Targeting Histone 3 Variants Epigenetic Landscape and Inhibitory Immune Checkpoints: An Option for Paediatric Brain Tumours Therapy
- Authors: Meenakshi S.1, Maharana K.2, Nama L.2, Kumar Vadla U.1, Dhingra S.1, Ravichandiran V.1, Murti K.1, Kumar N.2
-
Affiliations:
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research
- Issue: Vol 22, No 7 (2024)
- Pages: 1248-1270
- Section: Neurology
- URL: https://rjpbr.com/1570-159X/article/view/644848
- DOI: https://doi.org/10.2174/1570159X21666230809110444
- ID: 644848
Cite item
Full Text
Abstract
Despite little progress in survival rates with regular therapies, which do not provide complete care for curing pediatric brain tumors (PBTs), there is an urgent need for novel strategies to overcome the toxic effects of conventional therapies to treat PBTs. The co-inhibitory immune checkpoint molecules, e.g., CTLA-4, PD-1/PD-L1, etc., and epigenetic alterations in histone variants, e.g., H3K27me3 that help in immune evasion at tumor microenvironment have not gained much attention in PBTs treatment. However, key epigenetic mechanistic alterations, such as acetylation, methylation, phosphorylation, sumoylation, poly (ADP)-ribosylation, and ubiquitination in histone protein, are greatly acknowledged. The crucial checkpoints in pediatric brain tumors are cytotoxic T lymphocyte antigen-4 (CTLA-4), programmed cell death protein-1 (PD-1) and programmed death-ligand 1 (PDL1), OX-2 membrane glycoprotein (CD200), and indoleamine 2,3-dioxygenase (IDO). This review covers the state of knowledge on the role of multiple co-inhibitory immunological checkpoint proteins and histone epigenetic alterations in different cancers. We further discuss the processes behind these checkpoints, cell signalling, the current scenario of clinical and preclinical research and potential futuristic opportunities for immunotherapies in the treatment of pediatric brain tumors. Conclusively, this article further discusses the possibilities of these interventions to be used for better therapy options.
About the authors
Sarasa Meenakshi
Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research
Email: info@benthamscience.net
Krushna Maharana
Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research
Email: info@benthamscience.net
Lokesh Nama
Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research
Email: info@benthamscience.net
Udaya Kumar Vadla
Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research
Email: info@benthamscience.net
Sameer Dhingra
Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research
Email: info@benthamscience.net
Velayutham Ravichandiran
Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research
Email: info@benthamscience.net
Krishna Murti
Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research
Author for correspondence.
Email: info@benthamscience.net
Nitesh Kumar
Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research
Author for correspondence.
Email: info@benthamscience.net
References
- Dong, H.; Strome, S.E.; Salomao, D.R.; Tamura, H.; Hirano, F.; Flies, D.B.; Roche, P.C.; Lu, J.; Zhu, G.; Tamada, K.; Lennon, V.A.; Celis, E.; Chen, L. Tumor-associated B7-H1 promotes T-cell apoptosis: A potential mechanism of immune evasion. Nat. Med., 2002, 8(8), 793-800. doi: 10.1038/nm730 PMID: 12091876
- Topalian, S.L.; Drake, C.G.; Pardoll, D.M. Immune checkpoint blockade: A common denominator approach to cancer therapy. Cancer Cell, 2015, 27(4), 450-461. doi: 10.1016/j.ccell.2015.03.001 PMID: 25858804
- Vignali, D.A.A.; Collison, L.W.; Workman, C.J. How regulatory T cells work. Nat. Rev. Immunol., 2008, 8(7), 523-532. doi: 10.1038/nri2343 PMID: 18566595
- Facciabene, A.; Motz, G.T.; Coukos, G. T-regulatory cells: key players in tumor immune escape and angiogenesis. Cancer Res., 2012, 72(9), 2162-2171. doi: 10.1158/0008-5472.CAN-11-3687 PMID: 22549946
- Baylin, S.B.; Esteller, M.; Rountree, M.R.; Bachman, K.E.; Schuebel, K. Aberrant patterns of DNA methylation, chromatin formation and gene expression in cancer. Hum. Mol. Genet., 2001, 10(7), 687-692.
- Héninger, E.; Krueger, T.E.; Lang, J.M. Augmenting antitumor immune responses with epigenetic modifying agents. Front. Immunol., 2015, 6, 49.
- Feinberg, A.P.; Koldobskiy, M.A.; Göndör, A.J.N.R.G. Epigenetic modulators, modifiers and mediators in cancer aetiology and progression. Nat. Rev. Genet., 2016, 17(5), 284-299. doi: 10.1038/nrg.2016.13
- He, C.; Xu, J.; Zhang, J.; Xie, D.; Ye, H.; Xiao, Z. High expression of trimethylated histone H3 lysine 4 is associated with poor prognosis in hepatocellular carcinoma. Hum. Pathol., 2012, 43(9), 1425-1435. doi: 10.1016/j.humpath.2011.11.003
- Hayashi, A.; Yamauchi, N.; Shibahara, J.; Kimura, H.; Morikawa, T.; Ishikawa, S.; Nagae, G.; Nishi, A.; Sakamoto, Y.; Kokudo, N.; Aburatani, H.; Fukayama, M. Concurrent activation of acetylation and tri-methylation of H3K27 in a subset of hepatocellular carcinoma with aggressive behavior. PLoS One, 2014, 9(3), e91330. doi: 10.1371/journal.pone.0091330 PMID: 24614346
- Li, D. Zeng, ZJBR Epigenetic regulation of histone H3 in the process of hepatocellular tumorigenesis. Biosci. Rep., 2019, 39(8), BSR20191815. doi: 10.1042/BSR20191815
- Berger, S.L.; Kouzarides, T.; Shiekhattar, R.; Shilatifard, A. An operational definition of epigenetics. Genes Dev., 2009, 23(7), 781-783. doi: 10.1101/gad.1787609 PMID: 19339683
- Xu, G.L.; Bestor, T.H.; Bourchis, D.; Hsieh, C.L.; Tommerup, N.; Bugge, M.; Hulten, M.; Qu, X.; Russo, J.J.; Viegas-Péquignot, E. Chromosome instability and immunodeficiency syndrome caused by mutations in a DNA methyltransferase gene. Nature, 1999, 402(6758), 187-191. doi: 10.1038/46052 PMID: 10647011
- Portela, A.; Esteller, M. Epigenetic modifications and human disease. Nat. Biotechnol., 2010, 28(10), 1057-1068. doi: 10.1038/nbt.1685 PMID: 20944598
- Baylin, S.B.; Ohm, J.E. Epigenetic gene silencing in cancer - a mechanism for early oncogenic pathway addiction? Nat. Rev. Cancer, 2006, 6(2), 107-116. doi: 10.1038/nrc1799 PMID: 16491070
- Suzuki, M.M.; Bird, A. DNA methylation landscapes: provocative insights from epigenomics. Nat. Rev. Genet., 2008, 9(6), 465-476. doi: 10.1038/nrg2341 PMID: 18463664
- Bird, A. DNA methylation patterns and epigenetic memory. Genes Dev., 2002, 16(1), 6-21. doi: 10.1101/gad.947102 PMID: 11782440
- Esteller, M. Epigenetic gene silencing in cancer: the DNA hypermethylome. Hum. Mol. Genet., 2007, 16(R1), R50-R59. doi: 10.1093/hmg/ddm018 PMID: 17613547
- Lopez-Serra, L.; Esteller, M. Proteins that bind methylated DNA and human cancer: reading the wrong words. Br. J. Cancer, 2008, 98(12), 1881-1885. doi: 10.1038/sj.bjc.6604374 PMID: 18542062
- Sharma, S.V.; Lee, D.Y.; Li, B.; Quinlan, M.P.; Takahashi, F.; Maheswaran, S.; McDermott, U.; Azizian, N.; Zou, L.; Fischbach, M.A.; Wong, K.K.; Brandstetter, K.; Wittner, B.; Ramaswamy, S.; Classon, M.; Settleman, J. A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations. Cell, 2010, 141(1), 69-80. doi: 10.1016/j.cell.2010.02.027 PMID: 20371346
- Kelly, T.K.; De Carvalho, D.D.; Jones, P.A. Epigenetic modifications as therapeutic targets. Nat. Biotechnol., 2010, 28(10), 1069-1078. doi: 10.1038/nbt.1678 PMID: 20944599
- Stupp, R.; Hegi, M.E.; Mason, W.P.; van den Bent, M.J.; Taphoorn, M.J.B.; Janzer, R.C.; Ludwin, S.K.; Allgeier, A.; Fisher, B.; Belanger, K.; Hau, P.; Brandes, A.A.; Gijtenbeek, J.; Marosi, C.; Vecht, C.J.; Mokhtari, K.; Wesseling, P.; Villa, S.; Eisenhauer, E.; Gorlia, T.; Weller, M.; Lacombe, D.; Cairncross, J.G.; Mirimanoff, R.O. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol., 2009, 10(5), 459-466. doi: 10.1016/S1470-2045(09)70025-7 PMID: 19269895
- Broniscer, A.; Chintagumpala, M.; Fouladi, M.; Krasin, M.J.; Kocak, M.; Bowers, D.C.; Iacono, L.C.; Merchant, T.E.; Stewart, C.F.; Houghton, P.J.; Kun, L.E.; Ledet, D.; Gajjar, A. Temozolomide after radiotherapy for newly diagnosed high-grade glioma and unfavorable low-grade glioma in children. J. Neurooncol., 2006, 76(3), 313-319. doi: 10.1007/s11060-005-7409-5 PMID: 16200343
- Cohen, K.J.; Pollack, I.F.; Zhou, T.; Buxton, A.; Holmes, E.J.; Burger, P.C.; Brat, D.J.; Rosenblum, M.K.; Hamilton, R.L.; Lavey, R.S.; Heideman, R.L. Temozolomide in the treatment of high-grade gliomas in children: a report from the Childrens Oncology Group. Neuro-oncol., 2011, 13(3), 317-323. doi: 10.1093/neuonc/noq191 PMID: 21339192
- Lashford, L.S.; Thiesse, P.; Jouvet, A.; Jaspan, T.; Couanet, D.; Griffiths, P.D.; Doz, F.; Ironside, J.; Robson, K.; Hobson, R.; Dugan, M.; Pearson, A.D.J.; Vassal, G.; Frappaz, D. Temozolomide in malignant gliomas of childhood: A united kingdom childrens cancer study group and french society for pediatric oncology intergroup study. J. Clin. Oncol., 2002, 20(24), 4684-4691. doi: 10.1200/JCO.2002.08.141 PMID: 12488414
- Ruggiero, A.; Cefalo, G.; Garré, M.L.; Massimino, M.; Colosimo, C.; Attinà, G.; Lazzareschi, I.; Maurizi, P.; Ridola, V.; Mazzarella, G.; Caldarelli, M.; Rocco, C.D.; Madon, E.; Abate, M.E.; Clerico, A.; Sandri, A.; Riccardi, R. Phase II trial of temozolomide in children with recurrent high-grade glioma. J. Neurooncol., 2006, 77(1), 89-94. doi: 10.1007/s11060-005-9011-2 PMID: 16292488
- Korshunov, A.; Ryzhova, M.; Hovestadt, V.; Bender, S.; Sturm, D.; Capper, D.; Meyer, J.; Schrimpf, D.; Kool, M.; Northcott, P.A.; Zheludkova, O.; Milde, T.; Witt, O.; Kulozik, A.E.; Reifenberger, G.; Jabado, N.; Perry, A.; Lichter, P.; von Deimling, A.; Pfister, S.M.; Jones, D.T.W. Integrated analysis of pediatric glioblastoma reveals a subset of biologically favorable tumors with associated molecular prognostic markers. Acta Neuropathol., 2015, 129(5), 669-678. doi: 10.1007/s00401-015-1405-4 PMID: 25752754
- Chassot, A.; Canale, S.; Varlet, P.; Puget, S.; Roujeau, T.; Negretti, L.; Dhermain, F.; Rialland, X.; Raquin, M.A.; Grill, J.; Dufour, C. Radiotherapy with concurrent and adjuvant temozolomide in children with newly diagnosed diffuse intrinsic pontine glioma. J. Neurooncol., 2012, 106(2), 399-407. doi: 10.1007/s11060-011-0681-7 PMID: 21858607
- Cohen, K.J.; Heideman, R.L.; Zhou, T.; Holmes, E.J.; Lavey, R.S.; Bouffet, E.; Pollack, I.F. Temozolomide in the treatment of children with newly diagnosed diffuse intrinsic pontine gliomas: a report from the Childrens Oncology Group. Neuro-oncol., 2011, 13(4), 410-416. doi: 10.1093/neuonc/noq205 PMID: 21345842
- Hargrave, D.; Bartels, U.; Bouffet, E. Diffuse brainstem glioma in children: critical review of clinical trials. Lancet Oncol., 2006, 7(3), 241-248. doi: 10.1016/S1470-2045(06)70615-5 PMID: 16510333
- Rizzo, D.; Scalzone, M.; Ruggiero, A.; Maurizi, P.; Attinà, G.; Mastrangelo, S.; Lazzareschi, I.; Ridola, V.; Colosimo, C.; Caldarelli, M.; Balducci, M.; Riccardi, R. Temozolomide in the treatment of newly diagnosed diffuse brainstem glioma in children: a broken promise? J. Chemother., 2015, 27(2), 106-110. doi: 10.1179/1973947814Y.0000000228 PMID: 25466729
- Grasso, C.S.; Tang, Y.; Truffaux, N.; Berlow, N.E.; Liu, L.; Debily, M.A.; Quist, M.J.; Davis, L.E.; Huang, E.C.; Woo, P.J.; Ponnuswami, A.; Chen, S.; Johung, T.B.; Sun, W.; Kogiso, M.; Du, Y.; Qi, L.; Huang, Y.; Hütt-Cabezas, M.; Warren, K.E.; Le Dret, L.; Meltzer, P.S.; Mao, H.; Quezado, M.; van Vuurden, D.G.; Abraham, J.; Fouladi, M.; Svalina, M.N.; Wang, N.; Hawkins, C.; Nazarian, J.; Alonso, M.M.; Raabe, E.H.; Hulleman, E.; Spellman, P.T.; Li, X.N.; Keller, C.; Pal, R.; Grill, J.; Monje, M. Functionally defined therapeutic targets in diffuse intrinsic pontine glioma. Nat. Med., 2015, 21(6), 555-559. doi: 10.1038/nm.3855 PMID: 25939062
- Hashizume, R.; Andor, N.; Ihara, Y.; Lerner, R.; Gan, H.; Chen, X.; Fang, D.; Huang, X.; Tom, M.W.; Ngo, V.; Solomon, D.; Mueller, S.; Paris, P.L.; Zhang, Z.; Petritsch, C.; Gupta, N.; Waldman, T.A.; James, C.D. Pharmacologic inhibition of histone demethylation as a therapy for pediatric brainstem glioma. Nat. Med., 2014, 20(12), 1394-1396. doi: 10.1038/nm.3716 PMID: 25401693
- Keir, M.E.; Liang, S.C.; Guleria, I.; Latchman, Y.E.; Qipo, A.; Albacker, L.A.; Koulmanda, M.; Freeman, G.J.; Sayegh, M.H.; Sharpe, A.H. Tissue expression of PD-L1 mediates peripheral T cell tolerance. J. Exp. Med., 2006, 203(4), 883-895. doi: 10.1084/jem.20051776 PMID: 16606670
- Ohigashi, Y.; Sho, M.; Yamada, Y.; Tsurui, Y.; Hamada, K.; Ikeda, N.; Mizuno, T.; Yoriki, R.; Kashizuka, H.; Yane, K.; Tsushima, F.; Otsuki, N.; Yagita, H.; Azuma, M.; Nakajima, Y. Clinical significance of programmed death-1 ligand-1 and programmed death-1 ligand-2 expression in human esophageal cancer. Clin. Cancer Res., 2005, 11(8), 2947-2953. doi: 10.1158/1078-0432.CCR-04-1469 PMID: 15837746
- Patel, S.P.; Kurzrock, R. PD-L1 expression as a predictive biomarker in cancer immunotherapy. Mol. Cancer Ther., 2015, 14(4), 847-856. doi: 10.1158/1535-7163.MCT-14-0983 PMID: 25695955
- Lussier, D.M.; ONeill, L.; Nieves, L.M.; McAfee, M.S.; Holechek, S.A.; Collins, A.W.; Dickman, P.; Jacobsen, J.; Hingorani, P.; Blattman, J.N. Enhanced T-cell immunity to osteosarcoma through antibody blockade of PD-1/PD-L1 interactions. J. Immunother., 2015, 38(3), 96-106. doi: 10.1097/CJI.0000000000000065 PMID: 25751499
- Pham, C.D.; Flores, C.; Yang, C.; Pinheiro, E.M.; Yearley, J.H.; Sayour, E.J.; Pei, Y.; Moore, C.; McLendon, R.E.; Huang, J.; Sampson, J.H.; Wechsler-Reya, R.; Mitchell, D.A. Differential immune microenvironments and response to immune checkpoint blockade among molecular subtypes of murine medulloblastoma. Clin. Cancer Res., 2016, 22(3), 582-595. doi: 10.1158/1078-0432.CCR-15-0713 PMID: 26405194
- Aoki, T.; Hino, M.; Koh, K.; Kyushiki, M.; Kishimoto, H.; Arakawa, Y.; Hanada, R.; Kawashima, H.; Kurihara, J.; Shimojo, N.; Motohashi, S. Low frequency of programmed death ligand 1 expression in pediatric cancers. Pediatr. Blood Cancer, 2016, 63(8), 1461-1464. doi: 10.1002/pbc.26018 PMID: 27135656
- Chowdhury, F.; Dunn, S.; Mitchell, S.; Mellows, T.; Ashton-Key, M.; Gray, J.C. PD-L1 and CD8 + PD1 + lymphocytes exist as targets in the pediatric tumor microenvironment for immunomodulatory therapy. OncoImmunology, 2015, 4(10), e1029701. doi: 10.1080/2162402X.2015.1029701
- Kim, C.; Kim, E.K.; Jung, H.; Chon, H.J.; Han, J.W.; Shin, K.H.; Hu, H.; Kim, K.S.; Choi, Y.D.; Kim, S.; Lee, Y.H.; Suh, J.S.; Ahn, J.B.; Chung, H.C.; Noh, S.H.; Rha, S.Y.; Kim, S.H.; Kim, H.S. Prognostic implications of PD-L1 expression in patients with soft tissue sarcoma. BMC Cancer, 2016, 16(1), 434. doi: 10.1186/s12885-016-2451-6 PMID: 27393385
- Majzner, R.G.; Simon, J.S.; Grosso, J.F.; Martinez, D.; Pawel, B.; Santi-Vincini, M.; Merchant, M.S.; Sorensen, P.; Mackall, C.L.; Maris, J.M. Abstract 249: Assessment of PD-L1 expression and tumor-associated lymphocytes in pediatric cancer tissues. Cancer Res., 2015, 75(15_Supplement)(Suppl.), 249. doi: 10.1158/1538-7445.AM2015-249
- Routh, J.C.; Ashley, R.A.; Sebo, T.J.; Lohse, C.M.; Husmann, D.A.; Kramer, S.A.; Kwon, E.D. B7-H1 expression in Wilms tumor: correlation with tumor biology and disease recurrence. J. Urol., 2008, 179(5), 1954-1960. doi: 10.1016/j.juro.2008.01.056 PMID: 18355839
- Bhaijee, F.; Anders, R.A. PD-L1 Expression as a Predictive Biomarker. JAMA Oncol., 2016, 2(1), 54-55. doi: 10.1001/jamaoncol.2015.3782 PMID: 26561922
- Boes, M.; Meyer-Wentrup, F. TLR3 triggering regulates PD-L1 (CD274) expression in human neuroblastoma cells. Cancer Lett., 2015, 361(1), 49-56. doi: 10.1016/j.canlet.2015.02.027 PMID: 25697485
- Usui, Y.; Okunuki, Y.; Hattori, T.; Takeuchi, M.; Kezuka, T.; Goto, H.; Usui, M. Expression of costimulatory molecules on human retinoblastoma cells Y-79: functional expression of CD40 and B7H1. Invest. Ophthalmol. Vis. Sci., 2006, 47(10), 4607-4613. doi: 10.1167/iovs.06-0181 PMID: 17003458
- Mao, Y.; Eissler, N.; Blanc, K.L.; Johnsen, J.I.; Kogner, P.; Kiessling, R. Targeting suppressive myeloid cells potentiates checkpoint inhibitors to control spontaneous neuroblastoma. Clin. Cancer Res., 2016, 22(15), 3849-3859. doi: 10.1158/1078-0432.CCR-15-1912 PMID: 26957560
- Brahmer, J.; Reckamp, K.L.; Baas, P.; Crinò, L.; Eberhardt, W.E.E.; Poddubskaya, E.; Antonia, S.; Pluzanski, A.; Vokes, E.E.; Holgado, E.; Waterhouse, D.; Ready, N.; Gainor, J.; Arén Frontera, O.; Havel, L.; Steins, M.; Garassino, M.C.; Aerts, J.G.; Domine, M.; Paz-Ares, L.; Reck, M.; Baudelet, C.; Harbison, C.T.; Lestini, B.; Spigel, D.R. Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N. Engl. J. Med., 2015, 373(2), 123-135. doi: 10.1056/NEJMoa1504627 PMID: 26028407
- Motzer, R.J.; Escudier, B.; McDermott, D.F.; George, S.; Hammers, H.J.; Srinivas, S.; Tykodi, S.S.; Sosman, J.A.; Procopio, G.; Plimack, E.R.; Castellano, D.; Choueiri, T.K.; Gurney, H.; Donskov, F.; Bono, P.; Wagstaff, J.; Gauler, T.C.; Ueda, T.; Tomita, Y.; Schutz, F.A.; Kollmannsberger, C.; Larkin, J.; Ravaud, A.; Simon, J.S.; Xu, L.A.; Waxman, I.M.; Sharma, P. Nivolumab versus everolimus in advanced renal-cell carcinoma. N. Engl. J. Med., 2015, 373(19), 1803-1813. doi: 10.1056/NEJMoa1510665 PMID: 26406148
- Robert, C.; Schachter, J.; Long, G.V.; Arance, A.; Grob, J.J.; Mortier, L.; Daud, A.; Carlino, M.S.; McNeil, C.; Lotem, M.; Larkin, J.; Lorigan, P.; Neyns, B.; Blank, C.U.; Hamid, O.; Mateus, C.; Shapira-Frommer, R.; Kosh, M.; Zhou, H.; Ibrahim, N.; Ebbinghaus, S.; Ribas, A. Pembrolizumab versus ipilimumab in advanced melanoma. N. Engl. J. Med., 2015, 372(26), 2521-2532. doi: 10.1056/NEJMoa1503093 PMID: 25891173
- Rosenberg, J.E.; Hoffman-Censits, J.; Powles, T.; van der Heijden, M.S.; Balar, A.V.; Necchi, A.; Dawson, N.; ODonnell, P.H.; Balmanoukian, A.; Loriot, Y.; Srinivas, S.; Retz, M.M.; Grivas, P.; Joseph, R.W.; Galsky, M.D.; Fleming, M.T.; Petrylak, D.P.; Perez-Gracia, J.L.; Burris, H.A.; Castellano, D.; Canil, C.; Bellmunt, J.; Bajorin, D.; Nickles, D.; Bourgon, R.; Frampton, G.M.; Cui, N.; Mariathasan, S.; Abidoye, O.; Fine, G.D.; Dreicer, R. Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial. Lancet, 2016, 387(10031), 1909-1920. doi: 10.1016/S0140-6736(16)00561-4 PMID: 26952546
- Valsecchi, M.E. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N. Engl. J. Med., 2015, 373(13), 1270-1271. doi: 10.1056/NEJMc1509660 PMID: 26398077
- Carbognin, L.; Pilotto, S.; Milella, M.; Vaccaro, V.; Brunelli, M.; Caliò, A.; Cuppone, F.; Sperduti, I.; Giannarelli, D.; Chilosi, M.; Bronte, V.; Scarpa, A.; Bria, E.; Tortora, G. Differential activity of nivolumab, pembrolizumab and MPDL3280A according to the tumor expression of programmed death-ligand-1 (PD-L1): Sensitivity analysis of trials in melanoma, lung and genitourinary cancers. PLoS One, 2015, 10(6), e0130142. doi: 10.1371/journal.pone.0130142 PMID: 26086854
- Bouffet, E.; Larouche, V.; Campbell, B.B.; Merico, D.; de Borja, R.; Aronson, M.; Durno, C.; Krueger, J.; Cabric, V.; Ramaswamy, V.; Zhukova, N.; Mason, G.; Farah, R.; Afzal, S.; Yalon, M.; Rechavi, G.; Magimairajan, V.; Walsh, M.F.; Constantini, S.; Dvir, R.; Elhasid, R.; Reddy, A.; Osborn, M.; Sullivan, M.; Hansford, J.; Dodgshun, A.; Klauber-Demore, N.; Peterson, L.; Patel, S.; Lindhorst, S.; Atkinson, J.; Cohen, Z.; Laframboise, R.; Dirks, P.; Taylor, M.; Malkin, D.; Albrecht, S.; Dudley, R.W.R.; Jabado, N.; Hawkins, C.E.; Shlien, A.; Tabori, U. Immune checkpoint inhibition for hypermutant glioblastoma multiforme resulting from germline biallelic mismatch repair deficiency. J. Clin. Oncol., 2016, 34(19), 2206-2211. doi: 10.1200/JCO.2016.66.6552 PMID: 27001570
- Alegre, M.L.; Noel, P.J.; Eisfelder, B.J.; Chuang, E.; Clark, M.R.; Reiner, S.L.; Thompson, C.B. Regulation of surface and intracellular expression of CTLA4 on mouse T cells. J. Immunol., 1996, 157(11), 4762-4770. doi: 10.4049/jimmunol.157.11.4762 PMID: 8943377
- Linsley, P.S.; Bradshaw, J.; Greene, J.; Peach, R.; Bennett, K.L.; Mittler, R.S. Intracellular trafficking of CTLA-4 and focal localization towards sites of TCR engagement. Immunity, 1996, 4(6), 535-543. doi: 10.1016/S1074-7613(00)80480-X PMID: 8673700
- Noel, P.J.; Boise, L.H.; Green, J.M.; Thompson, C.B. CD28 costimulation prevents cell death during primary T cell activation. J. Immunol., 1996, 157(2), 636-642. doi: 10.4049/jimmunol.157.2.636 PMID: 8752911
- Wing, K.; Onishi, Y.; Prieto-Martin, P.; Yamaguchi, T.; Miyara, M.; Fehervari, Z.; Nomura, T.; Sakaguchi, S. CTLA-4 control over Foxp3+ regulatory T cell function. Science, 2008, 322(5899), 271-275. doi: 10.1126/science.1160062 PMID: 18845758
- Selby, M.J.; Engelhardt, J.J.; Quigley, M.; Henning, K.A.; Chen, T.; Srinivasan, M.; Korman, A.J. Anti-CTLA-4 antibodies of IgG2a isotype enhance antitumor activity through reduction of intratumoral regulatory T cells. Cancer Immunol. Res., 2013, 1(1), 32-42. doi: 10.1158/2326-6066.CIR-13-0013 PMID: 24777248
- Peggs, K.S.; Quezada, S.A.; Chambers, C.A.; Korman, A.J.; Allison, J.P. Blockade of CTLA-4 on both effector and regulatory T cell compartments contributes to the antitumor activity of anti-CTLA-4 antibodies. J. Exp. Med., 2009, 206(8), 1717-1725. doi: 10.1084/jem.20082492 PMID: 19581407
- Sun, T.; Zhou, Y.; Yang, M.; Hu, Z.; Tan, W.; Han, X.; Shi, Y.; Yao, J.; Guo, Y.; Yu, D.; Tian, T.; Zhou, X.; Shen, H.; Lin, D. Functional genetic variations in cytotoxic T-lymphocyte antigen 4 and susceptibility to multiple types of cancer. Cancer Res., 2008, 68(17), 7025-7034. doi: 10.1158/0008-5472.CAN-08-0806 PMID: 18757416
- Yu, F.; Miao, J. Significant association between cytotoxic T lymphocyte antigen 4 +49G>A polymorphism and risk of malignant bone tumors. Tumour Biol., 2013, 34(6), 3371-3375.
- Hurwitz, A.A.; Yu, T.F.Y.; Leach, D.R.; Allison, J.P. CTLA-4 blockade synergizes with tumor-derived granulocyte- macrophage colony-stimulating factor for treatment of an experimental mammary carcinoma. Proc. Natl. Acad. Sci. USA, 1998, 95(17), 10067-10071. doi: 10.1073/pnas.95.17.10067 PMID: 9707601
- Kwon, E.D.; Hurwitz, A.A.; Foster, B.A.; Madias, C.; Feldhaus, A.L.; Greenberg, N.M.; Burg, M.B.; Allison, J.P. Manipulation of T cell costimulatory and inhibitory signals for immunotherapy of prostate cancer. Proc. Natl. Acad. Sci. USA, 1997, 94(15), 8099-8103. doi: 10.1073/pnas.94.15.8099 PMID: 9223321
- Leach, D.R.; Krummel, M.F.; Allison, J.P. Enhancement of antitumor immunity by CTLA-4 blockade. Science, 1996, 271(5256), 1734-1736. doi: 10.1126/science.271.5256.1734 PMID: 8596936
- Contardi, E.; Palmisano, G.L.; Tazzari, P.L.; Martelli, A.M.; Falà, F.; Fabbi, M.; Kato, T.; Lucarelli, E.; Donati, D.; Polito, L.; Bolognesi, A.; Ricci, F.; Salvi, S.; Gargaglione, V.; Mantero, S.; Alberghini, M.; Ferrara, G.B.; Pistillo, M.P. CTLA-4 is constitutively expressed on tumor cells and can trigger apoptosis upon ligand interaction. Int. J. Cancer, 2005, 117(4), 538-550. doi: 10.1002/ijc.21155 PMID: 15912538
- Merchant, M.S.; Wright, M.; Baird, K.; Wexler, L.H.; Rodriguez-Galindo, C.; Bernstein, D.; Delbrook, C.; Lodish, M.; Bishop, R.; Wolchok, J.D.; Streicher, H.; Mackall, C.L.; Phase, I. Clinical Trial of Ipilimumab in Pediatric Patients with Advanced Solid Tumors. Clin. Cancer Res., 2016, 22(6), 1364-1370. doi: 10.1158/1078-0432.CCR-15-0491 PMID: 26534966
- Eggermont, A.M.M.; Chiarion-Sileni, V.; Grob, J.J.; Dummer, R.; Wolchok, J.D.; Schmidt, H.; Hamid, O.; Robert, C.; Ascierto, P.A.; Richards, J.M.; Lebbé, C.; Ferraresi, V.; Smylie, M.; Weber, J.S.; Maio, M.; Konto, C.; Hoos, A.; de Pril, V.; Gurunath, R.K.; de Schaetzen, G.; Suciu, S.; Testori, A. Adjuvant ipilimumab versus placebo after complete resection of high-risk stage III melanoma (EORTC 18071): a randomised, double-blind, phase 3 trial. Lancet Oncol., 2015, 16(5), 522-530. doi: 10.1016/S1470-2045(15)70122-1 PMID: 25840693
- Ribas, A.; Kefford, R.; Marshall, M.A.; Punt, C.J.A.; Haanen, J.B.; Marmol, M.; Garbe, C.; Gogas, H.; Schachter, J.; Linette, G.; Lorigan, P.; Kendra, K.L.; Maio, M.; Trefzer, U.; Smylie, M.; McArthur, G.A.; Dreno, B.; Nathan, P.D.; Mackiewicz, J.; Kirkwood, J.M.; Gomez-Navarro, J.; Huang, B.; Pavlov, D.; Hauschild, A. Phase III randomized clinical trial comparing tremelimumab with standard-of-care chemotherapy in patients with advanced melanoma. J. Clin. Oncol., 2013, 31(5), 616-622. doi: 10.1200/JCO.2012.44.6112 PMID: 23295794
- Wright, G.J.; Jones, M.; Puklavec, M.J.; Brown, M.H.; Barclay, A.N. The unusual distribution of the neuronal/lymphoid cell surface CD200 (OX2) glycoprotein is conserved in humans. Immunology, 2001, 102(2), 173-179. doi: 10.1046/j.1365-2567.2001.01163.x PMID: 11260322
- Hoek, R.M.; Ruuls, S.R.; Murphy, C.A.; Wright, G.J.; Goddard, R.; Zurawski, S.M.; Blom, B.; Homola, M.E.; Streit, W.J.; Brown, M.H.; Barclay, A.N.; Sedgwick, J.D. Down-regulation of the macrophage lineage through interaction with OX2 (CD200). Science, 2000, 290(5497), 1768-1771. doi: 10.1126/science.290.5497.1768 PMID: 11099416
- Jenmalm, M.C.; Cherwinski, H.; Bowman, E.P.; Phillips, J.H.; Sedgwick, J.D. Regulation of myeloid cell function through the CD200 receptor. J. Immunol., 2006, 176(1), 191-199. doi: 10.4049/jimmunol.176.1.191 PMID: 16365410
- Gorczynski, R.M.; Lee, L.; Boudakov, I. Augmented Induction of CD4+CD25+ Treg using monoclonal antibodies to CD200R. Transplantation, 2005, 79(9), 1180-1183. doi: 10.1097/01.TP.0000152118.51622.F9 PMID: 15880066
- McWhirter, J.R.; Kretz-Rommel, A.; Saven, A.; Maruyama, T.; Potter, K.N.; Mockridge, C.I.; Ravey, E.P.; Qin, F.; Bowdish, K.S. Antibodies selected from combinatorial libraries block a tumor antigen that plays a key role in immunomodulation. Proc. Natl. Acad. Sci. USA, 2006, 103(4), 1041-1046. doi: 10.1073/pnas.0510081103 PMID: 16418292
- Kretz-Rommel, A.; Qin, F.; Dakappagari, N.; Ravey, E.P.; McWhirter, J.; Oltean, D.; Frederickson, S.; Maruyama, T.; Wild, M.A.; Nolan, M.J.; Wu, D.; Springhorn, J.; Bowdish, K.S. CD200 expression on tumor cells suppresses antitumor immunity: new approaches to cancer immunotherapy. J. Immunol., 2007, 178(9), 5595-5605. doi: 10.4049/jimmunol.178.9.5595 PMID: 17442942
- Coles, S.J.; Hills, R.K.; Wang, E.C.Y.; Burnett, A.K.; Man, S.; Darley, R.L.; Tonks, A. Increased CD200 expression in acute myeloid leukemia is linked with an increased frequency of FoxP3+ regulatory T cells. Leukemia, 2012, 26(9), 2146-2148. doi: 10.1038/leu.2012.75 PMID: 22430636
- Damiani, D.; Tiribelli, M.; Raspadori, D.; Sirianni, S.; Meneghel, A.; Cavalllin, M.; Michelutti, A.; Toffoletti, E.; Geromin, A.; Simeone, E.; Bocchia, M.; Fanin, R. Clinical impact of CD200 expression in patients with acute myeloid leukemia and correlation with other molecular prognostic factors. Oncotarget, 2015, 6(30), 30212-30221. doi: 10.18632/oncotarget.4901 PMID: 26338961
- Moertel, C.L.; Xia, J.; LaRue, R.; Waldron, N.N.; Andersen, B.M.; Prins, R.M.; Okada, H.; Donson, A.M.; Foreman, N.K.; Hunt, M.A.; Pennell, C.A.; Olin, M.R. CD200 in CNS tumor-induced immunosuppression: the role for CD200 pathway blockade in targeted immunotherapy. J. Immunother. Cancer, 2014, 2(1), 46. doi: 10.1186/s40425-014-0046-9 PMID: 25598973
- Siva, A.; Xin, H.; Qin, F.; Oltean, D.; Bowdish, K.S.; Kretz-Rommel, A. Immune modulation by melanoma and ovarian tumor cells through expression of the immunosuppressive molecule CD200. Cancer Immunol. Immunother., 2008, 57(7), 987-996. doi: 10.1007/s00262-007-0429-6 PMID: 18060403
- Alexander, W. American society of hematology, 52nd annual meeting and exposition. PT, 2011, 36(2), 100-103.
- Dai, X.; Zhu, B.T. Indoleamine 2,3-dioxygenase tissue distribution and cellular localization in mice: implications for its biological functions. J. Histochem. Cytochem., 2010, 58(1), 17-28. doi: 10.1369/jhc.2009.953604 PMID: 19741271
- Guillemin, G.J.; Smythe, G.; Takikawa, O.; Brew, B.J. Expression of indoleamine 2,3-dioxygenase and production of quinolinic acid by human microglia, astrocytes, and neurons. Glia, 2005, 49(1), 15-23. doi: 10.1002/glia.20090 PMID: 15390107
- Takikawa, O. Biochemical and medical aspects of the indoleamine 2,3-dioxygenase-initiated l-tryptophan metabolism. Biochem. Biophys. Res. Commun., 2005, 338(1), 12-19. doi: 10.1016/j.bbrc.2005.09.032 PMID: 16176799
- Frumento, G.; Rotondo, R.; Tonetti, M.; Damonte, G.; Benatti, U.; Ferrara, G.B. Tryptophan-derived catabolites are responsible for inhibition of T and natural killer cell proliferation induced by indoleamine 2,3-dioxygenase. J. Exp. Med., 2002, 196(4), 459-468. doi: 10.1084/jem.20020121 PMID: 12186838
- Werner-Felmayer, G.; Werner, E.R.; Fuchs, D.; Hausen, A.; Reibnegger, G.; Wachter, H. Characteristics of interferon induced tryptophan metabolism in human cells in vitro. Biochim. Biophys. Acta Mol. Cell Res., 1989, 1012(2), 140-147. doi: 10.1016/0167-4889(89)90087-6 PMID: 2500976
- Wolf, A.; Wolf, D.; Rumpold, H.; Moschen, A.R.; Kaser, A.; Obrist, P.; Fuchs, D.; Brandacher, G.; Winkler, C.; Geboes, K.; Rutgeerts, P.; Tilg, H. Overexpression of indoleamine 2,3-dioxygenase in human inflammatory bowel disease. Clin. Immunol., 2004, 113(1), 47-55. doi: 10.1016/j.clim.2004.05.004 PMID: 15380529
- Munn, D.H.; Zhou, M.; Attwood, J.T.; Bondarev, I.; Conway, S.J.; Marshall, B.; Brown, C.; Mellor, A.L. Prevention of allogeneic fetal rejection by tryptophan catabolism. Science, 1998, 281(5380), 1191-1193. doi: 10.1126/science.281.5380.1191 PMID: 9712583
- Uyttenhove, C.; Pilotte, L.; Théate, I.; Stroobant, V.; Colau, D.; Parmentier, N.; Boon, T.; Van den Eynde, B.J. Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase. Nat. Med., 2003, 9(10), 1269-1274. doi: 10.1038/nm934 PMID: 14502282
- Soliman, H.H.; Minton, S.E.; Han, H.S.; Ismail-Khan, R.; Neuger, A.; Khambati, F.; Noyes, D.; Lush, R.; Chiappori, A.A.; Roberts, J.D.; Link, C.; Vahanian, N.N.; Mautino, M.; Streicher, H.; Sullivan, D.M.; Antonia, S.J. A phase I study of indoximod in patients with advanced malignancies. Oncotarget, 2016, 7(16), 22928-22938. doi: 10.18632/oncotarget.8216 PMID: 27008709
- Urakawa, H.; Nishida, Y.; Nakashima, H.; Shimoyama, Y.; Nakamura, S.; Ishiguro, N. Prognostic value of indoleamine 2,3-dioxygenase expression in high grade osteosarcoma. Clin. Exp. Metastasis, 2009, 26(8), 1005-1012. doi: 10.1007/s10585-009-9290-7 PMID: 19802733
- Chapoval, A.I.; Ni, J.; Lau, J.S.; Wilcox, R.A.; Flies, D.B.; Liu, D.; Dong, H.; Sica, G.L.; Zhu, G.; Tamada, K.; Chen, L. B7-H3: A costimulatory molecule for T cell activation and IFN-γ production. Nat. Immunol., 2001, 2(3), 269-274. doi: 10.1038/85339 PMID: 11224528
- Sun, J.; Fu, F.; Gu, W.; Yan, R.; Zhang, G.; Shen, Z.; Zhou, Y.; Wang, H.; Shen, B.; Zhang, X. Origination of new immunological functions in the costimulatory molecule B7-H3: the role of exon duplication in evolution of the immune system. PLoS One, 2011, 6(9), e24751. doi: 10.1371/journal.pone.0024751 PMID: 21931843
- Ling, V.; Wu, P.W.; Spaulding, V.; Kieleczawa, J.; Luxenberg, D.; Carreno, B.M.; Collins, M. Duplication of primate and rodent B7-H3 immunoglobulin V- and C-like domains: divergent history of functional redundancy and exon loss. Genomics, 2003, 82(3), 365-377. doi: 10.1016/S0888-7543(03)00126-5 PMID: 12906861
- Steinberger, P.; Majdic, O.; Derdak, S.V.; Pfistershammer, K.; Kirchberger, S.; Klauser, C.; Zlabinger, G.; Pickl, W.F.; Stöckl, J.; Knapp, W. Molecular characterization of human 4Ig-B7-H3, a member of the B7 family with four Ig-like domains. J. Immunol., 2004, 172(4), 2352-2359. doi: 10.4049/jimmunol.172.4.2352 PMID: 14764704
- Sun, M.; Richards, S.; Prasad, D.V.R.; Mai, X.M.; Rudensky, A.; Dong, C. Characterization of mouse and human B7-H3 genes. J. Immunol., 2002, 168(12), 6294-6297. doi: 10.4049/jimmunol.168.12.6294 PMID: 12055244
- Zhou, Y.H.; Chen, Y.J.; Ma, Z.Y.; Xu, L.; Wang, Q.; Zhang, G.B.; Xie, F.; Ge, Y.; Wang, X.F.; Zhang, X.G. 4IgB7-H3 is the major isoform expressed on immunocytes as well as malignant cells. Tissue Antigens, 2007, 70(2), 96-104. doi: 10.1111/j.1399-0039.2007.00853.x PMID: 17610414
- Zhang, G.; Hou, J.; Shi, J.; Yu, G.; Lu, B.; Zhang, X. Soluble CD276 (B7-H3) is released from monocytes, dendritic cells and activated T cells and is detectable in normal human serum. Immunology, 2008, 123(4), 538-546. doi: 10.1111/j.1365-2567.2007.02723.x PMID: 18194267
- Picarda, E.; Ohaegbulam, K.C.; Zang, X. Molecular Pathways: Targeting B7-H3 (CD276) for Human Cancer Immunotherapy. Clin. Cancer Res., 2016, 22(14), 3425-3431. doi: 10.1158/1078-0432.CCR-15-2428 PMID: 27208063
- Carreno, B.M.; Collins, M. The B7 family of ligands and its receptors: new pathways for costimulation and inhibition of immune responses. Annu. Rev. Immunol., 2002, 20(1), 29-53. doi: 10.1146/annurev.immunol.20.091101.091806 PMID: 11861596
- Chen, L. Co-inhibitory molecules of the B7-CD28 family in the control of T-cell immunity. Nat. Rev. Immunol., 2004, 4(5), 336-347. doi: 10.1038/nri1349 PMID: 15122199
- Greenwald, R.J.; Freeman, G.J.; Sharpe, A.H. The B7 family revisited. Annu. Rev. Immunol., 2005, 23(1), 515-548. doi: 10.1146/annurev.immunol.23.021704.115611 PMID: 15771580
- Hashiguchi, M.; Kobori, H.; Ritprajak, P.; Kamimura, Y.; Kozono, H.; Azuma, M. Triggering receptor expressed on myeloid cell-like transcript 2 (TLT-2) is a counter-receptor for B7-H3 and enhances T cell responses. Proc. Natl. Acad. Sci. USA, 2008, 105(30), 10495-10500. doi: 10.1073/pnas.0802423105 PMID: 18650384
- Prasad, D.V.R.; Nguyen, T.; Li, Z.; Yang, Y.; Duong, J.; Wang, Y.; Dong, C. Murine B7-H3 is a negative regulator of T cells. J. Immunol., 2004, 173(4), 2500-2506. doi: 10.4049/jimmunol.173.4.2500 PMID: 15294965
- Mahnke, K.; Ring, S.; Johnson, T.S.; Schallenberg, S.; Schönfeld, K.; Storn, V.; Bedke, T.; Enk, A.H. Induction of immunosuppressive functions of dendritic cells in vivo by CD4+CD25+ regulatory T cells: Role of B7-H3 expression and antigen presentation. Eur. J. Immunol., 2007, 37(8), 2117-2126. doi: 10.1002/eji.200636841 PMID: 17615586
- Leitner, J.; Klauser, C.; Pickl, W.F.; Stöckl, J.; Majdic, O.; Bardet, A.F.; Kreil, D.P.; Dong, C.; Yamazaki, T.; Zlabinger, G.; Pfistershammer, K.; Steinberger, P. B7-H3 is a potent inhibitor of human T-cell activation: No evidence for B7-H3 and TREML2 interaction. Eur. J. Immunol., 2009, 39(7), 1754-1764. doi: 10.1002/eji.200839028 PMID: 19544488
- Hofmeyer, K.A.; Ray, A.; Zang, X. The contrasting role of B7-H3. Proc. Natl. Acad. Sci. USA, 2008, 105(30), 10277-10278. doi: 10.1073/pnas.0805458105 PMID: 18650376
- Petroff, M.G.; Kharatyan, E.; Torry, D.S.; Holets, L. The immunomodulatory proteins B7-DC, B7-H2, and B7-H3 are differentially expressed across gestation in the human placenta. Am. J. Pathol., 2005, 167(2), 465-473. doi: 10.1016/S0002-9440(10)62990-2 PMID: 16049332
- Wang, J.; Chong, K.K.; Nakamura, Y.; Nguyen, L.; Huang, S.K.; Kuo, C.; Zhang, W.; Yu, H.; Morton, D.L.; Hoon, D.S.B. B7-H3 associated with tumor progression and epigenetic regulatory activity in cutaneous melanoma. J. Invest. Dermatol., 2013, 133(8), 2050-2058. doi: 10.1038/jid.2013.114 PMID: 23474948
- Hu, Y.; Lv, X.; Wu, Y.; Xu, J.; Wang, L.; Chen, W.; Zhang, W.; Li, J.; Zhang, S.; Qiu, H. Expression of costimulatory molecule B7-H3 and its prognostic implications in human acute leukemia. Hematology, 2015, 20(4), 187-195. doi: 10.1179/1607845414Y.0000000186 PMID: 25130683
- Sun, J.; Guo, Y.; Li, X.; Zhang, Y.; Gu, L.; Wu, P.; Bai, G.; Xiao, Y. B7-H3 expression in breast cancer and upregulation of VEGF through gene silence. OncoTargets Ther., 2014, 7, 1979-1986. doi: 10.2147/OTT.S63424 PMID: 25378933
- Zang, X.; Thompson, R.H.; Al-Ahmadie, H.A.; Serio, A.M.; Reuter, V.E.; Eastham, J.A.; Scardino, P.T.; Sharma, P.; Allison, J.P. B7-H3 and B7x are highly expressed in human prostate cancer and associated with disease spread and poor outcome. Proc. Natl. Acad. Sci. USA, 2007, 104(49), 19458-19463. doi: 10.1073/pnas.0709802104 PMID: 18042703
- Zang, X.; Sullivan, P.S.; Soslow, R.A.; Waitz, R.; Reuter, V.E.; Wilton, A. Tumor associated endothelial expression of B7-H3 predicts survival in ovarian carcinomas. Modern pathology: an official journal of the United States and Canadian Academy of Pathology. Inc., 2010, 23(8), 1104-1112.
- Chen, Y.; Zhao, H.; Zhu, D. zhi; He, S.; Kuang, Y.; Li, D.; Zhang, Z.; Song, S.; Zhang, L.; Sun, J. The coexpression and clinical significance of costimulatory molecules B7-H1, B7-H3, and B7-H4 in human pancreatic cancer. OncoTargets Ther., 2014, 7, 1465-1472. doi: 10.2147/OTT.S66809 PMID: 25170273
- Ingebrigtsen, V.A.; Boye, K.; Nesland, J.M.; Nesbakken, A.; Flatmark, K.; Fodstad, Ø. B7-H3 expression in colorectal cancer: associations with clinicopathological parameters and patient outcome. BMC Cancer, 2014, 14(1), 602. doi: 10.1186/1471-2407-14-602 PMID: 25139714
- Lemke, D.; Pfenning, P.N.; Sahm, F.; Klein, A.C.; Kempf, T.; Warnken, U.; Schnölzer, M.; Tudoran, R.; Weller, M.; Platten, M.; Wick, W. Costimulatory protein 4IgB7H3 drives the malignant phenotype of glioblastoma by mediating immune escape and invasiveness. Clin. Cancer Res., 2012, 18(1), 105-117. doi: 10.1158/1078-0432.CCR-11-0880 PMID: 22080438
- Wang, L.; Zhang, Q.; Chen, W.; Shan, B.; Ding, Y.; Zhang, G.; Cao, N.; Liu, L.; Zhang, Y. B7-H3 is overexpressed in patients suffering osteosarcoma and associated with tumor aggressiveness and metastasis. PLoS One, 2013, 8(8), e70689. doi: 10.1371/journal.pone.0070689 PMID: 23940627
- Ingebrigtsen, V.A.; Boye, K.; Tekle, C.; Nesland, J.M.; Flatmark, K.; Fodstad, Ø. B7-H3 expression in colorectal cancer: Nuclear localization strongly predicts poor outcome in colon cancer. Int. J. Cancer, 2012, 131(11), 2528-2536. doi: 10.1002/ijc.27566 PMID: 22473715
- Qin, X.; Zhang, H.; Ye, D.; Dai, B.; Zhu, Y.; Shi, G. B7-H3 is a new cancer-specific endothelial marker in clear cell renal cell carcinoma. OncoTargets Ther., 2013, 6, 1667-1673. doi: 10.2147/OTT.S53565 PMID: 24265557
- Bachawal, S.V.; Jensen, K.C.; Wilson, K.E.; Tian, L.; Lutz, A.M.; Willmann, J.K. Breast cancer detection by B7-H3-targeted ultrasound molecular imaging. Cancer Res., 2015, 75(12), 2501-2509. doi: 10.1158/0008-5472.CAN-14-3361 PMID: 25899053
- Arigami, T.; Narita, N.; Mizuno, R.; Nguyen, L.; Ye, X.; Chung, A.; Giuliano, A.E.; Hoon, D.S.B. B7-h3 ligand expression by primary breast cancer and associated with regional nodal metastasis. Ann. Surg., 2010, 252(6), 1044-1051. doi: 10.1097/SLA.0b013e3181f1939d PMID: 21107115
- Kraan, J.; van den Broek, P.; Verhoef, C.; Grunhagen, D.J.; Taal, W.; Gratama, J.W.; Sleijfer, S. Endothelial CD276 (B7-H3) expression is increased in human malignancies and distinguishes between normal and tumour-derived circulating endothelial cells. Br. J. Cancer, 2014, 111(1), 149-156. doi: 10.1038/bjc.2014.286 PMID: 24892449
- Liu, C.; Liu, J.; Wang, J.; Liu, Y.; Zhang, F.; Lin, W.; Gao, A.; Sun, M.; Wang, Y.; Sun, Y. B7-H3 expression in ductal and lobular breast cancer and its association with IL-10. Mol. Med. Rep., 2013, 7(1), 134-138. doi: 10.3892/mmr.2012.1158 PMID: 23128494
- Loo, D.; Alderson, R.F.; Chen, F.Z.; Huang, L.; Zhang, W.; Gorlatov, S.; Burke, S.; Ciccarone, V.; Li, H.; Yang, Y.; Son, T.; Chen, Y.; Easton, A.N.; Li, J.C.; Rillema, J.R.; Licea, M.; Fieger, C.; Liang, T.W.; Mather, J.P.; Koenig, S.; Stewart, S.J.; Johnson, S.; Bonvini, E.; Moore, P.A. Development of an Fc-enhanced anti-B7-H3 monoclonal antibody with potent antitumor activity. Clin. Cancer Res., 2012, 18(14), 3834-3845. doi: 10.1158/1078-0432.CCR-12-0715 PMID: 22615450
- Maeda, N.; Yoshimura, K.; Yamamoto, S.; Kuramasu, A.; Inoue, M.; Suzuki, N.; Watanabe, Y.; Maeda, Y.; Kamei, R.; Tsunedomi, R.; Shindo, Y.; Inui, M.; Tamada, K.; Yoshino, S.; Hazama, S.; Oka, M. Expression of B7-H3, a potential factor of tumor immune evasion in combination with the number of regulatory T cells, affects against recurrence-free survival in breast cancer patients. Ann. Surg. Oncol., 2014, 21(S4)(Suppl. 4), 546-554. doi: 10.1245/s10434-014-3564-2 PMID: 24562936
- Chen, J.T.; Chen, C.H.; Ku, K.L.; Hsiao, M.; Chiang, C.P.; Hsu, T.L.; Chen, M.H.; Wong, C.H. Glycoprotein B7-H3 overexpression and aberrant glycosylation in oral cancer and immune response. Proc. Natl. Acad. Sci. USA, 2015, 112(42), 13057-13062. doi: 10.1073/pnas.1516991112 PMID: 26438868
- Biglarian, A.; Hajizadeh, E.; Kazemnejad, A.; Zayeri, F. Determining of prognostic factors in gastric cancer patients using artificial neural networks. APJCP, 2010, 11(2), 533-536. PMID: 20843146
- Sun, Y.; Wang, Y.; Zhao, J.; Gu, M.; Giscombe, R.; Lefvert, A.K.; Wang, X. B7-H3 and B7-H4 expression in non-small-cell lung cancer. Lung Cancer, 2006, 53(2), 143-151. doi: 10.1016/j.lungcan.2006.05.012 PMID: 16782226
- Chen, C.; Shen, Y.; Qu, Q.X.; Chen, X.Q.; Zhang, X.G.; Huang, J.A. Induced expression of B7-H3 on the lung cancer cells and macrophages suppresses T-cell mediating anti-tumor immune response. Exp. Cell Res., 2013, 319(1), 96-102. doi: 10.1016/j.yexcr.2012.09.006 PMID: 22999863
- Lupu, C.M.; Eisenbach, C.; Kuefner, M.A.; Schmidt, J.; Lupu, A.D.; Stremmel, W.; Encke, J. An orthotopic colon cancer model for studying the B7-H3 antitumor effect in vivo. J. Gastrointest. Surg., 2006, 10(5), 635-645. doi: 10.1007/BF03239969 PMID: 16713537
- Zhang, W.; Wang, J.; Wang, Y.; Dong, F.; Zhu, M.; Wan, W.; Li, H.; Wu, F.; Yan, X.; Ke, X. B7-H3 silencing by RNAi inhibits tumor progression and enhances chemosensitivity in U937 cells. OncoTargets Ther., 2015, 8, 1721-1733. doi: 10.2147/OTT.S85272 PMID: 26203263
- Shapiro, S.D. Matrix metalloproteinase degradation of extracellular matrix: biological consequences. Curr. Opin. Cell Biol., 1998, 10(5), 602-608. doi: 10.1016/S0955-0674(98)80035-5 PMID: 9818170
- Chen, Y.W.; Tekle, C.; Fodstad, O. The immunoregulatory protein human B7H3 is a tumor-associated antigen that regulates tumor cell migration and invasion. Curr. Cancer Drug Targets, 2008, 8(5), 404-413. doi: 10.2174/156800908785133141 PMID: 18690846
- Liu, F.; Zhang, T.; Zou, S.; Jiang, B.; Hua, D. B7-H3 promotes cell migration and invasion through the Jak2/Stat3/MMP9 signaling pathway in colorectal cancer. Mol. Med. Rep., 2015, 12(4), 5455-5460. doi: 10.3892/mmr.2015.4050 PMID: 26151358
- Liu, H.; Tekle, C.; Chen, Y.W.; Kristian, A.; Zhao, Y.; Zhou, M.; Liu, Z.; Ding, Y.; Wang, B.; Mælandsmo, G.M.; Nesland, J.M.; Fodstad, O.; Tan, M. B7-H3 silencing increases paclitaxel sensitivity by abrogating Jak2/Stat3 phosphorylation. Mol. Cancer Ther., 2011, 10(6), 960-971. doi: 10.1158/1535-7163.MCT-11-0072 PMID: 21518725
- Zhang, T.; Jiang, B.; Zou, S.T.; Liu, F.; Hua, D. Overexpression of B7-H3 augments anti-apoptosis of colorectal cancer cells by Jak2-STAT3. World J. Gastroenterol., 2015, 21(6), 1804-1813. doi: 10.3748/wjg.v21.i6.1804 PMID: 25684945
- Kang, F.; Wang, L.; Jia, H.; Li, D.; Li, H.; Zhang, Y.; Sun, D. B7-H3 promotes aggression and invasion of hepatocellular carcinoma by targeting epithelial-to-mesenchymal transition via JAK2/STAT3/Slug signaling pathway. Cancer Cell Int., 2015, 15(1), 45. doi: 10.1186/s12935-015-0195-z PMID: 25908926
- Tekle, C.; Nygren, M.K.; Chen, Y.W.; Dybsjord, I.; Nesland, J.M.; Maelandsmo, G.M.; Fodstad, Ø. B7-H3 contributes to the metastatic capacity of melanoma cells by modulation of known metastasis-associated genes. Int. J. Cancer, 2012, 130(10), 2282-2290. doi: 10.1002/ijc.26238 PMID: 21671471
- Xu, L.; Ding, X.; Tan, H.; Qian, J. Correlation between B7-H3 expression and matrix metalloproteinases 2 expression in pancreatic cancer. Cancer Cell Int., 2013, 13(1), 81. doi: 10.1186/1475-2867-13-81 PMID: 23947693
- Nunes-Xavier, C.E.; Karlsen, K.F.; Tekle, C.; Pedersen, C.; Øyjord, T.; Hongisto, V.; Nesland, J.M.; Tan, M.; Sahlberg, K.K.; Fodstad, Ø. Decreased expression of B7-H3 reduces the glycolytic capacity and sensitizes breast cancer cells to AKT/mTOR inhibitors. Oncotarget, 2016, 7(6), 6891-6901. doi: 10.18632/oncotarget.6902 PMID: 26771843
- Lim, S.; Liu, H.; da Silva, L.M.; Arora, R.; Liu, Z.; Phillips, J.B.; Schmitt, D.C.; Vu, T.; McClellan, S.; Lin, Y.; Lin, W.; Piazza, G.A.; Fodstad, O.; Tan, M. Immunoregulatory protein B7-H3 reprograms glucose metabolism in cancer cells by ROS-mediated stabilization of HIF1α. Cancer Res., 2016, 76(8), 2231-2242. doi: 10.1158/0008-5472.CAN-15-1538 PMID: 27197253
- Luther, N.; Zhou, Z.; Zanzonico, P.; Cheung, N.K.; Humm, J.; Edgar, M.A. The potential of theragnostic (1)(2)(4)I-8H9 convection-enhanced delivery in diffuse intrinsic pontine glioma. Neuro-oncol., 2014, 16(6), 800-806. doi: 10.1093/neuonc/not298 PMID: 24526309
- Modak, S.; Guo, H.F.; Humm, J.L.; Smith-Jones, P.M.; Larson, S.M.; Cheung, N.K.V. Radioimmunotargeting of human rhabdomyosarcoma using monoclonal antibody 8H9. Cancer Biother. Radiopharm., 2005, 20(5), 534-546. doi: 10.1089/cbr.2005.20.534 PMID: 16248769
- Ahmed, M.; Cheng, M.; Zhao, Q.; Goldgur, Y.; Cheal, S.M.; Guo, H.F.; Larson, S.M.; Cheung, N.K.V. Humanized Affinity-matured monoclonal antibody 8H9 has potent antitumor activity and binds to FG loop of tumor antigen B7-H3. J. Biol. Chem., 2015, 290(50), 30018-30029. doi: 10.1074/jbc.M115.679852 PMID: 26487718
- Kramer, K.; Kushner, B.H.; Modak, S.; Pandit-Taskar, N.; Smith-Jones, P.; Zanzonico, P.; Humm, J.L.; Xu, H.; Wolden, S.L.; Souweidane, M.M.; Larson, S.M.; Cheung, N.K.V. Compartmental intrathecal radioimmunotherapy: results for treatment for metastatic CNS neuroblastoma. J. Neurooncol., 2010, 97(3), 409-418. doi: 10.1007/s11060-009-0038-7 PMID: 19890606
- Shi, Z.; Hu, Y.; Chen, H.; Fu, F.; Zhang, X. Identification and characterization of monoclonal antibody Y4F11 against human B7-H3. XiBao Yu FenZi Mian Yi X ue ZaZ hi, 2016, 32(10), 1402-1406.
- Xu, H.; Cheung, I.Y.; Guo, H.F.; Cheung, N.K.V. MicroRNA miR-29 modulates expression of immunoinhibitory molecule B7-H3: potential implications for immune based therapy of human solid tumors. Cancer Res., 2009, 69(15), 6275-6281. doi: 10.1158/0008-5472.CAN-08-4517 PMID: 19584290
- Li, B.; VanRoey, M.; Triebel, F.; Jooss, K. Lymphocyte activation gene-3 fusion protein increases the potency of a granulocyte macrophage colony-stimulating factor-secreting tumor cell immunotherapy. Clin. Cancer Res., 2008, 14(11), 3545-3554. doi: 10.1158/1078-0432.CCR-07-5200 PMID: 18519788
- Yan, J.; Kong, L.Y.; Hu, J.; Gabrusiewicz, K.; Dibra, D.; Xia, X.; Heimberger, A.B.; Li, S. FGL2 as a multimodality regulator of tumor-mediated immune suppression and therapeutic target in gliomas. J. Natl. Cancer Inst., 2015, 107(8), djv137. doi: 10.1093/jnci/djv137 PMID: 25971300
- Sakuishi, K.; Apetoh, L.; Sullivan, J.M.; Blazar, B.R.; Kuchroo, V.K.; Anderson, A.C. Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity. J. Exp. Med., 2010, 207(10), 2187-2194. doi: 10.1084/jem.20100643 PMID: 20819927
- Wang, L.; Rubinstein, R.; Lines, J.L.; Wasiuk, A.; Ahonen, C.; Guo, Y.; Lu, L.F.; Gondek, D.; Wang, Y.; Fava, R.A.; Fiser, A.; Almo, S.; Noelle, R.J. VISTA, a novel mouse Ig superfamily ligand that negatively regulates T cell responses. J. Exp. Med., 2011, 208(3), 577-592. doi: 10.1084/jem.20100619 PMID: 21383057
- Fan, X.; Quezada, S.A.; Sepulveda, M.A.; Sharma, P.; Allison, J.P. Engagement of the ICOS pathway markedly enhances efficacy of CTLA-4 blockade in cancer immunotherapy. J. Exp. Med., 2014, 211(4), 715-725. doi: 10.1084/jem.20130590 PMID: 24687957
- Curti, B.D.; Kovacsovics-Bankowski, M.; Morris, N.; Walker, E.; Chisholm, L.; Floyd, K.; Walker, J.; Gonzalez, I.; Meeuwsen, T.; Fox, B.A.; Moudgil, T.; Miller, W.; Haley, D.; Coffey, T.; Fisher, B.; Delanty-Miller, L.; Rymarchyk, N.; Kelly, T.; Crocenzi, T.; Bernstein, E.; Sanborn, R.; Urba, W.J.; Weinberg, A.D. OX40 is a potent immune-stimulating target in late-stage cancer patients. Cancer Res., 2013, 73(24), 7189-7198. doi: 10.1158/0008-5472.CAN-12-4174 PMID: 24177180
- Melero, I.; Shuford, W.W.; Newby, S.A.; Aruffo, A.; Ledbetter, J.A.; Hellström, K.E.; Mittler, R.S.; Chen, L. Monoclonal antibodies against the 4-1BB T-cell activation molecule eradicate established tumors. Nat. Med., 1997, 3(6), 682-685. doi: 10.1038/nm0697-682 PMID: 9176498
- Janjigian, Y.Y.; Shitara, K.; Moehler, M.; Garrido, M.; Salman, P.; Shen, L.; Wyrwicz, L.; Yamaguchi, K.; Skoczylas, T.; Campos Bragagnoli, A.; Liu, T.; Schenker, M.; Yanez, P.; Tehfe, M.; Kowalyszyn, R.; Karamouzis, M.V.; Bruges, R.; Zander, T.; Pazo-Cid, R.; Hitre, E.; Feeney, K.; Cleary, J.M.; Poulart, V.; Cullen, D.; Lei, M.; Xiao, H.; Kondo, K.; Li, M.; Ajani, J.A. First-line nivolumab plus chemotherapy versus chemotherapy alone for advanced gastric, gastro-oesophageal junction, and oesophageal adenocarcinoma (CheckMate 649): a randomised, open-label, phase 3 trial. Lancet, 2021, 398(10294), 27-40. doi: 10.1016/S0140-6736(21)00797-2 PMID: 34102137
- Migden, M.R.; Rischin, D.; Schmults, C.D.; Guminski, A.; Hauschild, A.; Lewis, K.D.; Chung, C.H.; Hernandez-Aya, L.; Lim, A.M.; Chang, A.L.S.; Rabinowits, G.; Thai, A.A.; Dunn, L.A.; Hughes, B.G.M.; Khushalani, N.I.; Modi, B.; Schadendorf, D.; Gao, B.; Seebach, F.; Li, S.; Li, J.; Mathias, M.; Booth, J.; Mohan, K.; Stankevich, E.; Babiker, H.M.; Brana, I.; Gil-Martin, M.; Homsi, J.; Johnson, M.L.; Moreno, V.; Niu, J.; Owonikoko, T.K.; Papadopoulos, K.P.; Yancopoulos, G.D.; Lowy, I.; Fury, M.G. PD-1 blockade with cemiplimab in advanced cutaneous squamous-cell carcinoma. N. Engl. J. Med., 2018, 379(4), 341-351. doi: 10.1056/NEJMoa1805131 PMID: 29863979
- Cho, B.C.; Abreu, D.R.; Hussein, M.; Cobo, M.; Patel, A.J.; Secen, N.; Lee, K.H.; Massuti, B.; Hiret, S.; Yang, J.C.H.; Barlesi, F.; Lee, D.H.; Ares, L.P.; Hsieh, R.W.; Patil, N.S.; Twomey, P.; Yang, X.; Meng, R.; Johnson, M.L. Tiragolumab plus atezolizumab versus placebo plus atezolizumab as a first-line treatment for PD-L1-selected non-small-cell lung cancer (CITYSCAPE): primary and follow-up analyses of a randomised, double-blind, phase 2 study. Lancet Oncol., 2022, 23(6), 781-792. doi: 10.1016/S1470-2045(22)00226-1 PMID: 35576957
- Powles, T.; Park, S.H.; Voog, E.; Caserta, C.; Valderrama, B.P.; Gurney, H.; Kalofonos, H. Radulović S.; Demey, W.; Ullén, A.; Loriot, Y.; Sridhar, S.S.; Tsuchiya, N.; Kopyltsov, E.; Sternberg, C.N.; Bellmunt, J.; Aragon-Ching, J.B.; Petrylak, D.P.; Laliberte, R.; Wang, J.; Huang, B.; Davis, C.; Fowst, C.; Costa, N.; Blake-Haskins, J.A.; di Pietro, A.; Grivas, P. Avelumab maintenance therapy for advanced or metastatic urothelial carcinoma. N. Engl. J. Med., 2020, 383(13), 1218-1230. doi: 10.1056/NEJMoa2002788 PMID: 32945632
- Rizzo, A.; Ricci, A.D.; Brandi, G. Durvalumab: an investigational anti-PD-L1 antibody for the treatment of biliary tract cancer. Expert Opin. Investig. Drugs, 2021, 30(4), 343-350. doi: 10.1080/13543784.2021.1897102 PMID: 33645367
- Wolchok, J.D.; Kluger, H.; Callahan, M.K.; Postow, M.A.; Rizvi, N.A.; Lesokhin, A.M.; Segal, N.H.; Ariyan, C.E.; Gordon, R.A.; Reed, K.; Burke, M.M.; Caldwell, A.; Kronenberg, S.A.; Agunwamba, B.U.; Zhang, X.; Lowy, I.; Inzunza, H.D.; Feely, W.; Horak, C.E.; Hong, Q.; Korman, A.J.; Wigginton, J.M.; Gupta, A.; Sznol, M. Nivolumab plus ipilimumab in advanced melanoma. N. Engl. J. Med., 2013, 369(2), 122-133. doi: 10.1056/NEJMoa1302369 PMID: 23724867
- Kelley, R.K.; Sangro, B.; Harris, W.; Ikeda, M.; Okusaka, T.; Kang, Y.K.; Qin, S.; Tai, D.W.M.; Lim, H.Y.; Yau, T.; Yong, W.P.; Cheng, A.L.; Gasbarrini, A.; Damian, S.; Bruix, J.; Borad, M.; Bendell, J.; Kim, T.Y.; Standifer, N.; He, P.; Makowsky, M.; Negro, A.; Kudo, M.; Abou-Alfa, G.K. Safety, efficacy, and pharmacodynamics of tremelimumab plus durvalumab for patients with unresectable hepatocellular carcinoma: randomized expansion of a phase I/II study. J. Clin. Oncol., 2021, 39(27), 2991-3001. doi: 10.1200/JCO.20.03555 PMID: 34292792
- Sordo-Bahamonde, C.; Lorenzo-Herrero, S.; González-Rodríguez, A.P.; Payer, Á.R.; González-García, E.; López-Soto, A.; Gonzalez, S. LAG-3 blockade with relatlimab (BMS-986016) restores anti-leukemic responses in chronic lymphocytic leukemia. Cancers (Basel), 2021, 13(9), 2112. doi: 10.3390/cancers13092112 PMID: 33925565
- Chocarro, L.; Bocanegra, A.; Blanco, E.; Fernández-Rubio, L.; Arasanz, H.; Echaide, M.; Garnica, M.; Ramos, P.; Piñeiro-Hermida, S.; Vera, R.; Escors, D.; Kochan, G. Cutting-Edge: preclinical and clinical development of the first approved Lag-3 inhibitor. Cells, 2022, 11(15), 2351. doi: 10.3390/cells11152351 PMID: 35954196
- Kumar, S.; Jaipuri, F.A.; Waldo, J.P.; Potturi, H.; Marcinowicz, A.; Adams, J.; Van Allen, C.; Zhuang, H.; Vahanian, N.; Link, C., Jr; Brincks, E.L.; Mautino, M.R. Discovery of indoximod prodrugs and characterization of clinical candidate NLG802. Eur. J. Med. Chem., 2020, 198, 112373. doi: 10.1016/j.ejmech.2020.112373 PMID: 32422549
- Long, G.V.; Dummer, R.; Hamid, O.; Gajewski, T.F.; Caglevic, C.; Dalle, S.; Arance, A.; Carlino, M.S.; Grob, J.J.; Kim, T.M.; Demidov, L.; Robert, C.; Larkin, J.; Anderson, J.R.; Maleski, J.; Jones, M.; Diede, S.J.; Mitchell, T.C. Epacadostat plus pembrolizumab versus placebo plus pembrolizumab in patients with unresectable or metastatic melanoma (ECHO-301/KEYNOTE-252): a phase 3, randomised, double-blind study. Lancet Oncol., 2019, 20(8), 1083-1097. doi: 10.1016/S1470-2045(19)30274-8 PMID: 31221619
- Nayak-Kapoor, A.; Hao, Z.; Sadek, R.; Dobbins, R.; Marshall, L.; Vahanian, N.N.; Jay Ramsey, W.; Kennedy, E.; Mautino, M.R.; Link, C.J.; Lin, R.S.; Royer-Joo, S.; Liang, X.; Salphati, L.; Morrissey, K.M.; Mahrus, S.; McCall, B.; Pirzkall, A.; Munn, D.H.; Janik, J.E.; Khleif, S.N. Phase Ia study of the indoleamine 2,3-dioxygenase 1 (IDO1) inhibitor navoximod (GDC-0919) in patients with recurrent advanced solid tumors. J. Immunother. Cancer, 2018, 6(1), 61. doi: 10.1186/s40425-018-0351-9 PMID: 29921320
- Ferris, R.L.; Jaffee, E.M.; Ferrone, S. Tumor antigen-targeted, monoclonal antibody-based immunotherapy: clinical response, cellular immunity, and immunoescape. J. Clin. Oncol., 2010, 28(28), 4390-4399. doi: 10.1200/JCO.2009.27.6360 PMID: 20697078
- Okada, H.; Low, K.L.; Kohanbash, G.; McDonald, H.A.; Hamilton, R.L.; Pollack, I.F. Expression of glioma-associated antigens in pediatric brain stem and non-brain stem gliomas. J. Neurooncol., 2008, 88(3), 245-250. doi: 10.1007/s11060-008-9566-9 PMID: 18324354
- Yang, M.; Xie, W.; Mostaghel, E.; Nakabayashi, M.; Werner, L.; Sun, T.; Pomerantz, M.; Freedman, M.; Ross, R.; Regan, M.; Sharifi, N.; Figg, W.D.; Balk, S.; Brown, M.; Taplin, M.E.; Oh, W.K.; Lee, G.S.M.; Kantoff, P.W. SLCO2B1 and SLCO1B3 may determine time to progression for patients receiving androgen deprivation therapy for prostate cancer. J. Clin. Oncol., 2011, 29(18), 2565-2573. doi: 10.1200/JCO.2010.31.2405 PMID: 21606417
- Zhu, Z.; Zhong, S.; Shen, Z. Targeting the inflammatory pathways to enhance chemotherapy of cancer. Cancer Biol. Ther., 2011, 12(2), 95-105. doi: 10.4161/cbt.12.2.15952 PMID: 21623164
- Curtin, J.; King, G.; Candolfi, M.; Greeno, R.; Kroeger, K.; Lowenstein, P.; Castro, M. Combining cytotoxic and immune-mediated gene therapy to treat brain tumors. Curr. Top. Med. Chem., 2005, 5(12), 1151-1170. doi: 10.2174/156802605774370856 PMID: 16248789
- Ohm, J.E.; McGarvey, K.M.; Yu, X.; Cheng, L.; Schuebel, K.E.; Cope, L.; Mohammad, H.P.; Chen, W.; Daniel, V.C.; Yu, W.; Berman, D.M.; Jenuwein, T.; Pruitt, K.; Sharkis, S.J.; Watkins, D.N.; Herman, J.G.; Baylin, S.B. A stem cell-like chromatin pattern may predispose tumor suppressor genes to DNA hypermethylation and heritable silencing. Nat. Genet., 2007, 39(2), 237-242. doi: 10.1038/ng1972 PMID: 17211412
- Haberland, M.; Montgomery, R.L.; Olson, E.N. The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat. Rev. Genet., 2009, 10(1), 32-42. doi: 10.1038/nrg2485 PMID: 19065135
- Shi, Y. Histone lysine demethylases: emerging roles in development, physiology and disease. Nat. Rev. Genet., 2007, 8(11), 829-833. doi: 10.1038/nrg2218 PMID: 17909537
- Lucio-Eterovic, A.K.B.; Cortez, M.A.A.; Valera, E.T.; Motta, F.J.N.; Queiroz, R.G.P.; Machado, H.R.; Carlotti, C.G., Jr; Neder, L.; Scrideli, C.A.; Tone, L.G. Differential expression of 12 histone deacetylase (HDAC) genes in astrocytomas and normal brain tissue: class II and IV are hypoexpressed in glioblastomas. BMC Cancer, 2008, 8(1), 243. doi: 10.1186/1471-2407-8-243 PMID: 18713462
- Parsons, D.W.; Jones, S.; Zhang, X.; Lin, J.C.H.; Leary, R.J.; Angenendt, P.; Mankoo, P.; Carter, H.; Siu, I.M.; Gallia, G.L.; Olivi, A.; McLendon, R.; Rasheed, B.A.; Keir, S.; Nikolskaya, T.; Nikolsky, Y.; Busam, D.A.; Tekleab, H.; Diaz, L.A., Jr; Hartigan, J.; Smith, D.R.; Strausberg, R.L.; Marie, S.K.N.; Shinjo, S.M.O.; Yan, H.; Riggins, G.J.; Bigner, D.D.; Karchin, R.; Papadopoulos, N.; Parmigiani, G.; Vogelstein, B.; Velculescu, V.E.; Kinzler, K.W. An integrated genomic analysis of human glioblastoma multiforme. Science, 2008, 321(5897), 1807-1812. doi: 10.1126/science.1164382 PMID: 18772396
- Leung, C.; Lingbeek, M.; Shakhova, O.; Liu, J.; Tanger, E.; Saremaslani, P.; van Lohuizen, M.; Marino, S. Bmi1 is essential for cerebellar development and is overexpressed in human medulloblastomas. Nature, 2004, 428(6980), 337-341. doi: 10.1038/nature02385 PMID: 15029199
- Milde, T.; Oehme, I.; Korshunov, A.; Kopp-Schneider, A.; Remke, M.; Northcott, P.; Deubzer, H.E.; Lodrini, M.; Taylor, M.D.; von Deimling, A.; Pfister, S.; Witt, O. HDAC5 and HDAC9 in medulloblastoma: novel markers for risk stratification and role in tumor cell growth. Clin. Cancer Res., 2010, 16(12), 3240-3252. doi: 10.1158/1078-0432.CCR-10-0395 PMID: 20413433
- Sturm, D.; Bender, S.; Jones, D.T.W.; Lichter, P.; Grill, J.; Becher, O.; Hawkins, C.; Majewski, J.; Jones, C.; Costello, J.F.; Iavarone, A.; Aldape, K.; Brennan, C.W.; Jabado, N.; Pfister, S.M. Paediatric and adult glioblastoma: multiform (epi)genomic culprits emerge. Nat. Rev. Cancer, 2014, 14(2), 92-107. doi: 10.1038/nrc3655 PMID: 24457416
- Wu, G.; Broniscer, A.; McEachron, T.A.; Lu, C.; Paugh, B.S.; Becksfort, J.; Qu, C.; Ding, L.; Huether, R.; Parker, M.; Zhang, J.; Gajjar, A.; Dyer, M.A.; Mullighan, C.G.; Gilbertson, R.J.; Mardis, E.R.; Wilson, R.K.; Downing, J.R.; Ellison, D.W.; Zhang, J.; Baker, S.J. Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas. Nat. Genet., 2012, 44(3), 251-253. doi: 10.1038/ng.1102 PMID: 22286216
- Buczkowicz, P.; Hoeman, C.; Rakopoulos, P.; Pajovic, S.; Letourneau, L.; Dzamba, M.; Morrison, A.; Lewis, P.; Bouffet, E.; Bartels, U.; Zuccaro, J.; Agnihotri, S.; Ryall, S.; Barszczyk, M.; Chornenkyy, Y.; Bourgey, M.; Bourque, G.; Montpetit, A.; Cordero, F.; Castelo-Branco, P.; Mangerel, J.; Tabori, U.; Ho, K.C.; Huang, A.; Taylor, K.R.; Mackay, A.; Bendel, A.E.; Nazarian, J.; Fangusaro, J.R.; Karajannis, M.A.; Zagzag, D.; Foreman, N.K.; Donson, A.; Hegert, J.V.; Smith, A.; Chan, J.; Lafay-Cousin, L.; Dunn, S.; Hukin, J.; Dunham, C.; Scheinemann, K.; Michaud, J.; Zelcer, S.; Ramsay, D.; Cain, J.; Brennan, C.; Souweidane, M.M.; Jones, C.; Allis, C.D.; Brudno, M.; Becher, O.; Hawkins, C. Genomic analysis of diffuse intrinsic pontine gliomas identifies three molecular subgroups and recurrent activating ACVR1 mutations. Nat. Genet., 2014, 46(5), 451-456. doi: 10.1038/ng.2936 PMID: 24705254
- Fontebasso, A.M.; Papillon-Cavanagh, S.; Schwartzentruber, J.; Nikbakht, H.; Gerges, N.; Fiset, P.O.; Bechet, D.; Faury, D.; De Jay, N.; Ramkissoon, L.A.; Corcoran, A.; Jones, D.T.W.; Sturm, D.; Johann, P.; Tomita, T.; Goldman, S.; Nagib, M.; Bendel, A.; Goumnerova, L.; Bowers, D.C.; Leonard, J.R.; Rubin, J.B.; Alden, T.; Browd, S.; Geyer, J.R.; Leary, S.; Jallo, G.; Cohen, K.; Gupta, N.; Prados, M.D.; Carret, A.S.; Ellezam, B.; Crevier, L.; Klekner, A.; Bognar, L.; Hauser, P.; Garami, M.; Myseros, J.; Dong, Z.; Siegel, P.M.; Malkin, H.; Ligon, A.H.; Albrecht, S.; Pfister, S.M.; Ligon, K.L.; Majewski, J.; Jabado, N.; Kieran, M.W. Recurrent somatic mutations in ACVR1 in pediatric midline high-grade astrocytoma. Nat. Genet., 2014, 46(5), 462-466. doi: 10.1038/ng.2950 PMID: 24705250
- Taylor, K.R.; Mackay, A.; Truffaux, N.; Butterfield, Y.S.; Morozova, O.; Philippe, C.; Castel, D.; Grasso, C.S.; Vinci, M.; Carvalho, D.; Carcaboso, A.M.; de Torres, C.; Cruz, O.; Mora, J.; Entz-Werle, N.; Ingram, W.J.; Monje, M.; Hargrave, D.; Bullock, A.N.; Puget, S.; Yip, S.; Jones, C.; Grill, J. Recurrent activating ACVR1 mutations in diffuse intrinsic pontine glioma. Nat. Genet., 2014, 46(5), 457-461. doi: 10.1038/ng.2925 PMID: 24705252
- Wu, G.; Diaz, A.K.; Paugh, B.S.; Rankin, S.L.; Ju, B.; Li, Y.; Zhu, X.; Qu, C.; Chen, X.; Zhang, J.; Easton, J.; Edmonson, M.; Ma, X.; Lu, C.; Nagahawatte, P.; Hedlund, E.; Rusch, M.; Pounds, S.; Lin, T.; Onar-Thomas, A.; Huether, R.; Kriwacki, R.; Parker, M.; Gupta, P.; Becksfort, J.; Wei, L.; Mulder, H.L.; Boggs, K.; Vadodaria, B.; Yergeau, D.; Russell, J.C.; Ochoa, K.; Fulton, R.S.; Fulton, L.L.; Jones, C.; Boop, F.A.; Broniscer, A.; Wetmore, C.; Gajjar, A.; Ding, L.; Mardis, E.R.; Wilson, R.K.; Taylor, M.R.; Downing, J.R.; Ellison, D.W.; Zhang, J.; Baker, S.J. The genomic landscape of diffuse intrinsic pontine glioma and pediatric non-brainstem high-grade glioma. Nat. Genet., 2014, 46(5), 444-450. doi: 10.1038/ng.2938 PMID: 24705251
- Henikoff, S.; Smith, M.M. Histone variants and epigenetics. Cold Spring Harb. Perspect. Biol., 2015, 7(1), a019364. doi: 10.1101/cshperspect.a019364 PMID: 25561719
- Panagopoulos, I.; Fioretos, T.; Isaksson, M.; Samuelsson, U.; Billström, R.; Strömbeck, B.; Mitelman, F.; Johansson, B. Fusion of the MORF and CBP genes in acute myeloid leukemia with the t(10;16)(q22;p13). Hum. Mol. Genet., 2001, 10(4), 395-404. doi: 10.1093/hmg/10.4.395 PMID: 11157802
- Zhu, C.; Qin, Y-R.; Xie, D.; Chua, D.T.T.; Fung, J.M.; Chen, L.; Fu, L.; Hu, L.; Guan, X-Y. Characterization of tumor suppressive function of P300/CBP-associated factor at frequently deleted region 3p24 in esophageal squamous cell carcinoma. Oncogene, 2009, 28(31), 2821-2828. doi: 10.1038/onc.2009.137 PMID: 19525977
- Bracken, A.P.; Pasini, D.; Capra, M.; Prosperini, E.; Colli, E.; Helin, K. EZH2 is downstream of the pRB-E2F pathway, essential for proliferation and amplified in cancer. EMBO J., 2003, 22(20), 5323-5335. doi: 10.1093/emboj/cdg542 PMID: 14532106
- Miremadi, A.; Oestergaard, M.Z.; Pharoah, P.D.P.; Caldas, C. Cancer genetics of epigenetic genes. Hum. Mol. Genet., 2007, 16(R1), R28-R49. doi: 10.1093/hmg/ddm021 PMID: 17613546
- Jaju, R.J.; Fidler, C.; Haas, O.A.; Strickson, A.J.; Watkins, F.; Clark, K.; Cross, N.C.; Cheng, J.F.; Aplan, P.D.; Kearney, L.; Boultwood, J.; Wainscoat, J.S. A novel gene, NSD1, is fused to NUP98 in the t(5;11)(q35;p15.5) in de novo childhood acute myeloid leukemia. Blood, 2001, 98(4), 1264-1267. doi: 10.1182/blood.V98.4.1264 PMID: 11493482
- Du, Y.; Carling, T.; Fang, W.; Piao, Z.; Sheu, J.C.; Huang, S. Hypermethylation in human cancers of the RIZ1 tumor suppressor gene, a member of a histone/protein methyltransferase superfamily. Cancer Res., 2001, 61(22), 8094-8099. PMID: 11719434
- Italiano, A.; Attias, R.; Aurias, A.; Pérot, G.; Burel-Vandenbos, F.; Otto, J.; Venissac, N.; Pedeutour, F. Molecular cytogenetic characterization of a metastatic lung sarcomatoid carcinoma: 9p23 neocentromere and 9p23-p24 amplification including JAK2 and JMJD2C. Cancer Genet. Cytogenet., 2006, 167(2), 122-130. doi: 10.1016/j.cancergencyto.2006.01.004 PMID: 16737911
- Liu, G.; Bollig-Fischer, A.; Kreike, B.; van de Vijver, M.J.; Abrams, J.; Ethier, S.P.; Yang, Z.Q. Genomic amplification and oncogenic properties of the GASC1 histone demethylase gene in breast cancer. Oncogene, 2009, 28(50), 4491-4500. doi: 10.1038/onc.2009.297 PMID: 19784073
- Kahl, P.; Gullotti, L.; Heukamp, L.C.; Wolf, S.; Friedrichs, N.; Vorreuther, R.; Solleder, G.; Bastian, P.J.; Ellinger, J.; Metzger, E.; Schüle, R.; Buettner, R. Androgen receptor coactivators lysine-specific histone demethylase 1 and four and a half LIM domain protein 2 predict risk of prostate cancer recurrence. Cancer Res., 2006, 66(23), 11341-11347. doi: 10.1158/0008-5472.CAN-06-1570 PMID: 17145880
- Ropero, S.; Fraga, M.F.; Ballestar, E.; Hamelin, R.; Yamamoto, H.; Boix-Chornet, M.; Caballero, R.; Alaminos, M.; Setien, F.; Paz, M.F.; Herranz, M.; Palacios, J.; Arango, D.; Orntoft, T.F.; Aaltonen, L.A.; Schwartz, S., Jr; Esteller, M. A truncating mutation of HDAC2 in human cancers confers resistance to histone deacetylase inhibition. Nat. Genet., 2006, 38(5), 566-569. doi: 10.1038/ng1773 PMID: 16642021
- Faria, C.M.C.; Rutka, J.T.; Smith, C.; Kongkham, P. Epigenetic mechanisms regulating neural development and pediatric brain tumor formation. J. Neurosurg. Pediatr., 2011, 8(2), 119-132. doi: 10.3171/2011.5.PEDS1140 PMID: 21806352
- Grossniklaus, U.; Paro, R. Transcriptional silencing by polycomb-group proteins. Cold Spring Harb. Perspect. Biol., 2014, 6(11), a019331. doi: 10.1101/cshperspect.a019331 PMID: 25367972
- Lewis, P.W.; Müller, M.M.; Koletsky, M.S.; Cordero, F.; Lin, S.; Banaszynski, L.A.; Garcia, B.A.; Muir, T.W.; Becher, O.J.; Allis, C.D. Inhibition of PRC2 activity by a gain-of-function H3 mutation found in pediatric glioblastoma. Science, 2013, 340(6134), 857-861. doi: 10.1126/science.1232245 PMID: 23539183
- Viré, E.; Brenner, C.; Deplus, R.; Blanchon, L.; Fraga, M.; Didelot, C.; Morey, L.; Van Eynde, A.; Bernard, D.; Vanderwinden, J.M.; Bollen, M.; Esteller, M.; Di Croce, L.; de Launoit, Y.; Fuks, F. The Polycomb group protein EZH2 directly controls DNA methylation. Nature, 2006, 439(7078), 871-874. doi: 10.1038/nature04431 PMID: 16357870
- Zheng, S.; Houseman, E.A.; Morrison, Z.; Wrensch, M.R.; Patoka, J.S.; Ramos, C.; Haas-Kogan, D.A.; McBride, S.; Marsit, C.J.; Christensen, B.C.; Nelson, H.H.; Stokoe, D.; Wiemels, J.L.; Chang, S.M.; Prados, M.D.; Tihan, T.; Vandenberg, S.R.; Kelsey, K.T.; Berger, M.S.; Wiencke, J.K. DNA hypermethylation profiles associated with glioma subtypes and EZH2 and IGFBP2 mRNA expression. Neuro-oncol., 2011, 13(3), 280-289. doi: 10.1093/neuonc/noq190 PMID: 21339190
- Lewis, P.W.; Allis, C.D. Poisoning the "histone code" in pediatric gliomagenesis. Cell Cycle, 2013, 12(20), 3241-3242. doi: 10.4161/cc.26356 PMID: 24036540
- Behjati, S.; Tarpey, P.S.; Presneau, N.; Scheipl, S.; Pillay, N.; Van Loo, P.; Wedge, D.C.; Cooke, S.L.; Gundem, G.; Davies, H.; Nik-Zainal, S.; Martin, S.; McLaren, S.; Goody, V.; Robinson, B.; Butler, A.; Teague, J.W.; Halai, D.; Khatri, B.; Myklebost, O.; Baumhoer, D.; Jundt, G.; Hamoudi, R.; Tirabosco, R.; Amary, M.F.; Futreal, P.A.; Stratton, M.R.; Campbell, P.J.; Flanagan, A.M. Distinct H3F3A and H3F3B driver mutations define chondroblastoma and giant cell tumor of bone. Nat. Genet., 2013, 45(12), 1479-1482. doi: 10.1038/ng.2814 PMID: 24162739
- Sturm, D.; Witt, H.; Hovestadt, V.; Khuong-Quang, D.A.; Jones, D.T.W.; Konermann, C.; Pfaff, E.; Tönjes, M.; Sill, M.; Bender, S.; Kool, M.; Zapatka, M.; Becker, N.; Zucknick, M.; Hielscher, T.; Liu, X.Y.; Fontebasso, A.M.; Ryzhova, M.; Albrecht, S.; Jacob, K.; Wolter, M.; Ebinger, M.; Schuhmann, M.U.; van Meter, T.; Frühwald, M.C.; Hauch, H.; Pekrun, A.; Radlwimmer, B.; Niehues, T.; von Komorowski, G.; Dürken, M.; Kulozik, A.E.; Madden, J.; Donson, A.; Foreman, N.K.; Drissi, R.; Fouladi, M.; Scheurlen, W.; von Deimling, A.; Monoranu, C.; Roggendorf, W.; Herold-Mende, C.; Unterberg, A.; Kramm, C.M.; Felsberg, J.; Hartmann, C.; Wiestler, B.; Wick, W.; Milde, T.; Witt, O.; Lindroth, A.M.; Schwartzentruber, J.; Faury, D.; Fleming, A.; Zakrzewska, M.; Liberski, P.P.; Zakrzewski, K.; Hauser, P.; Garami, M.; Klekner, A.; Bognar, L.; Morrissy, S.; Cavalli, F.; Taylor, M.D.; van Sluis, P.; Koster, J.; Versteeg, R.; Volckmann, R.; Mikkelsen, T.; Aldape, K.; Reifenberger, G.; Collins, V.P.; Majewski, J.; Korshunov, A.; Lichter, P.; Plass, C.; Jabado, N.; Pfister, S.M. Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. Cancer Cell, 2012, 22(4), 425-437. doi: 10.1016/j.ccr.2012.08.024 PMID: 23079654
- Schwartzentruber, J.; Korshunov, A.; Liu, X.Y.; Jones, D.T.W.; Pfaff, E.; Jacob, K.; Sturm, D.; Fontebasso, A.M.; Quang, D.A.K.; Tönjes, M.; Hovestadt, V.; Albrecht, S.; Kool, M.; Nantel, A.; Konermann, C.; Lindroth, A.; Jäger, N.; Rausch, T.; Ryzhova, M.; Korbel, J.O.; Hielscher, T.; Hauser, P.; Garami, M.; Klekner, A.; Bognar, L.; Ebinger, M.; Schuhmann, M.U.; Scheurlen, W.; Pekrun, A.; Frühwald, M.C.; Roggendorf, W.; Kramm, C.; Dürken, M.; Atkinson, J.; Lepage, P.; Montpetit, A.; Zakrzewska, M.; Zakrzewski, K.; Liberski, P.P.; Dong, Z.; Siegel, P.; Kulozik, A.E.; Zapatka, M.; Guha, A.; Malkin, D.; Felsberg, J.; Reifenberger, G.; von Deimling, A.; Ichimura, K.; Collins, V.P.; Witt, H.; Milde, T.; Witt, O.; Zhang, C.; Castelo-Branco, P.; Lichter, P.; Faury, D.; Tabori, U.; Plass, C.; Majewski, J.; Pfister, S.M.; Jabado, N. Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature, 2012, 482(7384), 226-231. doi: 10.1038/nature10833 PMID: 22286061
- Lovejoy, C.A.; Li, W.; Reisenweber, S.; Thongthip, S.; Bruno, J.; de Lange, T.; De, S.; Petrini, J.H.J.; Sung, P.A.; Jasin, M.; Rosenbluh, J.; Zwang, Y.; Weir, B.A.; Hatton, C.; Ivanova, E.; Macconaill, L.; Hanna, M.; Hahn, W.C.; Lue, N.F.; Reddel, R.R.; Jiao, Y.; Kinzler, K.; Vogelstein, B.; Papadopoulos, N.; Meeker, A.K. Loss of ATRX, genome instability, and an altered DNA damage response are hallmarks of the alternative lengthening of telomeres pathway. PLoS Genet., 2012, 8(7), e1002772. doi: 10.1371/journal.pgen.1002772 PMID: 22829774
- Marks, P.A.; Xu, W.S. Histone deacetylase inhibitors: Potential in cancer therapy. J. Cell. Biochem., 2009, 107(4), 600-608. doi: 10.1002/jcb.22185 PMID: 19459166
- Yin, D.; Ong, J.M.; Hu, J.; Desmond, J.C.; Kawamata, N.; Konda, B.M.; Black, K.L.; Koeffler, H.P. Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor: effects on gene expression and growth of glioma cells in vitro and in vivo. Clin. Cancer Res., 2007, 13(3), 1045-1052. doi: 10.1158/1078-0432.CCR-06-1261 PMID: 17289901
- Fouladi, M.; Park, J.R.; Stewart, C.F.; Gilbertson, R.J.; Schaiquevich, P.; Sun, J.; Reid, J.M.; Ames, M.M.; Speights, R.; Ingle, A.M.; Zwiebel, J.; Blaney, S.M.; Adamson, P.C. Pediatric phase I trial and pharmacokinetic study of vorinostat: a Childrens Oncology Group phase I consortium report. J. Clin. Oncol., 2010, 28(22), 3623-3629. doi: 10.1200/JCO.2009.25.9119 PMID: 20606092
- Spiller, S.E.; Ditzler, S.H.; Pullar, B.J.; Olson, J.M. Response of preclinical medulloblastoma models to combination therapy with 13-cis retinoic acid and suberoylanilide hydroxamic acid (SAHA). J. Neurooncol., 2008, 87(2), 133-141. doi: 10.1007/s11060-007-9505-1 PMID: 18060600
- Furchert, S.E.; Lanvers-Kaminsky, C.; Juürgens, H.; Jung, M.; Loidl, A.; Frühwald, M.C. Inhibitors of histone deacetylases as potential therapeutic tools for high-risk embryonal tumors of the nervous system of childhood. Int. J. Cancer, 2007, 120(8), 1787-1794. doi: 10.1002/ijc.22401 PMID: 17230517
- Spiller, S.E.; Ravanpay, A.C.; Hahn, A.W.; Olson, J.M. Suberoylanilide hydroxamic acid is effective in preclinical studies of medulloblastoma. J. Neurooncol., 2006, 79(3), 259-270. doi: 10.1007/s11060-006-9142-0 PMID: 16645722
- Masoudi, A.; Elopre, M.; Amini, E.; Nagel, M.E.; Ater, J.L.; Gopalakrishnan, V.; Wolff, J.E. Influence of valproic acid on outcome of high-grade gliomas in children. Anticancer Res., 2008, 28(4C), 2437-2442. PMID: 18751431
- Su, J.M.; Li, X.N.; Thompson, P.; Ou, C.N.; Ingle, A.M.; Russell, H.; Lau, C.C.; Adamson, P.C.; Blaney, S.M. Phase 1 study of valproic acid in pediatric patients with refractory solid or CNS tumors: a childrens oncology group report. Clin. Cancer Res., 2011, 17(3), 589-597. doi: 10.1158/1078-0432.CCR-10-0738 PMID: 21115653
- Wolff, J.E.A.; Kramm, C.; Kortmann, R.D.; Pietsch, T.; Rutkowski, S.; Jorch, N.; Gnekow, A.; Driever, P.H. Valproic acid was well tolerated in heavily pretreated pediatric patients with high-grade glioma. J. Neurooncol., 2008, 90(3), 309-314. doi: 10.1007/s11060-008-9662-x PMID: 18679579
- Graham, C.; Tucker, C.; Creech, J.; Favours, E.; Billups, C.A.; Liu, T.; Fouladi, M.; Freeman, B.B., III; Stewart, C.F.; Houghton, P.J. Evaluation of the antitumor efficacy, pharmacokinetics, and pharmacodynamics of the histone deacetylase inhibitor depsipeptide in childhood cancer models in vivo. Clin. Cancer Res., 2006, 12(1), 223-234. doi: 10.1158/1078-0432.CCR-05-1225 PMID: 16397046
- Iwamoto, F.M.; Lamborn, K.R.; Robins, H.I.; Mehta, M.P.; Chang, S.M.; Butowski, N.A.; DeAngelis, L.M.; Abrey, L.E.; Zhang, W.T.; Prados, M.D.; Fine, H.A. Phase II trial of pazopanib (GW786034), an oral multi-targeted angiogenesis inhibitor, for adults with recurrent glioblastoma (North American Brain Tumor Consortium Study 06-02). Neuro-oncol., 2010, 12(8), 855-861. doi: 10.1093/neuonc/noq025 PMID: 20200024
- Hdeib, A.; Sloan, A.E. Convection-enhanced delivery of 131 I-chTNT-1/B mAB for treatment of high-grade adult gliomas. Expert Opin. Biol. Ther., 2011, 11(6), 799-806. doi: 10.1517/14712598.2011.579097 PMID: 21521146
- Chilamakuri, R.; Agarwal, S.J.C. Dual Targeting of PI3K and HDAC by CUDC-907 inhibits pediatric neuroblastoma growth. Cancers (Basel), 2022, 14(4), 1067. doi: 10.3390/cancers14041067
- Corrales-Medina, F.F.; Manton, C.A.; Orlowski, R.Z.; Chandra, J.J. Efficacy of panobinostat and marizomib in acute myeloid leukemia and bortezomib-resistant models. Leuk. Res., 2015, 39(3), 371-379.
- Nagaraja, S.; Vitanza, N.A.; Woo, P.J.; Taylor, K.R.; Liu, F.; Zhang, L. Transcriptional dependencies in diffuse intrinsic pontine glioma. Cancer Cell, 2017, 31(5), 635-652. doi: 10.1016/j.ccell.2017.03.011
- Knipstein, J.; Gore, L. Entinostat for treatment of solid tumors and hematologic malignancies. Expert Opin. Investig. Drugs, 2011, 20(10), 1455-1467.
- Li, X-N.; Shu, Q.; Su, J.M-F.; Perlaky, L.; Blaney, S.M.; Lau, C.C.J. Valproic acid induces growth arrest, apoptosis, and senescence in medulloblastomas by increasing histone hyperacetylation and regulating expression of p21Cip1, CDK4, and CMYC. Mol. Cancer Ther., 2005, 4(12), 1912-1922.
- Engelhard, H.H.; Duncan, H.A.; Kim, S.; Criswell, P.S.; Van Eldik, L.J.N. Therapeutic effects of sodium butyrate on glioma cells in vitro and in the rat C6 glioma model. Neurosurgery, 2001, 48(3), 616-624. doi: 10.1097/00006123-200103000-00035
- Rahman, R.; Osteso-Ibanez, T.; Hirst, R.A.; Levesley, J.; Kilday, J-P.; Quinn, S. Histone deacetylase inhibition attenuates cell growth with associated telomerase inhibition in high-grade childhood brain tumor cells. Mol. Cancer Ther., 2010, 9(9), 2568-2581.
- Su, J.M.; Kilburn, L.B.; Mansur, D.B.; Krailo, M.; Buxton, A.; Adekunle, A.; Gajjar, A.; Adamson, P.C.; Weigel, B.; Fox, E.; Blaney, S.M.; Fouladi, M. Phase I/II trial of vorinostat and radiation and maintenance vorinostat in children with diffuse intrinsic pontine glioma: A Childrens Oncology Group report. Neuro-oncol., 2022, 24(4), 655-664. doi: 10.1093/neuonc/noab188 PMID: 34347089
- Agarwal, N.; McPherson, J.P.; Bailey, H.; Gupta, S.; Werner, T.L.; Reddy, G.; Bhat, G.; Bailey, E.B.; Sharma, S. A phase I clinical trial of the effect of belinostat on the pharmacokinetics and pharmacodynamics of warfarin. Cancer Chemother. Pharmacol., 2016, 77(2), 299-308. doi: 10.1007/s00280-015-2934-1 PMID: 26719074
- Algar, E.M.; Muscat, A.; Dagar, V.; Rickert, C.; Chow, C.W.; Biegel, J.A.; Ekert, P.G.; Saffery, R.; Craig, J.; Johnstone, R.W.; Ashley, D.M. Imprinted CDKN1C is a tumor suppressor in rhabdoid tumor and activated by restoration of SMARCB1 and histone deacetylase inhibitors. PLoS One, 2009, 4(2), e4482. doi: 10.1371/journal.pone.0004482 PMID: 19221586
- Nimmervoll, B.V.; Boulos, N.; Bianski, B.; Dapper, J.; DeCuypere, M.; Shelat, A. Establishing a preclinical multidisciplinary board for brain tumors. Clin. Cancer Res., 2018, 24(7), 1654-1666.
- Northcott, P.A.; Jones, D.T.; Kool, M.; Robinson, G.W.; Gilbertson, R.J.; Cho, Y-J. Medulloblastomics: The end of the beginning. Nat. Rev. Cancer, 2012, 12(12), 818-834. doi: 10.1038/nrc3410
- Alexander, B.M.; Ba, S.; Berger, M.S.; Berry, D.A.; Cavenee, W.K.; Chang, S.M.; Cloughesy, T.F.; Jiang, T.; Khasraw, M.; Li, W.; Mittman, R.; Poste, G.H.; Wen, P.Y.; Yung, W.K.A.; Barker, A.D. Adaptive global innovative learning environment for glioblastoma: GBM AGILE. Clin. Cancer Res., 2018, 24(4), 737-743. doi: 10.1158/1078-0432.CCR-17-0764 PMID: 28814435
- Chow, S-C. Adaptive clinical trial design. Annu. Rev. Med., 2017, 65, 405-415.
- Hargrave, D.R.; Bouffet, E.; Tabori, U.; Broniscer, A.; Cohen, K.J.; Hansford, J.R.; Geoerger, B.; Hingorani, P.; Dunkel, I.J.; Russo, M.W.; Tseng, L.; Dasgupta, K.; Gasal, E.; Whitlock, J.A.; Kieran, M.W. Efficacy and safety of dabrafenib in pediatric patients with BRAF V600 mutation-positive relapsed or refractory low-grade Glioma: Results from a phase I/IIa study. Clin. Cancer Res., 2019, 25(24), 7303-7311. doi: 10.1158/1078-0432.CCR-19-2177 PMID: 31811016
- Nicolaides, T.; Nazemi, K.; Crawford, J.; Kilburn, L.; Minturn, J.; Gajjar, A.; Gauvain, K.; Leary, S.; Dhall, G.; Aboian, M.; Robinson, G.; Molinaro, A.; Mueller, S.; Prados, M. Pdct-19. A safety study of vemurafenib, an oral inhibitor of braf(V600e), in children with recurrent/refractory braf(V600e) mutant brain tumors: Pnoc-002. Neuro-oncol., 2017, 19(Suppl. 6), vi188. doi: 10.1093/neuonc/nox168.761
- Dobbins, R.; MacDonald, T.J.; Munn, D.H.; Johnson, T.S. Pediatric trial of indoximod with chemotherapy and radiation for relapsed brain tumors or newly diagnosed DIPG., , NCT04049669.
- Kramer, B.; Singh, R.; Wischusen, J.; Dent, R.; Rush, A.; Middlemiss, S.; Ching, Y.W.; Alexander, I.E.; McCowage, G. Clinical Trial of MGMT (P140K). Hum. Gene Ther., 2018, 29(8), 874-885. doi: 10.1089/hum.2017.235 PMID: 29385852
- Parasramka, S.; Talari, G.; Rosenfeld, M.; Guo, J. Procarbazine, lomustine and vincristine for recurrent high-grade glioma. Cochrane Database Syst. Rev., 2017, 7(7), CD011773.
- Dunsmore, K.P.; Winter, S.; Devidas, M.; Wood, B.L.; Esiashvili, N.; Eisenberg, N. COG AALL0434: A randomized trial testing nelarabine in newly diagnosed t-cell malignancy. J. Clin. Oncol., 2018, 36(15), 10500.
- Stein, A.; Franklin, J.L.; Chia, V.M.; Arrindell, D.; Kormany, W.; Wright, J. Benefit-risk assessment of blinatumomab in the treatment of relapsed/refractory B-cell precursor acute lymphoblastic leukemia. Drug Saf., 2019, 42(5), 587-601.
- Amin, N.L. Osteonecrosis and bone health in children, teenagers and young people with leukaemia. PhD thesis, University of Leeds., 2019.
- Blaney, S.M.; Boyett, J.; Friedman, H.; Gajjar, A.; Geyer, R.; Horowtiz, M.; Hunt, D.; Kieran, M.; Kun, L.; Packer, R.; Phillips, P.; Pollack, I.F.; Prados, M.; Heideman, R. Phase I clinical trial of mafosfamide in infants and children aged 3 years or younger with newly diagnosed embryonal tumors: a pediatric brain tumor consortium study (PBTC-001). J. Clin. Oncol., 2005, 23(3), 525-531. doi: 10.1200/JCO.2005.06.544 PMID: 15659498
- Doz, F.; Locatelli, F.; Baruchel, A.; Blin, N.; De Moerloose, B.; Frappaz, D. Phase I dose-escalation study of volasertib in pediatric patients with acute leukemia or advanced solid tumors. Pediatr. Blood Cancer, 2019, 66(10), e27900. doi: 10.1002/pbc.27900
Supplementary files
