Insights on Natural Products Against Amyotrophic Lateral Sclerosis (ALS)
- Authors: Monteiro K.L.1, dos Santos Alcântara M.2, de Aquino T.2, da Silva-Júnior E.3
-
Affiliations:
- Research Group on Therapeutic Strategies - GPET, Laboratory of Synthesis and Research in Medicinal Chemistry - LSPMED, Institute of Chemistry and Biotechnology, Federal University of Alagoas
- Research Group on Therapeutic Strategies - GPET, Laboratory of Synthesis and Research in Medicinal Chemistry - LSPMED, Institute of Chemistry and Biotechnology, Federal University of Alagoas,
- Institute of Chemistry and Biotechnology,, Federal University of Alagoas
- Issue: Vol 22, No 7 (2024)
- Pages: 1169-1188
- Section: Neurology
- URL: https://rjpbr.com/1570-159X/article/view/644832
- DOI: https://doi.org/10.2174/1570159X22666231016153606
- ID: 644832
Cite item
Full Text
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease that causes the death of motor neurons and consequent muscle paralysis. Despite many efforts to address it, current therapy targeting ALS remains limited, increasing the interest in complementary therapies. Over the years, several herbal preparations and medicinal plants have been studied to prevent and treat this disease, which has received remarkable attention due to their blood-brain barrier penetration properties and low toxicity. Thus, this review presents the therapeutic potential of a variety of medicinal herbs and their relationship with ALS and their physiopathological pathways.
About the authors
Kadja Luana Monteiro
Research Group on Therapeutic Strategies - GPET, Laboratory of Synthesis and Research in Medicinal Chemistry - LSPMED, Institute of Chemistry and Biotechnology, Federal University of Alagoas
Email: info@benthamscience.net
Marcone dos Santos Alcântara
Research Group on Therapeutic Strategies - GPET, Laboratory of Synthesis and Research in Medicinal Chemistry - LSPMED, Institute of Chemistry and Biotechnology, Federal University of Alagoas,
Email: info@benthamscience.net
Thiago de Aquino
Research Group on Therapeutic Strategies - GPET, Laboratory of Synthesis and Research in Medicinal Chemistry - LSPMED, Institute of Chemistry and Biotechnology, Federal University of Alagoas,
Email: info@benthamscience.net
Edeildo da Silva-Júnior
Institute of Chemistry and Biotechnology,, Federal University of Alagoas
Author for correspondence.
Email: info@benthamscience.net
References
- Taylor, J.P.; Brown, R.H., Jr; Cleveland, D.W. Decoding ALS: From genes to mechanism. Nature, 2016, 539(7628), 197-206. doi: 10.1038/nature20413 PMID: 27830784
- Zarei, S.; Carr, K.; Reiley, L.; Diaz, K.; Guerra, O.; Altamirano, P.; Pagani, W.; Lodin, D.; Orozco, G.; Chinea, A. A comprehensive review of amyotrophic lateral sclerosis. Surg. Neurol. Int., 2015, 6(1), 171. doi: 10.4103/2152-7806.169561 PMID: 26629397
- Gil, J.; Funalot, B.; Verschueren, A.; Danel-Brunaud, V.; Camu, W.; Vandenberghe, N.; Desnuelle, C.; Guy, N.; Camdessanche, J.P.; Cintas, P.; Carluer, L.; Pittion, S.; Nicolas, G.; Corcia, P.; Fleury, M.C.; Maugras, C.; Besson, G.; Le Masson, G.; Couratier, P. Causes of death amongst French patients with amyotrophic lateral sclerosis: A prospective study. Eur. J. Neurol., 2008, 15(11), 1245-1251. doi: 10.1111/j.1468-1331.2008.02307.x PMID: 18973614
- Spataro, R.; Lo Re, M.; Piccoli, T.; Piccoli, F.; La Bella, V. Causes and place of death in Italian patients with amyotrophic lateral sclerosis. Acta Neurol. Scand., 2010, 122(3), 217-223. doi: 10.1111/j.1600-0404.2009.01290.x PMID: 20078446
- Turner, M.R.; Hardiman, O.; Benatar, M.; Brooks, B.R.; Chio, A.; de Carvalho, M.; Ince, P.G.; Lin, C.; Miller, R.G.; Mitsumoto, H.; Nicholson, G.; Ravits, J.; Shaw, P.J.; Swash, M.; Talbot, K.; Traynor, B.J.; Van den Berg, L.H.; Veldink, J.H.; Vucic, S.; Kiernan, M.C. Controversies and priorities in amyotrophic lateral sclerosis. Lancet Neurol., 2013, 12(3), 310-322. doi: 10.1016/S1474-4422(13)70036-X PMID: 23415570
- Mejzini, R.; Flynn, L.L.; Pitout, I.L.; Fletcher, S.; Wilton, S.D.; Akkari, P.A. ALS genetics, mechanisms, and therapeutics: Where are we now? Front. Neurosci., 2019, 13, 1310. doi: 10.3389/fnins.2019.01310 PMID: 31866818
- Torquato, H.; Goettert, M.; Justo, G.; Paredes-Gamero, E. Anti-cancer phytometabolites targeting cancer stem cells. Curr. Genomics, 2017, 18(2), 156-174. doi: 10.2174/1389202917666160803162309 PMID: 28367074
- Kim, J.; Lee, H.J.; Lee, K.W. Naturally occurring phytochemicals for the prevention of Alzheimers disease. J. Neurochem., 2010, 112(6), 1415-1430. doi: 10.1111/j.1471-4159.2009.06562.x PMID: 20050972
- Lahlou, M. The success of natural products in drug discovery. Pharmacol. & Pharm., 2013, 04, 17-31.
- Henkel, T.; Brunne, R.M.; Müller, H.; Reichel, F. Statistical investigation into the structural complementarity of natural products and synthetic compounds. Angew. Chem. Int. Ed., 1999, 38(5), 643-647. doi: 10.1002/(SICI)1521-3773(19990301)38:53.0.CO;2-G PMID: 29711552
- Lee, M.L.; Schneider, G. Scaffold architecture and pharmacophoric properties of natural products and trade drugs: Application in the design of natural product-based combinatorial libraries. J. Comb. Chem., 2001, 3(3), 284-289. doi: 10.1021/cc000097l PMID: 11350252
- Jin, X.; Liu, M.Y.; Zhang, D.F.; Zhong, X.; Du, K.; Qian, P.; Gao, H.; Wei, M.J. Natural products as a potential modulator of microglial polarization in neurodegenerative diseases. Pharmacol. Res., 2019, 145, 104253. doi: 10.1016/j.phrs.2019.104253 PMID: 31059788
- Liu, Z.; Ran, Y.; Huang, S.; Wen, S.; Zhang, W.; Liu, X.; Ji, Z.; Geng, X.; Ji, X.; Du, H.; Leak, R.K.; Hu, X. Curcumin protects against ischemic stroke by titrating microglia/macrophage polarization. Front. Aging Neurosci., 2017, 9, 233. doi: 10.3389/fnagi.2017.00233 PMID: 28785217
- Di Paolo, M.; Papi, L.; Gori, F.; Turillazzi, E. Natural products in neurodegenerative diseases: A great promise but an ethical challenge. Int. J. Mol. Sci., 2019, 20(20), 5170. doi: 10.3390/ijms20205170 PMID: 31635296
- Silva, J.M.; Nobre, M.S.C.; Albino, S.L.; Lócio, L.L.; Nascimento, A.P.S.; Scotti, L.; Scotti, M.T.; Oshiro-Junior, J.A.; Lima, M.C.A.; Mendonça-Junior, F.J.B.; Moura, R.O. Secondary metabolites with antioxidant activities for the putative treatment of amyotrophic lateral sclerosis (ALS): "Experimental evidences. Oxid. Med. Cell. Longev., 2020, 2020, 1-22. doi: 10.1155/2020/5642029 PMID: 33299526
- Shao, J.W.; Jiang, J.L.; Zou, J.J.; Yang, M.Y.; Chen, F.M.; Zhang, Y.J.; Jia, L. Therapeutic potential of ginsenosides on diabetes: From hypoglycemic mechanism to clinical trials. J. Funct. Foods, 2020, 64, 103630. doi: 10.1016/j.jff.2019.103630
- Pizzino, G.; Irrera, N.; Cucinotta, M.; Pallio, G.; Mannino, F.; Arcoraci, V.; Squadrito, F.; Altavilla, D.; Bitto, A. Oxidative stress: Harms and benefits for human health. Oxid. Med. Cell. Longev., 2017, 2017, 1-13. doi: 10.1155/2017/8416763 PMID: 28819546
- Cenini, G.; Lloret, A.; Cascella, R. Oxidative stress in neurodegenerative diseases: From a mitochondrial point of view. Oxid. Med. Cell. Longev., 2019, 2019, 1-18. doi: 10.1155/2019/2105607 PMID: 31210837
- Dirnagl, U.; Meisel, A. Endogenous neuroprotection: Mitochondria as gateways to cerebral preconditioning? Neuropharmacology, 2008, 55(3), 334-344. doi: 10.1016/j.neuropharm.2008.02.017 PMID: 18402985
- Dirnagl, U.; Becker, K.; Meisel, A. Preconditioning and tolerance against cerebral ischaemia: From experimental strategies to clinical use. Lancet Neurol., 2009, 8(4), 398-412. doi: 10.1016/S1474-4422(09)70054-7 PMID: 19296922
- Calabrese, V.; Cornelius, C.; Dinkova-Kostova, A.T.; Calabrese, E.J.; Mattson, M.P. Cellular stress responses, the hormesis paradigm, and vitagenes: novel targets for therapeutic intervention in neurodegenerative disorders. Antioxid. Redox Signal., 2010, 13(11), 1763-1811. doi: 10.1089/ars.2009.3074 PMID: 20446769
- Calabrese, V.; Cornelius, C.; Dinkova-Kostova, A.T.; Calabrese, E.J. Vitagenes, cellular stress response, and acetylcarnitine: Relevance to hormesis. Biofactors, 2009, 35(2), 146-160. doi: 10.1002/biof.22 PMID: 19449442
- Calabrese, E.J.; Iavicoli, I.; Calabrese, V. Hormesis: Why it is important to biogerontologists. Biogerontology, 2012, 13(3), 215-235. doi: 10.1007/s10522-012-9374-7 PMID: 22270337
- Sies, H.; Belousov, V.V.; Chandel, N.S.; Davies, M.J.; Jones, D.P.; Mann, G.E.; Murphy, M.P.; Yamamoto, M.; Winterbourn, C. Defining roles of specific reactive oxygen species (ROS) in cell biology and physiology. Nat. Rev. Mol. Cell Biol., 2022, 23(7), 499-515. doi: 10.1038/s41580-022-00456-z PMID: 35190722
- Sies, H.; Jones, D.P. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat. Rev. Mol. Cell Biol., 2020, 21(7), 363-383. doi: 10.1038/s41580-020-0230-3 PMID: 32231263
- Van Houten, B.; Woshner, V.; Santos, J.H. Role of mitochondrial DNA in toxic responses to oxidative stress. DNA Repair, 2006, 5(2), 145-152. doi: 10.1016/j.dnarep.2005.03.002 PMID: 15878696
- Selvaraji, S.; Poh, L.; Natarajan, V.; Mallilankaraman, K.; Arumugam, T.V. Negative conditioning of mitochondrial dysfunction in age-related neurodegenerative diseases. Cond. Med., 2019, 2(1), 30-39. PMID: 31058265
- Wang, Y.; Xu, E.; Musich, P.R.; Lin, F. Mitochondrial dysfunction in neurodegenerative diseases and the potential countermeasure. CNS Neurosci. Ther., 2019, 25(7), 816-824. doi: 10.1111/cns.13116 PMID: 30889315
- Hemerková, P.; Vali, M. Role of oxidative stress in the pathogenesis of amyotrophic lateral sclerosis: Antioxidant metalloenzymes and therapeutic strategies. Biomolecules, 2021, 11(3), 437. doi: 10.3390/biom11030437 PMID: 33809730
- Golenia, A.; Leśkiewicz, M.; Regulska, M.; Budziszewska, B.; Szczęsny, E.; Jagiełła, J.; Wnuk, M.; Ostrowska, M.; Lasoń, W.; Basta-Kaim, A.; Słowik, A. Catalase activity in blood fractions of patients with sporadic ALS. Pharmacol. Rep., 2014, 66(4), 704-707. doi: 10.1016/j.pharep.2014.02.021 PMID: 24948075
- Tabrizi, S. Neurodegenerative diseases neurobiology pathogenesis and therapeutics. J. Neurol. Neurosurg. Psychiatry, 2006, 77(2), 284-284. doi: 10.1136/jnnp.2005.072710
- Angelova, P.R.; Abramov, A.Y. Role of mitochondrial ROS in the brain: From physiology to neurodegeneration. FEBS Lett., 2018, 592(5), 692-702. doi: 10.1002/1873-3468.12964 PMID: 29292494
- Pehar, M.; Beeson, G.; Beeson, C.C.; Johnson, J.A.; Vargas, M.R. Mitochondria-targeted catalase reverts the neurotoxicity of hSOD1G⁹³A astrocytes without extending the survival of ALS-linked mutant hSOD1 mice. PLoS One, 2014, 9(7), e103438. doi: 10.1371/journal.pone.0103438 PMID: 25054289
- Richardson, K.; Allen, S.P.; Mortiboys, H.; Grierson, A.J.; Wharton, S.B.; Ince, P.G.; Shaw, P.J.; Heath, P.R. The effect of SOD1 mutation on cellular bioenergetic profile and viability in response to oxidative stress and influence of mutation-type. PLoS One, 2013, 8(6), e68256. doi: 10.1371/journal.pone.0068256 PMID: 23840839
- Ahtoniemi, T.; Jaronen, M.; Keksa-Goldsteine, V.; Goldsteins, G.; Koistinaho, J. Mutant SOD1 from spinal cord of G93A rats is destabilized and binds to inner mitochondrial membrane. Neurobiol. Dis., 2008, 32(3), 479-485. doi: 10.1016/j.nbd.2008.08.010 PMID: 18817872
- Xiao, Y.; Karam, C.; Yi, J.; Zhang, L.; Li, X.; Yoon, D.; Wang, H.; Dhakal, K.; Ramlow, P.; Yu, T.; Mo, Z.; Ma, J.; Zhou, J. ROS-related mitochondrial dysfunction in skeletal muscle of an ALS mouse model during the disease progression. Pharmacol. Res., 2018, 138, 25-36. doi: 10.1016/j.phrs.2018.09.008 PMID: 30236524
- Bruijn, L.I.; Miller, T.M.; Cleveland, D.W. Unraveling the mechanisms involved in motor neuron degeneration in ALS. Annu. Rev. Neurosci., 2004, 27(1), 723-749. doi: 10.1146/annurev.neuro.27.070203.144244 PMID: 15217349
- Vijayvergiya, C.; Beal, M.F.; Buck, J.; Manfredi, G. Mutant superoxide dismutase 1 forms aggregates in the brain mitochondrial matrix of amyotrophic lateral sclerosis mice. J. Neurosci., 2005, 25(10), 2463-2470. doi: 10.1523/JNEUROSCI.4385-04.2005 PMID: 15758154
- Babu, G.N.; Kumar, A.; Chandra, R.; Puri, S.K.; Singh, R.L.; Kalita, J.; Misra, U.K. Oxidant-antioxidant imbalance in the erythrocytes of sporadic amyotrophic lateral sclerosis patients correlates with the progression of disease. Neurochem. Int., 2008, 52(6), 1284-1289. doi: 10.1016/j.neuint.2008.01.009 PMID: 18308427
- Ikawa, M.; Okazawa, H.; Tsujikawa, T.; Matsunaga, A.; Yamamura, O.; Mori, T.; Hamano, T.; Kiyono, Y.; Nakamoto, Y.; Yoneda, M. Increased oxidative stress is related to disease severity in the ALS motor cortex: A PET study. Neurology, 2015, 84(20), 2033-2039. doi: 10.1212/WNL.0000000000001588 PMID: 25904686
- Ehrhart, J.; Smith, A.J.; Kuzmin-Nichols, N.; Zesiewicz, T.A.; Jahan, I.; Shytle, R.D.; Kim, S.H.; Sanberg, C.D.; Vu, T.H.; Gooch, C.L.; Sanberg, P.R.; Garbuzova-Davis, S. Humoral factors in ALS patients during disease progression. J. Neuroinflammation, 2015, 12(1), 127. doi: 10.1186/s12974-015-0350-4 PMID: 26126965
- Pollari, E.; Goldsteins, G.; Bart, G.; Koistinaho, J.; Giniatullin, R. The role of oxidative stress in degeneration of the neuromuscular junction in amyotrophic lateral sclerosis. Front. Cell. Neurosci., 2014, 8, 131. doi: 10.3389/fncel.2014.00131 PMID: 24860432
- Tan, W.; Pasinelli, P.; Trotti, D. Role of mitochondria in mutant SOD1 linked amyotrophic lateral sclerosis. Biochim. Biophys. Acta Mol. Basis Dis., 2014, 1842(8), 1295-1301. doi: 10.1016/j.bbadis.2014.02.009 PMID: 24568860
- LoGerfo, A.; Chico, L.; Borgia, L.; Petrozzi, L.; Rocchi, A.; DAmelio, A.; Carlesi, C.; Ienco, E.; Mancuso, M.; Siciliano, G. Lack of association between nuclear factor erythroid-derived 2-like 2 promoter gene polymorphisms and oxidative stress biomarkers in amyotrophic lateral sclerosis patients. Oxid. Med. Cell. Longev., 2014, 2014, 1-9. doi: 10.1155/2014/432626 PMID: 24672634
- Calabrese, V.; Mancuso, C.; Calvani, M.; Rizzarelli, E.; Butterfield, D.A.; Giuffrida Stella, A.M. Nitric oxide in the central nervous system: Neuroprotection versus neurotoxicity. Nat. Rev. Neurosci., 2007, 8(10), 766-775. doi: 10.1038/nrn2214 PMID: 17882254
- Mancuso, C.; Pani, G.; Calabrese, V. Bilirubin: An endogenous scavenger of nitric oxide and reactive nitrogen species. Redox Rep., 2006, 11(5), 207-213. doi: 10.1179/135100006X154978 PMID: 17132269
- Drake, J.; Sultana, R.; Aksenova, M.; Calabrese, V.; Butterfield, D.A. Elevation of mitochondrial glutathione by? -glutamylcysteine ethyl ester protects mitochondria against peroxynitrite-induced oxidative stress. J. Neurosci. Res., 2003, 74(6), 917-927. doi: 10.1002/jnr.10810 PMID: 14648597
- Siracusa, R.; Scuto, M.; Fusco, R.; Trovato, A.; Ontario, M.L.; Crea, R.; Di Paola, R.; Cuzzocrea, S.; Calabrese, V. Anti-inflammatory and anti-oxidant activity of hidrox® in rotenone-induced parkinsons disease in mice. Antioxidants, 2020, 9(9), 824. doi: 10.3390/antiox9090824 PMID: 32899274
- Forni, C.; Facchiano, F.; Bartoli, M.; Pieretti, S.; Facchiano, A.; DArcangelo, D.; Norelli, S.; Valle, G.; Nisini, R.; Beninati, S.; Tabolacci, C.; Jadeja, R.N. Beneficial role of phytochemicals on oxidative stress and age-related diseases. BioMed Res. Int., 2019, 2019, 1-16. doi: 10.1155/2019/8748253 PMID: 31080832
- Chico, L.; Ienco, E.C.; Bisordi, C.; Lo Gerfo, A.; Petrozzi, L.; Petrucci, A.; Mancuso, M.; Siciliano, G. Amyotrophic lateral sclerosis and oxidative stress: A double-blind therapeutic trial after curcumin supplementation. CNS Neurol. Disord. Drug Targets, 2018, 17(10), 767-779. doi: 10.2174/1871527317666180720162029 PMID: 30033879
- Kim, D.S.; Kim, J.Y.; Han, Y. Curcuminoids in neurodegenerative diseases. Recent Patents CNS Drug Discov., 2012, 7(3), 184-204. doi: 10.2174/157488912803252032 PMID: 22742420
- Darvesh, A.S.; Carroll, R.T.; Bishayee, A.; Novotny, N.A.; Geldenhuys, W.J.; Van der Schyf, C.J. Curcumin and neurodegenerative diseases: A perspective. Expert Opin. Investig. Drugs, 2012, 21(8), 1123-1140. doi: 10.1517/13543784.2012.693479 PMID: 22668065
- Jiang, H.; Tian, X.; Guo, Y.; Duan, W.; Bu, H.; Li, C. Activation of nuclear factor erythroid 2-related factor 2 cytoprotective signaling by curcumin protect primary spinal cord astrocytes against oxidative toxicity. Biol. Pharm. Bull., 2011, 34(8), 1194-1197. doi: 10.1248/bpb.34.1194 PMID: 21804205
- Dong, H.; Xu, L.; Wu, L.; Wang, X.; Duan, W.; Li, H.; Li, C. Curcumin abolishes mutant TDP-43 induced excitability in a motoneuron-like cellular model of ALS. Neuroscience, 2014, 272, 141-153. doi: 10.1016/j.neuroscience.2014.04.032 PMID: 24785678
- Janssens, J.; Kleinberger, G.; Wils, H.; Van Broeckhoven, C. The role of mutant TAR DNA-binding protein 43 in amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Biochem. Soc. Trans., 2011, 39(4), 954-959. doi: 10.1042/BST0390954 PMID: 21787329
- Mackenzie, I.R.A.; Rademakers, R. The role of transactive response DNA-binding protein-43 in amyotrophic lateral sclerosis and frontotemporal dementia. Curr. Opin. Neurol., 2008, 21(6), 693-700. doi: 10.1097/WCO.0b013e3283168d1d PMID: 18989115
- Lu, J.; Duan, W.; Guo, Y.; Jiang, H.; Li, Z.; Huang, J.; Hong, K.; Li, C. Mitochondrial dysfunction in human TDP-43 transfected NSC34 cell lines and the protective effect of dimethoxy curcumin. Brain Res. Bull., 2012, 89(5-6), 185-190. doi: 10.1016/j.brainresbull.2012.09.005 PMID: 22986236
- Bhatia, N.K.; Srivastava, A.; Katyal, N.; Jain, N.; Khan, M.A.I.; Kundu, B.; Deep, S. Curcumin binds to the pre-fibrillar aggregates of Cu/Zn superoxide dismutase (SOD1) and alters its amyloidogenic pathway resulting in reduced cytotoxicity. Biochim. Biophys. Acta. Proteins Proteomics, 2015, 1854(5), 426-436. doi: 10.1016/j.bbapap.2015.01.014 PMID: 25666897
- Strong, R.; Miller, R.A.; Astle, C.M.; Baur, J.A.; de Cabo, R.; Fernandez, E.; Guo, W.; Javors, M.; Kirkland, J.L.; Nelson, J.F.; Sinclair, D.A.; Teter, B.; Williams, D.; Zaveri, N.; Nadon, N.L.; Harrison, D.E. Evaluation of resveratrol, green tea extract, curcumin, oxaloacetic acid, and medium-chain triglyceride oil on life span of genetically heterogeneous mice. J. Gerontol. A Biol. Sci. Med. Sci., 2013, 68(1), 6-16. doi: 10.1093/gerona/gls070 PMID: 22451473
- Anand, P.; Kunnumakkara, A.B.; Newman, R.A.; Aggarwal, B.B. Bioavailability of curcumin: Problems and promises. Mol. Pharm., 2007, 4(6), 807-818. doi: 10.1021/mp700113r PMID: 17999464
- Liu, W.; Zhai, Y.; Heng, X.; Che, F.Y.; Chen, W.; Sun, D.; Zhai, G. Oral bioavailability of curcumin: Problems and advancements. J. Drug Target., 2016, 24(8), 694-702. doi: 10.3109/1061186X.2016.1157883 PMID: 26942997
- Tripodo, G.; Chlapanidas, T.; Perteghella, S.; Vigani, B.; Mandracchia, D.; Trapani, A.; Galuzzi, M.; Tosca, M.C.; Antonioli, B.; Gaetani, P.; Marazzi, M.; Torre, M.L. Mesenchymal stromal cells loading curcumin-INVITE-micelles: A drug delivery system for neurodegenerative diseases. Colloids Surf. B Biointerfaces, 2015, 125, 300-308. doi: 10.1016/j.colsurfb.2014.11.034 PMID: 25524221
- Wu, A.; Ying, Z.; Gomez-Pinilla, F. Dietary curcumin counteracts the outcome of traumatic brain injury on oxidative stress, synaptic plasticity, and cognition. Exp. Neurol., 2006, 197(2), 309-317. doi: 10.1016/j.expneurol.2005.09.004 PMID: 16364299
- Ullah, F.; Liang, A.; Rangel, A.; Gyengesi, E.; Niedermayer, G.; Münch, G. High bioavailability curcumin: An anti-inflammatory and neurosupportive bioactive nutrient for neurodegenerative diseases characterized by chronic neuroinflammation. Arch. Toxicol., 2017, 91(4), 1623-1634. doi: 10.1007/s00204-017-1939-4 PMID: 28204864
- Rakotoarisoa, M.; Angelova, A. Amphiphilic nanocarrier systems for curcumin delivery in neurodegenerative disorders. Medicines, 2018, 5(4), 126. doi: 10.3390/medicines5040126 PMID: 30477087
- Ahmadi, M.; Agah, E.; Nafissi, S.; Jaafari, M.R.; Harirchian, M.H.; Sarraf, P.; Faghihi-Kashani, S.; Hosseini, S.J.; Ghoreishi, A.; Aghamollaii, V.; Hosseini, M.; Tafakhori, A. Safety and efficacy of nanocurcumin as add-on therapy to riluzole in patients with amyotrophic lateral sclerosis: A pilot randomized clinical trial. Neurotherapeutics, 2018, 15(2), 430-438. doi: 10.1007/s13311-018-0606-7 PMID: 29352425
- Ghasemi, F.; Bagheri, H.; Barreto, G.E.; Read, M.I.; Sahebkar, A. Effects of curcumin on microglial cells. Neurotox. Res., 2019, 36(1), 12-26. doi: 10.1007/s12640-019-00030-0 PMID: 30949950
- Handique, J.G.; Baruah, J.B. Polyphenolic compounds: An overview. React. Funct. Polym., 2002, 52(3), 163-188. doi: 10.1016/S1381-5148(02)00091-3
- Wang, J.; Zhang, Y.; Tang, L.; Zhang, N.; Fan, D. Protective effects of resveratrol through the up-regulation of SIRT1 expression in the mutant hSOD1-G93A-bearing motor neuron-like cell culture model of amyotrophic lateral sclerosis. Neurosci. Lett., 2011, 503(3), 250-255. doi: 10.1016/j.neulet.2011.08.047 PMID: 21896316
- Barber, S.C.; Higginbottom, A.; Mead, R.J.; Barber, S.; Shaw, P.J. An in vitro screening cascade to identify neuroprotective antioxidants in ALS. Free Radic. Biol. Med., 2009, 46(8), 1127-1138. doi: 10.1016/j.freeradbiomed.2009.01.019 PMID: 19439221
- Mancuso, R.; del Valle, J.; Modol, L.; Martinez, A.; Granado-Serrano, A.B.; Ramirez-Núñez, O.; Pallás, M.; Portero-Otin, M.; Osta, R.; Navarro, X. Resveratrol improves motoneuron function and extends survival in SOD1(G93A) ALS mice. Neurotherapeutics, 2014, 11(2), 419-432. PMID: 24414863
- Song, L.; Chen, L.; Zhang, X.; Li, J.; Le, W. Resveratrol ameliorates motor neuron degeneration and improves survival in SOD1(G93A) mouse model of amyotrophic lateral sclerosis. BioMed Res. Int., 2014, 2014, 1-10. doi: 10.1155/2014/483501 PMID: 25057490
- Mancuso, R.; del Valle, J.; Morell, M.; Pallás, M.; Osta, R.; Navarro, X. Lack of synergistic effect of resveratrol and sigma-1 receptor agonist (PRE-084) in SOD1G93A ALS mice: Overlapping effects or limited therapeutic opportunity? Orphanet J. Rare Dis., 2014, 9(1), 78. doi: 10.1186/1750-1172-9-78 PMID: 24885036
- Srinivasan, E.; Rajasekaran, R. Quantum chemical and molecular mechanics studies on the assessment of interactions between resveratrol and mutant SOD1 (G93A) protein. J. Comput. Aided Mol. Des., 2018, 32(12), 1347-1361. doi: 10.1007/s10822-018-0175-1 PMID: 30368622
- Yun, Y.C.; Jeong, S.; Kim, S.H.; Cho, G. Reduced sirtuin 1/adenosine monophosphate-activated protein kinase in amyotrophic lateral sclerosis patient-derived mesenchymal stem cells can be restored by resveratrol. J. Tissue Eng. Regen. Med., 2018, 13(1), 110-115.
- Laudati, G.; Mascolo, L.; Guida, N.; Sirabella, R.; Pizzorusso, V.; Bruzzaniti, S.; Serani, A.; Di Renzo, G.; Canzoniero, L.M.T.; Formisano, L. Resveratrol treatment reduces the vulnerability of SH-SY5Y cells and cortical neurons overexpressing SOD1-G93A to Thimerosal toxicity through SIRT1/DREAM/PDYN pathway. Neurotoxicology, 2019, 71, 6-15. doi: 10.1016/j.neuro.2018.11.009 PMID: 30503815
- Caplliure-Llopis, J.; Peralta-Chamba, T.; Carrera-Juliá, S.; Cuerda-Ballester, M.; Drehmer-Rieger, E.; López-Rodriguez, M.M.; Rubia Ortí, J.E. Therapeutic alternative of the ketogenic Mediterranean diet to improve mitochondrial activity in Amyotrophic Lateral Sclerosis (ALS): A Comprehensive Review. Food Sci. Nutr., 2020, 8(1), 23-35. doi: 10.1002/fsn3.1324 PMID: 31993129
- Hu, T.; He, X.W.; Jiang, J.G.; Xu, X.L. Hydroxytyrosol and its potential therapeutic effects. J. Agric. Food Chem., 2014, 62(7), 1449-1455. doi: 10.1021/jf405820v PMID: 24479643
- de Pablos, R.M.; Espinosa-Oliva, A.M.; Hornedo-Ortega, R.; Cano, M.; Arguelles, S. Hydroxytyrosol protects from aging process via AMPK and autophagy; a review of its effects on cancer, metabolic syndrome, osteoporosis, immune-mediated and neurodegenerative diseases. Pharmacol. Res., 2019, 143, 58-72. doi: 10.1016/j.phrs.2019.03.005 PMID: 30853597
- Oliván, S.; Martínez-Beamonte, R.; Calvo, A.C.; Surra, J.C.; Manzano, R.; Arnal, C.; Osta, R.; Osada, J. Extra virgin olive oil intake delays the development of amyotrophic lateral sclerosis associated with reduced reticulum stress and autophagy in muscle of SOD1G93A mice. J. Nutr. Biochem., 2014, 25(8), 885-892. doi: 10.1016/j.jnutbio.2014.04.005 PMID: 24917047
- Kalaiselvan, I.; Samuthirapandi, M.; Govindaraju, A.; Sheeja Malar, D.; Kasi, P.D. Olive oil and its phenolic compounds (hydroxytyrosol and tyrosol) ameliorated TCDD-induced heptotoxicity in rats via inhibition of oxidative stress and apoptosis. Pharm. Biol., 2016, 54(2), 338-346. doi: 10.3109/13880209.2015.1042980 PMID: 25955957
- Rajabian, A.; Sadeghnia, H.; Fanoudi, S.; Hosseini, A. Genus Boswellia as a new candidate for neurodegenerative disorders. Iran. J. Basic Med. Sci., 2020, 23(3), 277-286. PMID: 32440312
- Ammon, H. Boswellic acids in chronic inflammatory diseases. Planta Med., 2006, 72(12), 1100-1116. doi: 10.1055/s-2006-947227 PMID: 17024588
- Siddiqui, A.; Shah, Z.; Jahan, R.N.; Othman, I.; Kumari, Y. Mechanistic role of boswellic acids in Alzheimers disease: Emphasis on anti-inflammatory properties. Biomed. Pharmacother., 2021, 144, 112250. doi: 10.1016/j.biopha.2021.112250 PMID: 34607104
- Minj, E.; Upadhayay, S.; Mehan, S. Nrf2/HO-1 signaling activator acetyl-11-keto-beta boswellic acid (AKBA)-mediated neuroprotection in methyl mercury-induced experimental model of ALS. Neurochem. Res., 2021, 46(11), 2867-2884. doi: 10.1007/s11064-021-03366-2 PMID: 34075522
- Landis-Piwowar, K.R.; Huo, C.; Chen, D.; Milacic, V.; Shi, G.; Chan, T.H.; Dou, Q.P. A novel prodrug of the green tea polyphenol (-)-epigallocatechin-3-gallate as a potential anticancer agent. Cancer Res., 2007, 67(9), 4303-4310. doi: 10.1158/0008-5472.CAN-06-4699 PMID: 17483343
- Bedlack, R.S.; Joyce, N.; Carter, G.T.; Paganoni, S.; Karam, C. Complementary and alternative therapies in amyotrophic lateral sclerosis. Neurol. Clin., 2015, 33(4), 909-936. doi: 10.1016/j.ncl.2015.07.008 PMID: 26515629
- Hockenbery, D.M.; Oltvai, Z.N.; Yin, X.M.; Milliman, C.L.; Korsmeyer, S.J. Bcl-2 functions in an antioxidant pathway to prevent apoptosis. Cell, 1993, 75(2), 241-251. doi: 10.1016/0092-8674(93)80066-N PMID: 7503812
- Terao, J.; Piskula, M.; Yao, Q. Protective effect of epicatechin, epicatechin gallate, and quercetin on lipid peroxidation in phospholipid bilayers. Arch. Biochem. Biophys., 1994, 308(1), 278-284. doi: 10.1006/abbi.1994.1039 PMID: 8311465
- Levites, Y.; Amit, T.; Youdim, M.B.H.; Mandel, S. Involvement of protein kinase C activation and cell survival/cell cycle genes in green tea polyphenol (-)-epigallocatechin 3-gallate neuroprotective action. J. Biol. Chem., 2002, 277(34), 30574-30580. doi: 10.1074/jbc.M202832200 PMID: 12058035
- Mandel, S.A.; Avramovich-Tirosh, Y.; Reznichenko, L.; Zheng, H.; Weinreb, O.; Amit, T.; Youdim, M.B.H. Multifunctional activities of green tea catechins in neuroprotection. Modulation of cell survival genes, iron-dependent oxidative stress and PKC signaling pathway. Neurosignals, 2005, 14(1-2), 46-60. doi: 10.1159/000085385 PMID: 15956814
- Nie, G.; Cao, Y.; Zhao, B. Protective effects of green tea polyphenols and their major component, (-)-epigallocatechin-3-gallate (EGCG), on 6-hydroxydopamine-induced apoptosis in PC12 cells. Redox Rep., 2002, 7(3), 171-177. doi: 10.1179/135100002125000424 PMID: 12189048
- Reznichenko, L.; Amit, T.; Youdim, M.B.H.; Mandel, S. Green tea polyphenol (-)-epigallocatechin-3-gallate induces neurorescue of long-term serum-deprived PC12 cells and promotes neurite outgrowth. J. Neurochem., 2005, 93(5), 1157-1167. doi: 10.1111/j.1471-4159.2005.03085.x PMID: 15934936
- Mandel, S.; Weinreb, O.; Amit, T.; Youdim, M.B.H. Cell signaling pathways in the neuroprotective actions of the green tea polyphenol (-)-epigallocatechin-3-gallate: Implications for neurodegenerative diseases. J. Neurochem., 2004, 88(6), 1555-1569. doi: 10.1046/j.1471-4159.2003.02291.x PMID: 15009657
- Panickar, K.S.; Polansky, M.M.; Anderson, R.A. Green tea polyphenols attenuate glial swelling and mitochondrial dysfunction following oxygen-glucose deprivation in cultures. Nutr. Neurosci., 2009, 12(3), 105-113. doi: 10.1179/147683009X423300 PMID: 19356313
- Koh, S.; Kwon, H.; Kim, K.S.; Kim, J.; Kim, M.H.; Yu, H.J.; Kim, M.; Lee, K.W.; Do, B.R.; Jung, H.K.; Yang, K.W.; Appel, S.H.; Kim, S.H. Epigallocatechin gallate prevents oxidative-stress-induced death of mutant Cu/Zn-superoxide dismutase (G93A) motoneuron cells by alteration of cell survival and death signals. Toxicology, 2004, 202(3), 213-225. doi: 10.1016/j.tox.2004.05.008 PMID: 15337584
- Koh, S.H.; Lee, S.M.; Kim, H.Y.; Lee, K.Y.; Lee, Y.J.; Kim, H.T.; Kim, J.; Kim, M.H.; Hwang, M.S.; Song, C.; Yang, K.W.; Lee, K.W.; Kim, S.H.; Kim, O.H. The effect of epigallocatechin gallate on suppressing disease progression of ALS model mice. Neurosci. Lett., 2006, 395(2), 103-107. doi: 10.1016/j.neulet.2005.10.056 PMID: 16356650
- Xu, Z.; Chen, S.; Li, X.; Luo, G.; Li, L.; Le, W. Neuroprotective effects of (-)-epigallocatechin-3-gallate in a transgenic mouse model of amyotrophic lateral sclerosis. Neurochem. Res., 2006, 31(10), 1263-1269. doi: 10.1007/s11064-006-9166-z PMID: 17021948
- Srinivasan, E.; Rajasekaran, R. Probing the inhibitory activity of epigallocatechin-gallate on toxic aggregates of mutant (L84F) SOD1 protein through geometry based sampling and steered molecular dynamics. J. Mol. Graph. Model., 2017, 74, 288-295. doi: 10.1016/j.jmgm.2017.04.019 PMID: 28458007
- Cao, G.; Sofic, E.; Prior, R.L. Antioxidant and prooxidant behavior of flavonoids: Structure-activit relationships. Free Radic. Biol. Med., 1997, 22(5), 749-760. doi: 10.1016/S0891-5849(96)00351-6 PMID: 9119242
- Esposito, E.; Rotilio, D.; Dimatteo, V.; Digiulio, C.; Cacchio, M.; Algeri, S. A review of specific dietary antioxidants and the effects on biochemical mechanisms related to neurodegenerative processes. Neurobiol. Aging, 2002, 23(5), 719-735. doi: 10.1016/S0197-4580(02)00078-7 PMID: 12392777
- Vauzour, D.; Vafeiadou, K.; Rodriguez-Mateos, A.; Rendeiro, C.; Spencer, J.P.E. The neuroprotective potential of flavonoids: A multiplicity of effects. Genes Nutr., 2008, 3(3-4), 115-126. doi: 10.1007/s12263-008-0091-4 PMID: 18937002
- He, L.; He, T.; Farrar, S.; Ji, L.; Liu, T.; Ma, X. Antioxidants maintain cellular redox homeostasis by elimination of reactive oxygen species. Cell. Physiol. Biochem., 2017, 44(2), 532-553. doi: 10.1159/000485089 PMID: 29145191
- Kim, T.Y.; Leem, E.; Lee, J.M.; Kim, S.R. Control of reactive oxygen species for the prevention of parkinsons disease: The possible application of flavonoids. Antioxidants, 2020, 9(7), 583. doi: 10.3390/antiox9070583 PMID: 32635299
- Solanki, I.; Parihar, P.; Mansuri, M.L.; Parihar, M.S. Flavonoid-based therapies in the early management of neurodegenerative diseases. Adv. Nutr., 2015, 6(1), 64-72. doi: 10.3945/an.114.007500 PMID: 25593144
- Mansuri, M.L.; Parihar, P.; Solanki, I.; Parihar, M.S. Flavonoids in modulation of cell survival signalling pathways. Genes Nutr., 2014, 9(3), 400. doi: 10.1007/s12263-014-0400-z PMID: 24682883
- Mantilla, C.B.; Ermilov, L.G. The novel TrkB receptor agonist 7,8-dihydroxyflavone enhances neuromuscular transmission. Muscle Nerve, 2012, 45(2), 274-276. doi: 10.1002/mus.22295 PMID: 22246885
- Korkmaz, O.T.; Aytan, N.; Carreras, I.; Choi, J.K.; Kowall, N.W.; Jenkins, B.G.; Dedeoglu, A. 7,8-Dihydroxyflavone improves motor performance and enhances lower motor neuronal survival in a mouse model of amyotrophic lateral sclerosis. Neurosci. Lett., 2014, 566, 286-291. doi: 10.1016/j.neulet.2014.02.058 PMID: 24637017
- Sharma, D.R.; Wani, W.Y.; Sunkaria, A.; Kandimalla, R.J.; Sharma, R.K.; Verma, D.; Bal, A.; Gill, K.D. Quercetin attenuates neuronal death against aluminum-induced neurodegeneration in the rat hippocampus. Neuroscience, 2016, 324, 163-176. doi: 10.1016/j.neuroscience.2016.02.055 PMID: 26944603
- Ip, P.; Sharda, P.R.; Cunningham, A.; Chakrabartty, S.; Pande, V.; Chakrabartty, A. Quercitrin and quercetin 3-β-d-glucoside as chemical chaperones for the A4V SOD1 ALS-causing mutant. Protein Eng. Des. Sel., 2017, 30(6), 431-440. doi: 10.1093/protein/gzx025 PMID: 28475686
- Wang, T.H.; Wang, S.Y.; Wang, X.D.; Jiang, H.Q.; Yang, Y.Q.; Wang, Y.; Cheng, J.L.; Zhang, C.T.; Liang, W.W.; Feng, H.L. Fisetin exerts antioxidant and neuroprotective effects in multiple mutant hsod1 models of amyotrophic lateral sclerosis by activating ERK. Neuroscience, 2018, 379, 152-166. doi: 10.1016/j.neuroscience.2018.03.008 PMID: 29559385
- Ye, L.; Wang, H.; Duncan, S.E.; Eigel, W.N.; OKeefe, S.F. Antioxidant activities of Vine Tea (Ampelopsis grossedentata) extract and its major component dihydromyricetin in soybean oil and cooked ground beef. Food Chem., 2015, 172, 416-422. doi: 10.1016/j.foodchem.2014.09.090 PMID: 25442572
- Murakami, T.; Miyakoshi, M.; Araho, D.; Mizutani, K.; Kambara, T.; Ikeda, T.; Chou, W.H.; Inukai, M.; Takenaka, A.; Igarashi, K. Hepatoprotective activity of tocha, the stems and leaves of Ampelopsis grossedentata, and ampelopsin. Biofactors, 2004, 21(1-4), 175-178. doi: 10.1002/biof.552210136 PMID: 15630194
- Kou, X.; Shen, K.; An, Y.; Qi, S.; Dai, W.X.; Yin, Z. Ampelopsin inhibits H2O2-induced apoptosis by ERK and Akt signaling pathways and up-regulation of heme oxygenase-1. Phytother. Res., 2012, 26(7), 988-994. doi: 10.1002/ptr.3671 PMID: 22144097
- Singh, B.; Kaur, P. Gopichand; Singh, R.D.; Ahuja, P.S. Biology and chemistry of Ginkgo biloba. Fitoterapia, 2008, 79(6), 401-418. doi: 10.1016/j.fitote.2008.05.007 PMID: 18639617
- Ferrante, R.J.; Klein, A.M.; Dedeoglu, A.; Beal, M.F. Therapeutic efficacy of EGb761 (Gingko biloba extract) in a transgenic mouse model of amyotrophic lateral sclerosis. J. Mol. Neurosci., 2001, 17(1), 89-96. doi: 10.1385/JMN:17:1:89 PMID: 11665866
- Jiang, F.; DeSilva, S.; Turnbull, J. Beneficial effect of ginseng root in SOD-1 (G93A) transgenic mice. J. Neurol. Sci., 2000, 180(1-2), 52-54. doi: 10.1016/S0022-510X(00)00421-4 PMID: 11090864
- Trieu, V.N.; Uckun, F.M. Genistein is neuroprotective in murine models of familial amyotrophic lateral sclerosis and stroke. Biochem. Biophys. Res. Commun., 1999, 258(3), 685-688. doi: 10.1006/bbrc.1999.0577 PMID: 10329446
- Orrell, R.; Lane, J.; Ross, M. Antioxidant treatment for amyotrophic lateral sclerosis/motor neuron disease.In: Cochrane Database of Systematic Reviews; John Wiley & Sons, Ltd: Chichester, UK, 2004. doi: 10.1002/14651858.CD002829.pub2
- Gurney, M.E.; Cutting, F.B.; Zhai, P.; Doble, A.; Taylor, C.P.; Andrus, P.K.; Hall, E.D. Benefit of vitamin E, riluzole, and gababapentin in a transgenic model of familial amyotrophic lateral sclerosis. Ann. Neurol., 1996, 39(2), 147-157. doi: 10.1002/ana.410390203 PMID: 8967745
- Desnuelle, C.; Dib, M.; Garrel, C.; Favier, A. A double-blind, placebo-controlled randomized clinical trial of α-tocopherol (vitamin E) in the treatment of amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. Other Motor Neuron Disord., 2001, 2(1), 9-18. doi: 10.1080/146608201300079364 PMID: 11465936
- Ascherio, A.; Weisskopf, M.G.; OReilly, E.J.; Jacobs, E.J.; McCullough, M.L.; Calle, E.E.; Cudkowicz, M.; Thun, M.J.; Vitamin, E. Vitamin E intake and risk of amyotrophic lateral sclerosis. Ann. Neurol., 2005, 57(1), 104-110. doi: 10.1002/ana.20316 PMID: 15529299
- Veldink, J.H.; Kalmijn, S.; Groeneveld, G-J.; Wunderink, W.; Koster, A.; de Vries, J.H.M.; van der Luyt, J.; Wokke, J.H.J.; Van den Berg, L.H. Intake of polyunsaturated fatty acids and vitamin E reduces the risk of developing amyotrophic lateral sclerosis. J. Neurol. Neurosurg. Psychiatry, 2006, 78(4), 367-371. doi: 10.1136/jnnp.2005.083378 PMID: 16648143
- Wang, H.; OReilly, E.J.; Weisskopf, M.G.; Logroscino, G.; McCullough, M.L.; Schatzkin, A.; Kolonel, L.N.; Ascherio, A.; Vitamin, E. Vitamin E intake and risk of amyotrophic lateral sclerosis: A pooled analysis of data from 5 prospective cohort studies. Am. J. Epidemiol., 2011, 173(6), 595-602. doi: 10.1093/aje/kwq416 PMID: 21335424
- Graf, M.; Ecker, D.; Horowski, R.; Kramer, B.; Riederer, P.; Gerlach, M.; Hager, C.; Ludolph, A.C.; Becker, G.; Osterhage, J.; Jost, W.H.; Schrank, B.; Stein, C.; Kostopulos, P.; Lubik, S.; Wekwerth, K.; Dengler, R.; Troeger, M.; Wuerz, A.; Hoge, A.; Schrader, C.; Schimke, N.; Krampfl, K.; Petri, S.; Zierz, S.; Eger, K.; Neudecker, S.; Traufeller, K.; Sievert, M.; Neundörfer, B.; Hecht, M. High dose vitamin E therapy in amyotrophic lateral sclerosis as add-on therapy to riluzole: Results of a placebo-controlled double-blind study. J. Neural Transm., 2005, 112(5), 649-660. doi: 10.1007/s00702-004-0220-1 PMID: 15517433
- Michal Freedman, D.; Kuncl, R.W.; Weinstein, S.J.; Malila, N.; Virtamo, J.; Albanes, D. Vitamin E serum levels and controlled supplementation and risk of amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. Frontotemporal Degener., 2013, 14(4), 246-251. doi: 10.3109/21678421.2012.745570 PMID: 23286756
- Galbussera, A.; Tremolizzo, L.; Brighina, L.; Testa, D.; Lovati, R.; Ferrarese, C.; Cavaletti, G.; Filippini, G. Vitamin E intake and quality of life in amyotrophic lateral sclerosis patients: A follow-up case series study. Neurol. Sci., 2006, 27(3), 190-193. doi: 10.1007/s10072-006-0668-x PMID: 16897634
- Longnecker, M.P.; Kamel, F.; Umbach, D.M.; Munsat, T.L.; Shefner, J.M.; Lansdell, L.W.; Sandler, D.P. Dietary intake of calcium, magnesium and antioxidants in relation to risk of amyotrophic lateral sclerosis. Neuroepidemiology, 2000, 19(4), 210-216. doi: 10.1159/000026258 PMID: 10859501
- Nieves, J.W.; Gennings, C.; Factor-Litvak, P.; Hupf, J.; Singleton, J.; Sharf, V.; Oskarsson, B.; Fernandes Filho, J.A.M.; Sorenson, E.J.; DAmico, E.; Goetz, R.; Mitsumoto, H. Association between dietary intake and function in amyotrophic lateral sclerosis. JAMA Neurol., 2016, 73(12), 1425-1432. doi: 10.1001/jamaneurol.2016.3401 PMID: 27775751
- Fitzgerald, K.C.; OReilly, É.J.; Fondell, E.; Falcone, G.J.; McCullough, M.L.; Park, Y.; Kolonel, L.N.; Ascherio, A. Intakes of vitamin C and carotenoids and risk of amyotrophic lateral sclerosis: Pooled results from 5 cohort studies. Ann. Neurol., 2013, 73(2), 236-245. doi: 10.1002/ana.23820 PMID: 23362045
- Okamoto, K.; Kihira, T.; Kobashi, G.; Washio, M.; Sasaki, S.; Yokoyama, T.; Miyake, Y.; Sakamoto, N.; Inaba, Y.; Nagai, M. Fruit and vegetable intake and risk of amyotrophic lateral sclerosis in Japan. Neuroepidemiology, 2009, 32(4), 251-256. doi: 10.1159/000201563 PMID: 19209004
- Ma, Z.; Yang, Z. Scavenging effects of Astragalus and Gynostemma pentaphyllum with its product on O2-. and. OH. Zhong Yao Cai, 1999, 22(6), 303-306. PMID: 12575069
- Shahzad, M.; Shabbir, A.; Wojcikowski, K.; Wohlmuth, H.; Gobe, G.C. The antioxidant effects of radix astragali (Astragalus membranaceus and related species) in protecting tissues from injury and disease. Curr. Drug Targets, 2016, 17(12), 1331-1340. doi: 10.2174/1389450116666150907104742 PMID: 26343107
- Rong, J.; Cheung, C.; Lau, A.; Shen, J.; Tam, P.; Cheng, Y.C. Induction of heme oxygenase-1 by traditional Chinese medicine formulation ISF-1 and its ingredients as a cytoprotective mechanism against oxidative stress. Int. J. Mol. Med., 2008, 21(4), 405-411. doi: 10.3892/ijmm.21.4.405 PMID: 18360685
- Hu, J.Y.; Han, J.; Chu, Z.G.; Song, H.P.; Zhang, D.X.; Zhang, Q.; Huang, Y.S. Astragaloside IV attenuates hypoxia-induced cardiomyocyte damage in rats by upregulating superoxide dismutase-1 levels. Clin. Exp. Pharmacol. Physiol., 2009, 36(4), 351-357. doi: 10.1111/j.1440-1681.2008.05059.x PMID: 18986331
- Liu, X.; Zhang, J.; Wang, S.; Qiu, J.; Yu, C.; Astragaloside, I.V. Astragaloside IV attenuates the H2O2-induced apoptosis of neuronal cells by inhibiting α-synuclein expression via the p38 MAPK pathway. Int. J. Mol. Med., 2017, 40(6), 1772-1780. doi: 10.3892/ijmm.2017.3157 PMID: 29039448
- Yu, J.; Guo, M.; Li, Y.; Zhang, H.; Chai, Z.; Wang, Q.; Yan, Y.; Yu, J.; Liu, C.; Zhang, G.; Cungen, M. Astragaloside IV protects neurons from microglia-mediated cell damage through promoting microglia polarization. Folia Neuropathol., 2019, 57(2), 170-181. doi: 10.5114/fn.2019.86299 PMID: 31556576
- Liu, Y. Therapeutic potential of madecassoside in transgenic mice of amyotrophic lateral sclerosis. Chin. Tradit. Herbal Drugs, 2006, 37, 718-720.
- Bai, J-R.; Liu, Y-J.; Song, Y. The mechanism of interfere effects of madecassoside (MC) on neurodegeneration in mice. Zhongguo Laonianxue Zazhi, 2008, 28, 2297-2300.
- Sasmita, A.O.; Ling, A.P.K.; Voon, K.G.L.; Koh, R.Y.; Wong, Y.P. Madecassoside activates anti neuroinflammatory mechanisms by inhibiting lipopolysaccharide induced microglial inflammation. Int. J. Mol. Med., 2018, 41(5), 3033-3040. doi: 10.3892/ijmm.2018.3479 PMID: 29436598
- Liu, S.; Li, G.; Tang, H.; Pan, R.; Wang, H.; Jin, F.; Yan, X.; Xing, Y.; Chen, G.; Fu, Y.; Dong, J. Madecassoside ameliorates lipopolysaccharide-induced neurotoxicity in rats by activating the Nrf2-HO-1 pathway. Neurosci. Lett., 2019, 709, 134386. doi: 10.1016/j.neulet.2019.134386 PMID: 31330225
- Lee, K.; Choi, J.; Choi, B.K.; Gu, Y.M.; Ryu, H.W.; Oh, S.R.; Lee, H.J.; Picroside, I.I.; Picroside, II. Isolated from Pseudolysimachion rotundum var. subintegrum inhibits glucocorticoid refractory serum amyloid A (SAA) Expression and SAA-induced IL-33 secretion. Molecules, 2019, 24(10), 2020. doi: 10.3390/molecules24102020 PMID: 31137813
- Li, B.; Lei, S.; Xiong, S.; Chen, S.; Zhang, Z. Pharmacokinetics and pharmacodynamics of morroniside: A review. Nat. Prod. Commun., 2019, 2019. doi: 10.1177/1934578X19856526
- Wang, W.; Huang, W.; Li, L.; Ai, H.; Sun, F.; Liu, C.; An, Y. Morroniside prevents peroxide-induced apoptosis by induction of endogenous glutathione in human neuroblastoma cells. Cell. Mol. Neurobiol., 2008, 28(2), 293-305. doi: 10.1007/s10571-007-9168-7 PMID: 17647102
- Wang, W.; Sun, F.; An, Y.; Ai, H.; Zhang, L.; Huang, W.; Li, L. Morroniside protects human neuroblastoma SH-SY5Y cells against hydrogen peroxide-induced cytotoxicity. Eur. J. Pharmacol., 2009, 613(1-3), 19-23. doi: 10.1016/j.ejphar.2009.04.013 PMID: 19379729
- Wang, W.; Xu, J.; Li, L.; Wang, P.; Ji, X.; Ai, H.; Zhang, L.; Li, L. Neuroprotective effect of morroniside on focal cerebral ischemia in rats. Brain Res. Bull., 2010, 83(5), 196-201. doi: 10.1016/j.brainresbull.2010.07.003 PMID: 20637265
- Zhang, J.X.; Wang, R.; Xi, J.; Shen, L.; Zhu, A.Y.; Qi, Q.; Wang, Q.Y.; Zhang, L.J.; Wang, F.C.; Lü, H.Z.; Hu, J.G. Morroniside protects SK-N-SH human neuroblastoma cells against H2O2-induced damage. Int. J. Mol. Med., 2017, 39(3), 603-612. doi: 10.3892/ijmm.2017.2882 PMID: 28204825
- Li, P.; Matsunaga, K.; Ohizumi, Y. Nerve growth factor-potentiating compounds from Picrorhizae Rhizoma. Biol. Pharm. Bull., 2000, 23(7), 890-892. doi: 10.1248/bpb.23.890 PMID: 10919373
- Cao, Y.; Liu, J.W.; Yu, Y.J.; Zheng, P.Y.; Zhang, X.D.; Li, T.; Guo, M.C. Synergistic protective effect of picroside II and NGF on PC12 cells against oxidative stress induced by H2O2. Pharmacol. Rep., 2007, 59(5), 573-579. PMID: 18048958
- Guo, N.; Jin, C.; Shen, L.; Wu, F.; Lin, X.; Feng, Y. Chemical components, pharmacological actions, and clinical applications of Rhizoma picrorhizae. Phytother. Res., 2020, 34(5), 1071-1082. doi: 10.1002/ptr.6591 PMID: 31880854
- Li, T.; Liu, J.W.; Zhang, X.D.; Guo, M.C.; Ji, G. The neuroprotective effect of picroside II from hu-huang-lian against oxidative stress. Am. J. Chin. Med., 2007, 35(4), 681-691. doi: 10.1142/S0192415X0700517X PMID: 17708634
- Gong, X.; Su, X.; Liu, H. Diallyl trisulfide, the antifungal component of garlic essential oil and the bioactivity of its nanoemulsions formed by spontaneous emulsification. Molecules, 2021, 26(23), 7186. doi: 10.3390/molecules26237186 PMID: 34885768
- Calò, L.A.; Fusaro, M.; Davis, P.A. HO-1 attenuates hypertension-induced inflammation/oxidative stress: Support from Bartters/Gitelmans patients. Am. J. Hypertens., 2010, 23(9), 936-936. doi: 10.1038/ajh.2010.130 PMID: 20733571
- Sun, M.M.; Bu, H.; Li, B.; Yu, J.X.; Guo, Y.S.; Li, C.Y. Neuroprotective potential of phase II enzyme inducer diallyl trisulfide. Neurol. Res., 2009, 31(1), 23-27. doi: 10.1179/174313208X332959 PMID: 18768114
- Guo, Y.; Zhang, K.; Wang, Q.; Li, Z.; Yin, Y.; Xu, Q.; Duan, W.; Li, C. Neuroprotective effects of diallyl trisulfide in SOD1-G93A transgenic mouse model of amyotrophic lateral sclerosis. Brain Res., 2011, 1374, 110-115. doi: 10.1016/j.brainres.2010.12.014 PMID: 21147075
- Liu, C.; Leng, B.; Li, Y.; Jiang, H.; Duan, W.; Guo, Y.; Li, C.; Hong, K. Diallyl trisulfide protects motor neurons from the neurotoxic protein TDP-43 via activating lysosomal degradation and the antioxidant response. Neurochem. Res., 2018, 43(12), 2304-2312. doi: 10.1007/s11064-018-2651-3 PMID: 30317421
- Silva-Islas, C.A.; Chánez-Cárdenas, M.E.; Barrera-Oviedo, D.; Ortiz-Plata, A.; Pedraza-Chaverri, J.; Maldonado, P.D. Diallyl trisulfide protects rat brain tissue against the damage induced by ischemia-reperfusion through the Nrf2 pathway. Antioxidants, 2019, 8(9), 410. doi: 10.3390/antiox8090410 PMID: 31540440
- Zhu, J.; Shen, L.; Lin, X.; Hong, Y.; Feng, Y. Clinical research on traditional chinese medicine compounds and their preparations for amyotrophic lateral sclerosis. Biomed. Pharmacother., 2017, 96, 854-864. doi: 10.1016/j.biopha.2017.09.135 PMID: 29078263
- Kumar, V.; Gupta, P.; Hassan, M.I. Mechanism and implications of traditional chinese medicine in amyotrophic lateral sclerosis therapy. J. Proteins Proteomics., 2019, 2019, 1-17. doi: 10.1007/s42485-019-00009-7
- Komine, O.; Yamanaka, K. Neuroinflammation in motor neuron disease. Nagoya J. Med. Sci., 2015, 77(4), 537-549. PMID: 26663933
- Hooten, K.G.; Beers, D.R.; Zhao, W.; Appel, S.H. Protective and toxic neuroinflammation in amyotrophic lateral sclerosis. Neurotherapeutics, 2015, 12(2), 364-375. doi: 10.1007/s13311-014-0329-3 PMID: 25567201
- Liu, J.; Wang, F. Role of neuroinflammation in amyotrophic lateral sclerosis: Cellular mechanisms and therapeutic implications. Front. Immunol., 2017, 8, 1005. doi: 10.3389/fimmu.2017.01005 PMID: 28871262
- Süssmuth, S.; Brettschneider, J.; Ludolph, A.; Tumani, H. Biochemical markers in CSF of ALS patients. Curr. Med. Chem., 2008, 15(18), 1788-1801. doi: 10.2174/092986708785133031 PMID: 18691039
- Philips, T.; Robberecht, W. Neuroinflammation in amyotrophic lateral sclerosis: role of glial activation in motor neuron disease. Lancet Neurol., 2011, 10(3), 253-263. doi: 10.1016/S1474-4422(11)70015-1 PMID: 21349440
- Peric, M.; Mitrecic, D.; Andjus, P.R. Targeting astrocytes for treatment in amyotrophic lateral sclerosis. Curr. Pharm. Des., 2018, 23(33), 23. doi: 10.2174/1381612823666170615110446 PMID: 28619002
- Liu, E.; Karpf, L.; Bohl, D. Neuroinflammation in amyotrophic lateral sclerosis and frontotemporal dementia and the interest of induced pluripotent stem cells to study immune cells interactions with neurons. Front. Mol. Neurosci., 2021, 14, 767041. doi: 10.3389/fnmol.2021.767041 PMID: 34970118
- Yang, C.; Zhang, X.; Fan, H.; Liu, Y. Curcumin upregulates transcription factor Nrf2, HO-1 expression and protects rat brains against focal ischemia. Brain Res., 2009, 1282, 133-141. doi: 10.1016/j.brainres.2009.05.009 PMID: 19445907
- Sikora, E.; Scapagnini, G.; Barbagallo, M. Curcumin, inflammation, ageing and age-related diseases. Immun. Ageing, 2010, 7(1), 1. doi: 10.1186/1742-4933-7-1 PMID: 20205886
- Chico, L.; Ienco, E.; Bisordi, C.; Gerfo, A.; Schirinzi, E.; Siciliano, G. Curcumin as an ROS scavenger in amyotrophic lateral sclerosis. React. Oxyg. Species, 2016, 2(5) doi: 10.20455/ros.2016.861
- Bedlack, R. ALSUntangled 44: curcumin. Amyotroph. Lateral Scler. Frontotemporal Degener., 2018, 19(7-8), 623-629. doi: 10.1080/21678421.2018.1440738 PMID: 29493344
- Adami, R.; Bottai, D. Curcumin and neurological diseases. Nutr. Neurosci., 2022, 25(3), 441-461. doi: 10.1080/1028415X.2020.1760531 PMID: 32441587
- Bi, X.L.; Yang, J.Y.; Dong, Y.X.; Wang, J.M.; Cui, Y.H.; Ikeshima, T.; Zhao, Y.Q.; Wu, C.F. Resveratrol inhibits nitric oxide and TNF-α production by lipopolysaccharide-activated microglia. Int. Immunopharmacol., 2005, 5(1), 185-193. doi: 10.1016/j.intimp.2004.08.008 PMID: 15589480
- Meng, X.L.; Yang, J.Y.; Chen, G.L.; Wang, L.H.; Zhang, L.J.; Wang, S.; Li, J.; Wu, C.F. Effects of resveratrol and its derivatives on lipopolysaccharide-induced microglial activation and their structure-activity relationships. Chem. Biol. Interact., 2008, 174(1), 51-59. doi: 10.1016/j.cbi.2008.04.015 PMID: 18513711
- Morita, T. Celastrol: A new therapeutic potential of traditional Chinese medicine. Am. J. Hypertens., 2010, 23(8), 821-821. doi: 10.1038/ajh.2010.87 PMID: 20644533
- Venkatesha, S.H.; Dudics, S.; Astry, B.; Moudgil, K.D. Control of autoimmune inflammation by celastrol, a natural triterpenoid. Pathog. Dis., 2016, 74(6), ftw059. doi: 10.1093/femspd/ftw059 PMID: 27405485
- Kiaei, M.; Kipiani, K.; Petri, S.; Chen, J.; Calingasan, N.Y.; Beal, M.F. Celastrol blocks neuronal cell death and extends life in transgenic mouse model of amyotrophic lateral sclerosis. Neurodegener. Dis., 2005, 2(5), 246-254. doi: 10.1159/000090364 PMID: 16909005
- Jung, H.W.; Chung, Y.S.; Kim, Y.S.; Park, Y.K. Celastrol inhibits production of nitric oxide and proinflammatory cytokines through MAPK signal transduction and NF-κB in LPS-stimulated BV-2 microglial cells. Exp. Mol. Med., 2007, 39(6), 715-721. doi: 10.1038/emm.2007.78 PMID: 18160842
- Zhang, R.; Zhu, Y.; Dong, X.; Liu, B.; Zhang, N.; Wang, X.; Liu, L.; Xu, C.; Huang, S.; Chen, L. Celastrol attenuates cadmium-induced neuronal apoptosis via inhibiting Ca2+-CaMKII-Dependent Akt/mTOR pathway. J. Cell. Physiol., 2017, 232(8), 2145-2157. doi: 10.1002/jcp.25703 PMID: 27891586
- Jin, X.; Wang, J.; Xia, Z.M.; Shang, C.H.; Chao, Q.L.; Liu, Y.R.; Fan, H.Y.; Chen, D.Q.; Qiu, F.; Zhao, F. Anti-inflammatory and anti-oxidative activities of paeonol and its metabolites through blocking MAPK/ERK/p38 signaling pathway. Inflammation, 2016, 39(1), 434-446. doi: 10.1007/s10753-015-0265-3 PMID: 26433578
- Wang, X.; Zhu, G.; Yang, S.; Wang, X.; Cheng, H.; Wang, F.; Li, X.; Li, Q. Paeonol prevents excitotoxicity in rat pheochromocytoma PC12 cells via downregulation of ERK activation and inhibition of apoptosis. Planta Med., 2011, 77(15), 1695-1701. doi: 10.1055/s-0030-1271033 PMID: 21509715
- Tseng, Y.T.; Hsu, Y.Y.; Shih, Y.T.; Lo, Y.C. Paeonol attenuates microglia-mediated inflammation and oxidative stress-induced neurotoxicity in rat primary microglia and cortical neurons. Shock, 2012, 37(3), 312-318. doi: 10.1097/SHK.0b013e31823fe939 PMID: 22089194
- He, L.X.; Tong, X.; Zeng, J.; Tu, Y.; Wu, S.; Li, M.; Deng, H.; Zhu, M.; Li, X.; Nie, H.; Yang, L.; Huang, F. Paeonol suppresses neuroinflammatory responses in LPS-activated microglia cells. Inflammation, 2016, 39(6), 1904-1917. doi: 10.1007/s10753-016-0426-z PMID: 27624059
- Vu, V.T.; Liu, X.Q.; Nguyen, M.T.; Lin, Y.L.; Kong, L.Y.; Luo, J.G. New obovatol trimeric neolignans with NO inhibitory activity from the leaves of Magnolia officinalis var. biloba. Bioorg. Chem., 2020, 96, 103586. doi: 10.1016/j.bioorg.2020.103586 PMID: 31982819
- Ock, J.; Han, H.S.; Hong, S.H.; Lee, S.Y.; Han, Y.M.; Kwon, B.M.; Suk, K. Obovatol attenuates microglia-mediated neuroinflammation by modulating redox regulation. Br. J. Pharmacol., 2010, 159(8), 1646-1662. doi: 10.1111/j.1476-5381.2010.00659.x PMID: 20397299
- Liu, J.; Su, G.; Gao, J.; Tian, Y.; Liu, X.; Zhang, Z. Effects of peroxiredoxin 2 in neurological disorders: A review of its molecular mechanisms. Neurochem. Res., 2020, 45(4), 720-730. doi: 10.1007/s11064-020-02971-x PMID: 32002772
- Yuan, D.; Ma, B.; Yang, J.; Xie, Y.; Wang, L.; Zhang, L.; Kano, Y.; Wu, C. Anti-inflammatory effects of rhynchophylline and isorhynchophylline in mouse N9 microglial cells and the molecular mechanism. Int. Immunopharmacol., 2009, 9(13-14), 1549-1554. doi: 10.1016/j.intimp.2009.09.010 PMID: 19781666
- Lee, H.; Kim, Y.O.; Kim, H.; Kim, S.Y.; Noh, H.S.; Kang, S.S.; Cho, G.J.; Choi, W.S.; Suk, K. Flavonoid wogonin from medicinal herb is neuroprotective by inhibiting inflammatory activation of microglia. FASEB J., 2003, 17(13), 1-21. doi: 10.1096/fj.03-0057fje PMID: 12897065
- Du, Z.Y.; Li, X.Y. Inhibitory effects of ginkgolides on nitric oxide production in neonatal rat microglia in vitro. Chung Kuo Yao Li Hsueh Pao, 1998, 19(5), 467-470. PMID: 10375812
- Wang, L.; Lei, Q.; Zhao, S.; Xu, W.; Dong, W.; Ran, J.; Shi, Q.; Fu, J.; Ginkgolide, B. Ginkgolide B maintains calcium homeostasis in hypoxic hippocampal neurons by inhibiting calcium influx and intracellular calcium release. Front. Cell. Neurosci., 2021, 14, 627846. doi: 10.3389/fncel.2020.627846 PMID: 33679323
- Huang, L.; Shi, Y.; Zhao, L.; Ginkgolide, B. Alleviates learning and memory impairment in rats with vascular dementia by reducing neuroinflammation via regulating NF-ₖB pathway. Front. Pharmacol., 2021, 12.
- Sun, M.; Sheng, Y.; Zhu, Y.; Ginkgolide, B. Ginkgolide B alleviates the inflammatory response and attenuates the activation of LPS induced BV2 cells in vitro and in vivo. Exp. Ther. Med., 2021, 21(6), 586. doi: 10.3892/etm.2021.10018 PMID: 33850558
- Briones, M.R.S.; Snyder, A.M.; Ferreira, R.C.; Neely, E.B.; Connor, J.R.; Broach, J.R. A possible role for platelet-activating factor receptor in amyotrophic lateral sclerosis treatment. Front. Neurol., 2018, 9, 39. doi: 10.3389/fneur.2018.00039 PMID: 29472887
- Ko, H.M.; Koppula, S.; Kim, B.W.; Kim, I.S.; Hwang, B.Y.; Suk, K.; Park, E.J.; Choi, D.K. Inflexin attenuates proinflammatory responses and nuclear factor-κB activation in LPS-treated microglia. Eur. J. Pharmacol., 2010, 633(1-3), 98-106. doi: 10.1016/j.ejphar.2010.02.011 PMID: 20159010
- Ha, S.K.; Moon, E.; Kim, S.Y. Chrysin suppresses LPS-stimulated proinflammatory responses by blocking NF-κB and JNK activations in microglia cells. Neurosci. Lett., 2010, 485(3), 143-147. doi: 10.1016/j.neulet.2010.08.064 PMID: 20813161
- Grewer, C.; Rauen, T. Electrogenic glutamate transporters in the CNS: molecular mechanism, pre-steady-state kinetics, and their impact on synaptic signaling. J. Membr. Biol., 2005, 203(1), 1-20. doi: 10.1007/s00232-004-0731-6 PMID: 15834685
- Foran, E.; Trotti, D. Glutamate transporters and the excitotoxic path to motor neuron degeneration in amyotrophic lateral sclerosis. Antioxid. Redox Signal., 2009, 11(7), 1587-1602. doi: 10.1089/ars.2009.2444 PMID: 19413484
- Choi, D.W. Glutamate receptors and the induction of excitotoxic neuronal death. Prog. Brain Res., 1994, 100, 47-51. doi: 10.1016/S0079-6123(08)60767-0
- Cheah, B.C.; Vucic, S.; Krishnan, A.; Kiernan, M.C. Riluzole, neuroprotection and amyotrophic lateral sclerosis. Curr. Med. Chem., 2010, 17(18), 1942-1959. doi: 10.2174/092986710791163939 PMID: 20377511
- Rothstein, J.D.; Tsai, G.; Kuncl, R.W.; Clawson, L.; Cornblath, D.R.; Drachman, D.B.; Pestronk, A.; Stauch, B.L.; Coyle, J.T. Abnormal excitatory amino acid metabolism in amyotrophic lateral sclerosis. Ann. Neurol., 1990, 28(1), 18-25. doi: 10.1002/ana.410280106 PMID: 2375630
- Plaitakis, A.; Constantakakis, E. Altered metabolism of excitatory amino acids, N-acetyl-aspartate and N-acetyl-aspartylglutamate in amyotrophic lateral sclerosis. Brain Res. Bull., 1993, 30(3-4), 381-386. doi: 10.1016/0361-9230(93)90269-H PMID: 8457887
- Ferrarese, C.; Sala, G.; Riva, R.; Begni, B.; Zoia, C.; Tremolizzo, L.; Galimberti, G.; Millul, A.; Bastone, A.; Mennini, T.; Balzarini, C.; Frattola, L.; Beghi, E. Decreased platelet glutamate uptake in patients with amyotrophic lateral sclerosis. Neurology, 2001, 56(2), 270-272. doi: 10.1212/WNL.56.2.270 PMID: 11160972
- Cho, J.; Ho Kim, Y.; Kong, J.Y.; Ha, Yang C.; Gook Park, C. Protection of cultured rat cortical neurons from excitotoxicity by asarone, a major essential oil component in the rhizomes of Acorus gramineus. Life Sci., 2002, 71(5), 591-599. doi: 10.1016/S0024-3205(02)01729-0 PMID: 12052443
- Chen, Y.Z.; Wang, Q.W.; Liang, Y.; Fang, Y.Q. Protective effects of beta-asarone on cultured rat cortical neurons damage induced by glutamate. Zhong Yao Cai, 2007, 30(4), 436-439. PMID: 17674798
- Jiang, B.; Liu, J.H.; Bao, Y.M.; An, L.J. Catalpol inhibits apoptosis in hydrogen peroxide-induced PC12 cells by preventing cytochrome c release and inactivating of caspase cascade. Toxicon, 2004, 43(1), 53-59. doi: 10.1016/j.toxicon.2003.10.017 PMID: 15037029
- Ved, H.S.; Koenig, M.L.; Dave, J.R.; Doctor, B.P. Huperzine A, a potential therapeutic agent for dementia, reduces neuronal cell death caused by glutamate. Neuroreport, 1997, 8(4), 963-967. doi: 10.1097/00001756-199703030-00029 PMID: 9141073
- Gordon, R.K.; Nigam, S.V.; Weitz, J.A.; Dave, J.R.; Doctor, B.P.; Ved, H.S. The NMDA receptor ion channel: A site for binding of huperzine A. J. Appl. Toxicol., 2001, 21(S1), S47-S51. doi: 10.1002/jat.805 PMID: 11920920
- Hemendinger, R.A.; Armstrong, E.J., III; Persinski, R.; Todd, J.; Mougeot, J.L.; Volvovitz, F.; Rosenfeld, J. Huperzine a provides neuroprotection against several cell death inducers using in vitro model systems of motor neuron cell death. Neurotox. Res., 2008, 13(1), 49-61. doi: 10.1007/BF03033367 PMID: 18367440
- Wang, C.J.; Hu, C.P.; Xu, K.P.; Yuan, Q.; Li, F.S.; Zou, H.; Tan, G.S.; Li, Y.J. Protective effect of selaginellin on glutamate-induced cytotoxicity and apoptosis in differentiated PC12 cells. Naunyn Schmiedebergs Arch. Pharmacol., 2010, 381(1), 73-81. doi: 10.1007/s00210-009-0470-4 PMID: 19936711
- Zhang, F.; Zheng, W.; Pi, R.; Mei, Z.; Bao, Y.; Gao, J.; Tang, W.; Chen, S.; Liu, P. Cryptotanshinone protects primary rat cortical neurons from glutamate-induced neurotoxicity via the activation of the phosphatidylinositol 3-kinase/Akt signaling pathway. Exp. Brain Res., 2009, 193(1), 109-118. doi: 10.1007/s00221-008-1600-9 PMID: 18936923
- Kanekura, K.; Hashimoto, Y.; Kita, Y.; Sasabe, J.; Aiso, S.; Nishimoto, I.; Matsuoka, M.A. Rac1/phosphatidylinositol 3-kinase/Akt3 anti-apoptotic pathway, triggered by AlsinLF, the product of the ALS2 gene, antagonizes Cu/Zn-superoxide dismutase (SOD1) mutant-induced motoneuronal cell death. J. Biol. Chem., 2005, 280(6), 4532-4543. doi: 10.1074/jbc.M410508200 PMID: 15579468
- Chang, M.X.; Xu, L.Y.; Tao, J.S.; Feng, Y. Metabolism and pharmacokinetics of ferulic acid in rats. Zhongguo Zhongyao Zazhi, 1993, 18(5), 300-302, 319. PMID: 8216807
- Jin, Y.; Yan, E.; Fan, Y.; Guo, X.; Zhao, Y.; Zong, Z.; Liu, Z. Neuroprotection by sodium ferulate against glutamate-induced apoptosis is mediated by ERK and PI3 kinase pathways. Acta Pharmacol. Sin., 2007, 28(12), 1881-1890. doi: 10.1111/j.1745-7254.2007.00634.x PMID: 18031600
- Ren, Z.; Zhang, R.; Li, Y.; Li, Y.; Yang, Z.; Yang, H. Ferulic acid exerts neuroprotective effects against cerebral ischemia/reperfusion-induced injury via antioxidant and anti-apoptotic mechanisms in vitro and in vivo. Int. J. Mol. Med., 2017, 40(5), 1444-1456. doi: 10.3892/ijmm.2017.3127 PMID: 28901374
- Nakayama, H.; Nakahara, M.; Matsugi, E.; Soda, M.; Hattori, T.; Hara, K.; Usami, A.; Kusumoto, C.; Higashiyama, S.; Kitaichi, K. Protective effect of ferulic acid against hydrogen peroxide induced apoptosis in PC12 cells. Molecules, 2020, 26(1), 90. doi: 10.3390/molecules26010090 PMID: 33379243
- Yingzhu, CHEN.; Yongjian, GU.; Shiyao, BAO. Protective effects of acanthopanax senticousus saponins on cortical neuronal ischemia-hypoxia injury. J. Clin. Neurol., 1988, 6, 84-87.
- Diao, H-X.; Song, S-L.; Liang, H.; Wang, Y-S.; Wang, W-L.; Ji, A-G. Protective effect of polysaccharides from sea cucumber on glu-induced neurotoxicity in PC12 cells. Zhong Yao Cai, 2009, 32(3), 398-400. PMID: 19565721
- Guatteo, E.; Carunchio, I.; Pieri, M.; Albo, F.; Canu, N.; Mercuri, N.B.; Zona, C. Altered calcium homeostasis in motor neurons following AMPA receptor but not voltage-dependent calcium channels activation in a genetic model of amyotrophic lateral sclerosis. Neurobiol. Dis., 2007, 28(1), 90-100. doi: 10.1016/j.nbd.2007.07.002 PMID: 17706428
- Van Den Bosch, L.; Vandenberghe, W.; Klaassen, H.; Van Houtte, E.; Robberecht, W. Ca2+-permeable AMPA receptors and selective vulnerability of motor neurons. J. Neurol. Sci., 2000, 180(1-2), 29-34. doi: 10.1016/S0022-510X(00)00414-7 PMID: 11090861
- Prell, T.; Lautenschläger, J.; Grosskreutz, J. Calcium-dependent protein folding in amyotrophic lateral sclerosis. Cell Calcium, 2013, 54(2), 132-143. doi: 10.1016/j.ceca.2013.05.007 PMID: 23764168
- Hammadi, M.; Oulidi, A.; Gackière, F.; Katsogiannou, M.; Slomianny, C.; Roudbaraki, M.; Dewailly, E.; Delcourt, P.; Lepage, G.; Lotteau, S.; Ducreux, S.; Prevarskaya, N.; Van Coppenolle, F. Modulation of ER stress and apoptosis by endoplasmic reticulum calcium leak via translocon during unfolded protein response: Involvement of GRP78. FASEB J., 2013, 27(4), 1600-1609. doi: 10.1096/fj.12-218875 PMID: 23322163
- Grosskreutz, J.; Van Den Bosch, L.; Keller, B.U. Calcium dysregulation in amyotrophic lateral sclerosis. Cell Calcium, 2010, 47(2), 165-174. doi: 10.1016/j.ceca.2009.12.002 PMID: 20116097
- Mao, Q.Q.; Zhong, X.M.; Feng, C.R.; Pan, A.J.; Li, Z.Y.; Huang, Z. Protective effects of paeoniflorin against glutamate-induced neurotoxicity in PC12 cells via antioxidant mechanisms and Ca2+ antagonism. Cell. Mol. Neurobiol., 2010, 30(7), 1059-1066. doi: 10.1007/s10571-010-9537-5 PMID: 20577899
- Mao, Q.Q.; Zhong, X.M.; Li, Z.Y.; Huang, Z. Paeoniflorin protects against NMDA-induced neurotoxicity in PC12 cells via Ca2+ antagonism. Phytother. Res., 2011, 25(5), 681-685. doi: 10.1002/ptr.3321 PMID: 21043034
- You, J.; Tan, T.; Kuang, A.; Zhong, Y.; He, S. Biodistribution and metabolism of 3h-gastrodigenin and 3H-gastrodin in mice. J. West China Univ. Med. Sci., 1994, 25, 325-328.
- Chen, W.D.; Lu, X.L. Effect of gastrodin on release of glutamate from cultured nerve cells induced by potassium chloride. Chin. J. Nat. Med., 2000, 2, 8-10.
- Sun, R.; Zhang, Z.; Huang, W.; Lv, L.; Yin, J. Protective effects and machanism of muskone on pheochromocytoma cell injure induced by glutamate. Zhongguo Zhongyao Zazhi, 2009, 34(13), 1701-1704. PMID: 19873786
- Shu-li, S. Effects of ligustrazine on L-type calcium current in SH-SY5Y human neuroblastoma. Chinese J. Neuroimmunol. Neurol., 2004, 11, 43-45.
Supplementary files
