. Mult. Scler., 2021, 27(10), 1520-1532. doi: 10.1177/1352458520969105 PMID: 33183125
  295. De Stefano, N.; Stromillo, M.L.; Giorgio, A.; Bartolozzi, M.L.; Battaglini, M.; Baldini, M.; Portaccio, E.; Amato, M.P.; Sormani, M.P. Establishing pathological cut-offs of brain atrophy rates in multiple sclerosis. J. Neurol. Neurosurg. Psychiatry, 2015, 87(1), jnnp-2014-309903. doi: 10.1136/jnnp-2014-309903 PMID: 25904813
  296. Fisher, E.; Rudick, R.A.; Cutter, G.; Baier, M.; Miller, D.; Weinstock-Guttman, B.; Mass, M.K.; Dougherty, D.S.; Simonian, N.A. Relationship between brain atrophy and disability: An 8-year follow-up study of multiple sclerosis patients. Mult. Scler., 2000, 6(6), 373-377. doi: 10.1177/135245850000600602 PMID: 11212131
  297. Sormani, M.P.; Arnold, D.L.; De Stefano, N. Treatment effect on brain atrophy correlates with treatment effect on disability in multiple sclerosis. Ann. Neurol., 2014, 75(1), 43-49. doi: 10.1002/ana.24018 PMID: 24006277
  298. Andravizou, A.; Dardiotis, E.; Artemiadis, A.; Sokratous, M.; Siokas, V.; Tsouris, Z.; Aloizou, A.M.; Nikolaidis, I.; Bakirtzis, C.; Tsivgoulis, G.; Deretzi, G.; Grigoriadis, N.; Bogdanos, D.P.; Hadjigeorgiou, G.M. Brain atrophy in multiple sclerosis: Mechanisms, clinical relevance and treatment options. Auto Immun. Highlights, 2019, 10(1), 7. doi: 10.1186/s13317-019-0117-5 PMID: 32257063
  299. Tsagkas, C.; Magon, S.; Gaetano, L.; Pezold, S.; Naegelin, Y.; Amann, M.; Stippich, C.; Cattin, P.; Wuerfel, J.; Bieri, O.; Sprenger, T.; Kappos, L.; Parmar, K. Spinal cord volume loss. Neurology, 2018, 91(4), e349-e358. doi: 10.1212/WNL.0000000000005853 PMID: 29950437
  300. Casserly, C.; Seyman, E.E.; Alcaide-Leon, P.; Guenette, M.; Lyons, C.; Sankar, S.; Svendrovski, A.; Baral, S.; Oh, J. Spinal cord atrophy in multiple sclerosis: A systematic review and meta‐analysis. J. Neuroimaging, 2018, 28(6), 556-586. doi: 10.1111/jon.12553 PMID: 30102003
  301. Sastre-Garriga, J.; Pareto, D.; Battaglini, M.; Rocca, M.A.; Ciccarelli, O.; Enzinger, C.; Wuerfel, J.; Sormani, M.P.; Barkhof, F.; Yousry, T.A.; De Stefano, N.; Tintoré, M.; Filippi, M.; Gasperini, C.; Kappos, L.; Río, J.; Frederiksen, J.; Palace, J.; Vrenken, H.; Montalban, X.; Rovira, À. MAGNIMS consensus recommendations on the use of brain and spinal cord atrophy measures in clinical practice. Nat. Rev. Neurol., 2020, 16(3), 171-182. doi: 10.1038/s41582-020-0314-x PMID: 32094485
  302. Le Garff-Tavernier, M.; Decocq, J.; de Romeuf, C.; Parizot, C.; Dutertre, C.A.; Chapiro, E.; Davi, F.; Debré, P.; Prost, J.F.; Teillaud, J.L.; Merle-Beral, H.; Vieillard, V. Analysis of CD16+CD56dim NK cells from CLL patients: evidence supporting a therapeutic strategy with optimized anti-CD20 monoclonal antibodies. Leukemia, 2011, 25(1), 101-109. doi: 10.1038/leu.2010.240 PMID: 20975664
  303. Fox, E.; Lovett-Racke, A.E.; Gormley, M.; Liu, Y.; Petracca, M.; Cocozza, S.; Shubin, R.; Wray, S.; Weiss, M.S.; Bosco, J.A.; Power, S.A.; Mok, K.; Inglese, M. A phase 2 multicenter study of ublituximab, a novel glycoengineered anti-CD20 monoclonal antibody, in patients with relapsing forms of multiple sclerosis. Mult. Scler., 2021, 27(3), 420-429. doi: 10.1177/1352458520918375 PMID: 32351164
  304. Babiker, H.M.; Glode, A.E.; Cooke, L.S.; Mahadevan, D. Ublituximab for the treatment of CD20 positive B-cell malignancies. Expert Opin. Investig. Drugs, 2018, 27(4), 407-412. doi: 10.1080/13543784.2018.1459560 PMID: 29609506
  305. Le Garff-Tavernier, M.; Herbi, L.; de Romeuf, C.; Nguyen-Khac, F.; Davi, F.; Grelier, A.; Boudjoghra, M.; Maloum, K.; Choquet, S.; Urbain, R.; Vieillard, V.; Merle-Béral, H. Antibody-dependent cellular cytotoxicity of the optimized anti-CD20 monoclonal antibody ublituximab on chronic lymphocytic leukemia cells with the 17p deletion. Leukemia, 2014, 28(1), 230-233. doi: 10.1038/leu.2013.240 PMID: 23958919
  306. Steinman, L.; Fox, E.; Hartung, H.P.; Alvarez, E.; Qian, P.; Wray, S.; Robertson, D.; Huang, D.; Selmaj, K.; Wynn, D.; Cutter, G.; Mok, K.; Hsu, Y.; Xu, Y.; Weiss, M.S.; Bosco, J.A.; Power, S.A.; Lee, L.; Miskin, H.P.; Cree, B.A.C. Ublituximab versus teriflunomide in relapsing multiple sclerosis. N. Engl. J. Med., 2022, 387(8), 704-714. doi: 10.1056/NEJMoa2201904 PMID: 36001711
  307. TG Therapeutics, Inc. Phase III: UbLiTuximab In Multiple Sclerosis Treatment Effects (ULTIMATE I STUDY); clinicaltrials.gov. NCT03277261, 2021.
  308. TG Therapeutics, Inc. Phase III: UbLiTuximab in Multiple Sclerosis Treatment Effects (ULTIMATE II STUDY); clinicaltrials.gov. NCT03277248, 2021.
  309. Burger, J.A. Bruton tyrosine kinase inhibitors. Cancer J., 2019, 25(6), 386-393. doi: 10.1097/PPO.0000000000000412 PMID: 31764119
  310. Piehl, F. Current and emerging disease‐modulatory therapies and treatment targets for multiple sclerosis. J. Intern. Med., 2021, 289(6), 771-791. doi: 10.1111/joim.13215 PMID: 33258193
  311. Ní Gabhann, J.; Hams, E.; Smith, S.; Wynne, C.; Byrne, J.C.; Brennan, K.; Spence, S.; Kissenpfennig, A.; Johnston, J.A.; Fallon, P.G.; Jefferies, C.A. Btk regulates macrophage polarization in response to lipopolysaccharide. PLoS One, 2014, 9(1), e85834. doi: 10.1371/journal.pone.0085834 PMID: 24465735
  312. Montalban, X.; Arnold, D.L.; Weber, M.S.; Staikov, I.; Piasecka-Stryczynska, K.; Willmer, J.; Martin, E.C.; Dangond, F.; Syed, S.; Wolinsky, J.S. Placebo-controlled trial of an oral BTK inhibitor in multiple sclerosis. N. Engl. J. Med., 2019, 380(25), 2406-2417. doi: 10.1056/NEJMoa1901981 PMID: 31075187
  313. Akinleye, A.; Chen, Y.; Mukhi, N.; Song, Y.; Liu, D. Ibrutinib and novel BTK inhibitors in clinical development. J. Hematol. Oncol., 2013, 6(1), 59. doi: 10.1186/1756-8722-6-59 PMID: 23958373
  314. Hartkamp, L.M.; Fine, J.S.; van Es, I.E.; Tang, M.W.; Smith, M.; Woods, J.; Narula, S.; DeMartino, J.; Tak, P.P.; Reedquist, K.A. Btk inhibition suppresses agonist-induced human macrophage activation and inflammatory gene expression in RA synovial tissue explants. Ann. Rheum. Dis., 2015, 74(8), 1603-1611. doi: 10.1136/annrheumdis-2013-204143 PMID: 24764451
  315. Corneth, O.B.J.; Verstappen, G.M.P.; Paulissen, S.M.J.; de Bruijn, M.J.W.; Rip, J.; Lukkes, M.; van Hamburg, J.P.; Lubberts, E.; Bootsma, H.; Kroese, F.G.M.; Hendriks, R.W. Enhanced bruton’s tyrosine kinase activity in peripheral blood B lymphocytes from patients with autoimmune disease. Arthritis Rheumatol., 2017, 69(6), 1313-1324. doi: 10.1002/art.40059 PMID: 28141917
  316. EMD Serono Research & Development Institute, Inc.. A randomized, double-blind, placebo-controlled phase II study of M2951 with a parallel, open-label, active control group (tecfidera), in patients with relapsing multiple sclerosis to evaluate efficacy, safety, tolerability, pharmacokinetics, and biological activity.; clinicaltrials.gov. NCT02975349, 2021.
  317. EMD Serono Research & Development Institute, Inc.. A phase III, multicenter, randomized, parallel group, double blind, double dummy, active controlled study of evobrutinib compared with an interferon beta 1a (Avonex®), in participants with relapsing multiple sclerosis to evaluate efficacy and safety; clinicaltrials.gov. NCT04032158, 2021.
  318. EMD Serono Research & Development Institute, Inc.. A phase III, multicenter, randomized, parallel group, double blind, double dummy, active controlled study of evobrutinib compared with an interferon beta 1a (Avonex®), in participants with RMS to evaluate efficacy and safety; clinicaltrials.gov. NCT04032171, 2021.
  319. Sanofi. A Phase 2b Dose-Finding Study for SAR442168, a Bruton’s Tyrosine kinase inhibitor, in participants with relapsing Multiple sclerosis; clinicaltrials.gov. NCT03889639, 2022.
  320. Sanofi. A Phase 3, Randomized, double-blind efficacy and safety study comparing SAR442168 to teriflunomide (Aubagio®) in participants with relapsing forms of multiple sclerosis; clinicaltrials.gov. NCT04410978, 2022.
  321. Sanofi. A phase 3, randomized, double-blind efficacy and safety study comparing SAR442168 to teriflunomide (Aubagio®) in participants with relapsing forms of multiple sclerosis; clinicaltrials.gov. NCT04410991, 2022.
  322. Sanofi. A phase 3, randomized, double-blind, efficacy and safety study comparing SAR442168 to placebo in participants with primary progressive multiple sclerosis (PERSEUS); clinicaltrials.gov. NCT04458051, 2022.
  323. Sanofi. A phase 3, randomized, double-blind, efficacy and safety study comparing SAR442168 to placebo in participants with nonrelapsing secondary progressive multiple sclerosis; clinicaltrials.gov. NCT04180488, 2022.
  324. American Academy of Neurology Abstract Website 2021. Available at:https://index.mirasmart.com/AAN2021/PDFfiles/AAN2021-004437.html
  325. Hoffmann-La Roche. A phase iii multicenter, randomized, doubleblind, double-dummy, parallel-group study to evaluate the efficacy and safety of fenebrutinib compared with ocrelizumab in adult patients with primary progressive multiple sclerosis.; clinicaltrials.gov. NCT04544449, 2022.
  326. Hoffmann-La Roche. A phase III multicenter randomized, doubleblind, double-dummy, parallel-group study to evaluate the efficacy and safety of fenebrutinib compared with teriflunomide in adult patients with relapsing multiple sclerosis; clinicaltrials.gov. NCT04586023, 2022.
  327. Hoffmann-La Roche. A phase III multicenter randomized, doubleblind, double-dummy, parallel-group study to evaluate the efficacy and safety of fenebrutinib compared with teriflunomide in adult patients with relapsing multiple sclerosis; clinicaltrial.gov. NCT04586010, 2022.
  328. Oh, J.; Cohen, S.; Isenberg, D.; Maurer, M.; Galanter, J.; Chu, T.; Teterina, A.; Goodyear, A.; Mandel, C.; Lee, C. The safety of fenebrutinib in a large population of patients with diverse autoimmune indications supports investigation in multiple sclerosis (MS) (4564). Neurology, 2021, 96.
  329. Dhillon, S. Orelabrutinib: First approval. Drugs, 2021, 81(4), 503-507. doi: 10.1007/s40265-021-01482-5 PMID: 33704654
  330. Beijing InnoCare Pharma Tech Co., Ltd. A randomized, doubleblind, placebo-controlled phase 2 study of orelabrutinib in patients with relapsing-remitting multiple sclerosis to evaluate efficacy, safety, tolerability, pharmacokinetics, and biological activity; clinicaltrials.gov. NCT04711148, 2022.
  331. Dubreuil, P.; Letard, S.; Ciufolini, M.; Gros, L.; Humbert, M.; Castéran, N.; Borge, L.; Hajem, B.; Lermet, A.; Sippl, W.; Voisset, E.; Arock, M.; Auclair, C.; Leventhal, P.S.; Mansfield, C.D.; Moussy, A.; Hermine, O. Masitinib (AB1010), a potent and selective tyrosine kinase inhibitor targeting KIT. PLoS One, 2009, 4(9), e7258. doi: 10.1371/journal.pone.0007258 PMID: 19789626
  332. AB Science. A phase 2a, randomized, double-blind, placebocontrolled study to evaluate the activity of oral AB1010 administered at 2 dose levels to patients with primary progressive or relapse-free secondary progressive multiple sclerosis; clinicaltrials.gov. Astellas Pharma Global Development, Inc, 2018.
  333. Vermersch, P.; Benrabah, R.; Schmidt, N.; Zéphir, H.; Clavelou, P.; Vongsouthi, C.; Dubreuil, P.; Moussy, A.; Hermine, O. Masitinib treatment in patients with progressive multiple sclerosis : A randomized pilot study. BMC Neurol., 2012, 12(1), 36. doi: 10.1186/1471-2377-12-36 PMID: 22691628
  334. AB Science. A 96 week, prospective, multicentre, randomized, double-blind, placebo-controlled, 2 parallel-groups, phase 3 study to compare efficacy and safety of masitinib 4.5 mg/kg/day versus placebo in the treatment of patients with primary progressive or relapse-free secondary progressive multiple sclerosis; clinicaltrials.gov. FR0010557264AB, 2020.
  335. Cho, Y.; Crichlow, G.V.; Vermeire, J.J.; Leng, L.; Du, X.; Hodsdon, M.E.; Bucala, R.; Cappello, M.; Gross, M.; Gaeta, F.; Johnson, K.; Lolis, E.J. Allosteric inhibition of macrophage migration inhibitory factor revealed by ibudilast. Proc. Natl. Acad. Sci., 2010, 107(25), 11313-11318. doi: 10.1073/pnas.1002716107 PMID: 20534506
  336. Ruiz-Pérez, D.; Benito, J.; Polo, G.; Largo, C.; Aguado, D.; Sanz, L.; Gómez de Segura, I.A. The effects of the tolllike receptor 4 Antagonist, Ibudilast, on Sevoflurane’s minimum alveolar concentration and the delayed remifentanilinduced increase in the minimum alveolar concentration in rats. Anesth. Analg., 2016, 122(5), 1370-1376. doi: 10.1213/ANE.0000000000001171 PMID: 26859874
  337. Su, Y.; Wang, Y.; Zhou, Y.; Zhu, Z.; Zhang, Q.; Zhang, X.; Wang, W.; Gu, X.; Guo, A.; Wang, Y. Macrophage migration inhibitory factor activates inflammatory responses of astrocytes through interaction with CD74 receptor. Oncotarget, 2017, 8(2), 2719-2730. doi: 10.18632/oncotarget.13739 PMID: 27926507
  338. Hagman, S.; Raunio, M.; Rossi, M.; Dastidar, P.; Elovaara, I. Disease-associated inflammatory biomarker profiles in blood in different subtypes of multiple sclerosis: Prospective clinical and MRI follow-up study. J. Neuroimmunol., 2011, 234(1-2), 141-147. doi: 10.1016/j.jneuroim.2011.02.009 PMID: 21397339
  339. Barkhof, F.; Hulst, H.E.; Drulovic, J.; Uitdehaag, B.M.J.; Matsuda, K.; Landin, R. Ibudilast in relapsing-remitting multiple sclerosis: A neuroprotectant? Neurology, 2010, 74(13), 1033-1040. doi: 10.1212/WNL.0b013e3181d7d651 PMID: 20200338
  340. MediciNova. A phase 2 randomized, double-blind, placebocontrolled study to evaluate the safety, tolerability and activity of ibudilast (MN-166) in subjects with progressive multiple sclerosis; clinicaltrials.gov. NCT01982942, 2020.
  341. Fox, R.J.; Coffey, C.S.; Conwit, R.; Cudkowicz, M.E.; Gleason, T.; Goodman, A.; Klawiter, E.C.; Matsuda, K.; McGovern, M.; Naismith, R.T.; Ashokkumar, A.; Barnes, J.; Ecklund, D.; Klingner, E.; Koepp, M.; Long, J.D.; Natarajan, S.; Thornell, B.; Yankey, J.; Bermel, R.A.; Debbins, J.P.; Huang, X.; Jagodnik, P.; Lowe, M.J.; Nakamura, K.; Narayanan, S.; Sakaie, K.E.; Thoomukuntla, B.; Zhou, X.; Krieger, S.; Alvarez, E.; Apperson, M.; Bashir, K.; Cohen, B.A.; Coyle, P.K.; Delgado, S.; Dewitt, L.D.; Flores, A.; Giesser, B.S.; Goldman, M.D.; Jubelt, B.; Lava, N.; Lynch, S.G.; Moses, H.; Ontaneda, D.; Perumal, J.S.; Racke, M.; Repovic, P.; Riley, C.S.; Severson, C.; Shinnar, S.; Suski, V.; Weinstock-Guttman, B.; Yadav, V.; Zabeti, A. Phase 2 trial of ibudilast in progressive multiple sclerosis. N. Engl. J. Med., 2018, 379(9), 846-855. doi: 10.1056/NEJMoa1803583 PMID: 30157388
  342. Mi, S.; Blake Pepinsky, R.; Cadavid, D. Blocking LINGO-1 as a therapy to promote CNS repair : From concept to the clinic. CNS Drugs, 2013, 27(7), 493-503. doi: 10.1007/s40263-013-0068-8 PMID: 23681979
  343. Mi, S.; Miller, R.H.; Lee, X.; Scott, M.L.; Shulag-Morskaya, S.; Shao, Z.; Chang, J.; Thill, G.; Levesque, M.; Zhang, M.; Hession, C.; Sah, D.; Trapp, B.; He, Z.; Jung, V.; McCoy, J.M.; Pepinsky, R.B. LINGO-1 negatively regulates myelination by oligodendrocytes. Nat. Neurosci., 2005, 8(6), 745-751. doi: 10.1038/nn1460 PMID: 15895088
  344. Mi, S.; Miller, R.H.; Tang, W.; Lee, X.; Hu, B.; Wu, W.; Zhang, Y.; Shields, C.B.; Zhang, Y.; Miklasz, S.; Shea, D.; Mason, J.; Franklin, R.J.M.; Ji, B.; Shao, Z.; Chédotal, A.; Bernard, F.; Roulois, A.; Xu, J.; Jung, V.; Pepinsky, B. Promotion of central nervous system remyelination by induced differentiation of oligodendrocyte precursor cells. Ann. Neurol., 2009, 65(3), 304-315. doi: 10.1002/ana.21581 PMID: 19334062
  345. Biogen. A randomized, double-blind, placebo-controlled, parallelgroup, dose-ranging study to assess the efficacy, safety, tolerability, and pharmacokinetics of BIIB033 in subjects with relapsing forms of multiple sclerosis when used concurrently with avonex; clinicaltrials.gov. NCT01864148, 2017.
  346. Cadavid, D.; Mellion, M.; Hupperts, R.; Edwards, K.R.; Calabresi, P.A.; Drulović, J.; Giovannoni, G.; Hartung, H.P.; Arnold, D.L.; Fisher, E.; Rudick, R.; Mi, S.; Chai, Y.; Li, J.; Zhang, Y.; Cheng, W.; Xu, L.; Zhu, B.; Green, S.M.; Chang, I.; Deykin, A.; Sheikh, S.I.; Agüera Morales, E.; Al Khedr, A.; Ampapa, R.; Arroyo, R.; Belkin, M.; Bonek, R.; Boyko, A.; Capra, R.; Centonze, D.; Clavelou, P.; Debouverie, M.; Drulovic, J.; Edwards, K.; Evangelou, N.; Evdoshenko, E.; Fernández, O.; Fernández Sánchez, V.; Freedman, M.; Freedman, S.; Fryze, W.; Garcia-Merino, A.; Gavric-Kezic, M.; Ghezzi, A.; Gout, O.; Grimaldi, L.; Hendin, B.; Hertmanowska, H.; Hintzen, R.; Hradilek, P.; Hupperts, R.; Ilkowski, J.; Ivashinenkova, E.; Izquierdo, G.; Jacques, F.; Jakab, G.; Khabirov, F.; Klodowska-Duda, G.; Komoly, S.; Kostic, S.; Kovarova, I.; Kremenchuzky, M.; Laganke, C.; LaPierre, Y.; Maciejowski, M.; Maison, F.G.; Marfia, G.A.; Martínez Yélamos, S.; Meluzinova, E.; Montalban, X.; Murray, R.; Naismith, R.; Newsome, S.; Nguyen, V.; Oreja, D.; Pardo, G.; Pasechnik, E.; Patti, F.; Potemkowski, A.; Prokopenko, S.; Qian, P.; Rodríguez-Antigüedad, A.; Rossman, H.; Rozsa, C.; Sánchez López, F.; Selmaj, K.; Silber, E.; Stepien, A.; Stepniewska, A.; Swiat, M.; Toncev, G.; Tourbah, A.; Trushnikova, T.; Uccelli, A.; Vachova, M.; Valis, M.; Vecsei, L.; Wiertlewski, S.; Zaffaroni, M.; Zielinski, T. Safety and efficacy of opicinumab in patients with relapsing multiple sclerosis (SYNERGY) : A randomised, placebo-controlled, phase 2 trial. Lancet Neurol., 2019, 18(9), 845-856. doi: 10.1016/S1474-4422(19)30137-1 PMID: 31285147
  347. Biogen. A multicenter, randomized, double-blind, placebocontrolled study with optional open-label extension in subjects with relapsing multiple sclerosis to evaluate the efficacy and safety of BIIB033 as an add-on therapy to anti-inflammatory diseasemodifying therapies; clinicaltrials.gov. NCT03222973, 2022.
  348. Biogen. A multicenter, double-blind, placebo-controlled, parallelgroup, dose-ranging phase 2 study to evaluate the efficacy and safety of Oral BIIB061 as add-on therapy to interferon-beta 1 or glatiramer acetate therapies in relapsing multiple sclerosis; clinicaltrials.gov. D1690C00024, 2021.
  349. Bonaventura, G.; Munafò, A.; Bellanca, C.M.; La Cognata, V.; Iemmolo, R.; Attaguile, G.A.; Di Mauro, R.; Di Benedetto, G.; Cantarella, G.; Barcellona, M.L.; Cavallaro, S.; Bernardini, R. Stem cells : Innovative therapeutic options for neurodegenerative diseases? Cells, 2021, 10(8), 1992. doi: 10.3390/cells10081992 PMID: 34440761
  350. Moayeri, A.; Nazm Bojnordi, M.; Haratizadeh, S.; Esmaeilnejad-Moghadam, A.; Alizadeh, R.; Ghasemi Hamidabadi, H. Transdifferentiation of human dental pulp stem cells into oligoprogenitor cells. Basic Clin. Neurosci., 2017, 8(5), 387-394. doi: 10.18869/nirp.bcn.8.5.387 PMID: 29167725
  351. Pluchino, S.; Martino, G. The therapeutic use of stem cells for myelin repair in autoimmune demyelinating disorders. J. Neurol. Sci., 2005, 233(1-2), 117-119. doi: 10.1016/j.jns.2005.03.026 PMID: 15896808
  352. Chopp, M.; Li, Y. Treatment of neural injury with marrow stromal cells. Lancet Neurol., 2002, 1(2), 92-100. doi: 10.1016/S1474-4422(02)00040-6 PMID: 12849513
  353. Teixeira, F.G.; Carvalho, M.M.; Sousa, N.; Salgado, A.J. Mesenchymal stem cells secretome : A new paradigm for central nervous system regeneration? Cell. Mol. Life Sci., 2013, 70(20), 3871-3882. doi: 10.1007/s00018-013-1290-8 PMID: 23456256
  354. Alanazi, A.; Alassiri, M.; Jawdat, D.; Almalik, Y. Mesenchymal stem cell therapy : A review of clinical trials for multiple sclerosis. Regen. Ther., 2022, 21, 201-209. doi: 10.1016/j.reth.2022.07.003 PMID: 36092509
  355. Laudani, S.; La Cognata, V.; Iemmolo, R.; Bonaventura, G.; Villaggio, G.; Saccone, S.; Barcellona, M.L.; Cavallaro, S.; Sinatra, F. Effect of a bone marrow-derived extracellular matrix on cell adhesion and neural induction of dental pulp stem cells. Front. Cell Dev. Biol., 2020, 8, 100. doi: 10.3389/fcell.2020.00100 PMID: 32211401
  356. Ghasemi Hamidabadi, H.; Rezvani, Z.; Nazm Bojnordi, M.; Shirinzadeh, H.; Seifalian, A.M.; Joghataei, M.T.; Razaghpour, M.; Alibakhshi, A.; Yazdanpanah, A.; Salimi, M.; Mozafari, M.; Urbanska, A.M.; Reis, R.L.; Kundu, S.C.; Gholipourmalekabadi, M. Chitosan-intercalated montmorillonite/poly(vinyl alcohol) nanofibers as a platform to guide neuronlike differentiation of human dental pulp stem cells. ACS Appl. Mater. Interfaces, 2017, 9(13), 11392-11404. doi: 10.1021/acsami.6b14283 PMID: 28117963
  357. Caseiro, A.R.; Pereira, T.; Ivanova, G.; Luís, A.L.; Maurício, A.C. Neuromuscular regeneration : Perspective on the application of mesenchymal stem cells and their secretion products. Stem Cells Int., 2016, 2016, 1-16. doi: 10.1155/2016/9756973 PMID: 26880998
  358. Hidalgo San Jose, L.; Stephens, P.; Song, B.; Barrow, D. Microfluidic encapsulation supports stem cell viability, proliferation, and neuronal differentiation. Tissue Eng. Part C Methods, 2018, 24(3), 158-170. doi: 10.1089/ten.tec.2017.0368 PMID: 29258387
  359. Sakai, K.; Yamamoto, A.; Matsubara, K.; Nakamura, S.; Naruse, M.; Yamagata, M.; Sakamoto, K.; Tauchi, R.; Wakao, N.; Imagama, S.; Hibi, H.; Kadomatsu, K.; Ishiguro, N.; Ueda, M. Human dental pulp-derived stem cells promote locomotor recovery after complete transection of the rat spinal cord by multiple neuro-regenerative mechanisms. J. Clin. Invest., 2011, 122(1), 80-90. doi: 10.1172/JCI59251 PMID: 22133879
  360. Mead, B.; Logan, A.; Berry, M.; Leadbeater, W.; Scheven, B.A. Paracrinemediated neuroprotection and neuritogenesis of axotomised retinal ganglion cells by human dental pulp stem cells : Comparison with human bone marrow and adipose-derived mesenchymal stem cells. PLoS One, 2014, 9(10), e109305. doi: 10.1371/journal.pone.0109305 PMID: 25290916
  361. Gancheva, M.R.; Kremer, K.L.; Gronthos, S.; Koblar, S.A. Using dental pulp stem cells for stroke therapy. Front. Neurol., 2019, 10, 422. doi: 10.3389/fneur.2019.00422 PMID: 31110489
  362. Xiao, Z.; Lei, T.; Liu, Y.; Yang, Y.; Bi, W.; Du, H. The potential therapy with dental tissuederived mesenchymal stem cells in Parkinson’s disease. Stem Cell Res. Ther., 2021, 12(1), 5. doi: 10.1186/s13287-020-01957-4 PMID: 33407864
  363. Darabi, S.; Tiraihi, T.; Nazm Bojnordi, M.; Ghasemi Hamidabadi, H.; Rezaei, N.; Zahiri, M.; Alizadeh, R. Transdifferentiation of human dental pulp stem cells into cholinergiclike neurons via nerve growth factor. Basic Clin. Neurosci., 2019, 10(6), 609-618. doi: 10.32598/bcn.10.6.609 PMID: 32477478
  364. Dhanushkodi, A.; Shamir, C.; Venugopal, C. Dental pulp stem cells for treating neurodegenerative diseases. Neural Regen. Res., 2015, 10(12), 1910-1911. doi: 10.4103/1673-5374.169629 PMID: 26889163
  365. Victor, A.K.; Reiter, L.T. Dental pulp stem cells for the study of neurogenetic disorders. Hum. Mol. Genet., 2017, 26(R2), R166-R171. doi: 10.1093/hmg/ddx208 PMID: 28582499
  366. Alsaeedi, H.A.; Koh, A.E.H.; Lam, C.; Rashid, M.B.A.; Harun, M.H.N.; Saleh, M.F.B.M.; Teh, S.W.; Luu, C.D.; Ng, M.H.; Isa, H.M.; Leow, S.N.; Then, K.Y.; Bastion, M.L.C.; Mok, P.L.; Muthuvenkatachalam, B.S.; Samrot, A.V.; Swamy, K.B.; Nandakumar, J.; Kumar, S.S. Dental pulp stem cells therapy overcome photoreceptor cell death and protects the retina in a rat model of sodium iodate-induced retinal degeneration. J. Photochem. Photobiol. B, 2019, 198, 111561. doi: 10.1016/j.jphotobiol.2019.111561 PMID: 31352000
  367. Feng, X.; Chen, P.; Zhao, X.; Wang, J.; Wang, H. Transplanted embryonic retinal stem cells have the potential to repair the injured retina in mice. BMC Ophthalmol., 2021, 21(1), 26. doi: 10.1186/s12886-020-01795-1 PMID: 33422026
  368. Blakemore, W.F.; Franklin, R.J.M. Transplantation options for therapeutic central nervous system remyelination. Cell Transplant., 2000, 9(2), 289-294. doi: 10.1177/096368970000900214 PMID: 10811401
  369. Huang, A.H.C.; Chen, Y.K.; Lin, L.M.; Shieh, T.Y.; Chan, A.W.S. Isolation and characterization of dental pulp stem cells from a supernumerary tooth. J. Oral Pathol. Med., 2008, 37(9), 571-574. doi: 10.1111/j.1600-0714.2008.00654.x PMID: 18331285
  370. Sloan, A.J.; Smith, A.J. Stem cells and the dental pulp : Potential roles in dentine regeneration and repair. Oral Dis., 2007, 13(2), 151-157. doi: 10.1111/j.1601-0825.2006.01346.x PMID: 17305615
  371. Chang, C.C.; Chang, K.C.; Tsai, S.J.; Chang, H.H.; Lin, C.P. Neurogenic differentiation of dental pulp stem cells to neuron-like cells in dopaminergic and motor neuronal inductive media. J. Formos. Med. Assoc., 2014, 113(12), 956-965. doi: 10.1016/j.jfma.2014.09.003 PMID: 25438878
  372. Chun, S.Y.; Soker, S.; Jang, Y.J.; Kwon, T.G.; Yoo, E.S. Differentiation of human dental pulp stem cells into dopaminergic neuron-like cells in Vitro J. Korean Med. Sci., 2016, 31(2), 171-177. doi: 10.3346/jkms.2016.31.2.171 PMID: 26839468

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Bentham Science Publishers, 2024