Inflammation, Autoimmunity and Neurodegenerative Diseases, Therapeutics and Beyond
- Авторы: Garmendia J.1, De Sanctis C.1, Das V.1, Annadurai N.1, Hajduch M.1, De Sanctis J.1
-
Учреждения:
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University
- Выпуск: Том 22, № 6 (2024)
- Страницы: 1080-1109
- Раздел: Neurology
- URL: https://rjpbr.com/1570-159X/article/view/644809
- DOI: https://doi.org/10.2174/1570159X22666231017141636
- ID: 644809
Цитировать
Полный текст
Аннотация
Neurodegenerative disease (ND) incidence has recently increased due to improved life expectancy. Alzheimer's (AD) or Parkinson's disease (PD) are the most prevalent NDs. Both diseases are poly genetic, multifactorial and heterogenous. Preventive medicine, a healthy diet, exercise, and controlling comorbidities may delay the onset. After the diseases are diagnosed, therapy is needed to slow progression. Recent studies show that local, peripheral and age-related inflammation accelerates NDs' onset and progression. Patients with autoimmune disorders like inflammatory bowel disease (IBD) could be at higher risk of developing AD or PD. However, no increase in ND incidence has been reported if the patients are adequately diagnosed and treated. Autoantibodies against abnormal tau, β amyloid and α- synuclein have been encountered in AD and PD and may be protective. This discovery led to the proposal of immune-based therapies for AD and PD involving monoclonal antibodies, immunization/vaccines, pro-inflammatory cytokine inhibition and anti-inflammatory cytokine addition. All the different approaches have been analysed here. Future perspectives on new therapeutic strategies for both disorders are concisely examined.
Об авторах
Jenny Garmendia
Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University
Email: info@benthamscience.net
Claudia De Sanctis
Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University
Email: info@benthamscience.net
Viswanath Das
Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University
Email: info@benthamscience.net
Narendran Annadurai
Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University
Email: info@benthamscience.net
Marián Hajduch
Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University
Email: info@benthamscience.net
Juan De Sanctis
Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University
Автор, ответственный за переписку.
Email: info@benthamscience.net
Список литературы
- Price, D.L.; Sisodia, S.S.; Borchelt, D.R. Genetic neurodegenerative diseases: the human illness and transgenic models. Science, 1998, 282(5391), 1079-1083. doi: 10.1126/science.282.5391.1079 PMID: 9804539
- MacDonald, M. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntingtons disease chromosomes. Cell, 1993, 72(6), 971-983. doi: 10.1016/0092-8674(93)90585-E PMID: 8458085
- Akçimen, F.; Lopez, E.R.; Landers, J.E.; Nath, A.; Chiò, A.; Chia, R.; Traynor, B.J. Amyotrophic lateral sclerosis: Translating genetic discoveries into therapies. Nat. Rev. Genet., 2023, 24(9), 642-658. doi: 10.1038/s41576-023-00592-y PMID: 37024676
- Papiri, G.; DAndreamatteo, G.; Cacchiò, G.; Alia, S.; Silvestrini, M.; Paci, C.; Luzzi, S.; Vignini, A. Multiple sclerosis: Inflammatory and neuroglial aspects. Curr. Issues Mol. Biol., 2023, 45(2), 1443-1470. doi: 10.3390/cimb45020094 PMID: 36826039
- Klotz, L.; Antel, J.; Kuhlmann, T. Inflammation in multiple sclerosis: Consequences for remyelination and disease progression. Nat. Rev. Neurol., 2023, 19(5), 305-320. doi: 10.1038/s41582-023-00801-6 PMID: 37059811
- Balcerac, A.; Louapre, C. Genetics and familial distribution of multiple sclerosis: A review. Rev. Neurol., 2022, 178(6), 512-520. doi: 10.1016/j.neurol.2021.11.009 PMID: 35148907
- Breijyeh, Z.; Karaman, R. Comprehensive review on Alzheimers disease: Causes and treatment. Molecules, 2020, 25(24), 5789. doi: 10.3390/molecules25245789 PMID: 33302541
- Rizek, P.; Kumar, N.; Jog, M.S. An update on the diagnosis and treatment of Parkinson disease. CMAJ, 2016, 188(16), 1157-1165. doi: 10.1503/cmaj.151179 PMID: 27221269
- Aborode, A.T.; Pustake, M.; Awuah, W.A.; Alwerdani, M.; Shah, P.; Yarlagadda, R.; Ahmad, S.; Silva, C.I.F.; Chandra, A.; Nansubuga, E.P.; Abdul-Rahman, T.; Mehta, A.; Ali, O.; Amaka, S.O.; Zuñiga, Y.M.H.; Shkodina, A.D.; Inya, O.C.; Shen, B.; Alexiou, A. Targeting oxidative stress mechanisms to treat Alzheimers and Parkinsons disease: A critical review. Oxid. Med. Cell. Longev., 2022, 2022, 1-9. doi: 10.1155/2022/7934442 PMID: 35958022
- Gorlé, N.; Van Cauwenberghe, C.; Libert, C.; Vandenbroucke, R.E. The effect of aging on brain barriers and the consequences for Alzheimers disease development. Mamm. Genome, 2016, 27(7-8), 407-420. doi: 10.1007/s00335-016-9637-8 PMID: 27143113
- Dai, M.H.; Zheng, H.; Zeng, L.D.; Zhang, Y. The genes associated with early-onset Alzheimers disease. Oncotarget, 2018, 9(19), 15132-15143. doi: 10.18632/oncotarget.23738 PMID: 29599933
- Sumirtanurdin, R.; Thalib, A.Y.; Cantona, K.; Abdulah, R. Effect of genetic polymorphisms on Alzheimers disease treatment outcomes: An update. Clin. Interv. Aging, 2019, 14, 631-642. doi: 10.2147/CIA.S200109 PMID: 30992661
- Sarnowski, C.; Ghanbari, M.; Bis, J.C.; Logue, M.; Fornage, M.; Mishra, A.; Ahmad, S.; Beiser, A.S.; Boerwinkle, E.; Bouteloup, V.; Chouraki, V.; Cupples, L.A.; Damotte, V.; DeCarli, C.S.; DeStefano, A.L.; Djoussé, L.; Fohner, A.E.; Franz, C.E.; Kautz, T.F.; Lambert, J.C.; Lyons, M.J.; Mosley, T.H.; Mukamal, K.J.; Pase, M.P.; Portilla Fernandez, E.C.; Rissman, R.A.; Satizabal, C.L.; Vasan, R.S.; Yaqub, A.; Debette, S.; Dufouil, C.; Launer, L.J.; Kremen, W.S.; Longstreth, W.T.; Ikram, M.A.; Seshadri, S. Meta-analysis of genome-wide association studies identifies ancestry-specific associations underlying circulating total tau levels. Commun. Biol., 2022, 5(1), 336. doi: 10.1038/s42003-022-03287-y PMID: 35396452
- Su, F.; Bai, F.; Zhang, Z. Inflammatory cytokines and Alzheimers disease: A review from the perspective of genetic polymorphisms. Neurosci. Bull., 2016, 32(5), 469-480. doi: 10.1007/s12264-016-0055-4 PMID: 27568024
- Ulhaq, Z.S.; Garcia, C.P. Inflammation-related gene polymorphisms associated with Parkinsons disease: An updated meta-analysis. Egypt. J. Med. Hum. Genet., 2020, 21(1), 14. doi: 10.1186/s43042-020-00056-6
- Li, X.; Zhang, D.F.; Bi, R.; Tan, L.W.; Chen, X.; Xu, M.; Yao, Y.G. Convergent transcriptomic and genomic evidence supporting a dysregulation of CXCL16 and CCL5 in Alzheimers disease. Alzheimers Res. Ther., 2023, 15(1), 17. doi: 10.1186/s13195-022-01159-5 PMID: 36670424
- Pedersen, C.C.; Lange, J.; Førland, M.G.G.; Macleod, A.D.; Alves, G.; Maple-Grødem, J. A systematic review of associations between common SNCA variants and clinical heterogeneity in Parkinsons disease. NPJ Parkinsons Dis., 2021, 7(1), 54. doi: 10.1038/s41531-021-00196-5 PMID: 34210990
- Hollenbach, J.A.; Norman, P.J.; Creary, L.E.; Damotte, V.; Montero-Martin, G.; Caillier, S.; Anderson, K.M.; Misra, M.K.; Nemat-Gorgani, N.; Osoegawa, K.; Santaniello, A.; Renschen, A.; Marin, W.M.; Dandekar, R.; Parham, P.; Tanner, C.M.; Hauser, S.L.; Fernandez-Viña, M.; Oksenberg, J.R. A specific amino acid motif of HLA-DRB1 mediates risk and interacts with smoking history in Parkinsons disease. Proc. Natl. Acad. Sci., 2019, 116(15), 7419-7424. doi: 10.1073/pnas.1821778116 PMID: 30910980
- Yu, E.; Ambati, A.; Andersen, M.S.; Krohn, L.; Estiar, M.A.; Saini, P.; Senkevich, K.; Sosero, Y.L.; Sreelatha, A.A.K.; Ruskey, J.A.; Asayesh, F.; Spiegelman, D.; Toft, M.; Viken, M.K.; Sharma, M.; Blauwendraat, C.; Pihlstrøm, L.; Mignot, E.; Gan-Or, Z. Fine mapping of the HLA locus in Parkinsons disease in Europeans. NPJ Parkinsons Dis., 2021, 7(1), 84. doi: 10.1038/s41531-021-00231-5 PMID: 34548497
- Harms, A.S.; Ferreira, S.A.; Romero-Ramos, M. Periphery and brain, innate and adaptive immunity in Parkinsons disease. Acta Neuropathol., 2021, 141(4), 527-545. doi: 10.1007/s00401-021-02268-5 PMID: 33555429
- Yi, M.; Li, J.; Jian, S.; Li, B.; Huang, Z.; Shu, L.; Zhang, Y. Quantitative and causal analysis for inflammatory genes and the risk of Parkinsons disease. Front. Immunol., 2023, 14, 1119315. doi: 10.3389/fimmu.2023.1119315 PMID: 36926335
- Abbott, N.J.; Patabendige, A.A.K.; Dolman, D.E.M.; Yusof, S.R.; Begley, D.J. Structure and function of the bloodbrain barrier. Neurobiol. Dis., 2010, 37(1), 13-25. doi: 10.1016/j.nbd.2009.07.030 PMID: 19664713
- Labzin, L.I.; Heneka, M.T.; Latz, E. Innate immunity and neurodegeneration. Annu. Rev. Med., 2018, 69(1), 437-449. doi: 10.1146/annurev-med-050715-104343 PMID: 29106805
- Huang, X.; Hussain, B.; Chang, J. Peripheral inflammation and bloodbrain barrier disruption: Effects and mechanisms. CNS Neurosci. Ther., 2021, 27(1), 36-47. doi: 10.1111/cns.13569 PMID: 33381913
- Wilhelm, I.; Nyúl-Tóth, Á.; Suciu, M.; Hermenean, A.; Krizbai, I.A. Heterogeneity of the blood-brain barrier. Tissue Barriers, 2016, 4(1), e1143544. doi: 10.1080/21688370.2016.1143544 PMID: 27141424
- Mayne, K.; White, J.A.; McMurran, C.E.; Rivera, F.J.; de la Fuente, A.G. Aging and neurodegenerative disease: Is the adaptive immune system a friend or foe? Front. Aging Neurosci., 2020, 12, 572090. doi: 10.3389/fnagi.2020.572090 PMID: 33173502
- Glass, C.K.; Saijo, K.; Winner, B.; Marchetto, M.C.; Gage, F.H. Mechanisms underlying inflammation in neurodegeneration. Cell, 2010, 140(6), 918-934. doi: 10.1016/j.cell.2010.02.016 PMID: 20303880
- Stephenson, J.; Nutma, E.; van der Valk, P.; Amor, S. Inflammation in CNS neurodegenerative diseases. Immunology, 2018, 154(2), 204-219. doi: 10.1111/imm.12922 PMID: 29513402
- Fathi, M.; Vakili, K.; Yaghoobpoor, S.; Qadirifard, M.S.; Kosari, M.; Naghsh, N.; Asgari taei, A.; Klegeris, A.; Dehghani, M.; Bahrami, A.; Taheri, H.; Mohamadkhani, A.; Hajibeygi, R.; Rezaei Tavirani, M.; Sayehmiri, F. Pre-clinical studies identifying molecular pathways of neuroinflammation in Parkinsons disease: A systematic review. Front. Aging Neurosci., 2022, 14, 855776. doi: 10.3389/fnagi.2022.855776 PMID: 35912090
- Gorecki, A.M.; Anyaegbu, C.C.; Anderton, R.S. TLR2 and TLR4 in Parkinsons disease pathogenesis: The environment takes a toll on the gut. Transl. Neurodegener., 2021, 10(1), 47. doi: 10.1186/s40035-021-00271-0 PMID: 34814947
- Bellucci, A.; Bubacco, L.; Longhena, F.; Parrella, E.; Faustini, G.; Porrini, V.; Bono, F.; Missale, C.; Pizzi, M. Nuclear Factor-κB dysregulation and α-synuclein pathology: Critical interplay in the pathogenesis of Parkinsons disease. Front. Aging Neurosci., 2020, 12, 68. doi: 10.3389/fnagi.2020.00068 PMID: 32265684
- Juranek, J.; Mukherjee, K.; Kordas, B.; Załęcki, M.; Korytko, A.; Zglejc-Waszak, K.; Szuszkiewicz, J.; Banach, M. Role of RAGE in the pathogenesis of neurological disorders. Neurosci. Bull., 2022, 38(10), 1248-1262. doi: 10.1007/s12264-022-00878-x PMID: 35729453
- Spulber, S.; Bartfai, T.; Schultzberg, M. IL-1/IL-1ra balance in the brain revisited: Evidence from transgenic mouse models. Brain Behav. Immun., 2009, 23(5), 573-579. doi: 10.1016/j.bbi.2009.02.015 PMID: 19258032
- Bai, H.; Zhang, Q. Activation of NLRP3 inflammasome and onset of Alzheimers disease. Front. Immunol., 2021, 12, 701282. doi: 10.3389/fimmu.2021.701282 PMID: 34381452
- Martin-Ruiz, C.; Williams-Gray, C.H.; Yarnall, A.J.; Boucher, J.J.; Lawson, R.A.; Wijeyekoon, R.S.; Barker, R.A.; Kolenda, C.; Parker, C.; Burn, D.J.; Von Zglinicki, T.; Saretzki, G. Senescence and inflammatory markers for predicting clinical progression in Parkinsons disease: The ICICLE-PD Study. J. Parkinsons Dis., 2020, 10(1), 193-206. doi: 10.3233/JPD-191724 PMID: 31868677
- Lara, P.C.; Macías-Verde, D.; Burgos-Burgos, J. Age-induced NLRP3 inflammasome over-activation increases lethality of SARS-CoV-2 pneumonia in elderly patients. Aging Dis., 2020, 11(4), 756-762. doi: 10.14336/AD.2020.0601 PMID: 32765942
- Stout-Delgado, H.W.; Vaughan, S.E.; Shirali, A.C.; Jaramillo, R.J.; Harrod, K.S. Impaired NLRP3 inflammasome function in elderly mice during influenza infection is rescued by treatment with nigericin. J. Immunol., 2012, 188(6), 2815-2824. doi: 10.4049/jimmunol.1103051 PMID: 22327078
- Nagatsu, T.; Mogi, M.; Ichinose, H.; Togari, A. Changes in cytokines and neurotrophins in Parkinsons disease. J. Neural Transm. Suppl., 2000, (60), 277-290. doi: 10.1007/978-3-7091-6301-6_19 PMID: 11205147
- Zhang, P.; Shao, X.Y.; Qi, G.J.; Chen, Q.; Bu, L.L.; Chen, L.J.; Shi, J.; Ming, J.; Tian, B. Cdk5-dependent activation of neuronal inflammasomes in Parkinsons disease. Mov. Disord., 2016, 31(3), 366-376. doi: 10.1002/mds.26488 PMID: 26853432
- Kitazawa, M.; Cheng, D.; Tsukamoto, M.R.; Koike, M.A.; Wes, P.D.; Vasilevko, V.; Cribbs, D.H.; LaFerla, F.M. Blocking IL-1 signaling rescues cognition, attenuates tau pathology, and restores neuronal β-catenin pathway function in an Alzheimers disease model. J. Immunol., 2011, 187(12), 6539-6549. doi: 10.4049/jimmunol.1100620 PMID: 22095718
- Wang, W.; Nguyen, L.T.T.; Burlak, C.; Chegini, F.; Guo, F.; Chataway, T.; Ju, S.; Fisher, O.S.; Miller, D.W.; Datta, D.; Wu, F.; Wu, C.X.; Landeru, A.; Wells, J.A.; Cookson, M.R.; Boxer, M.B.; Thomas, C.J.; Gai, W.P.; Ringe, D.; Petsko, G.A.; Hoang, Q.Q. Caspase-1 causes truncation and aggregation of the Parkinsons disease-associated protein α-synuclein. Proc. Natl. Acad. Sci., 2016, 113(34), 9587-9592. doi: 10.1073/pnas.1610099113 PMID: 27482083
- Hurelbrink, C.B.; Armstrong, R.J.E.; Luheshi, L.M.; Dunnett, S.B.; Rosser, A.E.; Barker, R.A. Death of dopaminergic neurons in vitro and in nigral grafts: Reevaluating the role of caspase activation. Exp. Neurol., 2001, 171(1), 46-58. doi: 10.1006/exnr.2001.7749 PMID: 11520120
- Caputi, V.; Giron, M. Microbiome-gut-brain axis and toll-like receptors in Parkinsons disease. Int. J. Mol. Sci., 2018, 19(6), 1689. doi: 10.3390/ijms19061689 PMID: 29882798
- Howe, A.M.; Burke, S.; OReilly, M.E.; McGillicuddy, F.C.; Costello, D.A. Palmitic acid and oleic acid differently modulate tlr2-mediated inflammatory responses in microglia and macrophages. Mol. Neurobiol., 2022, 59(4), 2348-2362. doi: 10.1007/s12035-022-02756-z PMID: 35079937
- Minoretti, P.; Gazzaruso, C.; Vito, C.D.; Emanuele, E.; Bianchi, M.; Coen, E.; Reino, M.; Geroldi, D. Effect of the functional toll-like receptor 4 Asp299Gly polymorphism on susceptibility to late-onset Alzheimers disease. Neurosci. Lett., 2006, 391(3), 147-149. doi: 10.1016/j.neulet.2005.08.047 PMID: 16157451
- Okun, E.; Griffioen, K.J.; Lathia, J.D.; Tang, S.C.; Mattson, M.P.; Arumugam, T.V. Toll-like receptors in neurodegeneration. Brain Res. Brain Res. Rev., 2009, 59(2), 278-292. doi: 10.1016/j.brainresrev.2008.09.001 PMID: 18822314
- Liddelow, S.A.; Barres, B.A. Reactive Astrocytes: Production, Function, and Therapeutic Potential. Immunity, 2017, 46(6), 957-967. doi: 10.1016/j.immuni.2017.06.006 PMID: 28636962
- Labib, D.; Wang, Z.; Prakash, P.; Zimmer, M.; Smith, M.D.; Frazel, P.W.; Barbar, L.; Sapar, M.L.; Calabresi, P.A.; Peng, J.; Liddelow, S.A.; Fossati, V. Proteomic Alterations and Novel Markers of Neurotoxic Reactive Astrocytes in Human Induced Pluripotent Stem Cell Models. Front. Mol. Neurosci., 2022, 15, 870085. doi: 10.3389/fnmol.2022.870085 PMID: 35592112
- Zhao, Y.; Bhattacharjee, S.; Jones, B.M.; Hill, J.; Dua, P.; Lukiw, W.J. Regulation of neurotropic signaling by the inducible, NF-kB-sensitive miRNA-125b in Alzheimers disease (AD) and in primary human neuronal-glial (HNG) cells. Mol. Neurobiol., 2014, 50(1), 97-106. doi: 10.1007/s12035-013-8595-3 PMID: 24293102
- Singh, S.; Singh, T.G. Role of Nuclear Factor Kappa B (NF-κB) signalling in neurodegenerative diseases: A mechanistic approach. Curr. Neuropharmacol., 2020, 18(10), 918-935. doi: 10.2174/1570159X18666200207120949 PMID: 32031074
- Dou, F.; Chu, X.; Zhang, B.; Liang, L.; Lu, G.; Ding, J.; Chen, S. EriB targeted inhibition of microglia activity attenuates MPP+ induced DA neuron injury through the NF-κB signaling pathway. Mol. Brain, 2018, 11(1), 75. doi: 10.1186/s13041-018-0418-z PMID: 30563578
- Rauf, A.; Badoni, H.; Abu-Izneid, T.; Olatunde, A.; Rahman, M.M.; Painuli, S.; Semwal, P.; Wilairatana, P.; Mubarak, M.S. Neuroinflammatory markers: Key indicators in the pathology of neurodegenerative diseases. Molecules, 2022, 27(10), 3194. doi: 10.3390/molecules27103194 PMID: 35630670
- Huang, Y.; Erdmann, N.; Peng, H.; Zhao, Y.; Zheng, J. The role of TNF related apoptosis-inducing ligand in neurodegenerative diseases. Cell. Mol. Immunol., 2005, 2(2), 113-122. PMID: 16191417
- Uberti, D.; Cantarella, G.; Facchetti, F.; Cafici, A.; Grasso, G.; Bernardini, R.; Memo, M. TRAIL is expressed in the brain cells of Alzheimers disease patients. Neuroreport, 2004, 15(4), 579-581.
- Akiyama, H.; Barger, S.; Barnum, S.; Bradt, B.; Bauer, J.; Cole, G.M.; Cooper, N.R.; Eikelenboom, P.; Emmerling, M.; Fiebich, B.L.; Finch, C.E.; Frautschy, S.; Griffin, W.S.; Hampel, H.; Hull, M.; Landreth, G.; Lue, L.; Mrak, R.; Mackenzie, I.R.; McGeer, P.L.; OBanion, M.K.; Pachter, J.; Pasinetti, G.; Plata-Salaman, C.; Rogers, J.; Rydel, R.; Shen, Y.; Streit, W.; Strohmeyer, R.; Tooyoma, I.; Van Muiswinkel, F.L.; Veerhuis, R.; Walker, D.; Webster, S.; Wegrzyniak, B.; Wenk, G.; Wyss-Coray, T. Inflammation and Alzheimers disease. Neurobiol. Aging, 2000, 21(3), 383-421. doi: 10.1016/S0197-4580(00)00124-X PMID: 10858586
- Tarkowski, E.; Liljeroth, A.M.; Nilsson, Å.; Minthon, L.; Blennow, K. Decreased levels of intrathecal interleukin 1 receptor antagonist in Alzheimers disease. Dement. Geriatr. Cogn. Disord., 2001, 12(5), 314-317. doi: 10.1159/000051276 PMID: 11455132
- He, P.; Zhong, Z.; Lindholm, K.; Berning, L.; Lee, W.; Lemere, C.; Staufenbiel, M.; Li, R.; Shen, Y. Deletion of tumor necrosis factor death receptor inhibits amyloid β generation and prevents learning and memory deficits in Alzheimers mice. J. Cell Biol., 2007, 178(5), 829-841. doi: 10.1083/jcb.200705042 PMID: 17724122
- Hickman, S.E.; Allison, E.K.; El Khoury, J. Microglial dysfunction and defective beta-amyloid clearance pathways in aging Alzheimers disease mice. J. Neurosci., 2008, 28(33), 8354-8360. doi: 10.1523/JNEUROSCI.0616-08.2008 PMID: 18701698
- Nutma, E.; van Gent, D.; Amor, S.; Peferoen, L.A.N. Astrocyte and oligodendrocyte cross-talk in the central nervous system. Cells, 2020, 9(3), 600. doi: 10.3390/cells9030600 PMID: 32138223
- Santoro, A.; Spinelli, C.C.; Martucciello, S.; Nori, S.L.; Capunzo, M.; Puca, A.A.; Ciaglia, E. Innate immunity and cellular senescence: The good and the bad in the developmental and aged brain. J. Leukoc. Biol., 2018, 103(3), 509-524. doi: 10.1002/JLB.3MR0118-003R PMID: 29389023
- Tan, Z.S.; Beiser, A.S.; Vasan, R.S.; Roubenoff, R.; Dinarello, C.A.; Harris, T.B.; Benjamin, E.J.; Au, R.; Kiel, D.P.; Wolf, P.A.; Seshadri, S. Inflammatory markers and the risk of Alzheimer disease: The Framingham Study. Neurology, 2007, 68(22), 1902-1908. doi: 10.1212/01.wnl.0000263217.36439.da PMID: 17536046
- Burré, J.; Sharma, M.; Südhof, T.C. Cell biology and pathophysiology of α-synuclein. Cold Spring Harb. Perspect. Med., 2018, 8(3), a024091. doi: 10.1101/cshperspect.a024091 PMID: 28108534
- Nakanishi, H. Microglial cathepsin B as a key driver of inflammatory brain diseases and brain aging. Neural Regen. Res., 2020, 15(1), 25-29. doi: 10.4103/1673-5374.264444 PMID: 31535638
- Kim, C.; Ho, D.H.; Suk, J.E.; You, S.; Michael, S.; Kang, J.; Joong Lee, S.; Masliah, E.; Hwang, D.; Lee, H.J.; Lee, S.J. Neuron-released oligomeric α-synuclein is an endogenous agonist of TLR2 for paracrine activation of microglia. Nat. Commun., 2013, 4(1), 1562. doi: 10.1038/ncomms2534 PMID: 23463005
- Xie, Y.X.; Naseri, N.N.; Fels, J.; Kharel, P.; Na, Y.; Lane, D.; Burré, J.; Sharma, M. Lysosomal exocytosis releases pathogenic α-synuclein species from neurons in synucleinopathy models. Nat. Commun., 2022, 13(1), 4918. doi: 10.1038/s41467-022-32625-1 PMID: 35995799
- Lashuel, H.A.; Overk, C.R.; Oueslati, A.; Masliah, E. The many faces of α-synuclein: from structure and toxicity to therapeutic target. Nat. Rev. Neurosci., 2013, 14(1), 38-48. doi: 10.1038/nrn3406 PMID: 23254192
- Bendor, J.T.; Logan, T.P.; Edwards, R.H. The function of α-synuclein. Neuron, 2013, 79(6), 1044-1066. doi: 10.1016/j.neuron.2013.09.004 PMID: 24050397
- Soraci, L.; Gambuzza, M.E.; Biscetti, L.; Laganà, P.; Lo Russo, C.; Buda, A.; Barresi, G.; Corsonello, A.; Lattanzio, F.; Lorello, G.; Filippelli, G.; Marino, S. Toll-like receptors and NLRP3 inflammasome-dependent pathways in Parkinsons disease: Mechanisms and therapeutic implications. J. Neurol., 2023, 270(3), 1346-1360. doi: 10.1007/s00415-022-11491-3 PMID: 36460875
- Volpicelli-Daley, L.; Brundin, P. Prion-like propagation of pathology in Parkinson disease. Handb. Clin. Neurol., 2018, 153, 321-335. doi: 10.1016/B978-0-444-63945-5.00017-9 PMID: 29887143
- Noguchi-Shinohara, M.; Ono, K. The mechanisms of the roles of α-synuclein, amyloid-β, and tau protein in the lewy body diseases: pathogenesis, early detection, and therapeutics. Int. J. Mol. Sci., 2023, 24(12), 10215. doi: 10.3390/ijms241210215 PMID: 37373401
- Schrag, A. Psychiatric aspects of Parkinsons disease. J. Neurol., 2004, 251(7), 795-804. doi: 10.1007/s00415-004-0483-3 PMID: 15258780
- Subramanian, A.; Tamilanban, T.; Alsayari, A.; Ramachawolran, G.; Wong, L.S.; Sekar, M.; Gan, S.H.; Subramaniyan, V.; Chinni, S.V.; Izzati Mat Rani, N.N.; Suryadevara, N.; Wahab, S. Trilateral association of autophagy, mTOR and Alzheimers disease: Potential pathway in the development for Alzheimers disease therapy. Front. Pharmacol., 2022, 13, 1094351. doi: 10.3389/fphar.2022.1094351 PMID: 36618946
- Kostiuchenko, O.; Lushnikova, I.; Kowalczyk, M.; Skibo, G. mTOR/α-ketoglutarate-mediated signaling pathways in the context of brain neurodegeneration and neuroprotection. BBA Adv., 2022, 2, 100066. doi: 10.1016/j.bbadva.2022.100066 PMID: 37082603
- Blagov, A.V.; Grechko, A.V.; Nikiforov, N.G.; Borisov, E.E.; Sadykhov, N.K.; Orekhov, A.N. Role of impaired mitochondrial dynamics processes in the pathogenesis of Alzheimers disease. Int. J. Mol. Sci., 2022, 23(13), 6954. doi: 10.3390/ijms23136954 PMID: 35805958
- Ikeda-Matsuo, Y.; Miyata, H.; Mizoguchi, T.; Ohama, E.; Naito, Y.; Uematsu, S.; Akira, S.; Sasaki, Y.; Tanabe, M. Microsomal prostaglandin E synthase-1 is a critical factor in dopaminergic neurodegeneration in Parkinsons disease. Neurobiol. Dis., 2019, 124, 81-92. doi: 10.1016/j.nbd.2018.11.004 PMID: 30423474
- Mi, Y.; Qi, G.; Vitali, F.; Shang, Y.; Raikes, A.C.; Wang, T.; Jin, Y.; Brinton, R.D.; Gu, H.; Yin, F. Loss of fatty acid degradation by astrocytic mitochondria triggers neuroinflammation and neurodegeneration. Nat. Metab., 2023, 5(3), 445-465. doi: 10.1038/s42255-023-00756-4 PMID: 36959514
- Kulminski, A.M.; Jain-Washburn, E.; Loiko, E.; Loika, Y.; Feng, F.; Culminskaya, I. Associations of the APOE ε2 and ε4 alleles and polygenic profiles comprising APOE-TOMM40-APOC1 variants with Alzheimers disease biomarkers. Aging, 2022, 14(24), 9782-9804. doi: 10.18632/aging.204384 PMID: 36399096
- Mu, G.; Ren, C.; Zhang, Y.; Lu, B.; Feng, J.; Wu, D.; Xu, X.; Ou, C. Amelioration of central neurodegeneration by docosahexaenoic acid in trigeminal neuralgia rats through the regulation of central neuroinflammation. Int. Immunopharmacol., 2023, 114, 109544. doi: 10.1016/j.intimp.2022.109544 PMID: 36527885
- Xie, A.; Ensink, E.; Li, P.; Gordevičius, J.; Marshall, L.L.; George, S.; Pospisilik, J.A.; Aho, V.T.E.; Houser, M.C.; Pereira, P.A.B.; Rudi, K.; Paulin, L.; Tansey, M.G.; Auvinen, P.; Brundin, P.; Brundin, L.; Labrie, V.; Scheperjans, F. Bacterial butyrate in parkinsons disease is linked to epigenetic changes and depressive symptoms. Mov. Disord., 2022, 37(8), 1644-1653. doi: 10.1002/mds.29128 PMID: 35723531
- Verhaar, B.J.H.; Hendriksen, H.M.A.; de Leeuw, F.A.; Doorduijn, A.S.; van Leeuwenstijn, M.; Teunissen, C.E.; Barkhof, F.; Scheltens, P.; Kraaij, R.; van Duijn, C.M.; Nieuwdorp, M.; Muller, M.; van der Flier, W.M. Gut microbiota composition is related to ad pathology. Front. Immunol., 2022, 12, 794519. doi: 10.3389/fimmu.2021.794519 PMID: 35173707
- Cammann, D.; Lu, Y.; Cummings, M.J.; Zhang, M.L.; Cue, J.M.; Do, J.; Ebersole, J.; Chen, X.; Oh, E.C.; Cummings, J.L.; Chen, J. Genetic correlations between Alzheimers disease and gut microbiome genera. Sci. Rep., 2023, 13(1), 5258. doi: 10.1038/s41598-023-31730-5 PMID: 37002253
- Lang, Y.; Chu, F.; Shen, D.; Zhang, W.; Zheng, C.; Zhu, J.; Cui, L. Role of inflammasomes in neuroimmune and neurodegenerative diseases: A systematic review. Mediators Inflamm., 2018, 2018, 1-11. doi: 10.1155/2018/1549549 PMID: 29849483
- Miao, J.; Ma, H.; Yang, Y.; Liao, Y.; Lin, C.; Zheng, J.; Yu, M.; Lan, J. Microglia in Alzheimers disease: Pathogenesis, mechanisms, and therapeutic potentials. Front. Aging Neurosci., 2023, 15, 1201982. doi: 10.3389/fnagi.2023.1201982 PMID: 37396657
- Wes, P.D.; Holtman, I.R.; Boddeke, E.W.G.M.; Möller, T.; Eggen, B.J.L. Next generation transcriptomics and genomics elucidate biological complexity of microglia in health and disease. Glia, 2016, 64(2), 197-213. doi: 10.1002/glia.22866 PMID: 26040959
- Holtman, I.R.; Raj, D.D.; Miller, J.A.; Schaafsma, W.; Yin, Z.; Brouwer, N.; Wes, P.D.; Möller, T.; Orre, M.; Kamphuis, W.; Hol, E.M.; Boddeke, E.W.G.M.; Eggen, B.J.L. Induction of a common microglia gene expression signature by aging and neurodegenerative conditions: A co-expression meta-analysis. Acta Neuropathol. Commun., 2015, 3(1), 31. doi: 10.1186/s40478-015-0203-5 PMID: 26001565
- Pan, J.; Ma, N.; Yu, B.; Zhang, W.; Wan, J. Transcriptomic profiling of microglia and astrocytes throughout aging. J. Neuroinflammation, 2020, 17(1), 97. doi: 10.1186/s12974-020-01774-9 PMID: 32238175
- Spurrier, J.; Nicholson, L.; Fang, X.T.; Stoner, A.J.; Toyonaga, T.; Holden, D.; Siegert, T.R.; Laird, W.; Allnutt, M.A.; Chiasseu, M.; Brody, A.H.; Takahashi, H.; Nies, S.H.; Cañamás, A.P.; Sadasivam, P.; Lee, S.; Li, S.; Zhang, L.; Huang, Y.H.; Carson, R.E.; Cai, Z.; Strittmatter, S.M. Reversal of synapse loss in Alzheimer mouse models by targeting mGluR5 to prevent synaptic tagging by C1Q. Sci. Transl. Med., 2022, 14(647), eabi8593. doi: 10.1126/scitranslmed.abi8593 PMID: 35648810
- Balog, B.M.; Sonti, A.; Zigmond, R.E. Neutrophil biology in injuries and diseases of the central and peripheral nervous systems. Prog. Neurobiol., 2023, 228, 102488. doi: 10.1016/j.pneurobio.2023.102488 PMID: 37355220
- Aries, M.L.; Hensley-McBain, T. Neutrophils as a potential therapeutic target in Alzheimers disease. Front. Immunol., 2023, 14, 1123149. doi: 10.3389/fimmu.2023.1123149 PMID: 36936930
- Harcha, P.A.; Garcés, P.; Arredondo, C.; Fernández, G.; Sáez, J.C.; van Zundert, B. Mast cell and astrocyte hemichannels and their role in alzheimers disease, ALS, and harmful stress conditions. Int. J. Mol. Sci., 2021, 22(4), 1924. doi: 10.3390/ijms22041924 PMID: 33672031
- Wang, S.; van de Pavert, S.A. Innate lymphoid cells in the central nervous system. Front. Immunol., 2022, 13, 837250. doi: 10.3389/fimmu.2022.837250 PMID: 35185929
- Brauning, A.; Rae, M.; Zhu, G.; Fulton, E.; Admasu, T.D.; Stolzing, A.; Sharma, A. Aging of the immune system: Focus on natural killer cells phenotype and functions. Cells, 2022, 11(6), 1017. doi: 10.3390/cells11061017 PMID: 35326467
- Prager, I.; Watzl, C. Mechanisms of natural killer cell-mediated cellular cytotoxicity. J. Leukoc. Biol., 2019, 105(6), 1319-1329. doi: 10.1002/JLB.MR0718-269R PMID: 31107565
- Menees, K.B.; Lee, J.K. New insights and implications of natural killer cells in parkinsons disease. J. Parkinsons Dis., 2022, 12(s1), S83-S92. doi: 10.3233/JPD-223212 PMID: 35570499
- Zhang, L.; Zhang, Y.; Fan, D. Pathological role of natural killer cells in parkinsons disease: A systematic review. Front. Aging Neurosci., 2022, 14, 890816. doi: 10.3389/fnagi.2022.890816 PMID: 35663564
- Muñiz-Castrillo, S.; Vogrig, A.; Honnorat, J. Associations between HLA and autoimmune neurological diseases with autoantibodies. Auto Immun. Highlights, 2020, 11(1), 2. doi: 10.1186/s13317-019-0124-6 PMID: 32127039
- Boon, B.D.C.; Hoozemans, J.J.M.; Lopuhaä, B.; Eigenhuis, K.N.; Scheltens, P.; Kamphorst, W.; Rozemuller, A.J.M.; Bouwman, F.H. Neuroinflammation is increased in the parietal cortex of atypical Alzheimers disease. J. Neuroinflammation, 2018, 15(1), 170. doi: 10.1186/s12974-018-1180-y PMID: 29843759
- Wang, Z.T.; Chen, S.D.; Xu, W.; Chen, K.L.; Wang, H.F.; Tan, C.C.; Cui, M.; Dong, Q.; Tan, L.; Yu, J.T. Genome-wide association study identifies CD1A associated with rate of increase in plasma neurofilament light in non-demented elders. Aging, 2019, 11(13), 4521-4535. doi: 10.18632/aging.102066 PMID: 31295725
- Chew, H.; Solomon, V.A.; Fonteh, A.N. Involvement of lipids in Alzheimers disease pathology and potential therapies. Front. Physiol., 2020, 11, 598. doi: 10.3389/fphys.2020.00598 PMID: 32581851
- Al-kuraishy, H.M.; Al-Gareeb, A.I.; Alexiou, A.; Papadakis, M.; Alsayegh, A.A.; Almohmadi, N.H.; Saad, H.M.; Batiha, G.E.S. Pros and cons for statins use and risk of Parkinsons disease: An updated perspective. Pharmacol. Res. Perspect., 2023, 11(2), e01063. doi: 10.1002/prp2.1063 PMID: 36811160
- Sulzer, D.; Alcalay, R.N.; Garretti, F.; Cote, L.; Kanter, E.; Agin-Liebes, J.; Liong, C.; McMurtrey, C.; Hildebrand, W.H.; Mao, X.; Dawson, V.L.; Dawson, T.M.; Oseroff, C.; Pham, J.; Sidney, J.; Dillon, M.B.; Carpenter, C.; Weiskopf, D.; Phillips, E.; Mallal, S.; Peters, B.; Frazier, A.; Lindestam, A.C.S.; Sette, A. T cells from patients with Parkinsons disease recognize α-synuclein peptides. Nature, 2017, 546(7660), 656-661. doi: 10.1038/nature22815 PMID: 28636593
- Williams, G.P.; Schonhoff, A.M.; Jurkuvenaite, A.; Gallups, N.J.; Standaert, D.G.; Harms, A.S. CD4 T cells mediate brain inflammation and neurodegeneration in a mouse model of Parkinsons disease. Brain, 2021, 144(7), 2047-2059. doi: 10.1093/brain/awab103 PMID: 33704423
- Iba, M.; Kim, C.; Sallin, M.; Kwon, S.; Verma, A.; Overk, C.; Rissman, R.A.; Sen, R.; Sen, J.M.; Masliah, E. Neuroinflammation is associated with infiltration of T cells in Lewy body disease and α-synuclein transgenic models. J. Neuroinflammation, 2020, 17(1), 214. doi: 10.1186/s12974-020-01888-0 PMID: 32680537
- Lyman, M.; Lloyd, D.G.; Ji, X.; Vizcaychipi, M.P.; Ma, D. Neuroinflammation: The role and consequences. Neurosci. Res., 2014, 79, 1-12. doi: 10.1016/j.neures.2013.10.004 PMID: 24144733
- Carrasco, E.; Gómez de las Heras, M.M.; Gabandé-Rodríguez, E.; Desdín-Micó, G.; Aranda, J.F.; Mittelbrunn, M. The role of T cells in age-related diseases. Nat. Rev. Immunol., 2022, 22(2), 97-111. doi: 10.1038/s41577-021-00557-4 PMID: 34099898
- Gate, D.; Saligrama, N.; Leventhal, O.; Yang, A.C.; Unger, M.S.; Middeldorp, J.; Chen, K.; Lehallier, B.; Channappa, D.; De Los Santos, M.B.; McBride, A.; Pluvinage, J.; Elahi, F.; Tam, G.K.Y.; Kim, Y.; Greicius, M.; Wagner, A.D.; Aigner, L.; Galasko, D.R.; Davis, M.M.; Wyss-Coray, T. Clonally expanded CD8 T cells patrol the cerebrospinal fluid in Alzheimers disease. Nature, 2020, 577(7790), 399-404. doi: 10.1038/s41586-019-1895-7 PMID: 31915375
- Mietelska-Porowska, A.; Wojda, U. T lymphocytes and inflammatory mediators in the interplay between brain and blood in Alzheimers disease: Potential pools of new biomarkers. J. Immunol. Res., 2017, 2017, 1-17. doi: 10.1155/2017/4626540 PMID: 28293644
- Rezai-Zadeh, K.; Gate, D.; Town, T. CNS infiltration of peripheral immune cells: D-Day for neurodegenerative disease? J. Neuroimmune Pharmacol., 2009, 4(4), 462-475. doi: 10.1007/s11481-009-9166-2 PMID: 19669892
- Dai, L.; Shen, Y. Insights into Tcell dysfunction in Alzheimers disease. Aging Cell, 2021, 20(12), e13511. doi: 10.1111/acel.13511 PMID: 34725916
- Machhi, J.; Yeapuri, P.; Lu, Y.; Foster, E.; Chikhale, R.; Herskovitz, J.; Namminga, K.L.; Olson, K.E.; Abdelmoaty, M.M.; Gao, J.; Quadros, R.M.; Kiyota, T.; Jingjing, L.; Kevadiya, B.D.; Wang, X.; Liu, Y.; Poluektova, L.Y.; Gurumurthy, C.B.; Mosley, R.L.; Gendelman, H.E. CD4+ effector T cells accelerate Alzheimers disease in mice. J. Neuroinflammation, 2021, 18(1), 272. doi: 10.1186/s12974-021-02308-7 PMID: 34798897
- Monsonego, A.; Zota, V.; Karni, A.; Krieger, J.I.; Bar-Or, A.; Bitan, G.; Budson, A.E.; Sperling, R.; Selkoe, D.J.; Weiner, H.L. Increased T cell reactivity to amyloid β protein in older humans and patients with Alzheimer disease. J. Clin. Invest., 2003, 112(3), 415-422. doi: 10.1172/JCI200318104 PMID: 12897209
- Kustrimovic, N.; Comi, C.; Magistrelli, L.; Rasini, E.; Legnaro, M.; Bombelli, R.; Aleksic, I.; Blandini, F.; Minafra, B.; Riboldazzi, G.; Sturchio, A.; Mauri, M.; Bono, G.; Marino, F.; Cosentino, M. Parkinsons disease patients have a complex phenotypic and functional Th1 bias: Cross-sectional studies of CD4+ Th1/Th2/T17 and Treg in drug-naïve and drug-treated patients. J. Neuroinflammation, 2018, 15(1), 205. doi: 10.1186/s12974-018-1248-8 PMID: 30001736
- Saunders, J.A.H.; Estes, K.A.; Kosloski, L.M.; Allen, H.E.; Dempsey, K.M.; Torres-Russotto, D.R.; Meza, J.L.; Santamaria, P.M.; Bertoni, J.M.; Murman, D.L.; Ali, H.H.; Standaert, D.G.; Mosley, R.L.; Gendelman, H.E. CD4+ regulatory and effector/memory T cell subsets profile motor dysfunction in Parkinsons disease. J. Neuroimmune Pharmacol., 2012, 7(4), 927-938. doi: 10.1007/s11481-012-9402-z PMID: 23054369
- Xu, Y.; Li, Y.; Wang, C.; Han, T.; Liu, H.; Sun, L.; Hong, J.; Hashimoto, M.; Wei, J. The reciprocal interactions between microglia and T cells in Parkinsons disease: A double-edged sword. J. Neuroinflammation, 2023, 20(1), 33. doi: 10.1186/s12974-023-02723-y PMID: 36774485
- Vacinova, G.; Vejrakova, D.; Rusina, R.; Holmerová, I.; Vaňková, H.; Jarolímová, E.; Včelák, J.; Bendlová, B.; Vaňková, M. Regulated upon activation, normal T cell expressed and secreted (RANTES) levels in the peripheral blood of patients with Alzheimers disease. Neural Regen. Res., 2021, 16(4), 796-800. doi: 10.4103/1673-5374.295340 PMID: 33063745
- Schwartz, M.; Baruch, K. Breaking peripheral immune tolerance to CNS antigens in neurodegenerative diseases: Boosting autoimmunity to fight-off chronic neuroinflammation. J. Autoimmun., 2014, 54, 8-14. doi: 10.1016/j.jaut.2014.08.002
- Chen, X.; Firulyova, M.; Manis, M.; Herz, J.; Smirnov, I.; Aladyeva, E.; Wang, C.; Bao, X.; Finn, M.B.; Hu, H.; Shchukina, I.; Kim, M.W.; Yuede, C.M.; Kipnis, J.; Artyomov, M.N.; Ulrich, J.D.; Holtzman, D.M. Microglia-mediated T cell infiltration drives neurodegeneration in tauopathy. Nature, 2023, 615(7953), 668-677. doi: 10.1038/s41586-023-05788-0 PMID: 36890231
- Subbarayan, M.S.; Hudson, C.; Moss, L.D.; Nash, K.R.; Bickford, P.C. T cell infiltration and upregulation of MHCII in microglia leads to accelerated neuronal loss in an α-synuclein rat model of Parkinsons disease. J. Neuroinflammation, 2020, 17(1), 242. doi: 10.1186/s12974-020-01911-4 PMID: 32799878
- Cai, H.Y.; Fu, X.X.; Jiang, H.; Han, S. Adjusting vascular permeability, leukocyte infiltration, and microglial cell activation to rescue dopaminergic neurons in rodent models of Parkinsons disease. NPJ Parkinsons Dis., 2021, 7(1), 91. doi: 10.1038/s41531-021-00233-3 PMID: 34625569
- Liu, Y.; Sorce, S.; Nuvolone, M.; Domange, J.; Aguzzi, A. Lymphocyte activation gene 3 (Lag3) expression is increased in prion infections but does not modify disease progression. Sci. Rep., 2018, 8(1), 14600. doi: 10.1038/s41598-018-32712-8 PMID: 30279468
- Guo, W.; Zhou, M.; Qiu, J.; Lin, Y.; Chen, X.; Huang, S.; Mo, M.; Liu, H.; Peng, G.; Zhu, X.; Xu, P. Association of LAG3 genetic variation with an increased risk of PD in Chinese female population. J. Neuroinflammation, 2019, 16(1), 270. doi: 10.1186/s12974-019-1654-6 PMID: 31847878
- García-Martín, E.; Pastor, P.; Gómez-Tabales, J.; Alonso-Navarro, H.; Alvarez, I.; Buongiorno, M.; Cerezo-Arias, M.O.; Aguilar, M.; Agúndez, J.A.G.; Jiménez-Jiménez, F.J. Association between LAG3/CD4 gene variants and risk of Parkinsons disease. Eur. J. Clin. Invest., 2022, 52(11), e13847. doi: 10.1111/eci.13847 PMID: 36224715
- Cui, S.; Du, J.J.; Liu, S.H.; Meng, J.; Lin, Y.Q.; Li, G.; He, Y.X.; Zhang, P.C.; Chen, S.; Wang, G. Serum soluble lymphocyte activation gene3 as a diagnostic biomarker in Parkinsons disease: A pilot multicenter study. Mov. Disord., 2019, 34(1), 138-141. doi: 10.1002/mds.27569 PMID: 30485547
- Roy, A.; Choudhury, S.; Banerjee, R.; Basu, P.; Kumar, H. Soluble LAG-3 and Toll-interacting protein: Novel upstream neuro-inflammatory markers in Parkinsons disease. Parkinsonism Relat. Disord., 2021, 91, 121-123. doi: 10.1016/j.parkreldis.2021.09.019 PMID: 34601340
- Saresella, M.; Calabrese, E.; Marventano, I.; Piancone, F.; Gatti, A.; Calvo, M.G.; Nemni, R.; Clerici, M. PD1 negative and PD1 positive CD4+ T regulatory cells in mild cognitive impairment and Alzheimers disease. J. Alzheimers Dis., 2010, 21(3), 927-938. doi: 10.3233/JAD-2010-091696 PMID: 20634592
- Olson, K.E.; Mosley, R.L.; Gendelman, H.E. The potential for treg-enhancing therapies in nervous system pathologies. Clin. Exp. Immunol., 2022, uxac084. PMID: 36041453
- Beers, D.R.; Zhao, W.; Wang, J.; Zhang, X.; Wen, S.; Neal, D.; Thonhoff, J.R.; Alsuliman, A.S.; Shpall, E.J.; Rezvani, K.; Appel, S.H. ALS patients regulatory T lymphocytes are dysfunctional, and correlate with disease progression rate and severity. JCI Insight, 2017, 2(5), e89530. doi: 10.1172/jci.insight.89530 PMID: 28289705
- Schröder, J.B.; Pawlowski, M.; Meyer zu Hörste, G.; Gross, C.C.; Wiendl, H.; Meuth, S.G.; Ruck, T.; Warnecke, T. Immune cell activation in the cerebrospinal fluid of patients with Parkinsons disease. Front. Neurol., 2018, 9, 1081. doi: 10.3389/fneur.2018.01081 PMID: 30619041
- Stym-Popper, G.; Matta, K.; Chaigneau, T.; Rupra, R.; Demetriou, A.; Fouquet, S.; Dansokho, C.; Toly-Ndour, C.; Dorothée, G. Regulatory T cells decrease C3-positive reactive astrocytes in Alzheimer-like pathology. J. Neuroinflammation, 2023, 20(1), 64. doi: 10.1186/s12974-023-02702-3 PMID: 36890536
- Ciccocioppo, F.; Lanuti, P.; Pierdomenico, L.; Simeone, P.; Bologna, G.; Ercolino, E.; Buttari, F.; Fantozzi, R.; Thomas, A.; Onofrj, M.; Centonze, D.; Miscia, S.; Marchisio, M. The characterization of regulatory t-cell profiles in Alzheimers disease and multiple sclerosis. Sci. Rep., 2019, 9(1), 8788. doi: 10.1038/s41598-019-45433-3
- Baruch, K.; Rosenzweig, N.; Kertser, A.; Deczkowska, A.; Sharif, A.M.; Spinrad, A.; Tsitsou-Kampeli, A.; Sarel, A.; Cahalon, L.; Schwartz, M. Breaking immune tolerance by targeting Foxp3+ regulatory T cells mitigates Alzheimers disease pathology. Nat. Commun., 2015, 6(1), 7967. doi: 10.1038/ncomms8967 PMID: 26284939
- Novakova Martinkova, J.; Ferretti, M.T.; Ferrari, A.; Lerch, O.; Matuskova, V.; Secnik, J.; Hort, J. Longitudinal progression of choroid plexus enlargement is associated with female sex, cognitive decline and ApoE E4 homozygote status. Front. Psychiatry, 2023, 14, 1039239. doi: 10.3389/fpsyt.2023.1039239 PMID: 36970283
- Yang, H.; Park, S.Y.; Baek, H.; Lee, C.; Chung, G.; Liu, X.; Lee, J.H.; Kim, B.; Kwon, M.; Choi, H.; Kim, H.J.; Kim, J.Y.; Kim, Y.; Lee, Y.S.; Lee, G.; Kim, S.K.; Kim, J.S.; Chang, Y.T.; Jung, W.S.; Kim, K.H.; Bae, H. Adoptive therapy with amyloid-β specific regulatory T cells alleviates Alzheimers disease. Theranostics, 2022, 12(18), 7668-7680. doi: 10.7150/thno.75965 PMID: 36451854
- Moore, J.R.; Hubler, S.L.; Nelson, C.D.; Nashold, F.E.; Spanier, J.A.; Hayes, C.E. 1,25-Dihydroxyvitamin D3 increases the methionine cycle, CD4+ T cell DNA methylation and Helios+Foxp3+ T regulatory cells to reverse autoimmune neurodegenerative disease. J. Neuroimmunol., 2018, 324, 100-114. doi: 10.1016/j.jneuroim.2018.09.008 PMID: 30267995
- Janjusevic, M.; Gagno, G.; Fluca, A.L.; Padoan, L.; Beltrami, A.P.; Sinagra, G.; Moretti, R.; Aleksova, A. The peculiar role of vitamin D in the pathophysiology of cardiovascular and neurodegenerative diseases. Life Sci., 2022, 289, 120193. doi: 10.1016/j.lfs.2021.120193 PMID: 34864062
- Shi, Y.; Wei, B.; Li, L.; Wang, B.; Sun, M. Th17 cells and inflammation in neurological disorders: Possible mechanisms of action. Front. Immunol., 2022, 13, 932152. doi: 10.3389/fimmu.2022.932152 PMID: 35935951
- Sommer, A.; Marxreiter, F.; Krach, F.; Fadler, T.; Grosch, J.; Maroni, M.; Graef, D.; Eberhardt, E.; Riemenschneider, M.J.; Yeo, G.W.; Kohl, Z.; Xiang, W.; Gage, F.H.; Winkler, J.; Prots, I.; Winner, B. Th17 lymphocytes induce neuronal cell death in a human iPSC-based model of Parkinsons disease. Cell Stem Cell, 2019, 24(6), 1006. doi: 10.1016/j.stem.2019.04.019 PMID: 31173705
- Li, J. Zhao, J.; Chen, L.; Gao, H.; Zhang, J.; Wang, D.; Zou, Y.; Qin, Q.; Qu, Y.; Li, J.; Xiong, Y.; Min, Z.; Yan, M.; Mao, Z.; Xue, Z. α-Synuclein induces Th17 differentiation and impairs the function and stability of Tregs by promoting RORC transcription in Parkinsons disease. Brain Behav. Immun., 2023, 108, 32-44. doi: 10.1016/j.bbi.2022.10.023 PMID: 36343753
- Mohammadi, S., V.; Ravari, A.; Mirzaei, T.; Zare-Bidaki, M.; Asadikaram, G.; Arababadi, M.K. IL-17A and IL-23: Plausible risk factors to induce age-associated inflammation in Alzheimers disease. Immunol. Invest., 2018, 47(8), 812-822. doi: 10.1080/08820139.2018.1504300 PMID: 30081688
- Biragyn, A.; Aliseychik, M.; Rogaev, E. Potential importance of B cells in aging and aging-associated neurodegenerative diseases. Semin. Immunopathol., 2017, 39(3), 283-294. doi: 10.1007/s00281-016-0615-8 PMID: 28083646
- Sabatino, J.J., Jr; Pröbstel, A.K.; Zamvil, S.S. B cells in autoimmune and neurodegenerative central nervous system diseases. Nat. Rev. Neurosci., 2019, 20(12), 728-745. doi: 10.1038/s41583-019-0233-2 PMID: 31712781
- Orr, C.F.; Rowe, D.B.; Mizuno, Y.; Mori, H.; Halliday, G.M. A possible role for humoral immunity in the pathogenesis of Parkinsons disease. Brain, 2005, 128(11), 2665-2674. doi: 10.1093/brain/awh625 PMID: 16219675
- Du, Y.; Dodel, R.; Hampel, H.; Buerger, K.; Lin, S.; Eastwood, B.; Bales, K.; Gao, F.; Moeller, H.J.; Oertel, W.; Farlow, M.; Paul, S. Reduced levels of amyloid -peptide antibody in Alzheimer disease. Neurology, 2001, 57(5), 801-805. doi: 10.1212/WNL.57.5.801 PMID: 11552007
- Hyman, B.T.; Smith, C.; Buldyrev, I.; Whelan, C.; Brown, H.; Tang, M.X.; Mayeux, R. Autoantibodies to amyloid-? and Alzheimers disease. Ann. Neurol., 2001, 49(6), 808-810. doi: 10.1002/ana.1061 PMID: 11409436
- Weksler, M.E.; Relkin, N.; Turkenich, R.; LaRusse, S.; Zhou, L.; Szabo, P. Patients with Alzheimer disease have lower levels of serum anti-amyloid peptide antibodies than healthy elderly individuals. Exp. Gerontol., 2002, 37(7), 943-948. doi: 10.1016/S0531-5565(02)00029-3 PMID: 12086704
- DeMarshall, C.A.; Viviano, J.; Emrani, S.; Thayasivam, U.; Godsey, G.A.; Sarkar, A.; Belinka, B.; Libon, D.J.; Nagele, R.G. Early detection of alzheimers disease-related pathology using a multi-disease diagnostic platform employing autoantibodies as blood-based biomarkers. J. Alzheimers Dis., 2023, 92(3), 1077-1091. doi: 10.3233/JAD-221091 PMID: 36847005
- Carvey, P.M.; McRae, A.; Lint, T.F.; Ptak, L.R.; Lo, E.S.; Goetz, C.G.; Klawans, H.L. The potential use of a dopamine neuron antibody and a striatal-derived neurotrophic factor as diagnostic markers in Parkinsons disease., Neurology, 1991, 41 (5, Supplement 2)(2), 53-58. doi: 10.1212/WNL.41.5_Suppl_2.53 PMID: 2041594
- Chen, S.; Le, W.D.; Xie, W.J.; Alexianu, M.E.; Engelhardt, J.I.; Siklós, L.; Appel, S.H. Experimental destruction of substantia nigra initiated by Parkinson disease immunoglobulins. Arch. Neurol., 1998, 55(8), 1075-1080. doi: 10.1001/archneur.55.8.1075 PMID: 9708957
- Le, W.D.; Rowe, D.B.; Jankovic, J.; Xie, W.; Appel, S.H. Effects of cerebrospinal fluid from patients with Parkinson disease on dopaminergic cells. Arch. Neurol., 1999, 56(2), 194-200. doi: 10.1001/archneur.56.2.194 PMID: 10025424
- Papachroni, K.K.; Ninkina, N.; Papapanagiotou, A.; Hadjigeorgiou, G.M.; Xiromerisiou, G.; Papadimitriou, A.; Kalofoutis, A.; Buchman, V.L. Autoantibodies to alpha-synuclein in inherited Parkinsons disease. J. Neurochem., 2007, 101(3), 749-756. doi: 10.1111/j.1471-4159.2006.04365.x PMID: 17448146
- Shalash, A.; Salama, M.; Makar, M.; Roushdy, T.; Elrassas, H.H.; Mohamed, W.; El-Balkimy, M.; Abou, D.M. Elevated serum α-synuclein autoantibodies in patients with Parkinsons disease relative to Alzheimers disease and controls. Front. Neurol., 2017, 8, 720. doi: 10.3389/fneur.2017.00720 PMID: 29312137
- Besong-Agbo, D.; Wolf, E.; Jessen, F.; Oechsner, M.; Hametner, E.; Poewe, W.; Reindl, M.; Oertel, W.H.; Noelker, C.; Bacher, M.; Dodel, R. Naturally occurring -synuclein autoantibody levels are lower in patients with Parkinson disease. Neurology, 2013, 80(2), 169-175. doi: 10.1212/WNL.0b013e31827b90d1 PMID: 23255825
- Horvath, I.; Iashchishyn, I.A.; Forsgren, L.; Morozova-Roche, L.A. Immunochemical detection of α-synuclein autoantibodies in Parkinsons disease: Correlation between plasma and cerebrospinal fluid levels. ACS Chem. Neurosci., 2017, 8(6), 1170-1176. doi: 10.1021/acschemneuro.7b00063 PMID: 28263550
- Akhtar, R.S.; Licata, J.P.; Luk, K.C.; Shaw, L.M.; Trojanowski, J.Q.; Lee, V.M.Y. Measurements of auto-antibodies to α-synuclein in the serum and cerebral spinal fluids of patients with Parkinsons disease. J. Neurochem., 2018, 145(6), 489-503. doi: 10.1111/jnc.14330 PMID: 29500813
- Double, K.L.; Rowe, D.B.; Carew-Jones, F.M.; Hayes, M.; Chan, D.K.Y.; Blackie, J.; Corbett, A.; Joffe, R.; Fung, V.S.; Morris, J.; Riederer, P.; Gerlach, M.; Halliday, G.M. Anti-melanin antibodies are increased in sera in Parkinsons disease. Exp. Neurol., 2009, 217(2), 297-301. doi: 10.1016/j.expneurol.2009.03.002 PMID: 19289120
- Zappia, M.; Crescibene, L.; Bosco, D.; Arabia, G.; Nicoletti, G.; Bagalà, A.; Bastone, L.; Napoli, I.D.; Caracciolo, M.; Bonavita, S.; Di Costanzo, A.; Gambardella, A.; Quattrone, A. Anti-GM1 ganglioside antibodies in Parkinsons disease. Acta Neurol. Scand., 2002, 106(1), 54-57. doi: 10.1034/j.1600-0404.2002.01240.x PMID: 12067330
- De Virgilio, A.; Greco, A.; Fabbrini, G.; Inghilleri, M.; Rizzo, M.I.; Gallo, A.; Conte, M.; Rosato, C.; Ciniglio Appiani, M.; de Vincentiis, M. Parkinsons disease: Autoimmunity and neuroinflammation. Autoimmun. Rev., 2016, 15(10), 1005-1011. doi: 10.1016/j.autrev.2016.07.022 PMID: 27497913
- Benkler, M.; Agmon-Levin, N.; Hassin-Baer, S.; Cohen, O.S.; Ortega-Hernandez, O.D.; Levy, A.; Moscavitch, S.D.; Szyper-Kravitz, M.; Damianovich, M.; Blank, M.; Chapman, J.; Shoenfeld, Y. Immunology, autoimmunity, and autoantibodies in Parkinsons disease. Clin. Rev. Allergy Immunol., 2012, 42(2), 164-171. doi: 10.1007/s12016-010-8242-y PMID: 21234712
- Papuć, E.; Rejdak, K. Anti-MAG autoantibodies are increased in Parkinsons disease but not in atypical parkinsonism. J. Neural Transm., 2017, 124(2), 209-216. doi: 10.1007/s00702-016-1632-4 PMID: 27766424
- Honorat, J.A.; McKeon, A. Autoimmune movement disorders: A clinical and laboratory approach. Curr. Neurol. Neurosci. Rep., 2017, 17(1), 4. doi: 10.1007/s11910-017-0709-2 PMID: 28120141
- Caggiu, E.; Paulus, K.; Arru, G.; Piredda, R.; Sechi, G.P.; Sechi, L.A. Humoral cross reactivity between α-synuclein and herpes simplex-1 epitope in Parkinsons disease, a triggering role in the disease? J. Neuroimmunol., 2016, 291, 110-114. doi: 10.1016/j.jneuroim.2016.01.007 PMID: 26857504
- Cebrián, C.; Zucca, F.A.; Mauri, P.; Steinbeck, J.A.; Studer, L.; Scherzer, C.R.; Kanter, E.; Budhu, S.; Mandelbaum, J.; Vonsattel, J.P.; Zecca, L.; Loike, J.D.; Sulzer, D. MHC-I expression renders catecholaminergic neurons susceptible to T-cell-mediated degeneration. Nat. Commun., 2014, 5(1), 3633. doi: 10.1038/ncomms4633 PMID: 24736453
- Jiang, T.; Li, G.; Xu, J.; Gao, S.; Chen, X. The challenge of the pathogenesis of parkinsons disease: Is autoimmunity the culprit? Front. Immunol., 2018, 9, 2047. doi: 10.3389/fimmu.2018.02047 PMID: 30319601
- Oberländer, U.; Pletinckx, K.; Döhler, A.; Müller, N.; Lutz, M.B.; Arzberger, T.; Riederer, P.; Gerlach, M.; Koutsilieri, E.; Scheller, C. Neuromelanin is an immune stimulator for dendritic cells in vitro. BMC Neurosci., 2011, 12(1), 116. doi: 10.1186/1471-2202-12-116 PMID: 22085464
- Koutsilieri, E.; Lutz, M.B.; Scheller, C. Autoimmunity, dendritic cells and relevance for Parkinsons disease. J. Neural Transm., 2013, 120(1), 75-81. doi: 10.1007/s00702-012-0842-7 PMID: 22699458
- Depboylu, C.; Schäfer, M.K.H.; Arias-Carrión, O.; Oertel, W.H.; Weihe, E.; Höglinger, G.U. Possible involvement of complement factor C1q in the clearance of extracellular neuromelanin from the substantia nigra in Parkinson disease. J. Neuropathol. Exp. Neurol., 2011, 70(2), 125-132. doi: 10.1097/NEN.0b013e31820805b9 PMID: 21343881
- Alberici, A.; Cristillo, V.; Gazzina, S.; Benussi, A.; Padovani, A.; Borroni, B. Autoimmunity and frontotemporal dementia. Curr. Alzheimer Res., 2018, 15(7), 602-609. doi: 10.2174/1567205015666180119104825 PMID: 29357796
- Palese, F.; Bonomi, E.; Nuzzo, T.; Benussi, A.; Mellone, M.; Zianni, E.; Cisani, F.; Casamassa, A.; Alberici, A.; Scheggia, D.; Padovani, A.; Marcello, E.; Di Luca, M.; Pittaluga, A.; Usiello, A.; Borroni, B.; Gardoni, F. Anti-GluA3 antibodies in frontotemporal dementia: Effects on glutamatergic neurotransmission and synaptic failure. Neurobiol. Aging, 2020, 86, 143-155. doi: 10.1016/j.neurobiolaging.2019.10.015 PMID: 31784278
- Arshad, F.; Varghese, F.; Paplikar, A.; Gangadhar, Y.; Ramakrishnan, S.; Chaudhuri, J.R.; Mahadevan, A.; Alladi, S. Role of autoantibodies in neurodegenerative dementia: An emerging association. Dement. Geriatr. Cogn. Disord., 2021, 50(2), 153-160. doi: 10.1159/000517238 PMID: 34237731
- Maftei, M.; Thurm, F.; Schnack, C.; Tumani, H.; Otto, M.; Elbert, T.; Kolassa, I.T.; Przybylski, M.; Manea, M.; von Arnim, C.A.F. Increased levels of antigen-bound β-amyloid autoantibodies in serum and cerebrospinal fluid of Alzheimers disease patients. PLoS One, 2013, 8(7), e68996. doi: 10.1371/journal.pone.0068996 PMID: 23874844
- Bartos, A.; Fialová, L.; varcová, J. Lower serum antibodies against tau protein and heavy neurofilament in alzheimers disease. J. Alzheimers Dis., 2018, 64(3), 751-760. doi: 10.3233/JAD-180039 PMID: 29966192
- Koval, L.; Lykhmus, O.; Kalashnyk, O.; Bachinskaya, N.; Kravtsova, G.; Soldatkina, M.; Zouridakis, M.; Stergiou, C.; Tzartos, S.; Tsetlin, V.; Komisarenko, S.; Skok, M. The presence and origin of autoantibodies against α4 and α7 nicotinic acetylcholine receptors in the human blood: Possible relevance to Alzheimers pathology. J. Alzheimers Dis., 2011, 25(4), 747-761. doi: 10.3233/JAD-2011-101845 PMID: 21593571
- Davydova, T.V.; Mikovskaya, O.I.; Fomina, V.G.; Voskresenskaya, N.I.; Doronina, O.A. Induction of immune complexes and autoantibodies to serotonin and dopamine in patients with Alzheimers disease. Bull. Exp. Biol. Med., 2002, 134(1), 23-25. doi: 10.1023/A:1020692218416 PMID: 12459860
- Davydova, T.V.; Voskresenskaya, N.I.; Gorbatov, V.Y.; Fomina, V.G.; Doronina, O.A.; Maksunova, I.V. Production of autoantibodies to glutamate during Alzheimers dementia. Bull. Exp. Biol. Med., 2009, 147(4), 405-407. doi: 10.1007/s10517-009-0530-2 PMID: 19704934
- Busse, S.; Brix, B.; Kunschmann, R.; Bogerts, B.; Stoecker, W.; Busse, M. N-methyl-d-aspartate glutamate receptor (NMDA-R) antibodies in mild cognitive impairment and dementias. Neurosci. Res., 2014, 85, 58-64. doi: 10.1016/j.neures.2014.06.002 PMID: 24973618
- Gruden, M.A.; Davidova, T.B.; Maliauskas, M.; Sewell, R.D.E.; Voskresenskaya, N.I.; Wilhelm, K.; Elistratova, E.I.; Sherstnev, V.V.; Morozova-Roche, L.A. Differential neuroimmune markers to the onset of Alzheimers disease neurodegeneration and dementia: Autoantibodies to Aβ(2535) oligomers, S100b and neurotransmitters. J. Neuroimmunol., 2007, 186(1-2), 181-192. doi: 10.1016/j.jneuroim.2007.03.023 PMID: 17477976
- Mecocci, P.; Parnetti, L.; Donato, R.; Santucci, C.; Santucci, A.; Cadini, D.; Foà, E.; Cecchetti, R.; Senin, U. Serum autoantibodies against glial fibrillary acidic protein in brain aging and senile dementias. Brain Behav. Immun., 1992, 6(3), 286-292. doi: 10.1016/0889-1591(92)90049-T PMID: 1392102
- McRae, A.; Dahlström, A.; Polinsky, R.; Ling, E.A. Cerebrospinal fluid microglial antibodies: Potential diagnostic markers for immune mechanisms in Alzheimers disease. Behav. Brain Res., 1993, 57(2), 225-234. doi: 10.1016/0166-4328(93)90139-H PMID: 8117427
- Kingsley, B.S.; Gaskin, F.; Fu, S.M. Human antibodies to neurofibrillary tangles and astrocytes in Alzheimers disease. J. Neuroimmunol., 1988, 19(1-2), 89-99. doi: 10.1016/0165-5728(88)90038-0 PMID: 3260906
- Kankaanpää, J.; Turunen, S.P.; Moilanen, V.; Hörkkö, S.; Remes, A.M. Cerebrospinal fluid antibodies to oxidized LDL are increased in Alzheimers disease. Neurobiol. Dis., 2009, 33(3), 467-472. doi: 10.1016/j.nbd.2008.12.001 PMID: 19130885
- Vojdani, A.; Vojdani, E. Amyloid-Beta 1-42 cross-reactive antibody prevalent in human sera may contribute to intraneuronal deposition of A-Beta-P-42. Int. J. Alzheimers Dis., 2018, 2018, 1-12. doi: 10.1155/2018/1672568 PMID: 30034864
- Mruthinti, S.; Schade, R.; Harrell, D.; Gulati, N.; Swamy-Mruthinti, S.; Lee, G.; Buccafusco, J. Autoimmunity in Alzheimers disease as evidenced by plasma immunoreactivity against RAGE and Abeta42: Complication of diabetes. Curr. Alzheimer Res., 2006, 3(3), 229-235. doi: 10.2174/156720506777632899 PMID: 16842100
- Giil, L.M.; Kristoffersen, E.K.; Vedeler, C.A.; Aarsland, D.; Nordrehaug, J.E.; Winblad, B.; Cedazo-Minguez, A.; Lund, A.; Reksten, T.R. Autoantibodies toward the angiotensin 2 Type 1 receptor: A novel autoantibody in alzheimers disease. J. Alzheimers Dis., 2015, 47(2), 523-529. doi: 10.3233/JAD-150053 PMID: 26401573
- Colasanti, T.; Barbati, C.; Rosano, G.; Malorni, W.; Ortona, E. Autoantibodies in patients with Alzheimers disease: Pathogenetic role and potential use as biomarkers of disease progression. Autoimmun. Rev., 2010, 9(12), 807-811. doi: 10.1016/j.autrev.2010.07.008 PMID: 20656067
- Ariga, T.; Jarvis, W.D.; Yu, R.K. Role of sphingolipid-mediated cell death in neurodegenerative diseases. J. Lipid Res., 1998, 39(1), 1-16. doi: 10.1016/S0022-2275(20)34198-5 PMID: 9469581
- Jianming, W.; Ling, L. Autoantibodies in Alzheimers disease: Potential biomarkers, pathogenic roles, and therapeutic implications. J. Biomed. Res., 2016, 30(5), 361-372. doi: 10.7555/JBR.30.20150131 PMID: 27476881
- Vacirca, D.; Delunardo, F.; Matarrese, P.; Colasanti, T.; Margutti, P.; Siracusano, A.; Pontecorvo, S.; Capozzi, A.; Sorice, M.; Francia, A.; Malorni, W.; Ortona, E. Autoantibodies to the adenosine triphosphate synthase play a pathogenetic role in Alzheimers disease. Neurobiol. Aging, 2012, 33(4), 753-766. doi: 10.1016/j.neurobiolaging.2010.05.013 PMID: 20594618
- Berry, A.; Vacirca, D.; Capoccia, S.; Bellisario, V.; Malorni, W.; Ortona, E.; Cirulli, F. Anti-ATP synthase autoantibodies induce neuronal death by apoptosis and impair cognitive performance in C57BL/6J mice. J. Alzheimers Dis., 2012, 33(2), 317-321. doi: 10.3233/JAD-2012-121312 PMID: 22954670
- Dinkins, M.B.; Dasgupta, S.; Wang, G.; Zhu, G.; He, Q.; Kong, J.N.; Bieberich, E. The 5XFAD mouse model of Alzheimers disease exhibits an age-dependent increase in anti-ceramide IgG and exogenous administration of ceramide further increases anti-ceramide titers and amyloid plaque burden. J. Alzheimers Dis., 2015, 46(1), 55-61. doi: 10.3233/JAD-150088 PMID: 25720409
- Li, X.; Sundquist, J.; Sundquist, K. Subsequent risks of Parkinson disease in patients with autoimmune and related disorders: A nationwide epidemiological study from Sweden. Neurodegener. Dis., 2012, 10(1-4), 277-284. doi: 10.1159/000333222 PMID: 22205172
- Li, X.; Sundquist, J.; Zöller, B.; Sundquist, K. Dementia and Alzheimers disease risks in patients with autoimmune disorders. Geriatr. Gerontol. Int., 2018, 18(9), 1350-1355. doi: 10.1111/ggi.13488 PMID: 30044040
- Cho, Y.Y.; Kim, B.; Shin, D.W.; Youn, J.; Mok, J.O.; Kim, C.H.; Kim, S.W.; Chung, J.H.; Han, K.; Kim, T.H. Graves disease and the risk of Parkinsons disease: A Korean population-based study. Brain Commun., 2022, 4(1), fcac014. doi: 10.1093/braincomms/fcac014 PMID: 35187486
- Bonuccelli, U.; DAvino, C.; Caraccio, N.; Del Guerra, P.; Casolaro, A.; Pavese, N.; Del Dotto, P.; Monzani, F. Thyroid function and autoimmunity in Parkinsons disease: A study of 101 patients. Parkinsonism Relat. Disord., 1999, 5(1-2), 49-53. doi: 10.1016/S1353-8020(99)00010-3 PMID: 18591119
- Charoenngam, N.; Rittiphairoj, T.; Ponvilawan, B.; Prasongdee, K. Thyroid dysfunction and risk of Parkinsons disease: A systematic review and meta-analysis. Front. Endocrinol., 2022, 13, 863281. doi: 10.3389/fendo.2022.863281 PMID: 35600588
- Yeung, C.H.C.; Au Yeung, S.L.; Schooling, C.M. Association of autoimmune diseases with Alzheimers disease: A mendelian randomization study. J. Psychiatr. Res., 2022, 155, 550-558. doi: 10.1016/j.jpsychires.2022.09.052 PMID: 36198219
- Ungprasert, P.; Wijarnpreecha, K.; Thongprayoon, C. Rheumatoid arthritis and the risk of dementia: A systematic review and meta-analysis. Neurol. India, 2016, 64(1), 56-61. doi: 10.4103/0028-3886.173623 PMID: 26754993
- McDowell, B.; Marr, C.; Holmes, C.; Edwards, C.J.; Cardwell, C.; McHenry, M.; Meenagh, G.; McGuinness, B. Prevalence of cognitive impairment in patients with rheumatoid arthritis: A cross sectional study. BMC Psychiatry, 2022, 22(1), 777. doi: 10.1186/s12888-022-04417-w PMID: 36494656
- Tansey, M.G.; Wallings, R.L.; Houser, M.C.; Herrick, M.K.; Keating, C.E.; Joers, V. Inflammation and immune dysfunction in Parkinson disease. Nat. Rev. Immunol., 2022, 22(11), 657-673. doi: 10.1038/s41577-022-00684-6 PMID: 35246670
- Li, D.; Hong, X.; Chen, T. Association between rheumatoid arthritis and risk of Parkinsons disease: A meta-analysis and systematic review. Front. Neurol., 2022, 13, 885179. doi: 10.3389/fneur.2022.885179 PMID: 35645965
- Li, M.; Wan, J.; Xu, Z.; Tang, B. The association between Parkinsons disease and autoimmune diseases: A systematic review and meta-analysis. Front. Immunol., 2023, 14, 1103053. doi: 10.3389/fimmu.2023.1103053 PMID: 36761731
- Policicchio, S.; Ahmad, A.N.; Powell, J.F.; Proitsi, P. Rheumatoid arthritis and risk for Alzheimers disease: A systematic review and meta-analysis and a Mendelian Randomization study. Sci. Rep., 2017, 7(1), 12861. doi: 10.1038/s41598-017-13168-8 PMID: 28993680
- Cooper, J.; Pastorello, Y.; Slevin, M. A meta-analysis investigating the relationship between inflammation in autoimmune disease, elevated CRP, and the risk of dementia. Front. Immunol., 2023, 14, 1087571. doi: 10.3389/fimmu.2023.1087571 PMID: 36776896
- Karabay, E.A.; Çerman, A.A.; Altunay, İ.K. Evaluation of comorbidities in patients with autoimmune bullous diseases: A retrospective study. Sisli Etfal Hastan Tip Bul., 2018, 52(4), 302-306. PMID: 32774095
- Yeh, F.C.; Chen, H.C.; Chou, Y.C.; Lin, C.L.; Kao, C.H.; Lo, H.Y.; Liu, F.C.; Yang, T.Y. Positive association of Parkinsons disease with ankylosing spondylitis: A nationwide population-based study. J. Transl. Med., 2020, 18(1), 455. doi: 10.1186/s12967-020-02629-w PMID: 33256841
- Rønnow Sand, J.; Troelsen, F.S.; Horváth-Puhó, E.; Henderson, V.W.; Sørensen, H.T.; Erichsen, R. Risk of dementia in patients with inflammatory bowel disease: A Danish population-based study. Aliment. Pharmacol. Ther., 2022, 56(5), 831-843. doi: 10.1111/apt.17119 PMID: 35781292
- Zhang, B.; Wang, H.E.; Bai, Y.M.; Tsai, S.J.; Su, T.P.; Chen, T.J.; Wang, Y.P.; Chen, M.H. Inflammatory bowel disease is associated with higher dementia risk: A nationwide longitudinal study. Gut, 2021, 70(1), 85-91. doi: 10.1136/gutjnl-2020-320789 PMID: 32576641
- Szandruk-Bender, M.; Wiatrak, B.; Szeląg, A. The risk of developing Alzheimers disease and Parkinsons disease in patients with inflammatory bowel disease: A meta-analysis. J. Clin. Med., 2022, 11(13), 3704. doi: 10.3390/jcm11133704 PMID: 35806985
- Aggarwal, M.; Alkhayyat, M.; Abou Saleh, M.; Sarmini, M.T.; Singh, A.; Garg, R.; Garg, P.; Mansoor, E.; Padival, R.; Cohen, B.L. Alzheimer disease occurs more frequently in patients with inflammatory bowel disease. J. Clin. Gastroenterol., 2023, 57(5), 501-507. doi: 10.1097/MCG.0000000000001714 PMID: 35470286
- Cui, G.; Li, S.; Ye, H.; Yang, Y.; Huang, Q.; Chu, Y.; Shi, Z.; Zhang, X. Are neurodegenerative diseases associated with an increased risk of inflammatory bowel disease? A two-sample Mendelian randomization study. Front. Immunol., 2022, 13, 956005. doi: 10.3389/fimmu.2022.956005 PMID: 36159838
- Li, H.; Wen, Z. Effects of ulcerative colitis and Crohns disease on neurodegenerative diseases: A Mendelian randomization study. Front. Genet., 2022, 13, 846005. doi: 10.3389/fgene.2022.846005 PMID: 36046231
- Freuer, D.; Meisinger, C. Association between inflammatory bowel disease and Parkinsons disease: A Mendelian randomization study. NPJ Parkinsons Dis., 2022, 8(1), 55. doi: 10.1038/s41531-022-00318-7 PMID: 35534507
- Huang, J.; Su, B.; Karhunen, V.; Gill, D.; Zuber, V.; Ahola-Olli, A.; Palaniswamy, S.; Auvinen, J.; Herzig, K.H.; Keinänen-Kiukaanniemi, S.; Salmi, M.; Jalkanen, S.; Lehtimäki, T.; Salomaa, V.; Raitakari, O.T.; Matthews, P.M.; Elliott, P.; Tsilidis, K.K.; Jarvelin, M.; Tzoulaki, I.; Dehghan, A. Inflammatory diseases, inflammatory biomarkers, and Alzheimer disease. Neurology, 2023, 100(6), e568-e581. doi: 10.1212/WNL.0000000000201489 PMID: 36384659
- Liu, F.C.; Huang, W.Y.; Lin, T.Y.; Shen, C.H.; Chou, Y.C.; Lin, C.L.; Lin, K.T.; Kao, C.H. Inverse association of Parkinson disease with systemic lupus erythematosus. Medicine, 2015, 94(46), e2097. doi: 10.1097/MD.0000000000002097 PMID: 26579824
- Wang, Y.C.; Lin, M.S.; Huang, A.P.H.; Wu, C.C.; Kung, W.M. Association between systemic rheumatic diseases and dementia risk: A meta-analysis. Front. Immunol., 2022, 13, 1054246. doi: 10.3389/fimmu.2022.1054246 PMID: 36439141
- Jin, T.; Huang, W.; Cao, F.; Yu, X.; Guo, S.; Ying, Z.; Xu, C. Causal association between systemic lupus erythematosus and the risk of dementia: A Mendelian randomization study. Front. Immunol., 2022, 13, 1063110. doi: 10.3389/fimmu.2022.1063110 PMID: 36569847
- Chen, H.; Zhang, S.M.; Hernán, M.A.; Schwarzschild, M.A.; Willett, W.C.; Colditz, G.A.; Speizer, F.E.; Ascherio, A. Nonsteroidal anti-inflammatory drugs and the risk of Parkinson disease. Arch. Neurol., 2003, 60(8), 1059-1064. doi: 10.1001/archneur.60.8.1059 PMID: 12925360
- Chen, H.; Jacobs, E.; Schwarzschild, M.A.; McCullough, M.L.; Calle, E.E.; Thun, M.J.; Ascherio, A. Nonsteroidal antiinflammatory drug use and the risk for Parkinsons disease. Ann. Neurol., 2005, 58(6), 963-967. doi: 10.1002/ana.20682 PMID: 16240369
- Gagne, J.J.; Power, M.C. Anti-inflammatory drugs and risk of Parkinson disease: A meta-analysis. Neurology, 2010, 74(12), 995-1002. doi: 10.1212/WNL.0b013e3181d5a4a3 PMID: 20308684
- Gao, X.; Chen, H.; Schwarzschild, M.A.; Ascherio, A. Use of ibuprofen and risk of Parkinson disease. Neurology, 2011, 76(10), 863-869. doi: 10.1212/WNL.0b013e31820f2d79 PMID: 21368281
- Powers, K.M.; Kay, D.M.; Factor, S.A.; Zabetian, C.P.; Higgins, D.S.; Samii, A.; Nutt, J.G.; Griffith, A.; Leis, B.; Roberts, J.W.; Martinez, E.D.; Montimurro, J.S.; Checkoway, H.; Payami, H. Combined effects of smoking, coffee, and NSAIDs on Parkinsons disease risk. Mov. Disord., 2008, 23(1), 88-95. doi: 10.1002/mds.21782 PMID: 17987647
- San Luciano, M.; Tanner, C.M.; Meng, C.; Marras, C.; Goldman, S.M.; Lang, A.E.; Tolosa, E.; Schüle, B.; Langston, J.W.; Brice, A.; Corvol, J.C.; Goldwurm, S.; Klein, C.; Brockman, S.; Berg, D.; Brockmann, K.; Ferreira, J.J.; Tazir, M.; Mellick, G.D.; Sue, C.M.; Hasegawa, K.; Tan, E.K.; Bressman, S.; Saunders-Pullman, R.; Saunders-Pullman, R.; Raymond, D.; Deik, A.; Barrett, M.J.; Cabassa, J.; Groves, M.; Hunt, A.L.; Lubarr, N.; Miravite, J.; Palmese, C.; Sachdev, R.; Sarva, H.; Severt, L.; Shanker, V.; Swan, M.C.; Soto-Valencia, J.; Johannes, B.; Ortega, R.; Ozelius, L.; Bressman, S.; Alcalay, R.N.; Tang, M-X.; Santana, H.M.; Roos, E.; Orbe-Reilly, M.; Fahn, S.; Cote, L.; Waters, C.; Mazzoni, P.; Ford, B.; Louis, E.; Levy, O.; Rosado, L.; Ruiz, D.; Dorovski, T.; Clark, L.; Marder, K.S.; Corvol, J-C.; Cormier, F.; Bonnet, A-M.; Welter, M-L.; Mesnage, V.; Vidailhet, M.; Roze, E.; Lacomblez, L.; Grabli, D.; Mart i Masso, J.F.; Martinez, J.R.; Mondragon, R.E.; Alustiza, A.E.; Pagola, A.G.; Pont-Sunyer, C.; Rolan, D.V.; Fernandez-Santiago, R.; Quintana, M.; Fernandez, M.; Maragall, L.; Hentati, F.; Farrer, M.; Duda, J.; Read, M.; Middleton, L.; Gibson, R.; Trinh, J.; Sassi, S.B.; Zouari, M.; Rimamouri,; Farhat, E.; Nabli, F.; Aasly, J.; Warø, B.J.; Andersen, S.; Bertoni, J.; Carter, J.; Elmer, L.; Jimenez, N.G.; Martin, W.; Pahwa, R.; Lyons, K.; Reich, S.; Rodnitzky, R.; Ramos, C.S.; Wojcieszek, J.; Mirelman, A.; Gurevich, T.; Shira, A.B.; Weisz, M.G.; Yasinovsky, K.; Zalis, M.; Thaler, A.; Orr-Urtreger, A.; Giladi, N.; Mountain, J.; Mestre, T.; Visanji, N.; Ghate, T.; Singerman, J.; Al Dakheel, A.; Connolly, B.S.; Gasser, T.; Brockmann, K.; Conley, E.D.; Mullins, M.E.; Northover, C.; Facheris, M.; Fiske, B.; Urkowiz, A. Nonsteroidal anti-inflammatory use and LRRK2 Parkinsons disease penetrance. Mov. Disord., 2020, 35(10), 1755-1764. doi: 10.1002/mds.28189 PMID: 32662532
- Ren, L.; Yi, J.; Yang, J.; Li, P.; Cheng, X.; Mao, P. Nonsteroidal anti-inflammatory drugs use and risk of Parkinson disease. Medicine, 2018, 97(37), e12172. doi: 10.1097/MD.0000000000012172 PMID: 30212946
- Brakedal, B.; Tzoulis, C.; Tysnes, O.B.; Haugarvoll, K. NSAID use is not associated with Parkinsons disease incidence: A Norwegian Prescription Database study. PLoS One, 2021, 16(9), e0256602. doi: 10.1371/journal.pone.0256602 PMID: 34492069
- Chou, R.C.; Kane, M.; Ghimire, S.; Gautam, S.; Gui, J. Treatment for rheumatoid arthritis and risk of Alzheimers disease: A nested case/control analysis. CNS Drugs, 2016, 30(11), 1111-1120. doi: 10.1007/s40263-016-0374-z PMID: 27470609
- Zhou, M.; Xu, R.; Kaelber, D.C.; Gurney, M.E. Tumor Necrosis Factor (TNF) blocking agents are associated with lower risk for Alzheimers disease in patients with rheumatoid arthritis and psoriasis. PLoS One, 2020, 15(3), e0229819. doi: 10.1371/journal.pone.0229819 PMID: 32203525
- Zheng, C.; Fillmore, N.R.; Ramos-Cejudo, J.; Brophy, M.; Osorio, R.; Gurney, M.E.; Qiu, W.Q.; Au, R.; Perry, G.; Dubreuil, M.; Chen, S.G.; Qi, X.; Davis, P.B.; Do, N.; Xu, R. Potential long-term effect of tumor necrosis factor inhibitors on dementia risk: A propensity score matched retrospective cohort study in US veterans. Alzheimers Dement., 2022, 18(6), 1248-1259. doi: 10.1002/alz.12465 PMID: 34569707
- Newby, D.; Prieto-Alhambra, D.; Duarte-Salles, T.; Ansell, D.; Pedersen, L.; van der Lei, J.; Mosseveld, M.; Rijnbeek, P.; James, G.; Alexander, M.; Egger, P.; Podhorna, J.; Stewart, R.; Perera, G.; Avillach, P.; Grosdidier, S.; Lovestone, S.; Nevado-Holgado, A.J. Methotrexate and relative risk of dementia amongst patients with rheumatoid arthritis: A multi-national multi-database case-control study. Alzheimers Res. Ther., 2020, 12(1), 38. doi: 10.1186/s13195-020-00606-5 PMID: 32252806
- Watad, A.; McGonagle, D.; Anis, S.; Carmeli, R.; Cohen, A.D.; Tsur, A.M.; Ben-Shabat, N.; Luigi Bragazzi, N.; Lidar, M.; Amital, H. TNF inhibitors have a protective role in the risk of dementia in patients with ankylosing spondylitis: Results from a nationwide study. Pharmacol. Res., 2022, 182, 106325. doi: 10.1016/j.phrs.2022.106325 PMID: 35752359
- Peter, I.; Dubinsky, M.; Bressman, S.; Park, A.; Lu, C.; Chen, N.; Wang, A. Antitumor necrosis factor therapy and incidence of Parkinson disease among patients with inflammatory bowel disease. JAMA Neurol., 2018, 75(8), 939-946. doi: 10.1001/jamaneurol.2018.0605 PMID: 29710331
- Kern, D.M.; Lovestone, S.; Cepeda, M.S. Treatment with TNF-α inhibitors versus methotrexate and the association with dementia and Alzheimers disease. Alzheimers Dement., 2021, 7(1), e12163. doi: 10.1002/trc2.12163
- Desai, R.J.; Varma, V.R.; Gerhard, T.; Segal, J.; Mahesri, M.; Chin, K.; Horton, D.B.; Kim, S.C.; Schneeweiss, S.; Thambisetty, M. Comparative risk of Alzheimer disease and related dementia among Medicare beneficiaries with Rheumatoid Arthritis treated with targeted disease/modifying antirheumatic agents. JAMA Netw. Open, 2022, 5(4), e226567. doi: 10.1001/jamanetworkopen.2022.6567 PMID: 35394510
- Fardet, L.; Nazareth, I.; Petersen, I. Chronic hydroxychloroquine/chloroquine exposure for connective tissue diseases and risk of Alzheimers disease: A population-based cohort study. Ann. Rheum. Dis., 2019, 78(2) , 279.2-282. doi: 10.1136/annrheumdis-2018-214016 PMID: 30185414
- Lai, S.W.; Kuo, Y.H.; Liao, K.F. Chronic hydroxychloroquine exposure and the risk of Alzheimers disease. Ann. Rheum. Dis., 2021, 80(7), e105. doi: 10.1136/annrheumdis-2019-216173 PMID: 31434638
- Varma, V.R.; Desai, R.J.; Navakkode, S.; Wong, L.W.; Anerillas, C.; Loeffler, T.; Schilcher, I.; Mahesri, M.; Chin, K.; Horton, D.B.; Kim, S.C.; Gerhard, T.; Segal, J.B.; Schneeweiss, S.; Gorospe, M.; Sajikumar, S.; Thambisetty, M. Hydroxychloroquine lowers Alzheimers disease and related dementias risk and rescues molecular phenotypes related to Alzheimers disease. Mol. Psychiatry, 2023, 28(3), 1312-1326. doi: 10.1038/s41380-022-01912-0 PMID: 36577843
- Mathieu, S.; Couderc, M.; Pereira, B.; Dubost, J.J.; Malochet-Guinamand, S.; Tournadre, A.; Soubrier, M.; Moisset, X. Prevalence of migraine and neuropathic pain in rheumatic diseases. J. Clin. Med., 2020, 9(6), 1890. doi: 10.3390/jcm9061890 PMID: 32560321
- Wu, L.; Xu, Q.; Zhou, M.; Chen, Y.; Jiang, C.; Jiang, Y.; Lin, Y.; He, Q.; Zhao, L.; Dong, Y.; Liu, J.; Chen, W. Plasma miR-153 and miR-223 levels as potential biomarkers in Parkinsons disease. Front. Neurosci., 2022, 16, 865139. doi: 10.3389/fnins.2022.865139 PMID: 35655754
- Li, D.; Yang, H.; Ma, J.; Luo, S.; Chen, S.; Gu, Q. MicroRNA-30e regulates neuroinflammation in MPTP model of Parkinsons disease by targeting Nlrp3. Hum. Cell, 2018, 31(2), 106-115. doi: 10.1007/s13577-017-0187-5 PMID: 29274035
- Taglialatela, G.; Rastellini, C.; Cicalese, L. Reduced incidence of dementia in solid organ transplant patients treated with calcineurin inhibitors. J. Alzheimers Dis., 2015, 47(2), 329-333. doi: 10.3233/JAD-150065 PMID: 26401556
- Bukhbinder, A.S.; Ling, Y.; Hasan, O.; Jiang, X.; Kim, Y.; Phelps, K.N.; Schmandt, R.E.; Amran, A.; Coburn, R.; Ramesh, S.; Xiao, Q.; Schulz, P.E. Risk of Alzheimers disease following influenza vaccination: A claims-based cohort study using propensity score matching. J. Alzheimers Dis., 2022, 88(3), 1061-1074. doi: 10.3233/JAD-220361 PMID: 35723106
- Klinger, D.; Hill, B.L.; Barda, N.; Halperin, E.; Gofrit, O.N.; Greenblatt, C.L.; Rappoport, N.; Linial, M.; Bercovier, H. Bladder cancer immunotherapy by BCG is associated with a significantly reduced risk of Alzheimers disease and Parkinsons disease. Vaccines,, 2021, 9(5), 491. doi: 10.3390/vaccines9050491 PMID: 34064775
- Al-kuraishy, H.M.; Al-Gareeb, A.I.; Saad, H.M.; Batiha, G.E.S. Long-term use of metformin and Alzheimers disease: Beneficial or detrimental effects. Inflammopharmacology, 2023, 31(3), 1107-1115. doi: 10.1007/s10787-023-01163-7 PMID: 36849855
- McGeer, P.L.; Rogers, J.; McGeer, E.G. Inflammation, anti-inflammatory agents and Alzheimer disease: The last 12 years. J. Alzheimers Dis., 2006, 9(s3)(Suppl.), 271-276. doi: 10.3233/JAD-2006-9S330 PMID: 16914866
- Launer, L.J. Nonsteroidal anti-inflammatory drug use and the risk for Alzheimers disease: dissecting the epidemiological evidence. Drugs, 2003, 63(8), 731-739. doi: 10.2165/00003495-200363080-00001 PMID: 12662122
- Daniels, M.J.D.; Rivers-Auty, J.; Schilling, T.; Spencer, N.G.; Watremez, W.; Fasolino, V.; Booth, S.J.; White, C.S.; Baldwin, A.G.; Freeman, S.; Wong, R.; Latta, C.; Yu, S.; Jackson, J.; Fischer, N.; Koziel, V.; Pillot, T.; Bagnall, J.; Allan, S.M.; Paszek, P.; Galea, J.; Harte, M.K.; Eder, C.; Lawrence, C.B.; Brough, D. Fenamate NSAIDs inhibit the NLRP3 inflammasome and protect against Alzheimers disease in rodent models. Nat. Commun., 2016, 7(1), 12504. doi: 10.1038/ncomms12504 PMID: 27509875
- Annadurai, N.; De Sanctis, J.B.; Hajdúch, M.; Das, V. Tau secretion and propagation: Perspectives for potential preventive interventions in Alzheimers disease and other tauopathies. Exp. Neurol., 2021, 343, 113756. doi: 10.1016/j.expneurol.2021.113756 PMID: 33989658
- Annadurai, N.; Malina, L.; Malohlava, J.; Hajdúch, M.; Das, V. Tau R2 and R3 are essential regions for tau aggregation, seeding and propagation. Biochimie, 2022, 200, 79-86. doi: 10.1016/j.biochi.2022.05.013 PMID: 35623497
- Annadurai, N.; Malina, L.; Salmona, M.; Diomede, L.; Bastone, A.; Cagnotto, A.; Romeo, M.; rejber, M.; Berka, K.; Otyepka, M.; Hajdúch, M.; Das, V. Antitumour drugs targeting tau R3 VQIVYK and Cys322 prevent seeding of endogenous tau aggregates by exogenous seeds. FEBS J., 2022, 289(7), 1929-1949. doi: 10.1111/febs.16270 PMID: 34743390
- Annadurai, N.; Hrubý, J.; Kubíčková, A.; Malina, L.; Hajdúch, M.; Das, V. Time- and dose-dependent seeding tendency of exogenous tau R2 and R3 aggregates in cells. Biochem. Biophys. Res. Commun., 2023, 653, 102-105. doi: 10.1016/j.bbrc.2023.02.057 PMID: 36863211
- Ferretti, M.T.; Allard, S.; Partridge, V.; Ducatenzeiler, A.; Cuello, A.C. Minocycline corrects early, pre-plaque neuroinflammation and inhibits BACE-1 in a transgenic model of Alzheimers disease-like amyloid pathology. J. Neuroinflammation, 2012, 9(1), 62. doi: 10.1186/1742-2094-9-62 PMID: 22472085
- Parashos, S.A.; Luo, S.; Biglan, K.M.; Bodis-Wollner, I.; He, B.; Liang, G.S.; Ross, G.W.; Tilley, B.C.; Shulman, L.M. Measuring disease progression in early Parkinson disease. JAMA Neurol., 2014, 71(6), 710-716. doi: 10.1001/jamaneurol.2014.391 PMID: 24711047
- Nassar, N.N.; Al-Shorbagy, M.Y.; Arab, H.H.; Abdallah, D.M. Saxagliptin: A novel antiparkinsonian approach. Neuropharmacology, 2015, 89, 308-317. doi: 10.1016/j.neuropharm.2014.10.007 PMID: 25446674
- Chen, S.; Zhou, M.; Sun, J.; Guo, A.; Fernando, R.L.; Chen, Y.; Peng, P.; Zhao, G.; Deng, Y. DPP-4 inhibitor improves learning and memory deficits and AD-like neurodegeneration by modulating the GLP-1 signaling. Neuropharmacology, 2019, 157, 107668. doi: 10.1016/j.neuropharm.2019.107668 PMID: 31199957
- Yu, H.; Sun, T.; He, X.; Wang, Z.; Zhao, K.; An, J.; Wen, L.; Li, J.Y.; Li, W.; Feng, J. Association between Parkinsons disease and diabetes mellitus: From epidemiology, pathophysiology and prevention to treatment. Aging Dis., 2022, 13(6), 1591-1605. doi: 10.14336/AD.2022.0325 PMID: 36465171
- Landreth, G.; Jiang, Q.; Mandrekar, S.; Heneka, M. PPARγ agonists as therapeutics for the treatment of Alzheimers disease. Neurotherapeutics, 2008, 5(3), 481-489. doi: 10.1016/j.nurt.2008.05.003 PMID: 18625459
- Watson, G.S.; Cholerton, B.A.; Reger, M.A.; Baker, L.D.; Plymate, S.R.; Asthana, S.; Fishel, M.A.; Kulstad, J.J.; Green, P.S.; Cook, D.G.; Kahn, S.E.; Keeling, M.L.; Craft, S. Preserved cognition in patients with early Alzheimer disease and amnestic mild cognitive impairment during treatment with rosiglitazone: A preliminary study. Am. J. Geriatr. Psychiatry, 2005, 13(11), 950-958. doi: 10.1176/appi.ajgp.13.11.950 PMID: 16286438
- Risner, M.E.; Saunders, A.M.; Altman, J F B.; Ormandy, G.C.; Craft, S.; Foley, I.M.; Zvartau-Hind, M.E.; Hosford, D.A.; Roses, A.D. Efficacy of rosiglitazone in a genetically defined population with mild-to-moderate Alzheimers disease. Pharmacogenomics J., 2006, 6(4), 246-254. doi: 10.1038/sj.tpj.6500369 PMID: 16446752
- Alhowail, A.; Alsikhan, R.; Alsaud, M.; Aldubayan, M.; Rabbani, S.I. Protective effects of pioglitazone on cognitive impairment and the underlying mechanisms: A review of literature. Drug Des. Devel. Ther., 2022, 16, 2919-2931. doi: 10.2147/DDDT.S367229 PMID: 36068789
- Zhou, Y.; Chen, Y.; Xu, C.; Zhang, H.; Lin, C. TLR4 targeting as a promising therapeutic strategy for Alzheimer disease treatment. Front. Neurosci., 2020, 14, 602508. doi: 10.3389/fnins.2020.602508 PMID: 33390886
- Cui, W.; Sun, C.; Ma, Y.; Wang, S.; Wang, X.; Zhang, Y. Inhibition of TLR4 Induces M2 microglial polarization and provides neuroprotection via the NLRP3 inflammasome in Alzheimers disease. Front. Neurosci., 2020, 14, 444. doi: 10.3389/fnins.2020.00444 PMID: 32508567
- Jin, X.; Liu, M.Y.; Zhang, D.F.; Zhong, X.; Du, K.; Qian, P.; Yao, W.F.; Gao, H.; Wei, M.J. Baicalin mitigates cognitive impairment and protects neurons from microglia-mediated neuroinflammation via suppressing NLRP 3 inflammasomes and TLR 4/NFκB signaling pathway. CNS Neurosci. Ther., 2019, 25(5), 575-590. doi: 10.1111/cns.13086 PMID: 30676698
- Shi, S.; Liang, D.; Chen, Y.; Xie, Y.; Wang, Y.; Wang, L.; Wang, Z.; Qiao, Z. Gx-50 reduces β-amyloid-induced TNF-α IL-1β NO, and PGE2 expression and inhibits NF-κB signaling in a mouse model of Alzheimers disease. Eur. J. Immunol., 2016, 46(3), 665-676. doi: 10.1002/eji.201545855 PMID: 26643273
- Kim, C.; Spencer, B.; Rockenstein, E.; Yamakado, H.; Mante, M.; Adame, A.; Fields, J.A.; Masliah, D.; Iba, M.; Lee, H.J.; Rissman, R.A.; Lee, S.J.; Masliah, E. Immunotherapy targeting toll-like receptor 2 alleviates neurodegeneration in models of synucleinopathy by modulating α-synuclein transmission and neuroinflammation. Mol. Neurodegener., 2018, 13(1), 43. doi: 10.1186/s13024-018-0276-2 PMID: 30092810
- Lee, H.; Jeon, S.G.; Kim, J.; Kang, R.J.; Kim, S.M.; Han, K.M.; Park, H.; Kim, K.; Sung, Y.M.; Nam, H.Y.; Koh, Y.H.; Song, M.; Suk, K.; Hoe, H.S. Ibrutinib modulates Aβ/tau pathology, neuroinflammation, and cognitive function in mouse models of Alzheimers disease. Aging Cell, 2021, 20(3), e13332. doi: 10.1111/acel.13332 PMID: 33709472
- He, P.; Cheng, X.; Staufenbiel, M.; Li, R.; Shen, Y. Long-term treatment of thalidomide ameliorates amyloid-like pathology through inhibition of β-secretase in a mouse model of Alzheimers disease. PLoS One, 2013, 8(2), e55091. doi: 10.1371/journal.pone.0055091 PMID: 23405115
- Decourt, B.; Drumm-Gurnee, D.; Wilson, J.; Jacobson, S.; Belden, C.; Sirrel, S.; Ahmadi, M.; Shill, H.; Powell, J.; Walker, A.; Gonzales, A.; Macias, M.; Sabbagh, M.N. Poor safety and tolerability hamper reaching a potentially therapeutic dose in the use of thalidomide for Alzheimers disease: Results from a double-blind, placebo-controlled trial. Curr. Alzheimer Res., 2017, 14(4), 403-411. doi: 10.2174/1567205014666170117141330 PMID: 28124585
- Decourt, B.; Wilson, J.; Ritter, A.; Dardis, C.; DiFilippo, F.; Zhuang, X.; Cordes, D.; Lee, G.; Fulkerson, N.; St Rose, T.; Hartley, K.; Sabbagh, M. MCLENA-1: A phase ii clinical trial for the assessment of safety, tolerability, and efficacy of lenalidomide in patients with mild cognitive impairment due to Alzheimers disease. Open Access J. Clin. Trials, 2020, 12, 1-13. doi: 10.2147/OAJCT.S221914 PMID: 32123490
- Palmas, M.F.; Ena, A.; Burgaletto, C.; Casu, M.A.; Cantarella, G.; Carboni, E.; Etzi, M.; De Simone, A.; Fusco, G.; Cardia, M.C.; Lai, F.; Picci, L.; Tweedie, D.; Scerba, M.T.; Coroneo, V.; Bernardini, R.; Greig, N.H.; Pisanu, A.; Carta, A.R. Repurposing pomalidomide as a neuroprotective drug: Efficacy in an alpha-synuclein-based model of parkinsons disease. Neurotherapeutics, 2022, 19(1), 305-324. doi: 10.1007/s13311-022-01182-2 PMID: 35072912
- Singh, S.; Ganguly, U.; Pal, S.; Chandan, G.; Thakur, R.; Saini, R.V.; Chakrabarti, S.S.; Agrawal, B.K.; Chakrabarti, S. Protective effects of cyclosporine A on neurodegeneration and motor impairment in rotenone-induced experimental models of Parkinsons disease. Eur. J. Pharmacol., 2022, 929, 175129. doi: 10.1016/j.ejphar.2022.175129 PMID: 35777442
- Van der Perren, A.; Macchi, F.; Toelen, J.; Carlon, M.S.; Maris, M.; de Loor, H.; Kuypers, D.R.J.; Gijsbers, R.; Van den Haute, C.; Debyser, Z.; Baekelandt, V. FK506 reduces neuroinflammation and dopaminergic neurodegeneration in an α-synuclein-based rat model for Parkinsons disease. Neurobiol. Aging, 2015, 36(3), 1559-1568. doi: 10.1016/j.neurobiolaging.2015.01.014 PMID: 25660193
- Köylü, A.; Altunkaynak, B.Z.; Delibaş, B. Effects of tacrolimus on c-fos in hippocampus and memory performances in streptozotocin model of Alzheimers disease of rats. Turk. J. Med. Sci., 2021, 51(4), 2159-2166. doi: 10.3906/sag-2008-291 PMID: 33754647
- Kumar, A.; Singh, N. Calcineurin inhibition and protein kinase a activation limits cognitive dysfunction and histopathological damage in a model of dementia of the Alzheimers type. Curr. Neurovasc. Res., 2018, 15(3), 234-245. doi: 10.2174/1567202615666180813125125 PMID: 30101704
- Lai, W.D.; Wang, S.; You, W.T.; Chen, S.J.; Wen, J.J.; Yuan, C.R.; Zheng, M.J.; Jin, Y.; Yu, J.; Wen, C.P. Sinomenine regulates immune cell subsets: Potential neuro-immune intervene for precise treatment of chronic pain. Front. Cell Dev. Biol., 2022, 10, 1041006. doi: 10.3389/fcell.2022.1041006 PMID: 36619869
- Alam, J.; Blackburn, K.; Patrick, D. Neflamapimod: Clinical phase 2b-ready oral small molecule inhibitor of p38α to reverse synaptic dysfunction in early Alzheimers disease. J. Prev. Alzheimers Dis., 2017, 4(4), 273-278. PMID: 29181493
- Prins, N.D.; Harrison, J.E.; Chu, H.M.; Blackburn, K.; Alam, J.J.; Scheltens, P. A phase 2 double-blind placebo-controlled 24-week treatment clinical study of the p38 alpha kinase inhibitor neflamapimod in mild Alzheimers disease. Alzheimers Res. Ther., 2021, 13(1), 106. doi: 10.1186/s13195-021-00843-2 PMID: 34044875
- Rothhammer, V.; Kenison, J.E.; Li, Z.; Tjon, E.; Takenaka, M.C.; Chao, C.C.; Alves de Lima, K.; Borucki, D.M.; Kaye, J.; Quintana, F.J. Aryl hydrocarbon receptor activation in astrocytes by laquinimod ameliorates autoimmune inflammation in the CNS. Neurol. Neuroimmunol. Neuroinflamm., 2021, 8(2), e946. doi: 10.1212/NXI.0000000000000946 PMID: 33408169
- Srivastava, S.; Rajopadhye, R.; Dey, M.; Singh, R.K. Inhibition of MK2 kinase as a potential therapeutic target to control neuroinflammation in Alzheimers disease. Expert Opin. Ther. Targets, 2021, 25(4), 243-247. doi: 10.1080/14728222.2021.1924151 PMID: 33909536
- Roy, S.M.; Minasov, G.; Arancio, O.; Chico, L.W.; Van Eldik, L.J.; Anderson, W.F.; Pelletier, J.C.; Watterson, D.M. A selective and brain penetrant p38αMAPK inhibitor candidate for neurologic and neuropsychiatric disorders that attenuates neuroinflammation and cognitive dysfunction. J. Med. Chem., 2019, 62(11), 5298-5311. doi: 10.1021/acs.jmedchem.9b00058 PMID: 30978288
- Martínez, G.; Mijares, M.R.; De Sanctis, J.B. Effects of flavonoids and its derivatives on immune cell responses. Recent Pat. Inflamm. Allergy Drug Discov., 2019, 13(2), 84-104. doi: 10.2174/1872213X13666190426164124 PMID: 31814545
- Ping, Z.; Xiaomu, W.; Xufang, X.; Liang, S. Vinpocetine regulates levels of circulating TLRs in Parkinsons disease patients. Neurol. Sci., 2019, 40(1), 113-120. doi: 10.1007/s10072-018-3592-y PMID: 30315378
- Cui, B.; Guo, X.; You, Y.; Fu, R. Farrerol attenuates MPP+induced inflammatory response by TLR4 signaling in a microglia cell line. Phytother. Res., 2019, 33(4), 1134-1141. doi: 10.1002/ptr.6307 PMID: 30734970
- Yang, Y.L.; Cheng, X.; Li, W.H.; Liu, M.; Wang, Y.H.; Du, G.H. Kaempferol attenuates LPS-induced striatum injury in mice involving anti-neuroinflammation, maintaining BBB integrity, and down-regulating the HMGB1/TLR4 pathway. Int. J. Mol. Sci., 2019, 20(3), 491. doi: 10.3390/ijms20030491 PMID: 30678325
- Yang, L.; Zhou, R.; Tong, Y.; Chen, P.; Shen, Y.; Miao, S.; Liu, X. Neuroprotection by dihydrotestosterone in LPS-induced neuroinflammation. Neurobiol. Dis., 2020, 140, 104814. doi: 10.1016/j.nbd.2020.104814 PMID: 32087283
- Haddadi, R.; Nayebi, A.M.; Eyvari, B.S. RETRACTED: Silymarin prevents apoptosis through inhibiting the Bax/caspase-3 expression and suppresses toll like receptor-4 pathway in the SNc of 6-OHDA intoxicated rats. Biomed. Pharmacother., 2018, 104, 127-136. doi: 10.1016/j.biopha.2018.05.020 PMID: 29772432
- Su, Q.; Ng, W.L.; Goh, S.Y.; Gulam, M.Y.; Wang, L.F.; Tan, E.K.; Ahn, M.; Chao, Y.X. Targeting the inflammasome in Parkinsons disease. Front. Aging Neurosci., 2022, 14, 957705. doi: 10.3389/fnagi.2022.957705 PMID: 36313019
- Yang, Y.; Guo, L.; Wang, J.; Li, W.; Zhou, X.; Zhang, C.; Han, C. Arglabin regulates microglia polarization to relieve neuroinflammation in Alzheimers disease. J. Biochem. Mol. Toxicol., 2022, 36(6), e23045. doi: 10.1002/jbt.23045 PMID: 35289014
- Tong, B.C.K.; Huang, A.S.; Wu, A.J.; Iyaswamy, A.; Ho, O.K.Y.; Kong, A.H.Y.; Sreenivasmurthy, S.G.; Zhu, Z.; Su, C.; Liu, J.; Song, J.; Li, M.; Cheung, K.H. Tetrandrine ameliorates cognitive deficits and mitigates tau aggregation in cell and animal models of tauopathies. J. Biomed. Sci., 2022, 29(1), 85. doi: 10.1186/s12929-022-00871-6 PMID: 36273169
- Velagapudi, R.; Aderogba, M.; Olajide, O.A. Tiliroside, a dietary glycosidic flavonoid, inhibits TRAF-6/NF-κB/p38-mediated neuroinflammation in activated BV2 microglia. Biochim. Biophys. Acta, Gen. Subj., 2014, 1840(12), 3311-3319. doi: 10.1016/j.bbagen.2014.08.008 PMID: 25152356
- Wu, Q.; Naeem, A.; Zou, J.; Yu, C.; Wang, Y.; Chen, J.; Ping, Y. Isolation of phenolic compounds from raspberry based on molecular imprinting techniques and investigation of their anti-alzheimers disease properties. Molecules, 2022, 27(20), 6893. doi: 10.3390/molecules27206893 PMID: 36296486
- Rezai-Zadeh, K.; Ehrhart, J.; Bai, Y.; Sanberg, P.R.; Bickford, P.; Tan, J.; Shytle, R.D. Apigenin and luteolin modulate microglial activation via inhibition of STAT1-induced CD40 expression. J. Neuroinflammation, 2008, 5(1), 41. doi: 10.1186/1742-2094-5-41 PMID: 18817573
- Liu, R.; Zhang, T.; Yang, H.; Lan, X.; Ying, J.; Du, G. The flavonoid apigenin protects brain neurovascular coupling against amyloid-β₂₅₋₃₅-induced toxicity in mice. J. Alzheimers Dis., 2011, 24(1), 85-100. doi: 10.3233/JAD-2010-101593 PMID: 21297270
- Kang, C.H.; Choi, Y.H.; Moon, S.K.; Kim, W.J.; Kim, G.Y. Quercetin inhibits lipopolysaccharide-induced nitric oxide production in BV2 microglial cells by suppressing the NF-κB pathway and activating the Nrf2-dependent HO-1 pathway. Int. Immunopharmacol., 2013, 17(3), 808-813. doi: 10.1016/j.intimp.2013.09.009 PMID: 24076371
- Wightman, E.L.; Haskell, C.F.; Forster, J.S.; Veasey, R.C.; Kennedy, D.O. Epigallocatechin gallate, cerebral blood flow parameters, cognitive performance and mood in healthy humans: a double-blind, placebo-controlled, crossover investigation. Hum. Psychopharmacol., 2012, 27(2), 177-186. doi: 10.1002/hup.1263 PMID: 22389082
- Olajide, O.A.; Sarker, S.D. Alzheimers disease: Natural products as inhibitors of neuroinflammation. Inflammopharmacology, 2020, 28(6), 1439-1455. doi: 10.1007/s10787-020-00751-1 PMID: 32930914
- Moussa, C.; Hebron, M.; Huang, X.; Ahn, J.; Rissman, R.A.; Aisen, P.S.; Turner, R.S. Resveratrol regulates neuro-inflammation and induces adaptive immunity in Alzheimers disease. J. Neuroinflammation, 2017, 14(1), 1. doi: 10.1186/s12974-016-0779-0 PMID: 28086917
- Porro, C.; Cianciulli, A.; Trotta, T.; Lofrumento, D.D.; Panaro, M.A. Curcumin regulates anti-inflammatory responses by JAK/STAT/SOCS signaling pathway in bv-2 microglial cells. Biology,, 2019, 8(3), 51. doi: 10.3390/biology8030051 PMID: 31252572
- Sorrenti, V.; Contarini, G.; Sut, S.; DallAcqua, S.; Confortin, F.; Pagetta, A.; Giusti, P.; Zusso, M. Curcumin prevents acute neuroinflammation and long-term memory impairment induced by systemic lipopolysaccharide in mice. Front. Pharmacol., 2018, 9, 183. doi: 10.3389/fphar.2018.00183 PMID: 29556196
- Sundaram, J.R.; Poore, C.P.; Sulaimee, N.H.B.; Pareek, T.; Cheong, W.F.; Wenk, M.R.; Pant, H.C.; Frautschy, S.A.; Low, C.M.; Kesavapany, S. Curcumin ameliorates neuroinflammation, neurodegeneration, and memory deficits in p25 transgenic mouse model that bears hallmarks of alzheimers disease. J. Alzheimers Dis., 2017, 60(4), 1429-1442. doi: 10.3233/JAD-170093 PMID: 29036814
- Ringman, J.M.; Frautschy, S.A.; Teng, E.; Begum, A.N.; Bardens, J.; Beigi, M.; Gylys, K.H.; Badmaev, V.; Heath, D.D.; Apostolova, L.G.; Porter, V.; Vanek, Z.; Marshall, G.A.; Hellemann, G.; Sugar, C.; Masterman, D.L.; Montine, T.J.; Cummings, J.L.; Cole, G.M. Oral curcumin for Alzheimers disease: Tolerability and efficacy in a 24-week randomized, double blind, placebo-controlled study. Alzheimers Res. Ther., 2012, 4(5), 43. doi: 10.1186/alzrt146 PMID: 23107780
- Cox, K.H.M.; Pipingas, A.; Scholey, A.B. Investigation of the effects of solid lipid curcumin on cognition and mood in a healthy older population. J. Psychopharmacol., 2015, 29(5), 642-651. doi: 10.1177/0269881114552744 PMID: 25277322
- Small, G.W.; Siddarth, P.; Li, Z.; Miller, K.J.; Ercoli, L.; Emerson, N.D.; Martinez, J.; Wong, K.P.; Liu, J.; Merrill, D.A.; Chen, S.T.; Henning, S.M.; Satyamurthy, N.; Huang, S.C.; Heber, D.; Barrio, J.R. Memory and brain amyloid and tau effects of a bioavailable form of curcumin in non-demented adults: A double-blind, placebo-controlled 18-month trial. Am. J. Geriatr. Psychiatry, 2018, 26(3), 266-277. doi: 10.1016/j.jagp.2017.10.010 PMID: 29246725
- Khare, P.; Datusalia, A.K.; Sharma, S.S. Parthenolide, an NF-κB Inhibitor ameliorates diabetes-induced behavioural deficit, neurotransmitter imbalance and neuroinflammation in type 2 diabetes rat model. Neuromol. Med., 2017, 19(1), 101-112. doi: 10.1007/s12017-016-8434-6 PMID: 27553015
- Qiang, W.; Cai, W.; Yang, Q.; Yang, L.; Dai, Y.; Zhao, Z.; Yin, J.; Li, Y.; Li, Q.; Wang, Y.; Weng, X.; Zhang, D.; Chen, Y.; Zhu, X.; Artemisinin, B.; Artemisinin, B. Improves learning and memory impairment in AD dementia mice by suppressing neuroinflammation. Neuroscience, 2018, 395, 1-12. doi: 10.1016/j.neuroscience.2018.10.041 PMID: 30399421
- Zhou, J.M.; Gu, S.S.; Mei, W.H.; Zhou, J.; Wang, Z.Z.; Xiao, W. Ginkgolides and bilobalide protect BV2 microglia cells against OGD/reoxygenation injury by inhibiting TLR2/4 signaling pathways. Cell Stress Chaperones, 2016, 21(6), 1037-1053. doi: 10.1007/s12192-016-0728-y PMID: 27562518
- de Oliveira, M.R. The dietary components carnosic acid and carnosol as neuroprotective agents: A Mechanistic View. Mol. Neurobiol., 2016, 53(9), 6155-6168. doi: 10.1007/s12035-015-9519-1 PMID: 26553346
- Velagapudi, R.; Kumar, A.; Bhatia, H.S.; El-Bakoush, A.; Lepiarz, I.; Fiebich, B.L.; Olajide, O.A. Inhibition of neuroinflammation by thymoquinone requires activation of Nrf2/ARE signalling. Int. Immunopharmacol., 2017, 48, 17-29. doi: 10.1016/j.intimp.2017.04.018 PMID: 28458100
- Yang, W.; Qiu, X.; Wu, Q.; Chang, F.; Zhou, T.; Zhou, M.; Pei, J. Active constituents of saffron (Crocus sativus L.) and their prospects in treating neurodegenerative diseases. (Review). Exp. Ther. Med., 2023, 25(5), 235. doi: 10.3892/etm.2023.11934 PMID: 37114174
- Fu, M.; Liang, X.; Zhang, X.; Yang, M.; Ye, Q.; Qi, Y.; Liu, H.; Zhang, X. Astaxanthin delays brain aging in senescence-accelerated mouse prone 10: inducing autophagy as a potential mechanism. Nutr. Neurosci., 2023, 26(5), 445-455. doi: 10.1080/1028415X.2022.2055376 PMID: 35385370
- Lin, C.H.; Chou, C.C.; Lee, Y.H.; Hung, C.C. Curcumin facilitates aryl hydrocarbon receptor activation to ameliorate inflammatory astrogliosis. Molecules, 2022, 27(8), 2507. doi: 10.3390/molecules27082507 PMID: 35458704
- Hong, S.; Beja-Glasser, V.F.; Nfonoyim, B.M.; Frouin, A.; Li, S.; Ramakrishnan, S.; Merry, K.M.; Shi, Q.; Rosenthal, A.; Barres, B.A.; Lemere, C.A.; Selkoe, D.J.; Stevens, B. Complement and microglia mediate early synapse loss in Alzheimer mouse models. Science, 2016, 352(6286), 712-716. doi: 10.1126/science.aad8373 PMID: 27033548
- Pittock, S.J.; Berthele, A.; Fujihara, K.; Kim, H.J.; Levy, M.; Palace, J.; Nakashima, I.; Terzi, M.; Totolyan, N.; Viswanathan, S.; Wang, K.C.; Pace, A.; Fujita, K.P.; Armstrong, R.; Wingerchuk, D.M. Eculizumab in aquaporin-4-positive neuromyelitis optica spectrum disorder. N. Engl. J. Med., 2019, 381(7), 614-625. doi: 10.1056/NEJMoa1900866 PMID: 31050279
- Lamers, C.; Mastellos, D.C.; Ricklin, D.; Lambris, J.D. Compstatins: The dawn of clinical C3-targeted complement inhibition. Trends Pharmacol. Sci., 2022, 43(8), 629-640. doi: 10.1016/j.tips.2022.01.004 PMID: 35090732
- Lansita, J.A.; Mease, K.M.; Qiu, H.; Yednock, T.; Sankaranarayanan, S.; Kramer, S. Nonclinical development of ANX005: A humanized anti-C1q antibody for treatment of autoimmune and neurodegenerative diseases. Int. J. Toxicol., 2017, 36(6), 449-462. doi: 10.1177/1091581817740873 PMID: 29202623
- Qi, Y.; Klyubin, I.; Cuello, A.C.; Rowan, M.J. NLRP3-dependent synaptic plasticity deficit in an Alzheimers disease amyloidosis model in vivo. Neurobiol. Dis., 2018, 114, 24-30. doi: 10.1016/j.nbd.2018.02.016 PMID: 29477641
- Ben-Menachem-Zidon, O.; Ben-Menahem, Y.; Ben-Hur, T.; Yirmiya, R. Intra-hippocampal transplantation of neural precursor cells with transgenic over-expression of IL-1 receptor antagonist rescues memory and neurogenesis impairments in an Alzheimers disease model. Neuropsychopharmacology, 2014, 39(2), 401-414. doi: 10.1038/npp.2013.208 PMID: 23954849
- Cavanagh, C.; Tse, Y.C.; Nguyen, H.B.; Krantic, S.; Breitner, J.C.S.; Quirion, R.; Wong, T.P. Inhibiting tumor necrosis factor-α before amyloidosis prevents synaptic deficits in an Alzheimers disease model. Neurobiol. Aging, 2016, 47, 41-49. doi: 10.1016/j.neurobiolaging.2016.07.009 PMID: 27552480
- Cavanagh, C.; Wong, T.P. Preventing synaptic deficits in Alzheimers disease by inhibiting tumor necrosis factor alpha signaling. IBRO Rep., 2018, 4, 18-21. doi: 10.1016/j.ibror.2018.01.003 PMID: 30135948
- Li, Y.; Fan, H.; Ni, M.; Zhang, W.; Fang, F.; Sun, J.; Lyu, P.; Ma, P. Etanercept reduces neuron injury and neuroinflammation via inactivating c-Jun N-terminal kinase and nuclear factor-κB Pathways in Alzheimers disease: An in vitro and in vivo investigation. Neuroscience, 2022, 484, 140-150. doi: 10.1016/j.neuroscience.2021.11.001 PMID: 35058089
- Tobinick, E.; Gross, H.; Weinberger, A.; Cohen, H. TNF-alpha modulation for treatment of Alzheimers disease: A 6-month pilot study. MedGenMed, 2006, 8(2), 25. PMID: 16926764
- Tobinick, E.L.; Gross, H. Rapid improvement in verbal fluency and aphasia following perispinal etanercept in Alzheimers disease. BMC Neurol., 2008, 8, 27. doi: 10.1186/1471-2377-8-27
- Butchart, J.; Brook, L.; Hopkins, V.; Teeling, J.; Püntener, U.; Culliford, D.; Sharples, R.; Sharif, S.; McFarlane, B.; Raybould, R.; Thomas, R.; Passmore, P.; Perry, V.H.; Holmes, C. Etanercept in Alzheimer disease: A randomized, placebo-controlled, double-blind, phase 2 trial. Neurology, 2015, 84(21), 2161-2168. doi: 10.1212/WNL.0000000000001617 PMID: 25934853
- Tufan, A.N.; Holmes, C.; Tufan, F. Etanercept in Alzheimer disease: A randomized, placebo-controlled, double-blind, phase 2 trialAuthor Response. Neurology, 2015, 85(23) , 2083.2-2084. doi: 10.1212/01.wnl.0000475736.75775.25 PMID: 26644053
- Torres-Acosta, N.; OKeefe, J.H.; OKeefe, E.L.; Isaacson, R.; Small, G. Therapeutic potential of TNF-α inhibition for Alzheimers disease prevention. J. Alzheimers Dis., 2020, 78(2), 619-626. doi: 10.3233/JAD-200711 PMID: 33016914
- vom Berg, J.; Prokop, S.; Miller, K.R.; Obst, J.; Kälin, R.E.; Lopategui-Cabezas, I.; Wegner, A.; Mair, F.; Schipke, C.G.; Peters, O.; Winter, Y.; Becher, B.; Heppner, F.L. Inhibition of IL-12/IL-23 signaling reduces Alzheimers disease-like pathology and cognitive decline. Nat. Med., 2012, 18(12), 1812-1819. doi: 10.1038/nm.2965 PMID: 23178247
- Pedrini, S.; Gupta, V.B.; Hone, E.; Doecke, J.; OBryant, S.; James, I.; Bush, A.I.; Rowe, C.C.; Villemagne, V.L.; Ames, D.; Masters, C.L.; Martins, R.N.; Savage, G.; Wilson, B.; Bourgeat, P.; Fripp, J.; Gibson, S.; Leroux, H.; McBride, S.; Salvado, O.; Fenech, M.; Francois, M.; Barnes, M.; Baker, J.; Barnham, K.; Bellingham, S.; Bomke, J.; Pejoska, S.B.; Buckley, R.; Cheng, L.; Collins, S.; Cooke, I.; Cyarto, E.; Darby, D.; Dore, V.; El-Sheikh, D.; Faux, N.; Fowler, C.; Harrington, K.; Hill, A.; Horne, M.; Jones, G.; Kamer, A.; Killeen, N.; Korrel, H.; Lamb, F.; Lautenschlager, N.; Lennon, K.; Li, Q-X.; Lim, Y.Y.; Louey, A.; Macaulay, L.; Mackintosh, L.; Maruff, P.; Mcilroy, A.; Nigro, J.; Perez, K.; Pertile, K.; Restrepo, C.; Cardoso, B.R.; Rembach, A.; Roberts, B.; Robertson, J.; Rumble, R.; Ryan, T.; Sach, J.; Silbert, B.; Thai, C.; Trounson, B.; Volitakis, I.; Vovos, M.; Ward, L.; Watt, A.; Williams, R.; Woodward, M.; Yates, P.; Ugarte, F.Y.; Zhang, P.; Bird, S.; Brown, B.; Burnham, S.; Chatterjee, P.; Cox, K.; Fernandez, S.; Fernando, B.; Gardener, S.; Laws, S.; Lim, F.; Lim, L.; Tegg, M.; Lucas, K.; Martins, G.; Porter, T.; Rainey-Smith, S.; Rodrigues, M.; Shen, K.K.; Sohrabi, H.; Taddei, K.; Taddei, T.; Tan, S.; Verdile, G.; Weinborn, M.; Farrow, M.; Frost, S.; Hanson, D.; Hor, M.; Kanagasingam, Y.; Leifert, W.; Lockett, L.; Riley, M.; Saunders, I.; Thomas, P. A blood-based biomarker panel indicates IL-10 and IL-12/23p40 are jointly associated as predictors of β-amyloid load in an AD cohort. Sci. Rep., 2017, 7(1), 14057. doi: 10.1038/s41598-017-14020-9 PMID: 29070909
- Eede, P.; Obst, J.; Benke, E.; Yvon-Durocher, G.; Richard, B.C.; Gimber, N.; Schmoranzer, J.; Böddrich, A.; Wanker, E.E.; Prokop, S.; Heppner, F.L. Interleukin-/23 deficiency differentially affects pathology in male and female Alzheimers disease-like mice. EMBO Rep., 2020, 21(3), e48530. doi: 10.15252/embr.201948530 PMID: 32003148
- Porro, C.; Cianciulli, A.; Panaro, M.A. The Regulatory Role of IL-10 in neurodegenerative diseases. Biomolecules, 2020, 10(7), 1017. doi: 10.3390/biom10071017 PMID: 32659950
- Fei, Z.; Pan, B.; Pei, R.; Chen, Z.; Du, X.; Cao, H.; Li, C. Efficacy and safety of blood derivatives therapy in Alzheimers disease: A systematic review and meta-analysis. Syst. Rev., 2022, 11(1), 256. doi: 10.1186/s13643-022-02115-y PMID: 36443888
- Rinne, J.O.; Brooks, D.J.; Rossor, M.N.; Fox, N.C.; Bullock, R.; Klunk, W.E.; Mathis, C.A.; Blennow, K.; Barakos, J.; Okello, A.A. de LIano, S.R.M.; Liu, E.; Koller, M.; Gregg, K.M.; Schenk, D.; Black, R.; Grundman, M. 11C-PiB PET assessment of change in fibrillar amyloid-β load in patients with Alzheimers disease treated with bapineuzumab: A phase 2, double-blind, placebo-controlled, ascending-dose study. Lancet Neurol., 2010, 9(4), 363-372. doi: 10.1016/S1474-4422(10)70043-0 PMID: 20189881
- Vandenberghe, R.; Rinne, J.O.; Boada, M.; Katayama, S.; Scheltens, P.; Vellas, B.; Tuchman, M.; Gass, A.; Fiebach, J.B.; Hill, D.; Lobello, K.; Li, D.; McRae, T.; Lucas, P.; Evans, I.; Booth, K.; Luscan, G.; Wyman, B.T.; Hua, L.; Yang, L.; Brashear, H.R.; Black, R.S. Bapineuzumab for mild to moderate Alzheimers disease in two global, randomized, phase 3 trials. Alzheimers Res. Ther., 2016, 8(1), 18. doi: 10.1186/s13195-016-0189-7 PMID: 27176461
- Delnomdedieu, M.; Duvvuri, S.; Li, D.J.; Atassi, N.; Lu, M.; Brashear, H.R.; Liu, E.; Ness, S.; Kupiec, J.W. First-In-Human safety and long-term exposure data for AAB-003 (PF-05236812) and biomarkers after intravenous infusions of escalating doses in patients with mild to moderate Alzheimers disease. Alzheimers Res. Ther., 2016, 8(1), 12. doi: 10.1186/s13195-016-0177-y PMID: 26925577
- Salloway, S.; Sperling, R.; Brashear, H.R. Phase 3 trials of solanezumab and bapineuzumab for Alzheimers disease. N. Engl. J. Med., 2014, 370(15), 1460. PMID: 24724181
- SallowayS.SperlingR.FoxN.C.BlennowK.KlunkW.RaskindM.SabbaghM.HonigL.S.PorsteinssonA.P.FerrisS.ReichertM.KetterN.NejadnikB.GuenzlerV.MiloslavskyM.WangD.LuY.LullJ.TudorI.C.LiuE.GrundmanM.YuenE.BlackR.BrashearH.R.Bapineuzumab 301 and 302 Clinical Trial Investigators. Two phase 3 trials of bapineuzumab in mild-to-moderate Alzheimers disease. N. Engl. J. Med., 2014, 370(4), 322-333. doi: 10.1056/NEJMoa1304839 PMID: 24450891
- Honig, L.S.; Vellas, B.; Woodward, M.; Boada, M.; Bullock, R.; Borrie, M.; Hager, K.; Andreasen, N.; Scarpini, E.; Liu-Seifert, H.; Case, M.; Dean, R.A.; Hake, A.; Sundell, K.; Poole Hoffmann, V.; Carlson, C.; Khanna, R.; Mintun, M.; DeMattos, R.; Selzler, K.J.; Siemers, E. Trial of solanezumab for mild dementia due to alzheimers disease. N. Engl. J. Med., 2018, 378(4), 321-330. doi: 10.1056/NEJMoa1705971 PMID: 29365294
- Salloway, S.; Farlow, M.; McDade, E.; Clifford, D.B.; Wang, G.; Llibre-Guerra, J.J.; Hitchcock, J.M.; Mills, S.L.; Santacruz, A.M.; Aschenbrenner, A.J.; Hassenstab, J.; Benzinger, T.L.S.; Gordon, B.A.; Fagan, A.M.; Coalier, K.A.; Cruchaga, C.; Goate, A.A.; Perrin, R.J.; Xiong, C.; Li, Y.; Morris, J.C.; Snider, B.J.; Mummery, C.; Surti, G.M.; Hannequin, D.; Wallon, D.; Berman, S.B.; Lah, J.J.; Jimenez-Velazquez, I.Z.; Roberson, E.D.; van Dyck, C.H.; Honig, L.S.; Sánchez-Valle, R.; Brooks, W.S.; Gauthier, S.; Galasko, D.R.; Masters, C.L.; Brosch, J.R.; Hsiung, G.Y.R.; Jayadev, S.; Formaglio, M.; Masellis, M.; Clarnette, R.; Pariente, J.; Dubois, B.; Pasquier, F.; Jack, C.R., Jr; Koeppe, R.; Snyder, P.J.; Aisen, P.S.; Thomas, R.G.; Berry, S.M.; Wendelberger, B.A.; Andersen, S.W.; Holdridge, K.C.; Mintun, M.A.; Yaari, R.; Sims, J.R.; Baudler, M.; Delmar, P.; Doody, R.S.; Fontoura, P.; Giacobino, C.; Kerchner, G.A.; Bateman, R.J.; Formaglio, M.; Mills, S.L.; Pariente, J.; van Dyck, C.H. A trial of gantenerumab or solanezumab in dominantly inherited Alzheimers disease. Nat. Med., 2021, 27(7), 1187-1196. doi: 10.1038/s41591-021-01369-8 PMID: 34155411
- Geerts, H.; Walker, M.; Rose, R.; Bergeler, S.; van der Graaf, P.H.; Schuck, E.; Koyama, A.; Yasuda, S.; Hussein, Z.; Reyderman, L.; Swanson, C.; Cabal, A. A combined physiologically-based pharmacokinetic and quantitative systems pharmacology model for modeling amyloid aggregation in Alzheimers disease. CPT Pharmacometrics Syst. Pharmacol., 2023, 12(4), 444-461. doi: 10.1002/psp4.12912 PMID: 36632701
- Hettmann, T.; Gillies, S.D.; Kleinschmidt, M.; Piechotta, A.; Makioka, K.; Lemere, C.A.; Schilling, S.; Rahfeld, J.U.; Lues, I. Development of the clinical candidate PBD-C06, a humanized pGlu3-Aβ-specific antibody against Alzheimers disease with reduced complement activation. Sci. Rep., 2020, 10(1), 3294. doi: 10.1038/s41598-020-60319-5 PMID: 32094456
- Mintun, M.A.; Lo, A.C.; Duggan Evans, C.; Wessels, A.M.; Ardayfio, P.A.; Andersen, S.W.; Shcherbinin, S.; Sparks, J.; Sims, J.R.; Brys, M.; Apostolova, L.G.; Salloway, S.P.; Skovronsky, D.M. Donanemab in early Alzheimers disease. N. Engl. J. Med., 2021, 384(18), 1691-1704. doi: 10.1056/NEJMoa2100708 PMID: 33720637
- Lowe, S.L.; Duggan Evans, C.; Shcherbinin, S.; Cheng, Y.J.; Willis, B.A.; Gueorguieva, I.; Lo, A.C.; Fleisher, A.S.; Dage, J.L.; Ardayfio, P.; Aguiar, G.; Ishibai, M.; Takaichi, G.; Chua, L.; Mullins, G.; Sims, J.R. Donanemab (LY3002813) Phase 1b study in alzheimers disease: Rapid and sustained reduction of brain amyloid measured by florbetapir F18 Imaging. J. Prev. Alzheimers Dis., 2021, 8(4), 414-424. PMID: 34585215
- Gueorguieva, I.; Willis, B.A.; Chua, L.; Chow, K.; Ernest, C.S.; Shcherbinin, S.; Ardayfio, P.; Mullins, G.R.; Sims, J.R. Donanemab population pharmacokinetics, amyloid plaque reduction, and safety in participants with Alzheimers disease. Clin. Pharmacol. Ther., 2023, 113(6), 1258-1267. doi: 10.1002/cpt.2875 PMID: 36805552
- Sevigny, J.; Chiao, P.; Bussière, T.; Weinreb, P.H.; Williams, L.; Maier, M.; Dunstan, R.; Salloway, S.; Chen, T.; Ling, Y.; OGorman, J.; Qian, F.; Arastu, M.; Li, M.; Chollate, S.; Brennan, M.S.; Quintero-Monzon, O.; Scannevin, R.H.; Arnold, H.M.; Engber, T.; Rhodes, K.; Ferrero, J.; Hang, Y.; Mikulskis, A.; Grimm, J.; Hock, C.; Nitsch, R.M.; Sandrock, A. The antibody aducanumab reduces Aβ plaques in Alzheimers disease. Nature, 2016, 537(7618), 50-56. doi: 10.1038/nature19323 PMID: 27582220
- Doroszkiewicz, J.; Mroczko, B. New possibilities in the therapeutic approach to Alzheimers disease. Int. J. Mol. Sci., 2022, 23(16), 8902. doi: 10.3390/ijms23168902 PMID: 36012193
- Söderberg, L.; Johannesson, M.; Nygren, P.; Laudon, H.; Eriksson, F.; Osswald, G.; Möller, C.; Lannfelt, L. Lecanemab, aducanumab, and gantenerumab: Binding profiles to different forms of amyloid-beta might explain efficacy and side effects in clinical trials for alzheimers disease. Neurotherapeutics, 2023, 20(1), 195-206. doi: 10.1007/s13311-022-01308-6 PMID: 36253511
- Brandt, N.J.; Wheeler, C.; Courtin, S.O. Navigating disease-modifying treatments for Alzheimers disease: Focusing on medications in phase 3 clinical trials. J. Gerontol. Nurs., 2023, 49(1), 6-10. doi: 10.3928/00989134-20221205-02 PMID: 36594914
- Yuksel, J.M.; Noviasky, J.; Britton, S. Aducanumab for Alzheimers disease: Summarized data from emerge, engage, and prime studies. Sr. Care Pharm., 2022, 37(8), 329-334. doi: 10.4140/TCP.n.2022.329 PMID: 35879846
- Swanson, C.J.; Zhang, Y.; Dhadda, S.; Wang, J.; Kaplow, J.; Lai, R.Y.K.; Lannfelt, L.; Bradley, H.; Rabe, M.; Koyama, A.; Reyderman, L.; Berry, D.A.; Berry, S.; Gordon, R.; Kramer, L.D.; Cummings, J.L. A randomized, double-blind, phase 2b proof-of-concept clinical trial in early Alzheimers disease with lecanemab, an anti-Aβ protofibril antibody. Alzheimers Res. Ther., 2021, 13(1), 80. doi: 10.1186/s13195-021-00813-8 PMID: 33865446
- Rafii, M.S.; Sperling, R.A.; Donohue, M.C.; Zhou, J.; Roberts, C.; Irizarry, M.C.; Dhadda, S.; Sethuraman, G.; Kramer, L.D.; Swanson, C.J.; Li, D.; Krause, S.; Rissman, R.A.; Walter, S.; Raman, R.; Johnson, K.A.; Aisen, P.S. The AHEAD 3-45 Study: Design of a prevention trial for Alzheimers disease. Alzheimers Dement., 2023, 19(4), 1227-1233. doi: 10.1002/alz.12748 PMID: 35971310
- Knopman, D.S. Lecanemab reduces brain amyloid-β and delays cognitive worsening. Cell Rep. Med., 2023, 4(3), 100982. doi: 10.1016/j.xcrm.2023.100982 PMID: 36948153
- Piller, C. Report on trial death stokes Alzheimers drug fears. Science, 2023, 380(6641), 122-123. doi: 10.1126/science.adi2242 PMID: 37053319
- Asuni, A.A.; Boutajangout, A.; Quartermain, D.; Sigurdsson, E.M. Immunotherapy targeting pathological tau conformers in a tangle mouse model reduces brain pathology with associated functional improvements. J. Neurosci., 2007, 27(34), 9115-9129. doi: 10.1523/JNEUROSCI.2361-07.2007 PMID: 17715348
- Boutajangout, A.; Ingadottir, J.; Davies, P.; Sigurdsson, E.M. Passive immunization targeting pathological phospho-tau protein in a mouse model reduces functional decline and clears tau aggregates from the brain. J. Neurochem., 2011, 118(4), 658-667. doi: 10.1111/j.1471-4159.2011.07337.x PMID: 21644996
- Yanamandra, K.; Patel, T.K.; Jiang, H.; Schindler, S.; Ulrich, J.D.; Boxer, A.L.; Miller, B.L.; Kerwin, D.R.; Gallardo, G.; Stewart, F.; Finn, M.B.; Cairns, N.J.; Verghese, P.B.; Fogelman, I.; West, T.; Braunstein, J.; Robinson, G.; Keyser, J.; Roh, J.; Knapik, S.S.; Hu, Y.; Holtzman, D.M.; Holtzman, D.M. Anti-tau antibody administration increases plasma tau in transgenic mice and patients with tauopathy. Sci. Transl. Med., 2017, 9(386), eaal2029. doi: 10.1126/scitranslmed.aal2029 PMID: 28424326
- Li, L.; Miao, J.; Jiang, Y.; Dai, C.L.; Iqbal, K.; Liu, F.; Chu, D. Passive immunization inhibits tau phosphorylation and improves recognition learning and memory in 3xTg-AD mice. Exp. Neurol., 2023, 362, 114337. doi: 10.1016/j.expneurol.2023.114337 PMID: 36717015
- Novak, P.; Schmidt, R.; Kontsekova, E.; Zilka, N.; Kovacech, B.; Skrabana, R.; Vince-Kazmerova, Z.; Katina, S.; Fialova, L.; Prcina, M.; Parrak, V.; Dal-Bianco, P.; Brunner, M.; Staffen, W.; Rainer, M.; Ondrus, M.; Ropele, S.; Smisek, M.; Sivak, R.; Winblad, B.; Novak, M. Safety and immunogenicity of the tau vaccine AADvac1 in patients with Alzheimers disease: A randomised, double-blind, placebo-controlled, phase 1 trial. Lancet Neurol., 2017, 16(2), 123-134. doi: 10.1016/S1474-4422(16)30331-3 PMID: 27955995
- Novak, P.; Zilka, N.; Zilkova, M.; Kovacech, B.; Skrabana, R.; Ondrus, M.; Fialova, L.; Kontsekova, E.; Otto, M.; Novak, M. AADvac1, an active immunotherapy for Alzheimers disease and non alzheimer tauopathies: An overview of preclinical and clinical development. J. Prev. Alzheimers Dis., 2019, 6(1), 63-69. PMID: 30569088
- Hovakimyan, A.; Zagorski, K.; Chailyan, G.; Antonyan, T.; Melikyan, L.; Petrushina, I.; Batt, D.G.; King, O.; Ghazaryan, M.; Donthi, A.; Foose, C.; Petrovsky, N.; Cribbs, D.H.; Agadjanyan, M.G.; Ghochikyan, A. Immunogenicity of MultiTEP platform technology-based Tau vaccine in non-human primates. NPJ Vaccines, 2022, 7(1), 117. doi: 10.1038/s41541-022-00544-3 PMID: 36224191
- Pagano, G.; Boess, F.G.; Taylor, K.I.; Ricci, B.; Mollenhauer, B.; Poewe, W.; Boulay, A.; Anzures-Cabrera, J.; Vogt, A.; Marchesi, M.; Post, A.; Nikolcheva, T.; Kinney, G.G.; Zago, W.M.; Ness, D.K.; Svoboda, H.; Britschgi, M.; Ostrowitzki, S.; Simuni, T.; Marek, K.; Koller, M.; Sevigny, J.; Doody, R.; Fontoura, P.; Umbricht, D.; Bonni, A. A Phase II study to evaluate the safety and efficacy of prasinezumab in early parkinsons disease (PASADENA): Rationale, design, and baseline data. Front. Neurol., 2021, 12, 705407. doi: 10.3389/fneur.2021.705407 PMID: 34659081
- Pagano, G.; Taylor, K.I.; Anzures-Cabrera, J.; Marchesi, M.; Simuni, T.; Marek, K.; Postuma, R.B.; Pavese, N.; Stocchi, F.; Azulay, J.P.; Mollenhauer, B.; López-Manzanares, L.; Russell, D.S.; Boyd, J.T.; Nicholas, A.P.; Luquin, M.R.; Hauser, R.A.; Gasser, T.; Poewe, W.; Ricci, B.; Boulay, A.; Vogt, A.; Boess, F.G.; Dukart, J.; DUrso, G.; Finch, R.; Zanigni, S.; Monnet, A.; Pross, N.; Hahn, A.; Svoboda, H.; Britschgi, M.; Lipsmeier, F.; Volkova-Volkmar, E.; Lindemann, M.; Dziadek, S.; Holiga, .; Rukina, D.; Kustermann, T.; Kerchner, G.A.; Fontoura, P.; Umbricht, D.; Doody, R.; Nikolcheva, T.; Bonni, A. Trial of prasinezumab in early-stage parkinsons disease. N. Engl. J. Med., 2022, 387(5), 421-432. doi: 10.1056/NEJMoa2202867 PMID: 35921451
- Kuchimanchi, M.; Monine, M.; Kandadi, M.K.; Woodward, C.; Penner, N.; Phase, I.I. Phase II dose selection for alpha synucleintargeting antibody cinpanemab (BIIB054) based on target protein binding levels in the brain. CPT Pharmacometrics Syst. Pharmacol., 2020, 9(9), 515-522. doi: 10.1002/psp4.12538 PMID: 32613752
- Lang, A.E.; Siderowf, A.D.; Macklin, E.A.; Poewe, W.; Brooks, D.J.; Fernandez, H.H.; Rascol, O.; Giladi, N.; Stocchi, F.; Tanner, C.M.; Postuma, R.B.; Simon, D.K.; Tolosa, E.; Mollenhauer, B.; Cedarbaum, J.M.; Fraser, K.; Xiao, J.; Evans, K.C.; Graham, D.L.; Sapir, I.; Inra, J.; Hutchison, R.M.; Yang, M.; Fox, T.; Budd Haeberlein, S.; Dam, T. Trial of cinpanemab in early parkinsons disease. N. Engl. J. Med., 2022, 387(5), 408-420. doi: 10.1056/NEJMoa2203395 PMID: 35921450
- Schofield, D.J.; Irving, L.; Calo, L.; Bogstedt, A.; Rees, G.; Nuccitelli, A.; Narwal, R.; Petrone, M.; Roberts, J.; Brown, L.; Cusdin, F.; Dosanjh, B.; Lloyd, C.; Dobson, C.; Gurrell, I.; Fraser, G.; McFarlane, M.; Rockenstein, E.; Spencer, B.; Masliah, E.; Spillantini, M.G.; Tan, K.; Billinton, A.; Vaughan, T.; Chessell, I.; Perkinton, M.S.; Perkinton, M.S. Preclinical development of a high affinity α-synuclein antibody, MEDI1341, that can enter the brain, sequester extracellular α-synuclein and attenuate α-synuclein spreading in vivo. Neurobiol. Dis., 2019, 132, 104582. doi: 10.1016/j.nbd.2019.104582 PMID: 31445162
- Fjord-Larsen, L.; Thougaard, A.; Wegener, K.M.; Christiansen, J.; Larsen, F.; Schrøder-Hansen, L.M.; Kaarde, M.; Ditlevsen, D.K. Nonclinical safety evaluation, pharmacokinetics, and target engagement of Lu AF82422, a monoclonal IgG1 antibody against alpha-synuclein in development for treatment of synucleinopathies. MAbs, 2021, 13(1), 1994690. doi: 10.1080/19420862.2021.1994690 PMID: 34709986
- Kallab, M.; Herrera-Vaquero, M.; Johannesson, M.; Eriksson, F.; Sigvardson, J.; Poewe, W.; Wenning, G.K.; Nordström, E.; Stefanova, N. Region-specific effects of immunotherapy with antibodies targeting α-synuclein in a transgenic model of synucleinopathy. Front. Neurosci., 2018, 12, 452. doi: 10.3389/fnins.2018.00452 PMID: 30022929
- Nordström, E.; Eriksson, F.; Sigvardson, J.; Johannesson, M.; Kasrayan, A.; Jones-Kostalla, M.; Appelkvist, P.; Söderberg, L.; Nygren, P.; Blom, M.; Rachalski, A.; Nordenankar, K.; Zachrisson, O.; Amandius, E.; Osswald, G.; Moge, M.; Ingelsson, M.; Bergström, J.; Lannfelt, L.; Möller, C.; Giorgetti, M.; Fälting, J. ABBV-0805, a novel antibody selective for soluble aggregated α-synuclein, prolongs lifespan and prevents buildup of α-synuclein pathology in mouse models of Parkinsons disease. Neurobiol. Dis., 2021, 161, 105543. doi: 10.1016/j.nbd.2021.105543 PMID: 34737044
- Gibbs, E.; Zhao, B.; Roman, A.; Plotkin, S.S.; Peng, X.; Hsueh, S.C.C.; Aina, A.; Wang, J.; Shyu, C.; Yip, C.K.; Nam, S.E.; Kaplan, J.M.; Cashman, N.R. Rational generation of monoclonal antibodies selective for pathogenic forms of alpha-synuclein. Biomedicines, 2022, 10(9), 2168. doi: 10.3390/biomedicines10092168 PMID: 36140270
- Valiukas, Z.; Ephraim, R.; Tangalakis, K.; Davidson, M.; Apostolopoulos, V.; Feehan, J. Immunotherapies for Alzheimers disease: A review. Vaccines, 2022, 10(9), 1527. doi: 10.3390/vaccines10091527 PMID: 36146605
- Knecht, L.; Folke, J.; Dodel, R.; Ross, J.A.; Albus, A. Alpha-synuclein immunization strategies for synucleinopathies in clinical studies: A biological perspective. Neurotherapeutics, 2022, 19(5), 1489-1502. doi: 10.1007/s13311-022-01288-7 PMID: 36083395
- Meissner, W.G.; Traon, A.P.L.; Foubert-Samier, A.; Galabova, G.; Galitzky, M.; Kutzelnigg, A.; Laurens, B.; Lührs, P.; Medori, R.; Péran, P.; Sabatini, U.; Vergnet, S.; Volc, D.; Poewe, W.; Schneeberger, A.; Staffler, G.; Rascol, O.; Anheim, M.; Castrioto, A.; Derkinderen, P.; Drapier, S.; Eusebio, A.; Grabli, D.; Marques, A.; Moreau, C.; Moro, E.; Tranchant, C. A Phase 1 Randomized Trial of Specific Active α-SYNUCLEIN Immunotherapies PD01A and PD03A in Multiple System Atrophy. Mov. Disord., 2020, 35(11), 1957-1965. doi: 10.1002/mds.28218 PMID: 32882100
- Yu, H.J.; Thijssen, E.; van Brummelen, E.; van der Plas, J.L.; Radanovic, I.; Moerland, M.; Hsieh, E.; Groeneveld, G.J.; Dodart, J.C. A randomized first-in-human study with UB-312, a UBITh® α-synuclein peptide vaccine. Mov. Disord., 2022, 37(7), 1416-1424. doi: 10.1002/mds.29016 PMID: 35426173
- Nimmo, J.T.; Smith, H.; Wang, C.Y.; Teeling, J.L.; Nicoll, J.A.R.; Verma, A.; Dodart, J-C.; Liu, Z.; Lin, F.; Carare, R.O. Immunisation with UB-312 in the Thy1SNCA mouse prevents motor performance deficits and oligomeric α-synuclein accumulation in the brain and gut. Acta Neuropathol., 2022, 143(1), 55-73. doi: 10.1007/s00401-021-02381-5 PMID: 34741635
- Schmidhuber, S.; Scheiblhofer, S.; Weiss, R.; Cserepes, M.; Tóvári, J.; Gadermaier, G.; Bezard, E.; De Giorgi, F.; Ichas, F.; Strunk, D.; Mandler, M. A Novel C-type lectin receptor-targeted α-synuclein-based parkinson vaccine induces potent immune responses and therapeutic efficacy in mice. Vaccines, 2022, 10(9), 1432. doi: 10.3390/vaccines10091432 PMID: 36146508
- Chen, Z.; Yang, Y.; Yang, X.; Zhou, C.; Li, F.; Lei, P.; Zhong, L.; Jin, X.; Peng, G. Immune effects of optimized DNA vaccine and protective effects in a MPTP model of Parkinsons disease. Neurol. Sci., 2013, 34(9), 1559-1570. doi: 10.1007/s10072-012-1284-6 PMID: 23354599
- Petrushina, I.; Hovakimyan, A.; Harahap-Carrillo, I.S.; Davtyan, H.; Antonyan, T.; Chailyan, G.; Kazarian, K.; Antonenko, M.; Jullienne, A.; Hamer, M.M.; Obenaus, A.; King, O.; Zagorski, K.; Blurton-Jones, M.; Cribbs, D.H.; Lander, H.; Ghochikyan, A.; Agadjanyan, M.G. Characterization and preclinical evaluation of the cGMP grade DNA based vaccine, AV-1959D to enter the first-in-human clinical trials. Neurobiol. Dis., 2020, 139, 104823. doi: 10.1016/j.nbd.2020.104823 PMID: 32119976
- Kim, C.; Hovakimyan, A.; Zagorski, K.; Antonyan, T.; Petrushina, I.; Davtyan, H.; Chailyan, G.; Hasselmann, J.; Iba, M.; Adame, A.; Rockenstein, E.; Szabo, M.; Blurton-Jones, M.; Cribbs, D.H.; Ghochikyan, A.; Masliah, E.; Agadjanyan, M.G. Efficacy and immunogenicity of MultiTEP-based DNA vaccines targeting human α-synuclein: Prelude for IND enabling studies. NPJ Vaccines, 2022, 7(1), 1. doi: 10.1038/s41541-021-00424-2 PMID: 35013319
- Masliah, E.; Rockenstein, E.; Mante, M.; Crews, L.; Spencer, B.; Adame, A.; Patrick, C.; Trejo, M.; Ubhi, K.; Rohn, T.T.; Mueller-Steiner, S.; Seubert, P.; Barbour, R.; McConlogue, L.; Buttini, M.; Games, D.; Schenk, D. Passive immunization reduces behavioral and neuropathological deficits in an alpha-synuclein transgenic model of Lewy body disease. PLoS One, 2011, 6(4), e19338. doi: 10.1371/journal.pone.0019338 PMID: 21559417
- Nimmo, J.T.; Verma, A.; Dodart, J.C.; Wang, C.Y.; Savistchenko, J.; Melki, R.; Carare, R.O.; Nicoll, J.A.R. Novel antibodies detect additional α-synuclein pathology in synucleinopathies: Potential development for immunotherapy. Alzheimers Res. Ther., 2020, 12(1), 159. doi: 10.1186/s13195-020-00727-x PMID: 33256825
- Games, D.; Valera, E.; Spencer, B.; Rockenstein, E.; Mante, M.; Adame, A.; Patrick, C.; Ubhi, K.; Nuber, S.; Sacayon, P.; Zago, W.; Seubert, P.; Barbour, R.; Schenk, D.; Masliah, E. Reducing C-terminal-truncated alpha-synuclein by immunotherapy attenuates neurodegeneration and propagation in Parkinsons disease-like models. J. Neurosci., 2014, 34(28), 9441-9454. doi: 10.1523/JNEUROSCI.5314-13.2014 PMID: 25009275
- Wang, S.; Yu, Y.; Geng, S.; Wang, D.; Zhang, L.; Xie, X.; Wu, B.; Li, C.; Xu, H.; Li, X.; Hu, Y.; Zhang, L.; Kaether, C.; Wang, B. A coimmunization vaccine of Aβ42 ameliorates cognitive deficits without brain inflammation in an Alzheimers disease model. Alzheimers Res. Ther., 2014, 6(3), 26. doi: 10.1186/alzrt256 PMID: 24987466
- Xiao, B.; Tan, E.K. Immunotherapy trials in parkinsons disease: Challenges. J. Transl. Med., 2023, 21(1), 178. doi: 10.1186/s12967-023-04012-x PMID: 36879300
- Nicoll, J.A.R.; Buckland, G.R.; Harrison, C.H.; Page, A.; Harris, S.; Love, S.; Neal, J.W.; Holmes, C.; Boche, D. Persistent neuropathological effects 14 years following amyloid-β immunization in Alzheimers disease. Brain, 2019, 142(7), 2113-2126. doi: 10.1093/brain/awz142 PMID: 31157360
- Chu, W.T.; Hall, J.; Gurrala, A.; Becsey, A.; Raman, S.; Okun, M.S.; Flores, C.T.; Giasson, B.I.; Vaillancourt, D.E.; Vedam-Mai, V. Evaluation of an adoptive cellular therapy-based vaccine in a transgenic mouse model of α-synucleinopathy. ACS Chem. Neurosci., 2023, 14(2), 235-245. doi: 10.1021/acschemneuro.2c00539 PMID: 36571847
- Olson, K.E.; Namminga, K.L.; Schwab, A.D.; Thurston, M.J.; Lu, Y.; Woods, A.; Lei, L.; Shen, W.; Wang, F.; Joseph, S.B.; Gendelman, H.E.; Mosley, R.L. Neuroprotective activities of long-acting granulocytemacrophage colony-stimulating factor (mpdm608) in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-intoxicated mice. Neurotherapeutics, 2020, 17(4), 1861-1877. doi: 10.1007/s13311-020-00877-8 PMID: 32638217
- Olson, K.E.; Namminga, K.L.; Lu, Y.; Schwab, A.D.; Thurston, M.J.; Abdelmoaty, M.M.; Kumar, V.; Wojtkiewicz, M.; Obaro, H.; Santamaria, P.; Mosley, R.L.; Gendelman, H.E. Safety, tolerability, and immune-biomarker profiling for year-long sargramostim treatment of Parkinsons disease. EBioMedicine, 2021, 67, 103380. doi: 10.1016/j.ebiom.2021.103380 PMID: 34000620
- Gendelman, H.E.; Zhang, Y.; Santamaria, P.; Olson, K.E.; Schutt, C.R.; Bhatti, D.; Shetty, B.L.D.; Lu, Y.; Estes, K.A.; Standaert, D.G.; Heinrichs-Graham, E.; Larson, L.; Meza, J.L.; Follett, M.; Forsberg, E.; Siuzdak, G.; Wilson, T.W.; Peterson, C.; Mosley, R.L. Evaluation of the safety and immunomodulatory effects of sargramostim in a randomized, double-blind phase 1 clinical Parkinsons disease trial. NPJ Parkinsons Dis., 2017, 3(1), 10. doi: 10.1038/s41531-017-0013-5 PMID: 28649610
- Rohrer, L.; Yunce, M.; Montine, T.J.; Shan, H. Plasma exchange in Alzheimers disease. Transfus. Med. Rev., 2023, 37(1), 10-15.
- Boada, M.; López, O.L.; Olazarán, J.; Núñez, L.; Pfeffer, M.; Paricio, M.; Lorites, J.; Piñol-Ripoll, G.; Gámez, J.E.; Anaya, F.; Kiprov, D.; Lima, J.; Grifols, C.; Torres, M.; Costa, M.; Bozzo, J.; Szczepiorkowski, Z.M.; Hendrix, S.; Páez, A. A randomized, controlled clinical trial of plasma exchange with albumin replacement for Alzheimers disease: Primary results of the AMBAR Study. Alzheimers Dement., 2020, 16(10), 1412-1425. doi: 10.1002/alz.12137 PMID: 32715623
- Singh, S.; Kumar, K.; Panda, M.; Srivastava, A.; Mishra, A.; Prajapati, V.K. High-throughput virtual screening of small-molecule inhibitors targeting immune cell checkpoints to discover new immunotherapeutics for human diseases. Mol. Divers., 2023, 27(2), 729-751. doi: 10.1007/s11030-022-10452-2 PMID: 35633442
- Liu, Y.; Meng, Y.; Zhou, C.; Yan, J.; Guo, C.; Dong, W. Activation of the IL-17/TRAF6/NF-κB pathway is implicated in Aβ-induced neurotoxicity. BMC Neurosci., 2023, 24(1), 14. doi: 10.1186/s12868-023-00782-8 PMID: 36823558
- Badr, M.; McFleder, R.L.; Wu, J.; Knorr, S.; Koprich, J.B.; Hünig, T.; Brotchie, J.M.; Volkmann, J.; Lutz, M.B.; Ip, C.W. Expansion of regulatory T cells by CD28 superagonistic antibodies attenuates neurodegeneration in A53T-α-synuclein Parkinsons disease mice. J. Neuroinflammation, 2022, 19(1), 319. doi: 10.1186/s12974-022-02685-7 PMID: 36587195
Дополнительные файлы
