Inflammation, Autoimmunity and Neurodegenerative Diseases, Therapeutics and Beyond


Цитировать

Полный текст

Аннотация

Neurodegenerative disease (ND) incidence has recently increased due to improved life expectancy. Alzheimer's (AD) or Parkinson's disease (PD) are the most prevalent NDs. Both diseases are poly genetic, multifactorial and heterogenous. Preventive medicine, a healthy diet, exercise, and controlling comorbidities may delay the onset. After the diseases are diagnosed, therapy is needed to slow progression. Recent studies show that local, peripheral and age-related inflammation accelerates NDs' onset and progression. Patients with autoimmune disorders like inflammatory bowel disease (IBD) could be at higher risk of developing AD or PD. However, no increase in ND incidence has been reported if the patients are adequately diagnosed and treated. Autoantibodies against abnormal tau, β amyloid and α- synuclein have been encountered in AD and PD and may be protective. This discovery led to the proposal of immune-based therapies for AD and PD involving monoclonal antibodies, immunization/vaccines, pro-inflammatory cytokine inhibition and anti-inflammatory cytokine addition. All the different approaches have been analysed here. Future perspectives on new therapeutic strategies for both disorders are concisely examined.

Об авторах

Jenny Garmendia

Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University

Email: info@benthamscience.net

Claudia De Sanctis

Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University

Email: info@benthamscience.net

Viswanath Das

Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University

Email: info@benthamscience.net

Narendran Annadurai

Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University

Email: info@benthamscience.net

Marián Hajduch

Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University

Email: info@benthamscience.net

Juan De Sanctis

Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University

Автор, ответственный за переписку.
Email: info@benthamscience.net

Список литературы

  1. Price, D.L.; Sisodia, S.S.; Borchelt, D.R. Genetic neurodegenerative diseases: the human illness and transgenic models. Science, 1998, 282(5391), 1079-1083. doi: 10.1126/science.282.5391.1079 PMID: 9804539
  2. MacDonald, M. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell, 1993, 72(6), 971-983. doi: 10.1016/0092-8674(93)90585-E PMID: 8458085
  3. Akçimen, F.; Lopez, E.R.; Landers, J.E.; Nath, A.; Chiò, A.; Chia, R.; Traynor, B.J. Amyotrophic lateral sclerosis: Translating genetic discoveries into therapies. Nat. Rev. Genet., 2023, 24(9), 642-658. doi: 10.1038/s41576-023-00592-y PMID: 37024676
  4. Papiri, G.; D’Andreamatteo, G.; Cacchiò, G.; Alia, S.; Silvestrini, M.; Paci, C.; Luzzi, S.; Vignini, A. Multiple sclerosis: Inflammatory and neuroglial aspects. Curr. Issues Mol. Biol., 2023, 45(2), 1443-1470. doi: 10.3390/cimb45020094 PMID: 36826039
  5. Klotz, L.; Antel, J.; Kuhlmann, T. Inflammation in multiple sclerosis: Consequences for remyelination and disease progression. Nat. Rev. Neurol., 2023, 19(5), 305-320. doi: 10.1038/s41582-023-00801-6 PMID: 37059811
  6. Balcerac, A.; Louapre, C. Genetics and familial distribution of multiple sclerosis: A review. Rev. Neurol., 2022, 178(6), 512-520. doi: 10.1016/j.neurol.2021.11.009 PMID: 35148907
  7. Breijyeh, Z.; Karaman, R. Comprehensive review on Alzheimer’s disease: Causes and treatment. Molecules, 2020, 25(24), 5789. doi: 10.3390/molecules25245789 PMID: 33302541
  8. Rizek, P.; Kumar, N.; Jog, M.S. An update on the diagnosis and treatment of Parkinson disease. CMAJ, 2016, 188(16), 1157-1165. doi: 10.1503/cmaj.151179 PMID: 27221269
  9. Aborode, A.T.; Pustake, M.; Awuah, W.A.; Alwerdani, M.; Shah, P.; Yarlagadda, R.; Ahmad, S.; Silva, C.I.F.; Chandra, A.; Nansubuga, E.P.; Abdul-Rahman, T.; Mehta, A.; Ali, O.; Amaka, S.O.; Zuñiga, Y.M.H.; Shkodina, A.D.; Inya, O.C.; Shen, B.; Alexiou, A. Targeting oxidative stress mechanisms to treat Alzheimer’s and Parkinson’s disease: A critical review. Oxid. Med. Cell. Longev., 2022, 2022, 1-9. doi: 10.1155/2022/7934442 PMID: 35958022
  10. Gorlé, N.; Van Cauwenberghe, C.; Libert, C.; Vandenbroucke, R.E. The effect of aging on brain barriers and the consequences for Alzheimer’s disease development. Mamm. Genome, 2016, 27(7-8), 407-420. doi: 10.1007/s00335-016-9637-8 PMID: 27143113
  11. Dai, M.H.; Zheng, H.; Zeng, L.D.; Zhang, Y. The genes associated with early-onset Alzheimer’s disease. Oncotarget, 2018, 9(19), 15132-15143. doi: 10.18632/oncotarget.23738 PMID: 29599933
  12. Sumirtanurdin, R.; Thalib, A.Y.; Cantona, K.; Abdulah, R. Effect of genetic polymorphisms on Alzheimer’s disease treatment outcomes: An update. Clin. Interv. Aging, 2019, 14, 631-642. doi: 10.2147/CIA.S200109 PMID: 30992661
  13. Sarnowski, C.; Ghanbari, M.; Bis, J.C.; Logue, M.; Fornage, M.; Mishra, A.; Ahmad, S.; Beiser, A.S.; Boerwinkle, E.; Bouteloup, V.; Chouraki, V.; Cupples, L.A.; Damotte, V.; DeCarli, C.S.; DeStefano, A.L.; Djoussé, L.; Fohner, A.E.; Franz, C.E.; Kautz, T.F.; Lambert, J.C.; Lyons, M.J.; Mosley, T.H.; Mukamal, K.J.; Pase, M.P.; Portilla Fernandez, E.C.; Rissman, R.A.; Satizabal, C.L.; Vasan, R.S.; Yaqub, A.; Debette, S.; Dufouil, C.; Launer, L.J.; Kremen, W.S.; Longstreth, W.T.; Ikram, M.A.; Seshadri, S. Meta-analysis of genome-wide association studies identifies ancestry-specific associations underlying circulating total tau levels. Commun. Biol., 2022, 5(1), 336. doi: 10.1038/s42003-022-03287-y PMID: 35396452
  14. Su, F.; Bai, F.; Zhang, Z. Inflammatory cytokines and Alzheimer’s disease: A review from the perspective of genetic polymorphisms. Neurosci. Bull., 2016, 32(5), 469-480. doi: 10.1007/s12264-016-0055-4 PMID: 27568024
  15. Ulhaq, Z.S.; Garcia, C.P. Inflammation-related gene polymorphisms associated with Parkinson’s disease: An updated meta-analysis. Egypt. J. Med. Hum. Genet., 2020, 21(1), 14. doi: 10.1186/s43042-020-00056-6
  16. Li, X.; Zhang, D.F.; Bi, R.; Tan, L.W.; Chen, X.; Xu, M.; Yao, Y.G. Convergent transcriptomic and genomic evidence supporting a dysregulation of CXCL16 and CCL5 in Alzheimer’s disease. Alzheimers Res. Ther., 2023, 15(1), 17. doi: 10.1186/s13195-022-01159-5 PMID: 36670424
  17. Pedersen, C.C.; Lange, J.; Førland, M.G.G.; Macleod, A.D.; Alves, G.; Maple-Grødem, J. A systematic review of associations between common SNCA variants and clinical heterogeneity in Parkinson’s disease. NPJ Parkinsons Dis., 2021, 7(1), 54. doi: 10.1038/s41531-021-00196-5 PMID: 34210990
  18. Hollenbach, J.A.; Norman, P.J.; Creary, L.E.; Damotte, V.; Montero-Martin, G.; Caillier, S.; Anderson, K.M.; Misra, M.K.; Nemat-Gorgani, N.; Osoegawa, K.; Santaniello, A.; Renschen, A.; Marin, W.M.; Dandekar, R.; Parham, P.; Tanner, C.M.; Hauser, S.L.; Fernandez-Viña, M.; Oksenberg, J.R. A specific amino acid motif of HLA-DRB1 mediates risk and interacts with smoking history in Parkinson’s disease. Proc. Natl. Acad. Sci., 2019, 116(15), 7419-7424. doi: 10.1073/pnas.1821778116 PMID: 30910980
  19. Yu, E.; Ambati, A.; Andersen, M.S.; Krohn, L.; Estiar, M.A.; Saini, P.; Senkevich, K.; Sosero, Y.L.; Sreelatha, A.A.K.; Ruskey, J.A.; Asayesh, F.; Spiegelman, D.; Toft, M.; Viken, M.K.; Sharma, M.; Blauwendraat, C.; Pihlstrøm, L.; Mignot, E.; Gan-Or, Z. Fine mapping of the HLA locus in Parkinson’s disease in Europeans. NPJ Parkinsons Dis., 2021, 7(1), 84. doi: 10.1038/s41531-021-00231-5 PMID: 34548497
  20. Harms, A.S.; Ferreira, S.A.; Romero-Ramos, M. Periphery and brain, innate and adaptive immunity in Parkinson’s disease. Acta Neuropathol., 2021, 141(4), 527-545. doi: 10.1007/s00401-021-02268-5 PMID: 33555429
  21. Yi, M.; Li, J.; Jian, S.; Li, B.; Huang, Z.; Shu, L.; Zhang, Y. Quantitative and causal analysis for inflammatory genes and the risk of Parkinson’s disease. Front. Immunol., 2023, 14, 1119315. doi: 10.3389/fimmu.2023.1119315 PMID: 36926335
  22. Abbott, N.J.; Patabendige, A.A.K.; Dolman, D.E.M.; Yusof, S.R.; Begley, D.J. Structure and function of the blood–brain barrier. Neurobiol. Dis., 2010, 37(1), 13-25. doi: 10.1016/j.nbd.2009.07.030 PMID: 19664713
  23. Labzin, L.I.; Heneka, M.T.; Latz, E. Innate immunity and neurodegeneration. Annu. Rev. Med., 2018, 69(1), 437-449. doi: 10.1146/annurev-med-050715-104343 PMID: 29106805
  24. Huang, X.; Hussain, B.; Chang, J. Peripheral inflammation and blood–brain barrier disruption: Effects and mechanisms. CNS Neurosci. Ther., 2021, 27(1), 36-47. doi: 10.1111/cns.13569 PMID: 33381913
  25. Wilhelm, I.; Nyúl-Tóth, Á.; Suciu, M.; Hermenean, A.; Krizbai, I.A. Heterogeneity of the blood-brain barrier. Tissue Barriers, 2016, 4(1), e1143544. doi: 10.1080/21688370.2016.1143544 PMID: 27141424
  26. Mayne, K.; White, J.A.; McMurran, C.E.; Rivera, F.J.; de la Fuente, A.G. Aging and neurodegenerative disease: Is the adaptive immune system a friend or foe? Front. Aging Neurosci., 2020, 12, 572090. doi: 10.3389/fnagi.2020.572090 PMID: 33173502
  27. Glass, C.K.; Saijo, K.; Winner, B.; Marchetto, M.C.; Gage, F.H. Mechanisms underlying inflammation in neurodegeneration. Cell, 2010, 140(6), 918-934. doi: 10.1016/j.cell.2010.02.016 PMID: 20303880
  28. Stephenson, J.; Nutma, E.; van der Valk, P.; Amor, S. Inflammation in CNS neurodegenerative diseases. Immunology, 2018, 154(2), 204-219. doi: 10.1111/imm.12922 PMID: 29513402
  29. Fathi, M.; Vakili, K.; Yaghoobpoor, S.; Qadirifard, M.S.; Kosari, M.; Naghsh, N.; Asgari taei, A.; Klegeris, A.; Dehghani, M.; Bahrami, A.; Taheri, H.; Mohamadkhani, A.; Hajibeygi, R.; Rezaei Tavirani, M.; Sayehmiri, F. Pre-clinical studies identifying molecular pathways of neuroinflammation in Parkinson’s disease: A systematic review. Front. Aging Neurosci., 2022, 14, 855776. doi: 10.3389/fnagi.2022.855776 PMID: 35912090
  30. Gorecki, A.M.; Anyaegbu, C.C.; Anderton, R.S. TLR2 and TLR4 in Parkinson’s disease pathogenesis: The environment takes a toll on the gut. Transl. Neurodegener., 2021, 10(1), 47. doi: 10.1186/s40035-021-00271-0 PMID: 34814947
  31. Bellucci, A.; Bubacco, L.; Longhena, F.; Parrella, E.; Faustini, G.; Porrini, V.; Bono, F.; Missale, C.; Pizzi, M. Nuclear Factor-κB dysregulation and α-synuclein pathology: Critical interplay in the pathogenesis of Parkinson’s disease. Front. Aging Neurosci., 2020, 12, 68. doi: 10.3389/fnagi.2020.00068 PMID: 32265684
  32. Juranek, J.; Mukherjee, K.; Kordas, B.; Załęcki, M.; Korytko, A.; Zglejc-Waszak, K.; Szuszkiewicz, J.; Banach, M. Role of RAGE in the pathogenesis of neurological disorders. Neurosci. Bull., 2022, 38(10), 1248-1262. doi: 10.1007/s12264-022-00878-x PMID: 35729453
  33. Spulber, S.; Bartfai, T.; Schultzberg, M. IL-1/IL-1ra balance in the brain revisited: Evidence from transgenic mouse models. Brain Behav. Immun., 2009, 23(5), 573-579. doi: 10.1016/j.bbi.2009.02.015 PMID: 19258032
  34. Bai, H.; Zhang, Q. Activation of NLRP3 inflammasome and onset of Alzheimer’s disease. Front. Immunol., 2021, 12, 701282. doi: 10.3389/fimmu.2021.701282 PMID: 34381452
  35. Martin-Ruiz, C.; Williams-Gray, C.H.; Yarnall, A.J.; Boucher, J.J.; Lawson, R.A.; Wijeyekoon, R.S.; Barker, R.A.; Kolenda, C.; Parker, C.; Burn, D.J.; Von Zglinicki, T.; Saretzki, G. Senescence and inflammatory markers for predicting clinical progression in Parkinson’s disease: The ICICLE-PD Study. J. Parkinsons Dis., 2020, 10(1), 193-206. doi: 10.3233/JPD-191724 PMID: 31868677
  36. Lara, P.C.; Macías-Verde, D.; Burgos-Burgos, J. Age-induced NLRP3 inflammasome over-activation increases lethality of SARS-CoV-2 pneumonia in elderly patients. Aging Dis., 2020, 11(4), 756-762. doi: 10.14336/AD.2020.0601 PMID: 32765942
  37. Stout-Delgado, H.W.; Vaughan, S.E.; Shirali, A.C.; Jaramillo, R.J.; Harrod, K.S. Impaired NLRP3 inflammasome function in elderly mice during influenza infection is rescued by treatment with nigericin. J. Immunol., 2012, 188(6), 2815-2824. doi: 10.4049/jimmunol.1103051 PMID: 22327078
  38. Nagatsu, T.; Mogi, M.; Ichinose, H.; Togari, A. Changes in cytokines and neurotrophins in Parkinson’s disease. J. Neural Transm. Suppl., 2000, (60), 277-290. doi: 10.1007/978-3-7091-6301-6_19 PMID: 11205147
  39. Zhang, P.; Shao, X.Y.; Qi, G.J.; Chen, Q.; Bu, L.L.; Chen, L.J.; Shi, J.; Ming, J.; Tian, B. Cdk5-dependent activation of neuronal inflammasomes in Parkinson’s disease. Mov. Disord., 2016, 31(3), 366-376. doi: 10.1002/mds.26488 PMID: 26853432
  40. Kitazawa, M.; Cheng, D.; Tsukamoto, M.R.; Koike, M.A.; Wes, P.D.; Vasilevko, V.; Cribbs, D.H.; LaFerla, F.M. Blocking IL-1 signaling rescues cognition, attenuates tau pathology, and restores neuronal β-catenin pathway function in an Alzheimer’s disease model. J. Immunol., 2011, 187(12), 6539-6549. doi: 10.4049/jimmunol.1100620 PMID: 22095718
  41. Wang, W.; Nguyen, L.T.T.; Burlak, C.; Chegini, F.; Guo, F.; Chataway, T.; Ju, S.; Fisher, O.S.; Miller, D.W.; Datta, D.; Wu, F.; Wu, C.X.; Landeru, A.; Wells, J.A.; Cookson, M.R.; Boxer, M.B.; Thomas, C.J.; Gai, W.P.; Ringe, D.; Petsko, G.A.; Hoang, Q.Q. Caspase-1 causes truncation and aggregation of the Parkinson’s disease-associated protein α-synuclein. Proc. Natl. Acad. Sci., 2016, 113(34), 9587-9592. doi: 10.1073/pnas.1610099113 PMID: 27482083
  42. Hurelbrink, C.B.; Armstrong, R.J.E.; Luheshi, L.M.; Dunnett, S.B.; Rosser, A.E.; Barker, R.A. Death of dopaminergic neurons in vitro and in nigral grafts: Reevaluating the role of caspase activation. Exp. Neurol., 2001, 171(1), 46-58. doi: 10.1006/exnr.2001.7749 PMID: 11520120
  43. Caputi, V.; Giron, M. Microbiome-gut-brain axis and toll-like receptors in Parkinson’s disease. Int. J. Mol. Sci., 2018, 19(6), 1689. doi: 10.3390/ijms19061689 PMID: 29882798
  44. Howe, A.M.; Burke, S.; O’Reilly, M.E.; McGillicuddy, F.C.; Costello, D.A. Palmitic acid and oleic acid differently modulate tlr2-mediated inflammatory responses in microglia and macrophages. Mol. Neurobiol., 2022, 59(4), 2348-2362. doi: 10.1007/s12035-022-02756-z PMID: 35079937
  45. Minoretti, P.; Gazzaruso, C.; Vito, C.D.; Emanuele, E.; Bianchi, M.; Coen, E.; Reino, M.; Geroldi, D. Effect of the functional toll-like receptor 4 Asp299Gly polymorphism on susceptibility to late-onset Alzheimer’s disease. Neurosci. Lett., 2006, 391(3), 147-149. doi: 10.1016/j.neulet.2005.08.047 PMID: 16157451
  46. Okun, E.; Griffioen, K.J.; Lathia, J.D.; Tang, S.C.; Mattson, M.P.; Arumugam, T.V. Toll-like receptors in neurodegeneration. Brain Res. Brain Res. Rev., 2009, 59(2), 278-292. doi: 10.1016/j.brainresrev.2008.09.001 PMID: 18822314
  47. Liddelow, S.A.; Barres, B.A. Reactive Astrocytes: Production, Function, and Therapeutic Potential. Immunity, 2017, 46(6), 957-967. doi: 10.1016/j.immuni.2017.06.006 PMID: 28636962
  48. Labib, D.; Wang, Z.; Prakash, P.; Zimmer, M.; Smith, M.D.; Frazel, P.W.; Barbar, L.; Sapar, M.L.; Calabresi, P.A.; Peng, J.; Liddelow, S.A.; Fossati, V. Proteomic Alterations and Novel Markers of Neurotoxic Reactive Astrocytes in Human Induced Pluripotent Stem Cell Models. Front. Mol. Neurosci., 2022, 15, 870085. doi: 10.3389/fnmol.2022.870085 PMID: 35592112
  49. Zhao, Y.; Bhattacharjee, S.; Jones, B.M.; Hill, J.; Dua, P.; Lukiw, W.J. Regulation of neurotropic signaling by the inducible, NF-kB-sensitive miRNA-125b in Alzheimer’s disease (AD) and in primary human neuronal-glial (HNG) cells. Mol. Neurobiol., 2014, 50(1), 97-106. doi: 10.1007/s12035-013-8595-3 PMID: 24293102
  50. Singh, S.; Singh, T.G. Role of Nuclear Factor Kappa B (NF-κB) signalling in neurodegenerative diseases: A mechanistic approach. Curr. Neuropharmacol., 2020, 18(10), 918-935. doi: 10.2174/1570159X18666200207120949 PMID: 32031074
  51. Dou, F.; Chu, X.; Zhang, B.; Liang, L.; Lu, G.; Ding, J.; Chen, S. EriB targeted inhibition of microglia activity attenuates MPP+ induced DA neuron injury through the NF-κB signaling pathway. Mol. Brain, 2018, 11(1), 75. doi: 10.1186/s13041-018-0418-z PMID: 30563578
  52. Rauf, A.; Badoni, H.; Abu-Izneid, T.; Olatunde, A.; Rahman, M.M.; Painuli, S.; Semwal, P.; Wilairatana, P.; Mubarak, M.S. Neuroinflammatory markers: Key indicators in the pathology of neurodegenerative diseases. Molecules, 2022, 27(10), 3194. doi: 10.3390/molecules27103194 PMID: 35630670
  53. Huang, Y.; Erdmann, N.; Peng, H.; Zhao, Y.; Zheng, J. The role of TNF related apoptosis-inducing ligand in neurodegenerative diseases. Cell. Mol. Immunol., 2005, 2(2), 113-122. PMID: 16191417
  54. Uberti, D.; Cantarella, G.; Facchetti, F.; Cafici, A.; Grasso, G.; Bernardini, R.; Memo, M. TRAIL is expressed in the brain cells of Alzheimer’s disease patients. Neuroreport, 2004, 15(4), 579-581.
  55. Akiyama, H.; Barger, S.; Barnum, S.; Bradt, B.; Bauer, J.; Cole, G.M.; Cooper, N.R.; Eikelenboom, P.; Emmerling, M.; Fiebich, B.L.; Finch, C.E.; Frautschy, S.; Griffin, W.S.; Hampel, H.; Hull, M.; Landreth, G.; Lue, L.; Mrak, R.; Mackenzie, I.R.; McGeer, P.L.; O’Banion, M.K.; Pachter, J.; Pasinetti, G.; Plata-Salaman, C.; Rogers, J.; Rydel, R.; Shen, Y.; Streit, W.; Strohmeyer, R.; Tooyoma, I.; Van Muiswinkel, F.L.; Veerhuis, R.; Walker, D.; Webster, S.; Wegrzyniak, B.; Wenk, G.; Wyss-Coray, T. Inflammation and Alzheimer’s disease. Neurobiol. Aging, 2000, 21(3), 383-421. doi: 10.1016/S0197-4580(00)00124-X PMID: 10858586
  56. Tarkowski, E.; Liljeroth, A.M.; Nilsson, Å.; Minthon, L.; Blennow, K. Decreased levels of intrathecal interleukin 1 receptor antagonist in Alzheimer’s disease. Dement. Geriatr. Cogn. Disord., 2001, 12(5), 314-317. doi: 10.1159/000051276 PMID: 11455132
  57. He, P.; Zhong, Z.; Lindholm, K.; Berning, L.; Lee, W.; Lemere, C.; Staufenbiel, M.; Li, R.; Shen, Y. Deletion of tumor necrosis factor death receptor inhibits amyloid β generation and prevents learning and memory deficits in Alzheimer’s mice. J. Cell Biol., 2007, 178(5), 829-841. doi: 10.1083/jcb.200705042 PMID: 17724122
  58. Hickman, S.E.; Allison, E.K.; El Khoury, J. Microglial dysfunction and defective beta-amyloid clearance pathways in aging Alzheimer’s disease mice. J. Neurosci., 2008, 28(33), 8354-8360. doi: 10.1523/JNEUROSCI.0616-08.2008 PMID: 18701698
  59. Nutma, E.; van Gent, D.; Amor, S.; Peferoen, L.A.N. Astrocyte and oligodendrocyte cross-talk in the central nervous system. Cells, 2020, 9(3), 600. doi: 10.3390/cells9030600 PMID: 32138223
  60. Santoro, A.; Spinelli, C.C.; Martucciello, S.; Nori, S.L.; Capunzo, M.; Puca, A.A.; Ciaglia, E. Innate immunity and cellular senescence: The good and the bad in the developmental and aged brain. J. Leukoc. Biol., 2018, 103(3), 509-524. doi: 10.1002/JLB.3MR0118-003R PMID: 29389023
  61. Tan, Z.S.; Beiser, A.S.; Vasan, R.S.; Roubenoff, R.; Dinarello, C.A.; Harris, T.B.; Benjamin, E.J.; Au, R.; Kiel, D.P.; Wolf, P.A.; Seshadri, S. Inflammatory markers and the risk of Alzheimer disease: The Framingham Study. Neurology, 2007, 68(22), 1902-1908. doi: 10.1212/01.wnl.0000263217.36439.da PMID: 17536046
  62. Burré, J.; Sharma, M.; Südhof, T.C. Cell biology and pathophysiology of α-synuclein. Cold Spring Harb. Perspect. Med., 2018, 8(3), a024091. doi: 10.1101/cshperspect.a024091 PMID: 28108534
  63. Nakanishi, H. Microglial cathepsin B as a key driver of inflammatory brain diseases and brain aging. Neural Regen. Res., 2020, 15(1), 25-29. doi: 10.4103/1673-5374.264444 PMID: 31535638
  64. Kim, C.; Ho, D.H.; Suk, J.E.; You, S.; Michael, S.; Kang, J.; Joong Lee, S.; Masliah, E.; Hwang, D.; Lee, H.J.; Lee, S.J. Neuron-released oligomeric α-synuclein is an endogenous agonist of TLR2 for paracrine activation of microglia. Nat. Commun., 2013, 4(1), 1562. doi: 10.1038/ncomms2534 PMID: 23463005
  65. Xie, Y.X.; Naseri, N.N.; Fels, J.; Kharel, P.; Na, Y.; Lane, D.; Burré, J.; Sharma, M. Lysosomal exocytosis releases pathogenic α-synuclein species from neurons in synucleinopathy models. Nat. Commun., 2022, 13(1), 4918. doi: 10.1038/s41467-022-32625-1 PMID: 35995799
  66. Lashuel, H.A.; Overk, C.R.; Oueslati, A.; Masliah, E. The many faces of α-synuclein: from structure and toxicity to therapeutic target. Nat. Rev. Neurosci., 2013, 14(1), 38-48. doi: 10.1038/nrn3406 PMID: 23254192
  67. Bendor, J.T.; Logan, T.P.; Edwards, R.H. The function of α-synuclein. Neuron, 2013, 79(6), 1044-1066. doi: 10.1016/j.neuron.2013.09.004 PMID: 24050397
  68. Soraci, L.; Gambuzza, M.E.; Biscetti, L.; Laganà, P.; Lo Russo, C.; Buda, A.; Barresi, G.; Corsonello, A.; Lattanzio, F.; Lorello, G.; Filippelli, G.; Marino, S. Toll-like receptors and NLRP3 inflammasome-dependent pathways in Parkinson’s disease: Mechanisms and therapeutic implications. J. Neurol., 2023, 270(3), 1346-1360. doi: 10.1007/s00415-022-11491-3 PMID: 36460875
  69. Volpicelli-Daley, L.; Brundin, P. Prion-like propagation of pathology in Parkinson disease. Handb. Clin. Neurol., 2018, 153, 321-335. doi: 10.1016/B978-0-444-63945-5.00017-9 PMID: 29887143
  70. Noguchi-Shinohara, M.; Ono, K. The mechanisms of the roles of α-synuclein, amyloid-β, and tau protein in the lewy body diseases: pathogenesis, early detection, and therapeutics. Int. J. Mol. Sci., 2023, 24(12), 10215. doi: 10.3390/ijms241210215 PMID: 37373401
  71. Schrag, A. Psychiatric aspects of Parkinson’s disease. J. Neurol., 2004, 251(7), 795-804. doi: 10.1007/s00415-004-0483-3 PMID: 15258780
  72. Subramanian, A.; Tamilanban, T.; Alsayari, A.; Ramachawolran, G.; Wong, L.S.; Sekar, M.; Gan, S.H.; Subramaniyan, V.; Chinni, S.V.; Izzati Mat Rani, N.N.; Suryadevara, N.; Wahab, S. Trilateral association of autophagy, mTOR and Alzheimer’s disease: Potential pathway in the development for Alzheimer’s disease therapy. Front. Pharmacol., 2022, 13, 1094351. doi: 10.3389/fphar.2022.1094351 PMID: 36618946
  73. Kostiuchenko, O.; Lushnikova, I.; Kowalczyk, M.; Skibo, G. mTOR/α-ketoglutarate-mediated signaling pathways in the context of brain neurodegeneration and neuroprotection. BBA Adv., 2022, 2, 100066. doi: 10.1016/j.bbadva.2022.100066 PMID: 37082603
  74. Blagov, A.V.; Grechko, A.V.; Nikiforov, N.G.; Borisov, E.E.; Sadykhov, N.K.; Orekhov, A.N. Role of impaired mitochondrial dynamics processes in the pathogenesis of Alzheimer’s disease. Int. J. Mol. Sci., 2022, 23(13), 6954. doi: 10.3390/ijms23136954 PMID: 35805958
  75. Ikeda-Matsuo, Y.; Miyata, H.; Mizoguchi, T.; Ohama, E.; Naito, Y.; Uematsu, S.; Akira, S.; Sasaki, Y.; Tanabe, M. Microsomal prostaglandin E synthase-1 is a critical factor in dopaminergic neurodegeneration in Parkinson’s disease. Neurobiol. Dis., 2019, 124, 81-92. doi: 10.1016/j.nbd.2018.11.004 PMID: 30423474
  76. Mi, Y.; Qi, G.; Vitali, F.; Shang, Y.; Raikes, A.C.; Wang, T.; Jin, Y.; Brinton, R.D.; Gu, H.; Yin, F. Loss of fatty acid degradation by astrocytic mitochondria triggers neuroinflammation and neurodegeneration. Nat. Metab., 2023, 5(3), 445-465. doi: 10.1038/s42255-023-00756-4 PMID: 36959514
  77. Kulminski, A.M.; Jain-Washburn, E.; Loiko, E.; Loika, Y.; Feng, F.; Culminskaya, I. Associations of the APOE ε2 and ε4 alleles and polygenic profiles comprising APOE-TOMM40-APOC1 variants with Alzheimer’s disease biomarkers. Aging, 2022, 14(24), 9782-9804. doi: 10.18632/aging.204384 PMID: 36399096
  78. Mu, G.; Ren, C.; Zhang, Y.; Lu, B.; Feng, J.; Wu, D.; Xu, X.; Ou, C. Amelioration of central neurodegeneration by docosahexaenoic acid in trigeminal neuralgia rats through the regulation of central neuroinflammation. Int. Immunopharmacol., 2023, 114, 109544. doi: 10.1016/j.intimp.2022.109544 PMID: 36527885
  79. Xie, A.; Ensink, E.; Li, P.; Gordevičius, J.; Marshall, L.L.; George, S.; Pospisilik, J.A.; Aho, V.T.E.; Houser, M.C.; Pereira, P.A.B.; Rudi, K.; Paulin, L.; Tansey, M.G.; Auvinen, P.; Brundin, P.; Brundin, L.; Labrie, V.; Scheperjans, F. Bacterial butyrate in parkinson’s disease is linked to epigenetic changes and depressive symptoms. Mov. Disord., 2022, 37(8), 1644-1653. doi: 10.1002/mds.29128 PMID: 35723531
  80. Verhaar, B.J.H.; Hendriksen, H.M.A.; de Leeuw, F.A.; Doorduijn, A.S.; van Leeuwenstijn, M.; Teunissen, C.E.; Barkhof, F.; Scheltens, P.; Kraaij, R.; van Duijn, C.M.; Nieuwdorp, M.; Muller, M.; van der Flier, W.M. Gut microbiota composition is related to ad pathology. Front. Immunol., 2022, 12, 794519. doi: 10.3389/fimmu.2021.794519 PMID: 35173707
  81. Cammann, D.; Lu, Y.; Cummings, M.J.; Zhang, M.L.; Cue, J.M.; Do, J.; Ebersole, J.; Chen, X.; Oh, E.C.; Cummings, J.L.; Chen, J. Genetic correlations between Alzheimer’s disease and gut microbiome genera. Sci. Rep., 2023, 13(1), 5258. doi: 10.1038/s41598-023-31730-5 PMID: 37002253
  82. Lang, Y.; Chu, F.; Shen, D.; Zhang, W.; Zheng, C.; Zhu, J.; Cui, L. Role of inflammasomes in neuroimmune and neurodegenerative diseases: A systematic review. Mediators Inflamm., 2018, 2018, 1-11. doi: 10.1155/2018/1549549 PMID: 29849483
  83. Miao, J.; Ma, H.; Yang, Y.; Liao, Y.; Lin, C.; Zheng, J.; Yu, M.; Lan, J. Microglia in Alzheimer’s disease: Pathogenesis, mechanisms, and therapeutic potentials. Front. Aging Neurosci., 2023, 15, 1201982. doi: 10.3389/fnagi.2023.1201982 PMID: 37396657
  84. Wes, P.D.; Holtman, I.R.; Boddeke, E.W.G.M.; Möller, T.; Eggen, B.J.L. Next generation transcriptomics and genomics elucidate biological complexity of microglia in health and disease. Glia, 2016, 64(2), 197-213. doi: 10.1002/glia.22866 PMID: 26040959
  85. Holtman, I.R.; Raj, D.D.; Miller, J.A.; Schaafsma, W.; Yin, Z.; Brouwer, N.; Wes, P.D.; Möller, T.; Orre, M.; Kamphuis, W.; Hol, E.M.; Boddeke, E.W.G.M.; Eggen, B.J.L. Induction of a common microglia gene expression signature by aging and neurodegenerative conditions: A co-expression meta-analysis. Acta Neuropathol. Commun., 2015, 3(1), 31. doi: 10.1186/s40478-015-0203-5 PMID: 26001565
  86. Pan, J.; Ma, N.; Yu, B.; Zhang, W.; Wan, J. Transcriptomic profiling of microglia and astrocytes throughout aging. J. Neuroinflammation, 2020, 17(1), 97. doi: 10.1186/s12974-020-01774-9 PMID: 32238175
  87. Spurrier, J.; Nicholson, L.; Fang, X.T.; Stoner, A.J.; Toyonaga, T.; Holden, D.; Siegert, T.R.; Laird, W.; Allnutt, M.A.; Chiasseu, M.; Brody, A.H.; Takahashi, H.; Nies, S.H.; Cañamás, A.P.; Sadasivam, P.; Lee, S.; Li, S.; Zhang, L.; Huang, Y.H.; Carson, R.E.; Cai, Z.; Strittmatter, S.M. Reversal of synapse loss in Alzheimer mouse models by targeting mGluR5 to prevent synaptic tagging by C1Q. Sci. Transl. Med., 2022, 14(647), eabi8593. doi: 10.1126/scitranslmed.abi8593 PMID: 35648810
  88. Balog, B.M.; Sonti, A.; Zigmond, R.E. Neutrophil biology in injuries and diseases of the central and peripheral nervous systems. Prog. Neurobiol., 2023, 228, 102488. doi: 10.1016/j.pneurobio.2023.102488 PMID: 37355220
  89. Aries, M.L.; Hensley-McBain, T. Neutrophils as a potential therapeutic target in Alzheimer’s disease. Front. Immunol., 2023, 14, 1123149. doi: 10.3389/fimmu.2023.1123149 PMID: 36936930
  90. Harcha, P.A.; Garcés, P.; Arredondo, C.; Fernández, G.; Sáez, J.C.; van Zundert, B. Mast cell and astrocyte hemichannels and their role in alzheimer’s disease, ALS, and harmful stress conditions. Int. J. Mol. Sci., 2021, 22(4), 1924. doi: 10.3390/ijms22041924 PMID: 33672031
  91. Wang, S.; van de Pavert, S.A. Innate lymphoid cells in the central nervous system. Front. Immunol., 2022, 13, 837250. doi: 10.3389/fimmu.2022.837250 PMID: 35185929
  92. Brauning, A.; Rae, M.; Zhu, G.; Fulton, E.; Admasu, T.D.; Stolzing, A.; Sharma, A. Aging of the immune system: Focus on natural killer cells phenotype and functions. Cells, 2022, 11(6), 1017. doi: 10.3390/cells11061017 PMID: 35326467
  93. Prager, I.; Watzl, C. Mechanisms of natural killer cell-mediated cellular cytotoxicity. J. Leukoc. Biol., 2019, 105(6), 1319-1329. doi: 10.1002/JLB.MR0718-269R PMID: 31107565
  94. Menees, K.B.; Lee, J.K. New insights and implications of natural killer cells in parkinson’s disease. J. Parkinsons Dis., 2022, 12(s1), S83-S92. doi: 10.3233/JPD-223212 PMID: 35570499
  95. Zhang, L.; Zhang, Y.; Fan, D. Pathological role of natural killer cells in parkinson’s disease: A systematic review. Front. Aging Neurosci., 2022, 14, 890816. doi: 10.3389/fnagi.2022.890816 PMID: 35663564
  96. Muñiz-Castrillo, S.; Vogrig, A.; Honnorat, J. Associations between HLA and autoimmune neurological diseases with autoantibodies. Auto Immun. Highlights, 2020, 11(1), 2. doi: 10.1186/s13317-019-0124-6 PMID: 32127039
  97. Boon, B.D.C.; Hoozemans, J.J.M.; Lopuhaä, B.; Eigenhuis, K.N.; Scheltens, P.; Kamphorst, W.; Rozemuller, A.J.M.; Bouwman, F.H. Neuroinflammation is increased in the parietal cortex of atypical Alzheimer’s disease. J. Neuroinflammation, 2018, 15(1), 170. doi: 10.1186/s12974-018-1180-y PMID: 29843759
  98. Wang, Z.T.; Chen, S.D.; Xu, W.; Chen, K.L.; Wang, H.F.; Tan, C.C.; Cui, M.; Dong, Q.; Tan, L.; Yu, J.T. Genome-wide association study identifies CD1A associated with rate of increase in plasma neurofilament light in non-demented elders. Aging, 2019, 11(13), 4521-4535. doi: 10.18632/aging.102066 PMID: 31295725
  99. Chew, H.; Solomon, V.A.; Fonteh, A.N. Involvement of lipids in Alzheimer’s disease pathology and potential therapies. Front. Physiol., 2020, 11, 598. doi: 10.3389/fphys.2020.00598 PMID: 32581851
  100. Al-kuraishy, H.M.; Al-Gareeb, A.I.; Alexiou, A.; Papadakis, M.; Alsayegh, A.A.; Almohmadi, N.H.; Saad, H.M.; Batiha, G.E.S. Pros and cons for statins use and risk of Parkinson’s disease: An updated perspective. Pharmacol. Res. Perspect., 2023, 11(2), e01063. doi: 10.1002/prp2.1063 PMID: 36811160
  101. Sulzer, D.; Alcalay, R.N.; Garretti, F.; Cote, L.; Kanter, E.; Agin-Liebes, J.; Liong, C.; McMurtrey, C.; Hildebrand, W.H.; Mao, X.; Dawson, V.L.; Dawson, T.M.; Oseroff, C.; Pham, J.; Sidney, J.; Dillon, M.B.; Carpenter, C.; Weiskopf, D.; Phillips, E.; Mallal, S.; Peters, B.; Frazier, A.; Lindestam, A.C.S.; Sette, A. T cells from patients with Parkinson’s disease recognize α-synuclein peptides. Nature, 2017, 546(7660), 656-661. doi: 10.1038/nature22815 PMID: 28636593
  102. Williams, G.P.; Schonhoff, A.M.; Jurkuvenaite, A.; Gallups, N.J.; Standaert, D.G.; Harms, A.S. CD4 T cells mediate brain inflammation and neurodegeneration in a mouse model of Parkinson’s disease. Brain, 2021, 144(7), 2047-2059. doi: 10.1093/brain/awab103 PMID: 33704423
  103. Iba, M.; Kim, C.; Sallin, M.; Kwon, S.; Verma, A.; Overk, C.; Rissman, R.A.; Sen, R.; Sen, J.M.; Masliah, E. Neuroinflammation is associated with infiltration of T cells in Lewy body disease and α-synuclein transgenic models. J. Neuroinflammation, 2020, 17(1), 214. doi: 10.1186/s12974-020-01888-0 PMID: 32680537
  104. Lyman, M.; Lloyd, D.G.; Ji, X.; Vizcaychipi, M.P.; Ma, D. Neuroinflammation: The role and consequences. Neurosci. Res., 2014, 79, 1-12. doi: 10.1016/j.neures.2013.10.004 PMID: 24144733
  105. Carrasco, E.; Gómez de las Heras, M.M.; Gabandé-Rodríguez, E.; Desdín-Micó, G.; Aranda, J.F.; Mittelbrunn, M. The role of T cells in age-related diseases. Nat. Rev. Immunol., 2022, 22(2), 97-111. doi: 10.1038/s41577-021-00557-4 PMID: 34099898
  106. Gate, D.; Saligrama, N.; Leventhal, O.; Yang, A.C.; Unger, M.S.; Middeldorp, J.; Chen, K.; Lehallier, B.; Channappa, D.; De Los Santos, M.B.; McBride, A.; Pluvinage, J.; Elahi, F.; Tam, G.K.Y.; Kim, Y.; Greicius, M.; Wagner, A.D.; Aigner, L.; Galasko, D.R.; Davis, M.M.; Wyss-Coray, T. Clonally expanded CD8 T cells patrol the cerebrospinal fluid in Alzheimer’s disease. Nature, 2020, 577(7790), 399-404. doi: 10.1038/s41586-019-1895-7 PMID: 31915375
  107. Mietelska-Porowska, A.; Wojda, U. T lymphocytes and inflammatory mediators in the interplay between brain and blood in Alzheimer’s disease: Potential pools of new biomarkers. J. Immunol. Res., 2017, 2017, 1-17. doi: 10.1155/2017/4626540 PMID: 28293644
  108. Rezai-Zadeh, K.; Gate, D.; Town, T. CNS infiltration of peripheral immune cells: D-Day for neurodegenerative disease? J. Neuroimmune Pharmacol., 2009, 4(4), 462-475. doi: 10.1007/s11481-009-9166-2 PMID: 19669892
  109. Dai, L.; Shen, Y. Insights into Tcell dysfunction in Alzheimer’s disease. Aging Cell, 2021, 20(12), e13511. doi: 10.1111/acel.13511 PMID: 34725916
  110. Machhi, J.; Yeapuri, P.; Lu, Y.; Foster, E.; Chikhale, R.; Herskovitz, J.; Namminga, K.L.; Olson, K.E.; Abdelmoaty, M.M.; Gao, J.; Quadros, R.M.; Kiyota, T.; Jingjing, L.; Kevadiya, B.D.; Wang, X.; Liu, Y.; Poluektova, L.Y.; Gurumurthy, C.B.; Mosley, R.L.; Gendelman, H.E. CD4+ effector T cells accelerate Alzheimer’s disease in mice. J. Neuroinflammation, 2021, 18(1), 272. doi: 10.1186/s12974-021-02308-7 PMID: 34798897
  111. Monsonego, A.; Zota, V.; Karni, A.; Krieger, J.I.; Bar-Or, A.; Bitan, G.; Budson, A.E.; Sperling, R.; Selkoe, D.J.; Weiner, H.L. Increased T cell reactivity to amyloid β protein in older humans and patients with Alzheimer disease. J. Clin. Invest., 2003, 112(3), 415-422. doi: 10.1172/JCI200318104 PMID: 12897209
  112. Kustrimovic, N.; Comi, C.; Magistrelli, L.; Rasini, E.; Legnaro, M.; Bombelli, R.; Aleksic, I.; Blandini, F.; Minafra, B.; Riboldazzi, G.; Sturchio, A.; Mauri, M.; Bono, G.; Marino, F.; Cosentino, M. Parkinson’s disease patients have a complex phenotypic and functional Th1 bias: Cross-sectional studies of CD4+ Th1/Th2/T17 and Treg in drug-naïve and drug-treated patients. J. Neuroinflammation, 2018, 15(1), 205. doi: 10.1186/s12974-018-1248-8 PMID: 30001736
  113. Saunders, J.A.H.; Estes, K.A.; Kosloski, L.M.; Allen, H.E.; Dempsey, K.M.; Torres-Russotto, D.R.; Meza, J.L.; Santamaria, P.M.; Bertoni, J.M.; Murman, D.L.; Ali, H.H.; Standaert, D.G.; Mosley, R.L.; Gendelman, H.E. CD4+ regulatory and effector/memory T cell subsets profile motor dysfunction in Parkinson’s disease. J. Neuroimmune Pharmacol., 2012, 7(4), 927-938. doi: 10.1007/s11481-012-9402-z PMID: 23054369
  114. Xu, Y.; Li, Y.; Wang, C.; Han, T.; Liu, H.; Sun, L.; Hong, J.; Hashimoto, M.; Wei, J. The reciprocal interactions between microglia and T cells in Parkinson’s disease: A double-edged sword. J. Neuroinflammation, 2023, 20(1), 33. doi: 10.1186/s12974-023-02723-y PMID: 36774485
  115. Vacinova, G.; Vejražkova, D.; Rusina, R.; Holmerová, I.; Vaňková, H.; Jarolímová, E.; Včelák, J.; Bendlová, B.; Vaňková, M. Regulated upon activation, normal T cell expressed and secreted (RANTES) levels in the peripheral blood of patients with Alzheimer’s disease. Neural Regen. Res., 2021, 16(4), 796-800. doi: 10.4103/1673-5374.295340 PMID: 33063745
  116. Schwartz, M.; Baruch, K. Breaking peripheral immune tolerance to CNS antigens in neurodegenerative diseases: Boosting autoimmunity to fight-off chronic neuroinflammation. J. Autoimmun., 2014, 54, 8-14. doi: 10.1016/j.jaut.2014.08.002
  117. Chen, X.; Firulyova, M.; Manis, M.; Herz, J.; Smirnov, I.; Aladyeva, E.; Wang, C.; Bao, X.; Finn, M.B.; Hu, H.; Shchukina, I.; Kim, M.W.; Yuede, C.M.; Kipnis, J.; Artyomov, M.N.; Ulrich, J.D.; Holtzman, D.M. Microglia-mediated T cell infiltration drives neurodegeneration in tauopathy. Nature, 2023, 615(7953), 668-677. doi: 10.1038/s41586-023-05788-0 PMID: 36890231
  118. Subbarayan, M.S.; Hudson, C.; Moss, L.D.; Nash, K.R.; Bickford, P.C. T cell infiltration and upregulation of MHCII in microglia leads to accelerated neuronal loss in an α-synuclein rat model of Parkinson’s disease. J. Neuroinflammation, 2020, 17(1), 242. doi: 10.1186/s12974-020-01911-4 PMID: 32799878
  119. Cai, H.Y.; Fu, X.X.; Jiang, H.; Han, S. Adjusting vascular permeability, leukocyte infiltration, and microglial cell activation to rescue dopaminergic neurons in rodent models of Parkinson’s disease. NPJ Parkinsons Dis., 2021, 7(1), 91. doi: 10.1038/s41531-021-00233-3 PMID: 34625569
  120. Liu, Y.; Sorce, S.; Nuvolone, M.; Domange, J.; Aguzzi, A. Lymphocyte activation gene 3 (Lag3) expression is increased in prion infections but does not modify disease progression. Sci. Rep., 2018, 8(1), 14600. doi: 10.1038/s41598-018-32712-8 PMID: 30279468
  121. Guo, W.; Zhou, M.; Qiu, J.; Lin, Y.; Chen, X.; Huang, S.; Mo, M.; Liu, H.; Peng, G.; Zhu, X.; Xu, P. Association of LAG3 genetic variation with an increased risk of PD in Chinese female population. J. Neuroinflammation, 2019, 16(1), 270. doi: 10.1186/s12974-019-1654-6 PMID: 31847878
  122. García-Martín, E.; Pastor, P.; Gómez-Tabales, J.; Alonso-Navarro, H.; Alvarez, I.; Buongiorno, M.; Cerezo-Arias, M.O.; Aguilar, M.; Agúndez, J.A.G.; Jiménez-Jiménez, F.J. Association between LAG3/CD4 gene variants and risk of Parkinson’s disease. Eur. J. Clin. Invest., 2022, 52(11), e13847. doi: 10.1111/eci.13847 PMID: 36224715
  123. Cui, S.; Du, J.J.; Liu, S.H.; Meng, J.; Lin, Y.Q.; Li, G.; He, Y.X.; Zhang, P.C.; Chen, S.; Wang, G. Serum soluble lymphocyte activation gene3 as a diagnostic biomarker in Parkinson’s disease: A pilot multicenter study. Mov. Disord., 2019, 34(1), 138-141. doi: 10.1002/mds.27569 PMID: 30485547
  124. Roy, A.; Choudhury, S.; Banerjee, R.; Basu, P.; Kumar, H. Soluble LAG-3 and Toll-interacting protein: Novel upstream neuro-inflammatory markers in Parkinson’s disease. Parkinsonism Relat. Disord., 2021, 91, 121-123. doi: 10.1016/j.parkreldis.2021.09.019 PMID: 34601340
  125. Saresella, M.; Calabrese, E.; Marventano, I.; Piancone, F.; Gatti, A.; Calvo, M.G.; Nemni, R.; Clerici, M. PD1 negative and PD1 positive CD4+ T regulatory cells in mild cognitive impairment and Alzheimer’s disease. J. Alzheimers Dis., 2010, 21(3), 927-938. doi: 10.3233/JAD-2010-091696 PMID: 20634592
  126. Olson, K.E.; Mosley, R.L.; Gendelman, H.E. The potential for treg-enhancing therapies in nervous system pathologies. Clin. Exp. Immunol., 2022, uxac084. PMID: 36041453
  127. Beers, D.R.; Zhao, W.; Wang, J.; Zhang, X.; Wen, S.; Neal, D.; Thonhoff, J.R.; Alsuliman, A.S.; Shpall, E.J.; Rezvani, K.; Appel, S.H. ALS patients’ regulatory T lymphocytes are dysfunctional, and correlate with disease progression rate and severity. JCI Insight, 2017, 2(5), e89530. doi: 10.1172/jci.insight.89530 PMID: 28289705
  128. Schröder, J.B.; Pawlowski, M.; Meyer zu Hörste, G.; Gross, C.C.; Wiendl, H.; Meuth, S.G.; Ruck, T.; Warnecke, T. Immune cell activation in the cerebrospinal fluid of patients with Parkinson’s disease. Front. Neurol., 2018, 9, 1081. doi: 10.3389/fneur.2018.01081 PMID: 30619041
  129. Stym-Popper, G.; Matta, K.; Chaigneau, T.; Rupra, R.; Demetriou, A.; Fouquet, S.; Dansokho, C.; Toly-Ndour, C.; Dorothée, G. Regulatory T cells decrease C3-positive reactive astrocytes in Alzheimer-like pathology. J. Neuroinflammation, 2023, 20(1), 64. doi: 10.1186/s12974-023-02702-3 PMID: 36890536
  130. Ciccocioppo, F.; Lanuti, P.; Pierdomenico, L.; Simeone, P.; Bologna, G.; Ercolino, E.; Buttari, F.; Fantozzi, R.; Thomas, A.; Onofrj, M.; Centonze, D.; Miscia, S.; Marchisio, M. The characterization of regulatory t-cell profiles in Alzheimer’s disease and multiple sclerosis. Sci. Rep., 2019, 9(1), 8788. doi: 10.1038/s41598-019-45433-3
  131. Baruch, K.; Rosenzweig, N.; Kertser, A.; Deczkowska, A.; Sharif, A.M.; Spinrad, A.; Tsitsou-Kampeli, A.; Sarel, A.; Cahalon, L.; Schwartz, M. Breaking immune tolerance by targeting Foxp3+ regulatory T cells mitigates Alzheimer’s disease pathology. Nat. Commun., 2015, 6(1), 7967. doi: 10.1038/ncomms8967 PMID: 26284939
  132. Novakova Martinkova, J.; Ferretti, M.T.; Ferrari, A.; Lerch, O.; Matuskova, V.; Secnik, J.; Hort, J. Longitudinal progression of choroid plexus enlargement is associated with female sex, cognitive decline and ApoE E4 homozygote status. Front. Psychiatry, 2023, 14, 1039239. doi: 10.3389/fpsyt.2023.1039239 PMID: 36970283
  133. Yang, H.; Park, S.Y.; Baek, H.; Lee, C.; Chung, G.; Liu, X.; Lee, J.H.; Kim, B.; Kwon, M.; Choi, H.; Kim, H.J.; Kim, J.Y.; Kim, Y.; Lee, Y.S.; Lee, G.; Kim, S.K.; Kim, J.S.; Chang, Y.T.; Jung, W.S.; Kim, K.H.; Bae, H. Adoptive therapy with amyloid-β specific regulatory T cells alleviates Alzheimer’s disease. Theranostics, 2022, 12(18), 7668-7680. doi: 10.7150/thno.75965 PMID: 36451854
  134. Moore, J.R.; Hubler, S.L.; Nelson, C.D.; Nashold, F.E.; Spanier, J.A.; Hayes, C.E. 1,25-Dihydroxyvitamin D3 increases the methionine cycle, CD4+ T cell DNA methylation and Helios+Foxp3+ T regulatory cells to reverse autoimmune neurodegenerative disease. J. Neuroimmunol., 2018, 324, 100-114. doi: 10.1016/j.jneuroim.2018.09.008 PMID: 30267995
  135. Janjusevic, M.; Gagno, G.; Fluca, A.L.; Padoan, L.; Beltrami, A.P.; Sinagra, G.; Moretti, R.; Aleksova, A. The peculiar role of vitamin D in the pathophysiology of cardiovascular and neurodegenerative diseases. Life Sci., 2022, 289, 120193. doi: 10.1016/j.lfs.2021.120193 PMID: 34864062
  136. Shi, Y.; Wei, B.; Li, L.; Wang, B.; Sun, M. Th17 cells and inflammation in neurological disorders: Possible mechanisms of action. Front. Immunol., 2022, 13, 932152. doi: 10.3389/fimmu.2022.932152 PMID: 35935951
  137. Sommer, A.; Marxreiter, F.; Krach, F.; Fadler, T.; Grosch, J.; Maroni, M.; Graef, D.; Eberhardt, E.; Riemenschneider, M.J.; Yeo, G.W.; Kohl, Z.; Xiang, W.; Gage, F.H.; Winkler, J.; Prots, I.; Winner, B. Th17 lymphocytes induce neuronal cell death in a human iPSC-based model of Parkinson’s disease. Cell Stem Cell, 2019, 24(6), 1006. doi: 10.1016/j.stem.2019.04.019 PMID: 31173705
  138. Li, J. Zhao, J.; Chen, L.; Gao, H.; Zhang, J.; Wang, D.; Zou, Y.; Qin, Q.; Qu, Y.; Li, J.; Xiong, Y.; Min, Z.; Yan, M.; Mao, Z.; Xue, Z. α-Synuclein induces Th17 differentiation and impairs the function and stability of Tregs by promoting RORC transcription in Parkinson’s disease. Brain Behav. Immun., 2023, 108, 32-44. doi: 10.1016/j.bbi.2022.10.023 PMID: 36343753
  139. Mohammadi, S., V.; Ravari, A.; Mirzaei, T.; Zare-Bidaki, M.; Asadikaram, G.; Arababadi, M.K. IL-17A and IL-23: Plausible risk factors to induce age-associated inflammation in Alzheimer’s disease. Immunol. Invest., 2018, 47(8), 812-822. doi: 10.1080/08820139.2018.1504300 PMID: 30081688
  140. Biragyn, A.; Aliseychik, M.; Rogaev, E. Potential importance of B cells in aging and aging-associated neurodegenerative diseases. Semin. Immunopathol., 2017, 39(3), 283-294. doi: 10.1007/s00281-016-0615-8 PMID: 28083646
  141. Sabatino, J.J., Jr; Pröbstel, A.K.; Zamvil, S.S. B cells in autoimmune and neurodegenerative central nervous system diseases. Nat. Rev. Neurosci., 2019, 20(12), 728-745. doi: 10.1038/s41583-019-0233-2 PMID: 31712781
  142. Orr, C.F.; Rowe, D.B.; Mizuno, Y.; Mori, H.; Halliday, G.M. A possible role for humoral immunity in the pathogenesis of Parkinson’s disease. Brain, 2005, 128(11), 2665-2674. doi: 10.1093/brain/awh625 PMID: 16219675
  143. Du, Y.; Dodel, R.; Hampel, H.; Buerger, K.; Lin, S.; Eastwood, B.; Bales, K.; Gao, F.; Moeller, H.J.; Oertel, W.; Farlow, M.; Paul, S. Reduced levels of amyloid -peptide antibody in Alzheimer disease. Neurology, 2001, 57(5), 801-805. doi: 10.1212/WNL.57.5.801 PMID: 11552007
  144. Hyman, B.T.; Smith, C.; Buldyrev, I.; Whelan, C.; Brown, H.; Tang, M.X.; Mayeux, R. Autoantibodies to amyloid-? and Alzheimer’s disease. Ann. Neurol., 2001, 49(6), 808-810. doi: 10.1002/ana.1061 PMID: 11409436
  145. Weksler, M.E.; Relkin, N.; Turkenich, R.; LaRusse, S.; Zhou, L.; Szabo, P. Patients with Alzheimer disease have lower levels of serum anti-amyloid peptide antibodies than healthy elderly individuals. Exp. Gerontol., 2002, 37(7), 943-948. doi: 10.1016/S0531-5565(02)00029-3 PMID: 12086704
  146. DeMarshall, C.A.; Viviano, J.; Emrani, S.; Thayasivam, U.; Godsey, G.A.; Sarkar, A.; Belinka, B.; Libon, D.J.; Nagele, R.G. Early detection of alzheimer’s disease-related pathology using a multi-disease diagnostic platform employing autoantibodies as blood-based biomarkers. J. Alzheimers Dis., 2023, 92(3), 1077-1091. doi: 10.3233/JAD-221091 PMID: 36847005
  147. Carvey, P.M.; McRae, A.; Lint, T.F.; Ptak, L.R.; Lo, E.S.; Goetz, C.G.; Klawans, H.L. The potential use of a dopamine neuron antibody and a striatal-derived neurotrophic factor as diagnostic markers in Parkinson’s disease., Neurology, 1991, 41 (5, Supplement 2)(2), 53-58. doi: 10.1212/WNL.41.5_Suppl_2.53 PMID: 2041594
  148. Chen, S.; Le, W.D.; Xie, W.J.; Alexianu, M.E.; Engelhardt, J.I.; Siklós, L.; Appel, S.H. Experimental destruction of substantia nigra initiated by Parkinson disease immunoglobulins. Arch. Neurol., 1998, 55(8), 1075-1080. doi: 10.1001/archneur.55.8.1075 PMID: 9708957
  149. Le, W.D.; Rowe, D.B.; Jankovic, J.; Xie, W.; Appel, S.H. Effects of cerebrospinal fluid from patients with Parkinson disease on dopaminergic cells. Arch. Neurol., 1999, 56(2), 194-200. doi: 10.1001/archneur.56.2.194 PMID: 10025424
  150. Papachroni, K.K.; Ninkina, N.; Papapanagiotou, A.; Hadjigeorgiou, G.M.; Xiromerisiou, G.; Papadimitriou, A.; Kalofoutis, A.; Buchman, V.L. Autoantibodies to alpha-synuclein in inherited Parkinson’s disease. J. Neurochem., 2007, 101(3), 749-756. doi: 10.1111/j.1471-4159.2006.04365.x PMID: 17448146
  151. Shalash, A.; Salama, M.; Makar, M.; Roushdy, T.; Elrassas, H.H.; Mohamed, W.; El-Balkimy, M.; Abou, D.M. Elevated serum α-synuclein autoantibodies in patients with Parkinson’s disease relative to Alzheimer’s disease and controls. Front. Neurol., 2017, 8, 720. doi: 10.3389/fneur.2017.00720 PMID: 29312137
  152. Besong-Agbo, D.; Wolf, E.; Jessen, F.; Oechsner, M.; Hametner, E.; Poewe, W.; Reindl, M.; Oertel, W.H.; Noelker, C.; Bacher, M.; Dodel, R. Naturally occurring -synuclein autoantibody levels are lower in patients with Parkinson disease. Neurology, 2013, 80(2), 169-175. doi: 10.1212/WNL.0b013e31827b90d1 PMID: 23255825
  153. Horvath, I.; Iashchishyn, I.A.; Forsgren, L.; Morozova-Roche, L.A. Immunochemical detection of α-synuclein autoantibodies in Parkinson’s disease: Correlation between plasma and cerebrospinal fluid levels. ACS Chem. Neurosci., 2017, 8(6), 1170-1176. doi: 10.1021/acschemneuro.7b00063 PMID: 28263550
  154. Akhtar, R.S.; Licata, J.P.; Luk, K.C.; Shaw, L.M.; Trojanowski, J.Q.; Lee, V.M.Y. Measurements of auto-antibodies to α-synuclein in the serum and cerebral spinal fluids of patients with Parkinson’s disease. J. Neurochem., 2018, 145(6), 489-503. doi: 10.1111/jnc.14330 PMID: 29500813
  155. Double, K.L.; Rowe, D.B.; Carew-Jones, F.M.; Hayes, M.; Chan, D.K.Y.; Blackie, J.; Corbett, A.; Joffe, R.; Fung, V.S.; Morris, J.; Riederer, P.; Gerlach, M.; Halliday, G.M. Anti-melanin antibodies are increased in sera in Parkinson’s disease. Exp. Neurol., 2009, 217(2), 297-301. doi: 10.1016/j.expneurol.2009.03.002 PMID: 19289120
  156. Zappia, M.; Crescibene, L.; Bosco, D.; Arabia, G.; Nicoletti, G.; Bagalà, A.; Bastone, L.; Napoli, I.D.; Caracciolo, M.; Bonavita, S.; Di Costanzo, A.; Gambardella, A.; Quattrone, A. Anti-GM1 ganglioside antibodies in Parkinson’s disease. Acta Neurol. Scand., 2002, 106(1), 54-57. doi: 10.1034/j.1600-0404.2002.01240.x PMID: 12067330
  157. De Virgilio, A.; Greco, A.; Fabbrini, G.; Inghilleri, M.; Rizzo, M.I.; Gallo, A.; Conte, M.; Rosato, C.; Ciniglio Appiani, M.; de Vincentiis, M. Parkinson’s disease: Autoimmunity and neuroinflammation. Autoimmun. Rev., 2016, 15(10), 1005-1011. doi: 10.1016/j.autrev.2016.07.022 PMID: 27497913
  158. Benkler, M.; Agmon-Levin, N.; Hassin-Baer, S.; Cohen, O.S.; Ortega-Hernandez, O.D.; Levy, A.; Moscavitch, S.D.; Szyper-Kravitz, M.; Damianovich, M.; Blank, M.; Chapman, J.; Shoenfeld, Y. Immunology, autoimmunity, and autoantibodies in Parkinson’s disease. Clin. Rev. Allergy Immunol., 2012, 42(2), 164-171. doi: 10.1007/s12016-010-8242-y PMID: 21234712
  159. Papuć, E.; Rejdak, K. Anti-MAG autoantibodies are increased in Parkinson’s disease but not in atypical parkinsonism. J. Neural Transm., 2017, 124(2), 209-216. doi: 10.1007/s00702-016-1632-4 PMID: 27766424
  160. Honorat, J.A.; McKeon, A. Autoimmune movement disorders: A clinical and laboratory approach. Curr. Neurol. Neurosci. Rep., 2017, 17(1), 4. doi: 10.1007/s11910-017-0709-2 PMID: 28120141
  161. Caggiu, E.; Paulus, K.; Arru, G.; Piredda, R.; Sechi, G.P.; Sechi, L.A. Humoral cross reactivity between α-synuclein and herpes simplex-1 epitope in Parkinson’s disease, a triggering role in the disease? J. Neuroimmunol., 2016, 291, 110-114. doi: 10.1016/j.jneuroim.2016.01.007 PMID: 26857504
  162. Cebrián, C.; Zucca, F.A.; Mauri, P.; Steinbeck, J.A.; Studer, L.; Scherzer, C.R.; Kanter, E.; Budhu, S.; Mandelbaum, J.; Vonsattel, J.P.; Zecca, L.; Loike, J.D.; Sulzer, D. MHC-I expression renders catecholaminergic neurons susceptible to T-cell-mediated degeneration. Nat. Commun., 2014, 5(1), 3633. doi: 10.1038/ncomms4633 PMID: 24736453
  163. Jiang, T.; Li, G.; Xu, J.; Gao, S.; Chen, X. The challenge of the pathogenesis of parkinson’s disease: Is autoimmunity the culprit? Front. Immunol., 2018, 9, 2047. doi: 10.3389/fimmu.2018.02047 PMID: 30319601
  164. Oberländer, U.; Pletinckx, K.; Döhler, A.; Müller, N.; Lutz, M.B.; Arzberger, T.; Riederer, P.; Gerlach, M.; Koutsilieri, E.; Scheller, C. Neuromelanin is an immune stimulator for dendritic cells in vitro. BMC Neurosci., 2011, 12(1), 116. doi: 10.1186/1471-2202-12-116 PMID: 22085464
  165. Koutsilieri, E.; Lutz, M.B.; Scheller, C. Autoimmunity, dendritic cells and relevance for Parkinson’s disease. J. Neural Transm., 2013, 120(1), 75-81. doi: 10.1007/s00702-012-0842-7 PMID: 22699458
  166. Depboylu, C.; Schäfer, M.K.H.; Arias-Carrión, O.; Oertel, W.H.; Weihe, E.; Höglinger, G.U. Possible involvement of complement factor C1q in the clearance of extracellular neuromelanin from the substantia nigra in Parkinson disease. J. Neuropathol. Exp. Neurol., 2011, 70(2), 125-132. doi: 10.1097/NEN.0b013e31820805b9 PMID: 21343881
  167. Alberici, A.; Cristillo, V.; Gazzina, S.; Benussi, A.; Padovani, A.; Borroni, B. Autoimmunity and frontotemporal dementia. Curr. Alzheimer Res., 2018, 15(7), 602-609. doi: 10.2174/1567205015666180119104825 PMID: 29357796
  168. Palese, F.; Bonomi, E.; Nuzzo, T.; Benussi, A.; Mellone, M.; Zianni, E.; Cisani, F.; Casamassa, A.; Alberici, A.; Scheggia, D.; Padovani, A.; Marcello, E.; Di Luca, M.; Pittaluga, A.; Usiello, A.; Borroni, B.; Gardoni, F. Anti-GluA3 antibodies in frontotemporal dementia: Effects on glutamatergic neurotransmission and synaptic failure. Neurobiol. Aging, 2020, 86, 143-155. doi: 10.1016/j.neurobiolaging.2019.10.015 PMID: 31784278
  169. Arshad, F.; Varghese, F.; Paplikar, A.; Gangadhar, Y.; Ramakrishnan, S.; Chaudhuri, J.R.; Mahadevan, A.; Alladi, S. Role of autoantibodies in neurodegenerative dementia: An emerging association. Dement. Geriatr. Cogn. Disord., 2021, 50(2), 153-160. doi: 10.1159/000517238 PMID: 34237731
  170. Maftei, M.; Thurm, F.; Schnack, C.; Tumani, H.; Otto, M.; Elbert, T.; Kolassa, I.T.; Przybylski, M.; Manea, M.; von Arnim, C.A.F. Increased levels of antigen-bound β-amyloid autoantibodies in serum and cerebrospinal fluid of Alzheimer’s disease patients. PLoS One, 2013, 8(7), e68996. doi: 10.1371/journal.pone.0068996 PMID: 23874844
  171. Bartos, A.; Fialová, L.; Švarcová, J. Lower serum antibodies against tau protein and heavy neurofilament in alzheimer’s disease. J. Alzheimers Dis., 2018, 64(3), 751-760. doi: 10.3233/JAD-180039 PMID: 29966192
  172. Koval, L.; Lykhmus, O.; Kalashnyk, O.; Bachinskaya, N.; Kravtsova, G.; Soldatkina, M.; Zouridakis, M.; Stergiou, C.; Tzartos, S.; Tsetlin, V.; Komisarenko, S.; Skok, M. The presence and origin of autoantibodies against α4 and α7 nicotinic acetylcholine receptors in the human blood: Possible relevance to Alzheimer’s pathology. J. Alzheimers Dis., 2011, 25(4), 747-761. doi: 10.3233/JAD-2011-101845 PMID: 21593571
  173. Davydova, T.V.; Mikovskaya, O.I.; Fomina, V.G.; Voskresenskaya, N.I.; Doronina, O.A. Induction of immune complexes and autoantibodies to serotonin and dopamine in patients with Alzheimer’s disease. Bull. Exp. Biol. Med., 2002, 134(1), 23-25. doi: 10.1023/A:1020692218416 PMID: 12459860
  174. Davydova, T.V.; Voskresenskaya, N.I.; Gorbatov, V.Y.; Fomina, V.G.; Doronina, O.A.; Maksunova, I.V. Production of autoantibodies to glutamate during Alzheimer’s dementia. Bull. Exp. Biol. Med., 2009, 147(4), 405-407. doi: 10.1007/s10517-009-0530-2 PMID: 19704934
  175. Busse, S.; Brix, B.; Kunschmann, R.; Bogerts, B.; Stoecker, W.; Busse, M. N-methyl-d-aspartate glutamate receptor (NMDA-R) antibodies in mild cognitive impairment and dementias. Neurosci. Res., 2014, 85, 58-64. doi: 10.1016/j.neures.2014.06.002 PMID: 24973618
  176. Gruden, M.A.; Davidova, T.B.; Mališauskas, M.; Sewell, R.D.E.; Voskresenskaya, N.I.; Wilhelm, K.; Elistratova, E.I.; Sherstnev, V.V.; Morozova-Roche, L.A. Differential neuroimmune markers to the onset of Alzheimer’s disease neurodegeneration and dementia: Autoantibodies to Aβ(25–35) oligomers, S100b and neurotransmitters. J. Neuroimmunol., 2007, 186(1-2), 181-192. doi: 10.1016/j.jneuroim.2007.03.023 PMID: 17477976
  177. Mecocci, P.; Parnetti, L.; Donato, R.; Santucci, C.; Santucci, A.; Cadini, D.; Foà, E.; Cecchetti, R.; Senin, U. Serum autoantibodies against glial fibrillary acidic protein in brain aging and senile dementias. Brain Behav. Immun., 1992, 6(3), 286-292. doi: 10.1016/0889-1591(92)90049-T PMID: 1392102
  178. McRae, A.; Dahlström, A.; Polinsky, R.; Ling, E.A. Cerebrospinal fluid microglial antibodies: Potential diagnostic markers for immune mechanisms in Alzheimer’s disease. Behav. Brain Res., 1993, 57(2), 225-234. doi: 10.1016/0166-4328(93)90139-H PMID: 8117427
  179. Kingsley, B.S.; Gaskin, F.; Fu, S.M. Human antibodies to neurofibrillary tangles and astrocytes in Alzheimer’s disease. J. Neuroimmunol., 1988, 19(1-2), 89-99. doi: 10.1016/0165-5728(88)90038-0 PMID: 3260906
  180. Kankaanpää, J.; Turunen, S.P.; Moilanen, V.; Hörkkö, S.; Remes, A.M. Cerebrospinal fluid antibodies to oxidized LDL are increased in Alzheimer’s disease. Neurobiol. Dis., 2009, 33(3), 467-472. doi: 10.1016/j.nbd.2008.12.001 PMID: 19130885
  181. Vojdani, A.; Vojdani, E. Amyloid-Beta 1-42 cross-reactive antibody prevalent in human sera may contribute to intraneuronal deposition of A-Beta-P-42. Int. J. Alzheimers Dis., 2018, 2018, 1-12. doi: 10.1155/2018/1672568 PMID: 30034864
  182. Mruthinti, S.; Schade, R.; Harrell, D.; Gulati, N.; Swamy-Mruthinti, S.; Lee, G.; Buccafusco, J. Autoimmunity in Alzheimer’s disease as evidenced by plasma immunoreactivity against RAGE and Abeta42: Complication of diabetes. Curr. Alzheimer Res., 2006, 3(3), 229-235. doi: 10.2174/156720506777632899 PMID: 16842100
  183. Giil, L.M.; Kristoffersen, E.K.; Vedeler, C.A.; Aarsland, D.; Nordrehaug, J.E.; Winblad, B.; Cedazo-Minguez, A.; Lund, A.; Reksten, T.R. Autoantibodies toward the angiotensin 2 Type 1 receptor: A novel autoantibody in alzheimer’s disease. J. Alzheimers Dis., 2015, 47(2), 523-529. doi: 10.3233/JAD-150053 PMID: 26401573
  184. Colasanti, T.; Barbati, C.; Rosano, G.; Malorni, W.; Ortona, E. Autoantibodies in patients with Alzheimer’s disease: Pathogenetic role and potential use as biomarkers of disease progression. Autoimmun. Rev., 2010, 9(12), 807-811. doi: 10.1016/j.autrev.2010.07.008 PMID: 20656067
  185. Ariga, T.; Jarvis, W.D.; Yu, R.K. Role of sphingolipid-mediated cell death in neurodegenerative diseases. J. Lipid Res., 1998, 39(1), 1-16. doi: 10.1016/S0022-2275(20)34198-5 PMID: 9469581
  186. Jianming, W.; Ling, L. Autoantibodies in Alzheimer’s disease: Potential biomarkers, pathogenic roles, and therapeutic implications. J. Biomed. Res., 2016, 30(5), 361-372. doi: 10.7555/JBR.30.20150131 PMID: 27476881
  187. Vacirca, D.; Delunardo, F.; Matarrese, P.; Colasanti, T.; Margutti, P.; Siracusano, A.; Pontecorvo, S.; Capozzi, A.; Sorice, M.; Francia, A.; Malorni, W.; Ortona, E. Autoantibodies to the adenosine triphosphate synthase play a pathogenetic role in Alzheimer’s disease. Neurobiol. Aging, 2012, 33(4), 753-766. doi: 10.1016/j.neurobiolaging.2010.05.013 PMID: 20594618
  188. Berry, A.; Vacirca, D.; Capoccia, S.; Bellisario, V.; Malorni, W.; Ortona, E.; Cirulli, F. Anti-ATP synthase autoantibodies induce neuronal death by apoptosis and impair cognitive performance in C57BL/6J mice. J. Alzheimers Dis., 2012, 33(2), 317-321. doi: 10.3233/JAD-2012-121312 PMID: 22954670
  189. Dinkins, M.B.; Dasgupta, S.; Wang, G.; Zhu, G.; He, Q.; Kong, J.N.; Bieberich, E. The 5XFAD mouse model of Alzheimer’s disease exhibits an age-dependent increase in anti-ceramide IgG and exogenous administration of ceramide further increases anti-ceramide titers and amyloid plaque burden. J. Alzheimers Dis., 2015, 46(1), 55-61. doi: 10.3233/JAD-150088 PMID: 25720409
  190. Li, X.; Sundquist, J.; Sundquist, K. Subsequent risks of Parkinson disease in patients with autoimmune and related disorders: A nationwide epidemiological study from Sweden. Neurodegener. Dis., 2012, 10(1-4), 277-284. doi: 10.1159/000333222 PMID: 22205172
  191. Li, X.; Sundquist, J.; Zöller, B.; Sundquist, K. Dementia and Alzheimer’s disease risks in patients with autoimmune disorders. Geriatr. Gerontol. Int., 2018, 18(9), 1350-1355. doi: 10.1111/ggi.13488 PMID: 30044040
  192. Cho, Y.Y.; Kim, B.; Shin, D.W.; Youn, J.; Mok, J.O.; Kim, C.H.; Kim, S.W.; Chung, J.H.; Han, K.; Kim, T.H. Graves’ disease and the risk of Parkinson’s disease: A Korean population-based study. Brain Commun., 2022, 4(1), fcac014. doi: 10.1093/braincomms/fcac014 PMID: 35187486
  193. Bonuccelli, U.; D’Avino, C.; Caraccio, N.; Del Guerra, P.; Casolaro, A.; Pavese, N.; Del Dotto, P.; Monzani, F. Thyroid function and autoimmunity in Parkinson’s disease: A study of 101 patients. Parkinsonism Relat. Disord., 1999, 5(1-2), 49-53. doi: 10.1016/S1353-8020(99)00010-3 PMID: 18591119
  194. Charoenngam, N.; Rittiphairoj, T.; Ponvilawan, B.; Prasongdee, K. Thyroid dysfunction and risk of Parkinson’s disease: A systematic review and meta-analysis. Front. Endocrinol., 2022, 13, 863281. doi: 10.3389/fendo.2022.863281 PMID: 35600588
  195. Yeung, C.H.C.; Au Yeung, S.L.; Schooling, C.M. Association of autoimmune diseases with Alzheimer’s disease: A mendelian randomization study. J. Psychiatr. Res., 2022, 155, 550-558. doi: 10.1016/j.jpsychires.2022.09.052 PMID: 36198219
  196. Ungprasert, P.; Wijarnpreecha, K.; Thongprayoon, C. Rheumatoid arthritis and the risk of dementia: A systematic review and meta-analysis. Neurol. India, 2016, 64(1), 56-61. doi: 10.4103/0028-3886.173623 PMID: 26754993
  197. McDowell, B.; Marr, C.; Holmes, C.; Edwards, C.J.; Cardwell, C.; McHenry, M.; Meenagh, G.; McGuinness, B. Prevalence of cognitive impairment in patients with rheumatoid arthritis: A cross sectional study. BMC Psychiatry, 2022, 22(1), 777. doi: 10.1186/s12888-022-04417-w PMID: 36494656
  198. Tansey, M.G.; Wallings, R.L.; Houser, M.C.; Herrick, M.K.; Keating, C.E.; Joers, V. Inflammation and immune dysfunction in Parkinson disease. Nat. Rev. Immunol., 2022, 22(11), 657-673. doi: 10.1038/s41577-022-00684-6 PMID: 35246670
  199. Li, D.; Hong, X.; Chen, T. Association between rheumatoid arthritis and risk of Parkinson’s disease: A meta-analysis and systematic review. Front. Neurol., 2022, 13, 885179. doi: 10.3389/fneur.2022.885179 PMID: 35645965
  200. Li, M.; Wan, J.; Xu, Z.; Tang, B. The association between Parkinson’s disease and autoimmune diseases: A systematic review and meta-analysis. Front. Immunol., 2023, 14, 1103053. doi: 10.3389/fimmu.2023.1103053 PMID: 36761731
  201. Policicchio, S.; Ahmad, A.N.; Powell, J.F.; Proitsi, P. Rheumatoid arthritis and risk for Alzheimer’s disease: A systematic review and meta-analysis and a Mendelian Randomization study. Sci. Rep., 2017, 7(1), 12861. doi: 10.1038/s41598-017-13168-8 PMID: 28993680
  202. Cooper, J.; Pastorello, Y.; Slevin, M. A meta-analysis investigating the relationship between inflammation in autoimmune disease, elevated CRP, and the risk of dementia. Front. Immunol., 2023, 14, 1087571. doi: 10.3389/fimmu.2023.1087571 PMID: 36776896
  203. Karabay, E.A.; Çerman, A.A.; Altunay, İ.K. Evaluation of comorbidities in patients with autoimmune bullous diseases: A retrospective study. Sisli Etfal Hastan Tip Bul., 2018, 52(4), 302-306. PMID: 32774095
  204. Yeh, F.C.; Chen, H.C.; Chou, Y.C.; Lin, C.L.; Kao, C.H.; Lo, H.Y.; Liu, F.C.; Yang, T.Y. Positive association of Parkinson’s disease with ankylosing spondylitis: A nationwide population-based study. J. Transl. Med., 2020, 18(1), 455. doi: 10.1186/s12967-020-02629-w PMID: 33256841
  205. Rønnow Sand, J.; Troelsen, F.S.; Horváth-Puhó, E.; Henderson, V.W.; Sørensen, H.T.; Erichsen, R. Risk of dementia in patients with inflammatory bowel disease: A Danish population-based study. Aliment. Pharmacol. Ther., 2022, 56(5), 831-843. doi: 10.1111/apt.17119 PMID: 35781292
  206. Zhang, B.; Wang, H.E.; Bai, Y.M.; Tsai, S.J.; Su, T.P.; Chen, T.J.; Wang, Y.P.; Chen, M.H. Inflammatory bowel disease is associated with higher dementia risk: A nationwide longitudinal study. Gut, 2021, 70(1), 85-91. doi: 10.1136/gutjnl-2020-320789 PMID: 32576641
  207. Szandruk-Bender, M.; Wiatrak, B.; Szeląg, A. The risk of developing Alzheimer’s disease and Parkinson’s disease in patients with inflammatory bowel disease: A meta-analysis. J. Clin. Med., 2022, 11(13), 3704. doi: 10.3390/jcm11133704 PMID: 35806985
  208. Aggarwal, M.; Alkhayyat, M.; Abou Saleh, M.; Sarmini, M.T.; Singh, A.; Garg, R.; Garg, P.; Mansoor, E.; Padival, R.; Cohen, B.L. Alzheimer disease occurs more frequently in patients with inflammatory bowel disease. J. Clin. Gastroenterol., 2023, 57(5), 501-507. doi: 10.1097/MCG.0000000000001714 PMID: 35470286
  209. Cui, G.; Li, S.; Ye, H.; Yang, Y.; Huang, Q.; Chu, Y.; Shi, Z.; Zhang, X. Are neurodegenerative diseases associated with an increased risk of inflammatory bowel disease? A two-sample Mendelian randomization study. Front. Immunol., 2022, 13, 956005. doi: 10.3389/fimmu.2022.956005 PMID: 36159838
  210. Li, H.; Wen, Z. Effects of ulcerative colitis and Crohn’s disease on neurodegenerative diseases: A Mendelian randomization study. Front. Genet., 2022, 13, 846005. doi: 10.3389/fgene.2022.846005 PMID: 36046231
  211. Freuer, D.; Meisinger, C. Association between inflammatory bowel disease and Parkinson’s disease: A Mendelian randomization study. NPJ Parkinsons Dis., 2022, 8(1), 55. doi: 10.1038/s41531-022-00318-7 PMID: 35534507
  212. Huang, J.; Su, B.; Karhunen, V.; Gill, D.; Zuber, V.; Ahola-Olli, A.; Palaniswamy, S.; Auvinen, J.; Herzig, K.H.; Keinänen-Kiukaanniemi, S.; Salmi, M.; Jalkanen, S.; Lehtimäki, T.; Salomaa, V.; Raitakari, O.T.; Matthews, P.M.; Elliott, P.; Tsilidis, K.K.; Jarvelin, M.; Tzoulaki, I.; Dehghan, A. Inflammatory diseases, inflammatory biomarkers, and Alzheimer disease. Neurology, 2023, 100(6), e568-e581. doi: 10.1212/WNL.0000000000201489 PMID: 36384659
  213. Liu, F.C.; Huang, W.Y.; Lin, T.Y.; Shen, C.H.; Chou, Y.C.; Lin, C.L.; Lin, K.T.; Kao, C.H. Inverse association of Parkinson disease with systemic lupus erythematosus. Medicine, 2015, 94(46), e2097. doi: 10.1097/MD.0000000000002097 PMID: 26579824
  214. Wang, Y.C.; Lin, M.S.; Huang, A.P.H.; Wu, C.C.; Kung, W.M. Association between systemic rheumatic diseases and dementia risk: A meta-analysis. Front. Immunol., 2022, 13, 1054246. doi: 10.3389/fimmu.2022.1054246 PMID: 36439141
  215. Jin, T.; Huang, W.; Cao, F.; Yu, X.; Guo, S.; Ying, Z.; Xu, C. Causal association between systemic lupus erythematosus and the risk of dementia: A Mendelian randomization study. Front. Immunol., 2022, 13, 1063110. doi: 10.3389/fimmu.2022.1063110 PMID: 36569847
  216. Chen, H.; Zhang, S.M.; Hernán, M.A.; Schwarzschild, M.A.; Willett, W.C.; Colditz, G.A.; Speizer, F.E.; Ascherio, A. Nonsteroidal anti-inflammatory drugs and the risk of Parkinson disease. Arch. Neurol., 2003, 60(8), 1059-1064. doi: 10.1001/archneur.60.8.1059 PMID: 12925360
  217. Chen, H.; Jacobs, E.; Schwarzschild, M.A.; McCullough, M.L.; Calle, E.E.; Thun, M.J.; Ascherio, A. Nonsteroidal antiinflammatory drug use and the risk for Parkinson’s disease. Ann. Neurol., 2005, 58(6), 963-967. doi: 10.1002/ana.20682 PMID: 16240369
  218. Gagne, J.J.; Power, M.C. Anti-inflammatory drugs and risk of Parkinson disease: A meta-analysis. Neurology, 2010, 74(12), 995-1002. doi: 10.1212/WNL.0b013e3181d5a4a3 PMID: 20308684
  219. Gao, X.; Chen, H.; Schwarzschild, M.A.; Ascherio, A. Use of ibuprofen and risk of Parkinson disease. Neurology, 2011, 76(10), 863-869. doi: 10.1212/WNL.0b013e31820f2d79 PMID: 21368281
  220. Powers, K.M.; Kay, D.M.; Factor, S.A.; Zabetian, C.P.; Higgins, D.S.; Samii, A.; Nutt, J.G.; Griffith, A.; Leis, B.; Roberts, J.W.; Martinez, E.D.; Montimurro, J.S.; Checkoway, H.; Payami, H. Combined effects of smoking, coffee, and NSAIDs on Parkinson’s disease risk. Mov. Disord., 2008, 23(1), 88-95. doi: 10.1002/mds.21782 PMID: 17987647
  221. San Luciano, M.; Tanner, C.M.; Meng, C.; Marras, C.; Goldman, S.M.; Lang, A.E.; Tolosa, E.; Schüle, B.; Langston, J.W.; Brice, A.; Corvol, J.C.; Goldwurm, S.; Klein, C.; Brockman, S.; Berg, D.; Brockmann, K.; Ferreira, J.J.; Tazir, M.; Mellick, G.D.; Sue, C.M.; Hasegawa, K.; Tan, E.K.; Bressman, S.; Saunders-Pullman, R.; Saunders-Pullman, R.; Raymond, D.; Deik, A.; Barrett, M.J.; Cabassa, J.; Groves, M.; Hunt, A.L.; Lubarr, N.; Miravite, J.; Palmese, C.; Sachdev, R.; Sarva, H.; Severt, L.; Shanker, V.; Swan, M.C.; Soto-Valencia, J.; Johannes, B.; Ortega, R.; Ozelius, L.; Bressman, S.; Alcalay, R.N.; Tang, M-X.; Santana, H.M.; Roos, E.; Orbe-Reilly, M.; Fahn, S.; Cote, L.; Waters, C.; Mazzoni, P.; Ford, B.; Louis, E.; Levy, O.; Rosado, L.; Ruiz, D.; Dorovski, T.; Clark, L.; Marder, K.S.; Corvol, J-C.; Cormier, F.; Bonnet, A-M.; Welter, M-L.; Mesnage, V.; Vidailhet, M.; Roze, E.; Lacomblez, L.; Grabli, D.; Mart i Masso, J.F.; Martinez, J.R.; Mondragon, R.E.; Alustiza, A.E.; Pagola, A.G.; Pont-Sunyer, C.; Rolan, D.V.; Fernandez-Santiago, R.; Quintana, M.; Fernandez, M.; Maragall, L.; Hentati, F.; Farrer, M.; Duda, J.; Read, M.; Middleton, L.; Gibson, R.; Trinh, J.; Sassi, S.B.; Zouari, M.; Rimamouri,; Farhat, E.; Nabli, F.; Aasly, J.; Warø, B.J.; Andersen, S.; Bertoni, J.; Carter, J.; Elmer, L.; Jimenez, N.G.; Martin, W.; Pahwa, R.; Lyons, K.; Reich, S.; Rodnitzky, R.; Ramos, C.S.; Wojcieszek, J.; Mirelman, A.; Gurevich, T.; Shira, A.B.; Weisz, M.G.; Yasinovsky, K.; Zalis, M.; Thaler, A.; Orr-Urtreger, A.; Giladi, N.; Mountain, J.; Mestre, T.; Visanji, N.; Ghate, T.; Singerman, J.; Al Dakheel, A.; Connolly, B.S.; Gasser, T.; Brockmann, K.; Conley, E.D.; Mullins, M.E.; Northover, C.; Facheris, M.; Fiske, B.; Urkowiz, A. Nonsteroidal anti-inflammatory use and LRRK2 Parkinson’s disease penetrance. Mov. Disord., 2020, 35(10), 1755-1764. doi: 10.1002/mds.28189 PMID: 32662532
  222. Ren, L.; Yi, J.; Yang, J.; Li, P.; Cheng, X.; Mao, P. Nonsteroidal anti-inflammatory drugs use and risk of Parkinson disease. Medicine, 2018, 97(37), e12172. doi: 10.1097/MD.0000000000012172 PMID: 30212946
  223. Brakedal, B.; Tzoulis, C.; Tysnes, O.B.; Haugarvoll, K. NSAID use is not associated with Parkinson’s disease incidence: A Norwegian Prescription Database study. PLoS One, 2021, 16(9), e0256602. doi: 10.1371/journal.pone.0256602 PMID: 34492069
  224. Chou, R.C.; Kane, M.; Ghimire, S.; Gautam, S.; Gui, J. Treatment for rheumatoid arthritis and risk of Alzheimer’s disease: A nested case/control analysis. CNS Drugs, 2016, 30(11), 1111-1120. doi: 10.1007/s40263-016-0374-z PMID: 27470609
  225. Zhou, M.; Xu, R.; Kaelber, D.C.; Gurney, M.E. Tumor Necrosis Factor (TNF) blocking agents are associated with lower risk for Alzheimer’s disease in patients with rheumatoid arthritis and psoriasis. PLoS One, 2020, 15(3), e0229819. doi: 10.1371/journal.pone.0229819 PMID: 32203525
  226. Zheng, C.; Fillmore, N.R.; Ramos-Cejudo, J.; Brophy, M.; Osorio, R.; Gurney, M.E.; Qiu, W.Q.; Au, R.; Perry, G.; Dubreuil, M.; Chen, S.G.; Qi, X.; Davis, P.B.; Do, N.; Xu, R. Potential long-term effect of tumor necrosis factor inhibitors on dementia risk: A propensity score matched retrospective cohort study in US veterans. Alzheimers Dement., 2022, 18(6), 1248-1259. doi: 10.1002/alz.12465 PMID: 34569707
  227. Newby, D.; Prieto-Alhambra, D.; Duarte-Salles, T.; Ansell, D.; Pedersen, L.; van der Lei, J.; Mosseveld, M.; Rijnbeek, P.; James, G.; Alexander, M.; Egger, P.; Podhorna, J.; Stewart, R.; Perera, G.; Avillach, P.; Grosdidier, S.; Lovestone, S.; Nevado-Holgado, A.J. Methotrexate and relative risk of dementia amongst patients with rheumatoid arthritis: A multi-national multi-database case-control study. Alzheimers Res. Ther., 2020, 12(1), 38. doi: 10.1186/s13195-020-00606-5 PMID: 32252806
  228. Watad, A.; McGonagle, D.; Anis, S.; Carmeli, R.; Cohen, A.D.; Tsur, A.M.; Ben-Shabat, N.; Luigi Bragazzi, N.; Lidar, M.; Amital, H. TNF inhibitors have a protective role in the risk of dementia in patients with ankylosing spondylitis: Results from a nationwide study. Pharmacol. Res., 2022, 182, 106325. doi: 10.1016/j.phrs.2022.106325 PMID: 35752359
  229. Peter, I.; Dubinsky, M.; Bressman, S.; Park, A.; Lu, C.; Chen, N.; Wang, A. Anti–tumor necrosis factor therapy and incidence of Parkinson disease among patients with inflammatory bowel disease. JAMA Neurol., 2018, 75(8), 939-946. doi: 10.1001/jamaneurol.2018.0605 PMID: 29710331
  230. Kern, D.M.; Lovestone, S.; Cepeda, M.S. Treatment with TNF-α inhibitors versus methotrexate and the association with dementia and Alzheimer’s disease. Alzheimers Dement., 2021, 7(1), e12163. doi: 10.1002/trc2.12163
  231. Desai, R.J.; Varma, V.R.; Gerhard, T.; Segal, J.; Mahesri, M.; Chin, K.; Horton, D.B.; Kim, S.C.; Schneeweiss, S.; Thambisetty, M. Comparative risk of Alzheimer disease and related dementia among Medicare beneficiaries with Rheumatoid Arthritis treated with targeted disease/modifying antirheumatic agents. JAMA Netw. Open, 2022, 5(4), e226567. doi: 10.1001/jamanetworkopen.2022.6567 PMID: 35394510
  232. Fardet, L.; Nazareth, I.; Petersen, I. Chronic hydroxychloroquine/chloroquine exposure for connective tissue diseases and risk of Alzheimer’s disease: A population-based cohort study. Ann. Rheum. Dis., 2019, 78(2) , 279.2-282. doi: 10.1136/annrheumdis-2018-214016 PMID: 30185414
  233. Lai, S.W.; Kuo, Y.H.; Liao, K.F. Chronic hydroxychloroquine exposure and the risk of Alzheimer’s disease. Ann. Rheum. Dis., 2021, 80(7), e105. doi: 10.1136/annrheumdis-2019-216173 PMID: 31434638
  234. Varma, V.R.; Desai, R.J.; Navakkode, S.; Wong, L.W.; Anerillas, C.; Loeffler, T.; Schilcher, I.; Mahesri, M.; Chin, K.; Horton, D.B.; Kim, S.C.; Gerhard, T.; Segal, J.B.; Schneeweiss, S.; Gorospe, M.; Sajikumar, S.; Thambisetty, M. Hydroxychloroquine lowers Alzheimer’s disease and related dementias risk and rescues molecular phenotypes related to Alzheimer’s disease. Mol. Psychiatry, 2023, 28(3), 1312-1326. doi: 10.1038/s41380-022-01912-0 PMID: 36577843
  235. Mathieu, S.; Couderc, M.; Pereira, B.; Dubost, J.J.; Malochet-Guinamand, S.; Tournadre, A.; Soubrier, M.; Moisset, X. Prevalence of migraine and neuropathic pain in rheumatic diseases. J. Clin. Med., 2020, 9(6), 1890. doi: 10.3390/jcm9061890 PMID: 32560321
  236. Wu, L.; Xu, Q.; Zhou, M.; Chen, Y.; Jiang, C.; Jiang, Y.; Lin, Y.; He, Q.; Zhao, L.; Dong, Y.; Liu, J.; Chen, W. Plasma miR-153 and miR-223 levels as potential biomarkers in Parkinson’s disease. Front. Neurosci., 2022, 16, 865139. doi: 10.3389/fnins.2022.865139 PMID: 35655754
  237. Li, D.; Yang, H.; Ma, J.; Luo, S.; Chen, S.; Gu, Q. MicroRNA-30e regulates neuroinflammation in MPTP model of Parkinson’s disease by targeting Nlrp3. Hum. Cell, 2018, 31(2), 106-115. doi: 10.1007/s13577-017-0187-5 PMID: 29274035
  238. Taglialatela, G.; Rastellini, C.; Cicalese, L. Reduced incidence of dementia in solid organ transplant patients treated with calcineurin inhibitors. J. Alzheimers Dis., 2015, 47(2), 329-333. doi: 10.3233/JAD-150065 PMID: 26401556
  239. Bukhbinder, A.S.; Ling, Y.; Hasan, O.; Jiang, X.; Kim, Y.; Phelps, K.N.; Schmandt, R.E.; Amran, A.; Coburn, R.; Ramesh, S.; Xiao, Q.; Schulz, P.E. Risk of Alzheimer’s disease following influenza vaccination: A claims-based cohort study using propensity score matching. J. Alzheimers Dis., 2022, 88(3), 1061-1074. doi: 10.3233/JAD-220361 PMID: 35723106
  240. Klinger, D.; Hill, B.L.; Barda, N.; Halperin, E.; Gofrit, O.N.; Greenblatt, C.L.; Rappoport, N.; Linial, M.; Bercovier, H. Bladder cancer immunotherapy by BCG is associated with a significantly reduced risk of Alzheimer’s disease and Parkinson’s disease. Vaccines,, 2021, 9(5), 491. doi: 10.3390/vaccines9050491 PMID: 34064775
  241. Al-kuraishy, H.M.; Al-Gareeb, A.I.; Saad, H.M.; Batiha, G.E.S. Long-term use of metformin and Alzheimer’s disease: Beneficial or detrimental effects. Inflammopharmacology, 2023, 31(3), 1107-1115. doi: 10.1007/s10787-023-01163-7 PMID: 36849855
  242. McGeer, P.L.; Rogers, J.; McGeer, E.G. Inflammation, anti-inflammatory agents and Alzheimer disease: The last 12 years. J. Alzheimers Dis., 2006, 9(s3)(Suppl.), 271-276. doi: 10.3233/JAD-2006-9S330 PMID: 16914866
  243. Launer, L.J. Nonsteroidal anti-inflammatory drug use and the risk for Alzheimer’s disease: dissecting the epidemiological evidence. Drugs, 2003, 63(8), 731-739. doi: 10.2165/00003495-200363080-00001 PMID: 12662122
  244. Daniels, M.J.D.; Rivers-Auty, J.; Schilling, T.; Spencer, N.G.; Watremez, W.; Fasolino, V.; Booth, S.J.; White, C.S.; Baldwin, A.G.; Freeman, S.; Wong, R.; Latta, C.; Yu, S.; Jackson, J.; Fischer, N.; Koziel, V.; Pillot, T.; Bagnall, J.; Allan, S.M.; Paszek, P.; Galea, J.; Harte, M.K.; Eder, C.; Lawrence, C.B.; Brough, D. Fenamate NSAIDs inhibit the NLRP3 inflammasome and protect against Alzheimer’s disease in rodent models. Nat. Commun., 2016, 7(1), 12504. doi: 10.1038/ncomms12504 PMID: 27509875
  245. Annadurai, N.; De Sanctis, J.B.; Hajdúch, M.; Das, V. Tau secretion and propagation: Perspectives for potential preventive interventions in Alzheimer’s disease and other tauopathies. Exp. Neurol., 2021, 343, 113756. doi: 10.1016/j.expneurol.2021.113756 PMID: 33989658
  246. Annadurai, N.; Malina, L.; Malohlava, J.; Hajdúch, M.; Das, V. Tau R2 and R3 are essential regions for tau aggregation, seeding and propagation. Biochimie, 2022, 200, 79-86. doi: 10.1016/j.biochi.2022.05.013 PMID: 35623497
  247. Annadurai, N.; Malina, L.; Salmona, M.; Diomede, L.; Bastone, A.; Cagnotto, A.; Romeo, M.; Šrejber, M.; Berka, K.; Otyepka, M.; Hajdúch, M.; Das, V. Antitumour drugs targeting tau R3 VQIVYK and Cys322 prevent seeding of endogenous tau aggregates by exogenous seeds. FEBS J., 2022, 289(7), 1929-1949. doi: 10.1111/febs.16270 PMID: 34743390
  248. Annadurai, N.; Hrubý, J.; Kubíčková, A.; Malina, L.; Hajdúch, M.; Das, V. Time- and dose-dependent seeding tendency of exogenous tau R2 and R3 aggregates in cells. Biochem. Biophys. Res. Commun., 2023, 653, 102-105. doi: 10.1016/j.bbrc.2023.02.057 PMID: 36863211
  249. Ferretti, M.T.; Allard, S.; Partridge, V.; Ducatenzeiler, A.; Cuello, A.C. Minocycline corrects early, pre-plaque neuroinflammation and inhibits BACE-1 in a transgenic model of Alzheimer’s disease-like amyloid pathology. J. Neuroinflammation, 2012, 9(1), 62. doi: 10.1186/1742-2094-9-62 PMID: 22472085
  250. Parashos, S.A.; Luo, S.; Biglan, K.M.; Bodis-Wollner, I.; He, B.; Liang, G.S.; Ross, G.W.; Tilley, B.C.; Shulman, L.M. Measuring disease progression in early Parkinson disease. JAMA Neurol., 2014, 71(6), 710-716. doi: 10.1001/jamaneurol.2014.391 PMID: 24711047
  251. Nassar, N.N.; Al-Shorbagy, M.Y.; Arab, H.H.; Abdallah, D.M. Saxagliptin: A novel antiparkinsonian approach. Neuropharmacology, 2015, 89, 308-317. doi: 10.1016/j.neuropharm.2014.10.007 PMID: 25446674
  252. Chen, S.; Zhou, M.; Sun, J.; Guo, A.; Fernando, R.L.; Chen, Y.; Peng, P.; Zhao, G.; Deng, Y. DPP-4 inhibitor improves learning and memory deficits and AD-like neurodegeneration by modulating the GLP-1 signaling. Neuropharmacology, 2019, 157, 107668. doi: 10.1016/j.neuropharm.2019.107668 PMID: 31199957
  253. Yu, H.; Sun, T.; He, X.; Wang, Z.; Zhao, K.; An, J.; Wen, L.; Li, J.Y.; Li, W.; Feng, J. Association between Parkinson’s disease and diabetes mellitus: From epidemiology, pathophysiology and prevention to treatment. Aging Dis., 2022, 13(6), 1591-1605. doi: 10.14336/AD.2022.0325 PMID: 36465171
  254. Landreth, G.; Jiang, Q.; Mandrekar, S.; Heneka, M. PPARγ agonists as therapeutics for the treatment of Alzheimer’s disease. Neurotherapeutics, 2008, 5(3), 481-489. doi: 10.1016/j.nurt.2008.05.003 PMID: 18625459
  255. Watson, G.S.; Cholerton, B.A.; Reger, M.A.; Baker, L.D.; Plymate, S.R.; Asthana, S.; Fishel, M.A.; Kulstad, J.J.; Green, P.S.; Cook, D.G.; Kahn, S.E.; Keeling, M.L.; Craft, S. Preserved cognition in patients with early Alzheimer disease and amnestic mild cognitive impairment during treatment with rosiglitazone: A preliminary study. Am. J. Geriatr. Psychiatry, 2005, 13(11), 950-958. doi: 10.1176/appi.ajgp.13.11.950 PMID: 16286438
  256. Risner, M.E.; Saunders, A.M.; Altman, J F B.; Ormandy, G.C.; Craft, S.; Foley, I.M.; Zvartau-Hind, M.E.; Hosford, D.A.; Roses, A.D. Efficacy of rosiglitazone in a genetically defined population with mild-to-moderate Alzheimer’s disease. Pharmacogenomics J., 2006, 6(4), 246-254. doi: 10.1038/sj.tpj.6500369 PMID: 16446752
  257. Alhowail, A.; Alsikhan, R.; Alsaud, M.; Aldubayan, M.; Rabbani, S.I. Protective effects of pioglitazone on cognitive impairment and the underlying mechanisms: A review of literature. Drug Des. Devel. Ther., 2022, 16, 2919-2931. doi: 10.2147/DDDT.S367229 PMID: 36068789
  258. Zhou, Y.; Chen, Y.; Xu, C.; Zhang, H.; Lin, C. TLR4 targeting as a promising therapeutic strategy for Alzheimer disease treatment. Front. Neurosci., 2020, 14, 602508. doi: 10.3389/fnins.2020.602508 PMID: 33390886
  259. Cui, W.; Sun, C.; Ma, Y.; Wang, S.; Wang, X.; Zhang, Y. Inhibition of TLR4 Induces M2 microglial polarization and provides neuroprotection via the NLRP3 inflammasome in Alzheimer’s disease. Front. Neurosci., 2020, 14, 444. doi: 10.3389/fnins.2020.00444 PMID: 32508567
  260. Jin, X.; Liu, M.Y.; Zhang, D.F.; Zhong, X.; Du, K.; Qian, P.; Yao, W.F.; Gao, H.; Wei, M.J. Baicalin mitigates cognitive impairment and protects neurons from microglia-mediated neuroinflammation via suppressing NLRP 3 inflammasomes and TLR 4/NFκB signaling pathway. CNS Neurosci. Ther., 2019, 25(5), 575-590. doi: 10.1111/cns.13086 PMID: 30676698
  261. Shi, S.; Liang, D.; Chen, Y.; Xie, Y.; Wang, Y.; Wang, L.; Wang, Z.; Qiao, Z. Gx-50 reduces β-amyloid-induced TNF-α IL-1β NO, and PGE2 expression and inhibits NF-κB signaling in a mouse model of Alzheimer’s disease. Eur. J. Immunol., 2016, 46(3), 665-676. doi: 10.1002/eji.201545855 PMID: 26643273
  262. Kim, C.; Spencer, B.; Rockenstein, E.; Yamakado, H.; Mante, M.; Adame, A.; Fields, J.A.; Masliah, D.; Iba, M.; Lee, H.J.; Rissman, R.A.; Lee, S.J.; Masliah, E. Immunotherapy targeting toll-like receptor 2 alleviates neurodegeneration in models of synucleinopathy by modulating α-synuclein transmission and neuroinflammation. Mol. Neurodegener., 2018, 13(1), 43. doi: 10.1186/s13024-018-0276-2 PMID: 30092810
  263. Lee, H.; Jeon, S.G.; Kim, J.; Kang, R.J.; Kim, S.M.; Han, K.M.; Park, H.; Kim, K.; Sung, Y.M.; Nam, H.Y.; Koh, Y.H.; Song, M.; Suk, K.; Hoe, H.S. Ibrutinib modulates Aβ/tau pathology, neuroinflammation, and cognitive function in mouse models of Alzheimer’s disease. Aging Cell, 2021, 20(3), e13332. doi: 10.1111/acel.13332 PMID: 33709472
  264. He, P.; Cheng, X.; Staufenbiel, M.; Li, R.; Shen, Y. Long-term treatment of thalidomide ameliorates amyloid-like pathology through inhibition of β-secretase in a mouse model of Alzheimer’s disease. PLoS One, 2013, 8(2), e55091. doi: 10.1371/journal.pone.0055091 PMID: 23405115
  265. Decourt, B.; Drumm-Gurnee, D.; Wilson, J.; Jacobson, S.; Belden, C.; Sirrel, S.; Ahmadi, M.; Shill, H.; Powell, J.; Walker, A.; Gonzales, A.; Macias, M.; Sabbagh, M.N. Poor safety and tolerability hamper reaching a potentially therapeutic dose in the use of thalidomide for Alzheimer’s disease: Results from a double-blind, placebo-controlled trial. Curr. Alzheimer Res., 2017, 14(4), 403-411. doi: 10.2174/1567205014666170117141330 PMID: 28124585
  266. Decourt, B.; Wilson, J.; Ritter, A.; Dardis, C.; DiFilippo, F.; Zhuang, X.; Cordes, D.; Lee, G.; Fulkerson, N.; St Rose, T.; Hartley, K.; Sabbagh, M. MCLENA-1: A phase ii clinical trial for the assessment of safety, tolerability, and efficacy of lenalidomide in patients with mild cognitive impairment due to Alzheimer’s disease. Open Access J. Clin. Trials, 2020, 12, 1-13. doi: 10.2147/OAJCT.S221914 PMID: 32123490
  267. Palmas, M.F.; Ena, A.; Burgaletto, C.; Casu, M.A.; Cantarella, G.; Carboni, E.; Etzi, M.; De Simone, A.; Fusco, G.; Cardia, M.C.; Lai, F.; Picci, L.; Tweedie, D.; Scerba, M.T.; Coroneo, V.; Bernardini, R.; Greig, N.H.; Pisanu, A.; Carta, A.R. Repurposing pomalidomide as a neuroprotective drug: Efficacy in an alpha-synuclein-based model of parkinson’s disease. Neurotherapeutics, 2022, 19(1), 305-324. doi: 10.1007/s13311-022-01182-2 PMID: 35072912
  268. Singh, S.; Ganguly, U.; Pal, S.; Chandan, G.; Thakur, R.; Saini, R.V.; Chakrabarti, S.S.; Agrawal, B.K.; Chakrabarti, S. Protective effects of cyclosporine A on neurodegeneration and motor impairment in rotenone-induced experimental models of Parkinson’s disease. Eur. J. Pharmacol., 2022, 929, 175129. doi: 10.1016/j.ejphar.2022.175129 PMID: 35777442
  269. Van der Perren, A.; Macchi, F.; Toelen, J.; Carlon, M.S.; Maris, M.; de Loor, H.; Kuypers, D.R.J.; Gijsbers, R.; Van den Haute, C.; Debyser, Z.; Baekelandt, V. FK506 reduces neuroinflammation and dopaminergic neurodegeneration in an α-synuclein-based rat model for Parkinson’s disease. Neurobiol. Aging, 2015, 36(3), 1559-1568. doi: 10.1016/j.neurobiolaging.2015.01.014 PMID: 25660193
  270. Köylü, A.; Altunkaynak, B.Z.; Delibaş, B. Effects of tacrolimus on c-fos in hippocampus and memory performances in streptozotocin model of Alzheimer’s disease of rats. Turk. J. Med. Sci., 2021, 51(4), 2159-2166. doi: 10.3906/sag-2008-291 PMID: 33754647
  271. Kumar, A.; Singh, N. Calcineurin inhibition and protein kinase a activation limits cognitive dysfunction and histopathological damage in a model of dementia of the Alzheimer’s type. Curr. Neurovasc. Res., 2018, 15(3), 234-245. doi: 10.2174/1567202615666180813125125 PMID: 30101704
  272. Lai, W.D.; Wang, S.; You, W.T.; Chen, S.J.; Wen, J.J.; Yuan, C.R.; Zheng, M.J.; Jin, Y.; Yu, J.; Wen, C.P. Sinomenine regulates immune cell subsets: Potential neuro-immune intervene for precise treatment of chronic pain. Front. Cell Dev. Biol., 2022, 10, 1041006. doi: 10.3389/fcell.2022.1041006 PMID: 36619869
  273. Alam, J.; Blackburn, K.; Patrick, D. Neflamapimod: Clinical phase 2b-ready oral small molecule inhibitor of p38α to reverse synaptic dysfunction in early Alzheimer’s disease. J. Prev. Alzheimers Dis., 2017, 4(4), 273-278. PMID: 29181493
  274. Prins, N.D.; Harrison, J.E.; Chu, H.M.; Blackburn, K.; Alam, J.J.; Scheltens, P. A phase 2 double-blind placebo-controlled 24-week treatment clinical study of the p38 alpha kinase inhibitor neflamapimod in mild Alzheimer’s disease. Alzheimers Res. Ther., 2021, 13(1), 106. doi: 10.1186/s13195-021-00843-2 PMID: 34044875
  275. Rothhammer, V.; Kenison, J.E.; Li, Z.; Tjon, E.; Takenaka, M.C.; Chao, C.C.; Alves de Lima, K.; Borucki, D.M.; Kaye, J.; Quintana, F.J. Aryl hydrocarbon receptor activation in astrocytes by laquinimod ameliorates autoimmune inflammation in the CNS. Neurol. Neuroimmunol. Neuroinflamm., 2021, 8(2), e946. doi: 10.1212/NXI.0000000000000946 PMID: 33408169
  276. Srivastava, S.; Rajopadhye, R.; Dey, M.; Singh, R.K. Inhibition of MK2 kinase as a potential therapeutic target to control neuroinflammation in Alzheimer’s disease. Expert Opin. Ther. Targets, 2021, 25(4), 243-247. doi: 10.1080/14728222.2021.1924151 PMID: 33909536
  277. Roy, S.M.; Minasov, G.; Arancio, O.; Chico, L.W.; Van Eldik, L.J.; Anderson, W.F.; Pelletier, J.C.; Watterson, D.M. A selective and brain penetrant p38αMAPK inhibitor candidate for neurologic and neuropsychiatric disorders that attenuates neuroinflammation and cognitive dysfunction. J. Med. Chem., 2019, 62(11), 5298-5311. doi: 10.1021/acs.jmedchem.9b00058 PMID: 30978288
  278. Martínez, G.; Mijares, M.R.; De Sanctis, J.B. Effects of flavonoids and its derivatives on immune cell responses. Recent Pat. Inflamm. Allergy Drug Discov., 2019, 13(2), 84-104. doi: 10.2174/1872213X13666190426164124 PMID: 31814545
  279. Ping, Z.; Xiaomu, W.; Xufang, X.; Liang, S. Vinpocetine regulates levels of circulating TLRs in Parkinson’s disease patients. Neurol. Sci., 2019, 40(1), 113-120. doi: 10.1007/s10072-018-3592-y PMID: 30315378
  280. Cui, B.; Guo, X.; You, Y.; Fu, R. Farrerol attenuates MPP+induced inflammatory response by TLR4 signaling in a microglia cell line. Phytother. Res., 2019, 33(4), 1134-1141. doi: 10.1002/ptr.6307 PMID: 30734970
  281. Yang, Y.L.; Cheng, X.; Li, W.H.; Liu, M.; Wang, Y.H.; Du, G.H. Kaempferol attenuates LPS-induced striatum injury in mice involving anti-neuroinflammation, maintaining BBB integrity, and down-regulating the HMGB1/TLR4 pathway. Int. J. Mol. Sci., 2019, 20(3), 491. doi: 10.3390/ijms20030491 PMID: 30678325
  282. Yang, L.; Zhou, R.; Tong, Y.; Chen, P.; Shen, Y.; Miao, S.; Liu, X. Neuroprotection by dihydrotestosterone in LPS-induced neuroinflammation. Neurobiol. Dis., 2020, 140, 104814. doi: 10.1016/j.nbd.2020.104814 PMID: 32087283
  283. Haddadi, R.; Nayebi, A.M.; Eyvari, B.S. RETRACTED: Silymarin prevents apoptosis through inhibiting the Bax/caspase-3 expression and suppresses toll like receptor-4 pathway in the SNc of 6-OHDA intoxicated rats. Biomed. Pharmacother., 2018, 104, 127-136. doi: 10.1016/j.biopha.2018.05.020 PMID: 29772432
  284. Su, Q.; Ng, W.L.; Goh, S.Y.; Gulam, M.Y.; Wang, L.F.; Tan, E.K.; Ahn, M.; Chao, Y.X. Targeting the inflammasome in Parkinson’s disease. Front. Aging Neurosci., 2022, 14, 957705. doi: 10.3389/fnagi.2022.957705 PMID: 36313019
  285. Yang, Y.; Guo, L.; Wang, J.; Li, W.; Zhou, X.; Zhang, C.; Han, C. Arglabin regulates microglia polarization to relieve neuroinflammation in Alzheimer’s disease. J. Biochem. Mol. Toxicol., 2022, 36(6), e23045. doi: 10.1002/jbt.23045 PMID: 35289014
  286. Tong, B.C.K.; Huang, A.S.; Wu, A.J.; Iyaswamy, A.; Ho, O.K.Y.; Kong, A.H.Y.; Sreenivasmurthy, S.G.; Zhu, Z.; Su, C.; Liu, J.; Song, J.; Li, M.; Cheung, K.H. Tetrandrine ameliorates cognitive deficits and mitigates tau aggregation in cell and animal models of tauopathies. J. Biomed. Sci., 2022, 29(1), 85. doi: 10.1186/s12929-022-00871-6 PMID: 36273169
  287. Velagapudi, R.; Aderogba, M.; Olajide, O.A. Tiliroside, a dietary glycosidic flavonoid, inhibits TRAF-6/NF-κB/p38-mediated neuroinflammation in activated BV2 microglia. Biochim. Biophys. Acta, Gen. Subj., 2014, 1840(12), 3311-3319. doi: 10.1016/j.bbagen.2014.08.008 PMID: 25152356
  288. Wu, Q.; Naeem, A.; Zou, J.; Yu, C.; Wang, Y.; Chen, J.; Ping, Y. Isolation of phenolic compounds from raspberry based on molecular imprinting techniques and investigation of their anti-alzheimer’s disease properties. Molecules, 2022, 27(20), 6893. doi: 10.3390/molecules27206893 PMID: 36296486
  289. Rezai-Zadeh, K.; Ehrhart, J.; Bai, Y.; Sanberg, P.R.; Bickford, P.; Tan, J.; Shytle, R.D. Apigenin and luteolin modulate microglial activation via inhibition of STAT1-induced CD40 expression. J. Neuroinflammation, 2008, 5(1), 41. doi: 10.1186/1742-2094-5-41 PMID: 18817573
  290. Liu, R.; Zhang, T.; Yang, H.; Lan, X.; Ying, J.; Du, G. The flavonoid apigenin protects brain neurovascular coupling against amyloid-β₂₅₋₃₅-induced toxicity in mice. J. Alzheimers Dis., 2011, 24(1), 85-100. doi: 10.3233/JAD-2010-101593 PMID: 21297270
  291. Kang, C.H.; Choi, Y.H.; Moon, S.K.; Kim, W.J.; Kim, G.Y. Quercetin inhibits lipopolysaccharide-induced nitric oxide production in BV2 microglial cells by suppressing the NF-κB pathway and activating the Nrf2-dependent HO-1 pathway. Int. Immunopharmacol., 2013, 17(3), 808-813. doi: 10.1016/j.intimp.2013.09.009 PMID: 24076371
  292. Wightman, E.L.; Haskell, C.F.; Forster, J.S.; Veasey, R.C.; Kennedy, D.O. Epigallocatechin gallate, cerebral blood flow parameters, cognitive performance and mood in healthy humans: a double-blind, placebo-controlled, crossover investigation. Hum. Psychopharmacol., 2012, 27(2), 177-186. doi: 10.1002/hup.1263 PMID: 22389082
  293. Olajide, O.A.; Sarker, S.D. Alzheimer’s disease: Natural products as inhibitors of neuroinflammation. Inflammopharmacology, 2020, 28(6), 1439-1455. doi: 10.1007/s10787-020-00751-1 PMID: 32930914
  294. Moussa, C.; Hebron, M.; Huang, X.; Ahn, J.; Rissman, R.A.; Aisen, P.S.; Turner, R.S. Resveratrol regulates neuro-inflammation and induces adaptive immunity in Alzheimer’s disease. J. Neuroinflammation, 2017, 14(1), 1. doi: 10.1186/s12974-016-0779-0 PMID: 28086917
  295. Porro, C.; Cianciulli, A.; Trotta, T.; Lofrumento, D.D.; Panaro, M.A. Curcumin regulates anti-inflammatory responses by JAK/STAT/SOCS signaling pathway in bv-2 microglial cells. Biology,, 2019, 8(3), 51. doi: 10.3390/biology8030051 PMID: 31252572
  296. Sorrenti, V.; Contarini, G.; Sut, S.; Dall’Acqua, S.; Confortin, F.; Pagetta, A.; Giusti, P.; Zusso, M. Curcumin prevents acute neuroinflammation and long-term memory impairment induced by systemic lipopolysaccharide in mice. Front. Pharmacol., 2018, 9, 183. doi: 10.3389/fphar.2018.00183 PMID: 29556196
  297. Sundaram, J.R.; Poore, C.P.; Sulaimee, N.H.B.; Pareek, T.; Cheong, W.F.; Wenk, M.R.; Pant, H.C.; Frautschy, S.A.; Low, C.M.; Kesavapany, S. Curcumin ameliorates neuroinflammation, neurodegeneration, and memory deficits in p25 transgenic mouse model that bears hallmarks of alzheimer’s disease. J. Alzheimers Dis., 2017, 60(4), 1429-1442. doi: 10.3233/JAD-170093 PMID: 29036814
  298. Ringman, J.M.; Frautschy, S.A.; Teng, E.; Begum, A.N.; Bardens, J.; Beigi, M.; Gylys, K.H.; Badmaev, V.; Heath, D.D.; Apostolova, L.G.; Porter, V.; Vanek, Z.; Marshall, G.A.; Hellemann, G.; Sugar, C.; Masterman, D.L.; Montine, T.J.; Cummings, J.L.; Cole, G.M. Oral curcumin for Alzheimer’s disease: Tolerability and efficacy in a 24-week randomized, double blind, placebo-controlled study. Alzheimers Res. Ther., 2012, 4(5), 43. doi: 10.1186/alzrt146 PMID: 23107780
  299. Cox, K.H.M.; Pipingas, A.; Scholey, A.B. Investigation of the effects of solid lipid curcumin on cognition and mood in a healthy older population. J. Psychopharmacol., 2015, 29(5), 642-651. doi: 10.1177/0269881114552744 PMID: 25277322
  300. Small, G.W.; Siddarth, P.; Li, Z.; Miller, K.J.; Ercoli, L.; Emerson, N.D.; Martinez, J.; Wong, K.P.; Liu, J.; Merrill, D.A.; Chen, S.T.; Henning, S.M.; Satyamurthy, N.; Huang, S.C.; Heber, D.; Barrio, J.R. Memory and brain amyloid and tau effects of a bioavailable form of curcumin in non-demented adults: A double-blind, placebo-controlled 18-month trial. Am. J. Geriatr. Psychiatry, 2018, 26(3), 266-277. doi: 10.1016/j.jagp.2017.10.010 PMID: 29246725
  301. Khare, P.; Datusalia, A.K.; Sharma, S.S. Parthenolide, an NF-κB Inhibitor ameliorates diabetes-induced behavioural deficit, neurotransmitter imbalance and neuroinflammation in type 2 diabetes rat model. Neuromol. Med., 2017, 19(1), 101-112. doi: 10.1007/s12017-016-8434-6 PMID: 27553015
  302. Qiang, W.; Cai, W.; Yang, Q.; Yang, L.; Dai, Y.; Zhao, Z.; Yin, J.; Li, Y.; Li, Q.; Wang, Y.; Weng, X.; Zhang, D.; Chen, Y.; Zhu, X.; Artemisinin, B.; Artemisinin, B. Improves learning and memory impairment in AD dementia mice by suppressing neuroinflammation. Neuroscience, 2018, 395, 1-12. doi: 10.1016/j.neuroscience.2018.10.041 PMID: 30399421
  303. Zhou, J.M.; Gu, S.S.; Mei, W.H.; Zhou, J.; Wang, Z.Z.; Xiao, W. Ginkgolides and bilobalide protect BV2 microglia cells against OGD/reoxygenation injury by inhibiting TLR2/4 signaling pathways. Cell Stress Chaperones, 2016, 21(6), 1037-1053. doi: 10.1007/s12192-016-0728-y PMID: 27562518
  304. de Oliveira, M.R. The dietary components carnosic acid and carnosol as neuroprotective agents: A Mechanistic View. Mol. Neurobiol., 2016, 53(9), 6155-6168. doi: 10.1007/s12035-015-9519-1 PMID: 26553346
  305. Velagapudi, R.; Kumar, A.; Bhatia, H.S.; El-Bakoush, A.; Lepiarz, I.; Fiebich, B.L.; Olajide, O.A. Inhibition of neuroinflammation by thymoquinone requires activation of Nrf2/ARE signalling. Int. Immunopharmacol., 2017, 48, 17-29. doi: 10.1016/j.intimp.2017.04.018 PMID: 28458100
  306. Yang, W.; Qiu, X.; Wu, Q.; Chang, F.; Zhou, T.; Zhou, M.; Pei, J. Active constituents of saffron (Crocus sativus L.) and their prospects in treating neurodegenerative diseases. (Review). Exp. Ther. Med., 2023, 25(5), 235. doi: 10.3892/etm.2023.11934 PMID: 37114174
  307. Fu, M.; Liang, X.; Zhang, X.; Yang, M.; Ye, Q.; Qi, Y.; Liu, H.; Zhang, X. Astaxanthin delays brain aging in senescence-accelerated mouse prone 10: inducing autophagy as a potential mechanism. Nutr. Neurosci., 2023, 26(5), 445-455. doi: 10.1080/1028415X.2022.2055376 PMID: 35385370
  308. Lin, C.H.; Chou, C.C.; Lee, Y.H.; Hung, C.C. Curcumin facilitates aryl hydrocarbon receptor activation to ameliorate inflammatory astrogliosis. Molecules, 2022, 27(8), 2507. doi: 10.3390/molecules27082507 PMID: 35458704
  309. Hong, S.; Beja-Glasser, V.F.; Nfonoyim, B.M.; Frouin, A.; Li, S.; Ramakrishnan, S.; Merry, K.M.; Shi, Q.; Rosenthal, A.; Barres, B.A.; Lemere, C.A.; Selkoe, D.J.; Stevens, B. Complement and microglia mediate early synapse loss in Alzheimer mouse models. Science, 2016, 352(6286), 712-716. doi: 10.1126/science.aad8373 PMID: 27033548
  310. Pittock, S.J.; Berthele, A.; Fujihara, K.; Kim, H.J.; Levy, M.; Palace, J.; Nakashima, I.; Terzi, M.; Totolyan, N.; Viswanathan, S.; Wang, K.C.; Pace, A.; Fujita, K.P.; Armstrong, R.; Wingerchuk, D.M. Eculizumab in aquaporin-4-positive neuromyelitis optica spectrum disorder. N. Engl. J. Med., 2019, 381(7), 614-625. doi: 10.1056/NEJMoa1900866 PMID: 31050279
  311. Lamers, C.; Mastellos, D.C.; Ricklin, D.; Lambris, J.D. Compstatins: The dawn of clinical C3-targeted complement inhibition. Trends Pharmacol. Sci., 2022, 43(8), 629-640. doi: 10.1016/j.tips.2022.01.004 PMID: 35090732
  312. Lansita, J.A.; Mease, K.M.; Qiu, H.; Yednock, T.; Sankaranarayanan, S.; Kramer, S. Nonclinical development of ANX005: A humanized anti-C1q antibody for treatment of autoimmune and neurodegenerative diseases. Int. J. Toxicol., 2017, 36(6), 449-462. doi: 10.1177/1091581817740873 PMID: 29202623
  313. Qi, Y.; Klyubin, I.; Cuello, A.C.; Rowan, M.J. NLRP3-dependent synaptic plasticity deficit in an Alzheimer’s disease amyloidosis model in vivo. Neurobiol. Dis., 2018, 114, 24-30. doi: 10.1016/j.nbd.2018.02.016 PMID: 29477641
  314. Ben-Menachem-Zidon, O.; Ben-Menahem, Y.; Ben-Hur, T.; Yirmiya, R. Intra-hippocampal transplantation of neural precursor cells with transgenic over-expression of IL-1 receptor antagonist rescues memory and neurogenesis impairments in an Alzheimer’s disease model. Neuropsychopharmacology, 2014, 39(2), 401-414. doi: 10.1038/npp.2013.208 PMID: 23954849
  315. Cavanagh, C.; Tse, Y.C.; Nguyen, H.B.; Krantic, S.; Breitner, J.C.S.; Quirion, R.; Wong, T.P. Inhibiting tumor necrosis factor-α before amyloidosis prevents synaptic deficits in an Alzheimer’s disease model. Neurobiol. Aging, 2016, 47, 41-49. doi: 10.1016/j.neurobiolaging.2016.07.009 PMID: 27552480
  316. Cavanagh, C.; Wong, T.P. Preventing synaptic deficits in Alzheimer’s disease by inhibiting tumor necrosis factor alpha signaling. IBRO Rep., 2018, 4, 18-21. doi: 10.1016/j.ibror.2018.01.003 PMID: 30135948
  317. Li, Y.; Fan, H.; Ni, M.; Zhang, W.; Fang, F.; Sun, J.; Lyu, P.; Ma, P. Etanercept reduces neuron injury and neuroinflammation via inactivating c-Jun N-terminal kinase and nuclear factor-κB Pathways in Alzheimer’s disease: An in vitro and in vivo investigation. Neuroscience, 2022, 484, 140-150. doi: 10.1016/j.neuroscience.2021.11.001 PMID: 35058089
  318. Tobinick, E.; Gross, H.; Weinberger, A.; Cohen, H. TNF-alpha modulation for treatment of Alzheimer’s disease: A 6-month pilot study. MedGenMed, 2006, 8(2), 25. PMID: 16926764
  319. Tobinick, E.L.; Gross, H. Rapid improvement in verbal fluency and aphasia following perispinal etanercept in Alzheimer’s disease. BMC Neurol., 2008, 8, 27. doi: 10.1186/1471-2377-8-27
  320. Butchart, J.; Brook, L.; Hopkins, V.; Teeling, J.; Püntener, U.; Culliford, D.; Sharples, R.; Sharif, S.; McFarlane, B.; Raybould, R.; Thomas, R.; Passmore, P.; Perry, V.H.; Holmes, C. Etanercept in Alzheimer disease: A randomized, placebo-controlled, double-blind, phase 2 trial. Neurology, 2015, 84(21), 2161-2168. doi: 10.1212/WNL.0000000000001617 PMID: 25934853
  321. Tufan, A.N.; Holmes, C.; Tufan, F. Etanercept in Alzheimer disease: A randomized, placebo-controlled, double-blind, phase 2 trialAuthor Response. Neurology, 2015, 85(23) , 2083.2-2084. doi: 10.1212/01.wnl.0000475736.75775.25 PMID: 26644053
  322. Torres-Acosta, N.; O’Keefe, J.H.; O’Keefe, E.L.; Isaacson, R.; Small, G. Therapeutic potential of TNF-α inhibition for Alzheimer’s disease prevention. J. Alzheimers Dis., 2020, 78(2), 619-626. doi: 10.3233/JAD-200711 PMID: 33016914
  323. vom Berg, J.; Prokop, S.; Miller, K.R.; Obst, J.; Kälin, R.E.; Lopategui-Cabezas, I.; Wegner, A.; Mair, F.; Schipke, C.G.; Peters, O.; Winter, Y.; Becher, B.; Heppner, F.L. Inhibition of IL-12/IL-23 signaling reduces Alzheimer’s disease-like pathology and cognitive decline. Nat. Med., 2012, 18(12), 1812-1819. doi: 10.1038/nm.2965 PMID: 23178247
  324. Pedrini, S.; Gupta, V.B.; Hone, E.; Doecke, J.; O’Bryant, S.; James, I.; Bush, A.I.; Rowe, C.C.; Villemagne, V.L.; Ames, D.; Masters, C.L.; Martins, R.N.; Savage, G.; Wilson, B.; Bourgeat, P.; Fripp, J.; Gibson, S.; Leroux, H.; McBride, S.; Salvado, O.; Fenech, M.; Francois, M.; Barnes, M.; Baker, J.; Barnham, K.; Bellingham, S.; Bomke, J.; Pejoska, S.B.; Buckley, R.; Cheng, L.; Collins, S.; Cooke, I.; Cyarto, E.; Darby, D.; Dore, V.; El-Sheikh, D.; Faux, N.; Fowler, C.; Harrington, K.; Hill, A.; Horne, M.; Jones, G.; Kamer, A.; Killeen, N.; Korrel, H.; Lamb, F.; Lautenschlager, N.; Lennon, K.; Li, Q-X.; Lim, Y.Y.; Louey, A.; Macaulay, L.; Mackintosh, L.; Maruff, P.; Mcilroy, A.; Nigro, J.; Perez, K.; Pertile, K.; Restrepo, C.; Cardoso, B.R.; Rembach, A.; Roberts, B.; Robertson, J.; Rumble, R.; Ryan, T.; Sach, J.; Silbert, B.; Thai, C.; Trounson, B.; Volitakis, I.; Vovos, M.; Ward, L.; Watt, A.; Williams, R.; Woodward, M.; Yates, P.; Ugarte, F.Y.; Zhang, P.; Bird, S.; Brown, B.; Burnham, S.; Chatterjee, P.; Cox, K.; Fernandez, S.; Fernando, B.; Gardener, S.; Laws, S.; Lim, F.; Lim, L.; Tegg, M.; Lucas, K.; Martins, G.; Porter, T.; Rainey-Smith, S.; Rodrigues, M.; Shen, K.K.; Sohrabi, H.; Taddei, K.; Taddei, T.; Tan, S.; Verdile, G.; Weinborn, M.; Farrow, M.; Frost, S.; Hanson, D.; Hor, M.; Kanagasingam, Y.; Leifert, W.; Lockett, L.; Riley, M.; Saunders, I.; Thomas, P. A blood-based biomarker panel indicates IL-10 and IL-12/23p40 are jointly associated as predictors of β-amyloid load in an AD cohort. Sci. Rep., 2017, 7(1), 14057. doi: 10.1038/s41598-017-14020-9 PMID: 29070909
  325. Eede, P.; Obst, J.; Benke, E.; Yvon-Durocher, G.; Richard, B.C.; Gimber, N.; Schmoranzer, J.; Böddrich, A.; Wanker, E.E.; Prokop, S.; Heppner, F.L. Interleukin-/23 deficiency differentially affects pathology in male and female Alzheimer’s disease-like mice. EMBO Rep., 2020, 21(3), e48530. doi: 10.15252/embr.201948530 PMID: 32003148
  326. Porro, C.; Cianciulli, A.; Panaro, M.A. The Regulatory Role of IL-10 in neurodegenerative diseases. Biomolecules, 2020, 10(7), 1017. doi: 10.3390/biom10071017 PMID: 32659950
  327. Fei, Z.; Pan, B.; Pei, R.; Chen, Z.; Du, X.; Cao, H.; Li, C. Efficacy and safety of blood derivatives therapy in Alzheimer’s disease: A systematic review and meta-analysis. Syst. Rev., 2022, 11(1), 256. doi: 10.1186/s13643-022-02115-y PMID: 36443888
  328. Rinne, J.O.; Brooks, D.J.; Rossor, M.N.; Fox, N.C.; Bullock, R.; Klunk, W.E.; Mathis, C.A.; Blennow, K.; Barakos, J.; Okello, A.A. de LIano, S.R.M.; Liu, E.; Koller, M.; Gregg, K.M.; Schenk, D.; Black, R.; Grundman, M. 11C-PiB PET assessment of change in fibrillar amyloid-β load in patients with Alzheimer’s disease treated with bapineuzumab: A phase 2, double-blind, placebo-controlled, ascending-dose study. Lancet Neurol., 2010, 9(4), 363-372. doi: 10.1016/S1474-4422(10)70043-0 PMID: 20189881
  329. Vandenberghe, R.; Rinne, J.O.; Boada, M.; Katayama, S.; Scheltens, P.; Vellas, B.; Tuchman, M.; Gass, A.; Fiebach, J.B.; Hill, D.; Lobello, K.; Li, D.; McRae, T.; Lucas, P.; Evans, I.; Booth, K.; Luscan, G.; Wyman, B.T.; Hua, L.; Yang, L.; Brashear, H.R.; Black, R.S. Bapineuzumab for mild to moderate Alzheimer’s disease in two global, randomized, phase 3 trials. Alzheimers Res. Ther., 2016, 8(1), 18. doi: 10.1186/s13195-016-0189-7 PMID: 27176461
  330. Delnomdedieu, M.; Duvvuri, S.; Li, D.J.; Atassi, N.; Lu, M.; Brashear, H.R.; Liu, E.; Ness, S.; Kupiec, J.W. First-In-Human safety and long-term exposure data for AAB-003 (PF-05236812) and biomarkers after intravenous infusions of escalating doses in patients with mild to moderate Alzheimer’s disease. Alzheimers Res. Ther., 2016, 8(1), 12. doi: 10.1186/s13195-016-0177-y PMID: 26925577
  331. Salloway, S.; Sperling, R.; Brashear, H.R. Phase 3 trials of solanezumab and bapineuzumab for Alzheimer’s disease. N. Engl. J. Med., 2014, 370(15), 1460. PMID: 24724181
  332. SallowayS.SperlingR.FoxN.C.BlennowK.KlunkW.RaskindM.SabbaghM.HonigL.S.PorsteinssonA.P.FerrisS.ReichertM.KetterN.NejadnikB.GuenzlerV.MiloslavskyM.WangD.LuY.LullJ.TudorI.C.LiuE.GrundmanM.YuenE.BlackR.BrashearH.R.Bapineuzumab 301 and 302 Clinical Trial Investigators. Two phase 3 trials of bapineuzumab in mild-to-moderate Alzheimer’s disease. N. Engl. J. Med., 2014, 370(4), 322-333. doi: 10.1056/NEJMoa1304839 PMID: 24450891
  333. Honig, L.S.; Vellas, B.; Woodward, M.; Boada, M.; Bullock, R.; Borrie, M.; Hager, K.; Andreasen, N.; Scarpini, E.; Liu-Seifert, H.; Case, M.; Dean, R.A.; Hake, A.; Sundell, K.; Poole Hoffmann, V.; Carlson, C.; Khanna, R.; Mintun, M.; DeMattos, R.; Selzler, K.J.; Siemers, E. Trial of solanezumab for mild dementia due to alzheimer’s disease. N. Engl. J. Med., 2018, 378(4), 321-330. doi: 10.1056/NEJMoa1705971 PMID: 29365294
  334. Salloway, S.; Farlow, M.; McDade, E.; Clifford, D.B.; Wang, G.; Llibre-Guerra, J.J.; Hitchcock, J.M.; Mills, S.L.; Santacruz, A.M.; Aschenbrenner, A.J.; Hassenstab, J.; Benzinger, T.L.S.; Gordon, B.A.; Fagan, A.M.; Coalier, K.A.; Cruchaga, C.; Goate, A.A.; Perrin, R.J.; Xiong, C.; Li, Y.; Morris, J.C.; Snider, B.J.; Mummery, C.; Surti, G.M.; Hannequin, D.; Wallon, D.; Berman, S.B.; Lah, J.J.; Jimenez-Velazquez, I.Z.; Roberson, E.D.; van Dyck, C.H.; Honig, L.S.; Sánchez-Valle, R.; Brooks, W.S.; Gauthier, S.; Galasko, D.R.; Masters, C.L.; Brosch, J.R.; Hsiung, G.Y.R.; Jayadev, S.; Formaglio, M.; Masellis, M.; Clarnette, R.; Pariente, J.; Dubois, B.; Pasquier, F.; Jack, C.R., Jr; Koeppe, R.; Snyder, P.J.; Aisen, P.S.; Thomas, R.G.; Berry, S.M.; Wendelberger, B.A.; Andersen, S.W.; Holdridge, K.C.; Mintun, M.A.; Yaari, R.; Sims, J.R.; Baudler, M.; Delmar, P.; Doody, R.S.; Fontoura, P.; Giacobino, C.; Kerchner, G.A.; Bateman, R.J.; Formaglio, M.; Mills, S.L.; Pariente, J.; van Dyck, C.H. A trial of gantenerumab or solanezumab in dominantly inherited Alzheimer’s disease. Nat. Med., 2021, 27(7), 1187-1196. doi: 10.1038/s41591-021-01369-8 PMID: 34155411
  335. Geerts, H.; Walker, M.; Rose, R.; Bergeler, S.; van der Graaf, P.H.; Schuck, E.; Koyama, A.; Yasuda, S.; Hussein, Z.; Reyderman, L.; Swanson, C.; Cabal, A. A combined physiologically-based pharmacokinetic and quantitative systems pharmacology model for modeling amyloid aggregation in Alzheimer’s disease. CPT Pharmacometrics Syst. Pharmacol., 2023, 12(4), 444-461. doi: 10.1002/psp4.12912 PMID: 36632701
  336. Hettmann, T.; Gillies, S.D.; Kleinschmidt, M.; Piechotta, A.; Makioka, K.; Lemere, C.A.; Schilling, S.; Rahfeld, J.U.; Lues, I. Development of the clinical candidate PBD-C06, a humanized pGlu3-Aβ-specific antibody against Alzheimer’s disease with reduced complement activation. Sci. Rep., 2020, 10(1), 3294. doi: 10.1038/s41598-020-60319-5 PMID: 32094456
  337. Mintun, M.A.; Lo, A.C.; Duggan Evans, C.; Wessels, A.M.; Ardayfio, P.A.; Andersen, S.W.; Shcherbinin, S.; Sparks, J.; Sims, J.R.; Brys, M.; Apostolova, L.G.; Salloway, S.P.; Skovronsky, D.M. Donanemab in early Alzheimer’s disease. N. Engl. J. Med., 2021, 384(18), 1691-1704. doi: 10.1056/NEJMoa2100708 PMID: 33720637
  338. Lowe, S.L.; Duggan Evans, C.; Shcherbinin, S.; Cheng, Y.J.; Willis, B.A.; Gueorguieva, I.; Lo, A.C.; Fleisher, A.S.; Dage, J.L.; Ardayfio, P.; Aguiar, G.; Ishibai, M.; Takaichi, G.; Chua, L.; Mullins, G.; Sims, J.R. Donanemab (LY3002813) Phase 1b study in alzheimer’s disease: Rapid and sustained reduction of brain amyloid measured by florbetapir F18 Imaging. J. Prev. Alzheimers Dis., 2021, 8(4), 414-424. PMID: 34585215
  339. Gueorguieva, I.; Willis, B.A.; Chua, L.; Chow, K.; Ernest, C.S.; Shcherbinin, S.; Ardayfio, P.; Mullins, G.R.; Sims, J.R. Donanemab population pharmacokinetics, amyloid plaque reduction, and safety in participants with Alzheimer’s disease. Clin. Pharmacol. Ther., 2023, 113(6), 1258-1267. doi: 10.1002/cpt.2875 PMID: 36805552
  340. Sevigny, J.; Chiao, P.; Bussière, T.; Weinreb, P.H.; Williams, L.; Maier, M.; Dunstan, R.; Salloway, S.; Chen, T.; Ling, Y.; O’Gorman, J.; Qian, F.; Arastu, M.; Li, M.; Chollate, S.; Brennan, M.S.; Quintero-Monzon, O.; Scannevin, R.H.; Arnold, H.M.; Engber, T.; Rhodes, K.; Ferrero, J.; Hang, Y.; Mikulskis, A.; Grimm, J.; Hock, C.; Nitsch, R.M.; Sandrock, A. The antibody aducanumab reduces Aβ plaques in Alzheimer’s disease. Nature, 2016, 537(7618), 50-56. doi: 10.1038/nature19323 PMID: 27582220
  341. Doroszkiewicz, J.; Mroczko, B. New possibilities in the therapeutic approach to Alzheimer’s disease. Int. J. Mol. Sci., 2022, 23(16), 8902. doi: 10.3390/ijms23168902 PMID: 36012193
  342. Söderberg, L.; Johannesson, M.; Nygren, P.; Laudon, H.; Eriksson, F.; Osswald, G.; Möller, C.; Lannfelt, L. Lecanemab, aducanumab, and gantenerumab: Binding profiles to different forms of amyloid-beta might explain efficacy and side effects in clinical trials for alzheimer’s disease. Neurotherapeutics, 2023, 20(1), 195-206. doi: 10.1007/s13311-022-01308-6 PMID: 36253511
  343. Brandt, N.J.; Wheeler, C.; Courtin, S.O. Navigating disease-modifying treatments for Alzheimer’s disease: Focusing on medications in phase 3 clinical trials. J. Gerontol. Nurs., 2023, 49(1), 6-10. doi: 10.3928/00989134-20221205-02 PMID: 36594914
  344. Yuksel, J.M.; Noviasky, J.; Britton, S. Aducanumab for Alzheimer’s disease: Summarized data from emerge, engage, and prime studies. Sr. Care Pharm., 2022, 37(8), 329-334. doi: 10.4140/TCP.n.2022.329 PMID: 35879846
  345. Swanson, C.J.; Zhang, Y.; Dhadda, S.; Wang, J.; Kaplow, J.; Lai, R.Y.K.; Lannfelt, L.; Bradley, H.; Rabe, M.; Koyama, A.; Reyderman, L.; Berry, D.A.; Berry, S.; Gordon, R.; Kramer, L.D.; Cummings, J.L. A randomized, double-blind, phase 2b proof-of-concept clinical trial in early Alzheimer’s disease with lecanemab, an anti-Aβ protofibril antibody. Alzheimers Res. Ther., 2021, 13(1), 80. doi: 10.1186/s13195-021-00813-8 PMID: 33865446
  346. Rafii, M.S.; Sperling, R.A.; Donohue, M.C.; Zhou, J.; Roberts, C.; Irizarry, M.C.; Dhadda, S.; Sethuraman, G.; Kramer, L.D.; Swanson, C.J.; Li, D.; Krause, S.; Rissman, R.A.; Walter, S.; Raman, R.; Johnson, K.A.; Aisen, P.S. The AHEAD 3-45 Study: Design of a prevention trial for Alzheimer’s disease. Alzheimers Dement., 2023, 19(4), 1227-1233. doi: 10.1002/alz.12748 PMID: 35971310
  347. Knopman, D.S. Lecanemab reduces brain amyloid-β and delays cognitive worsening. Cell Rep. Med., 2023, 4(3), 100982. doi: 10.1016/j.xcrm.2023.100982 PMID: 36948153
  348. Piller, C. Report on trial death stokes Alzheimer’s drug fears. Science, 2023, 380(6641), 122-123. doi: 10.1126/science.adi2242 PMID: 37053319
  349. Asuni, A.A.; Boutajangout, A.; Quartermain, D.; Sigurdsson, E.M. Immunotherapy targeting pathological tau conformers in a tangle mouse model reduces brain pathology with associated functional improvements. J. Neurosci., 2007, 27(34), 9115-9129. doi: 10.1523/JNEUROSCI.2361-07.2007 PMID: 17715348
  350. Boutajangout, A.; Ingadottir, J.; Davies, P.; Sigurdsson, E.M. Passive immunization targeting pathological phospho-tau protein in a mouse model reduces functional decline and clears tau aggregates from the brain. J. Neurochem., 2011, 118(4), 658-667. doi: 10.1111/j.1471-4159.2011.07337.x PMID: 21644996
  351. Yanamandra, K.; Patel, T.K.; Jiang, H.; Schindler, S.; Ulrich, J.D.; Boxer, A.L.; Miller, B.L.; Kerwin, D.R.; Gallardo, G.; Stewart, F.; Finn, M.B.; Cairns, N.J.; Verghese, P.B.; Fogelman, I.; West, T.; Braunstein, J.; Robinson, G.; Keyser, J.; Roh, J.; Knapik, S.S.; Hu, Y.; Holtzman, D.M.; Holtzman, D.M. Anti-tau antibody administration increases plasma tau in transgenic mice and patients with tauopathy. Sci. Transl. Med., 2017, 9(386), eaal2029. doi: 10.1126/scitranslmed.aal2029 PMID: 28424326
  352. Li, L.; Miao, J.; Jiang, Y.; Dai, C.L.; Iqbal, K.; Liu, F.; Chu, D. Passive immunization inhibits tau phosphorylation and improves recognition learning and memory in 3xTg-AD mice. Exp. Neurol., 2023, 362, 114337. doi: 10.1016/j.expneurol.2023.114337 PMID: 36717015
  353. Novak, P.; Schmidt, R.; Kontsekova, E.; Zilka, N.; Kovacech, B.; Skrabana, R.; Vince-Kazmerova, Z.; Katina, S.; Fialova, L.; Prcina, M.; Parrak, V.; Dal-Bianco, P.; Brunner, M.; Staffen, W.; Rainer, M.; Ondrus, M.; Ropele, S.; Smisek, M.; Sivak, R.; Winblad, B.; Novak, M. Safety and immunogenicity of the tau vaccine AADvac1 in patients with Alzheimer’s disease: A randomised, double-blind, placebo-controlled, phase 1 trial. Lancet Neurol., 2017, 16(2), 123-134. doi: 10.1016/S1474-4422(16)30331-3 PMID: 27955995
  354. Novak, P.; Zilka, N.; Zilkova, M.; Kovacech, B.; Skrabana, R.; Ondrus, M.; Fialova, L.; Kontsekova, E.; Otto, M.; Novak, M. AADvac1, an active immunotherapy for Alzheimer’s disease and non alzheimer tauopathies: An overview of preclinical and clinical development. J. Prev. Alzheimers Dis., 2019, 6(1), 63-69. PMID: 30569088
  355. Hovakimyan, A.; Zagorski, K.; Chailyan, G.; Antonyan, T.; Melikyan, L.; Petrushina, I.; Batt, D.G.; King, O.; Ghazaryan, M.; Donthi, A.; Foose, C.; Petrovsky, N.; Cribbs, D.H.; Agadjanyan, M.G.; Ghochikyan, A. Immunogenicity of MultiTEP platform technology-based Tau vaccine in non-human primates. NPJ Vaccines, 2022, 7(1), 117. doi: 10.1038/s41541-022-00544-3 PMID: 36224191
  356. Pagano, G.; Boess, F.G.; Taylor, K.I.; Ricci, B.; Mollenhauer, B.; Poewe, W.; Boulay, A.; Anzures-Cabrera, J.; Vogt, A.; Marchesi, M.; Post, A.; Nikolcheva, T.; Kinney, G.G.; Zago, W.M.; Ness, D.K.; Svoboda, H.; Britschgi, M.; Ostrowitzki, S.; Simuni, T.; Marek, K.; Koller, M.; Sevigny, J.; Doody, R.; Fontoura, P.; Umbricht, D.; Bonni, A. A Phase II study to evaluate the safety and efficacy of prasinezumab in early parkinson’s disease (PASADENA): Rationale, design, and baseline data. Front. Neurol., 2021, 12, 705407. doi: 10.3389/fneur.2021.705407 PMID: 34659081
  357. Pagano, G.; Taylor, K.I.; Anzures-Cabrera, J.; Marchesi, M.; Simuni, T.; Marek, K.; Postuma, R.B.; Pavese, N.; Stocchi, F.; Azulay, J.P.; Mollenhauer, B.; López-Manzanares, L.; Russell, D.S.; Boyd, J.T.; Nicholas, A.P.; Luquin, M.R.; Hauser, R.A.; Gasser, T.; Poewe, W.; Ricci, B.; Boulay, A.; Vogt, A.; Boess, F.G.; Dukart, J.; D’Urso, G.; Finch, R.; Zanigni, S.; Monnet, A.; Pross, N.; Hahn, A.; Svoboda, H.; Britschgi, M.; Lipsmeier, F.; Volkova-Volkmar, E.; Lindemann, M.; Dziadek, S.; Holiga, Š.; Rukina, D.; Kustermann, T.; Kerchner, G.A.; Fontoura, P.; Umbricht, D.; Doody, R.; Nikolcheva, T.; Bonni, A. Trial of prasinezumab in early-stage parkinson’s disease. N. Engl. J. Med., 2022, 387(5), 421-432. doi: 10.1056/NEJMoa2202867 PMID: 35921451
  358. Kuchimanchi, M.; Monine, M.; Kandadi, M.K.; Woodward, C.; Penner, N.; Phase, I.I. Phase II dose selection for alpha synuclein–targeting antibody cinpanemab (BIIB054) based on target protein binding levels in the brain. CPT Pharmacometrics Syst. Pharmacol., 2020, 9(9), 515-522. doi: 10.1002/psp4.12538 PMID: 32613752
  359. Lang, A.E.; Siderowf, A.D.; Macklin, E.A.; Poewe, W.; Brooks, D.J.; Fernandez, H.H.; Rascol, O.; Giladi, N.; Stocchi, F.; Tanner, C.M.; Postuma, R.B.; Simon, D.K.; Tolosa, E.; Mollenhauer, B.; Cedarbaum, J.M.; Fraser, K.; Xiao, J.; Evans, K.C.; Graham, D.L.; Sapir, I.; Inra, J.; Hutchison, R.M.; Yang, M.; Fox, T.; Budd Haeberlein, S.; Dam, T. Trial of cinpanemab in early parkinson’s disease. N. Engl. J. Med., 2022, 387(5), 408-420. doi: 10.1056/NEJMoa2203395 PMID: 35921450
  360. Schofield, D.J.; Irving, L.; Calo, L.; Bogstedt, A.; Rees, G.; Nuccitelli, A.; Narwal, R.; Petrone, M.; Roberts, J.; Brown, L.; Cusdin, F.; Dosanjh, B.; Lloyd, C.; Dobson, C.; Gurrell, I.; Fraser, G.; McFarlane, M.; Rockenstein, E.; Spencer, B.; Masliah, E.; Spillantini, M.G.; Tan, K.; Billinton, A.; Vaughan, T.; Chessell, I.; Perkinton, M.S.; Perkinton, M.S. Preclinical development of a high affinity α-synuclein antibody, MEDI1341, that can enter the brain, sequester extracellular α-synuclein and attenuate α-synuclein spreading in vivo. Neurobiol. Dis., 2019, 132, 104582. doi: 10.1016/j.nbd.2019.104582 PMID: 31445162
  361. Fjord-Larsen, L.; Thougaard, A.; Wegener, K.M.; Christiansen, J.; Larsen, F.; Schrøder-Hansen, L.M.; Kaarde, M.; Ditlevsen, D.K. Nonclinical safety evaluation, pharmacokinetics, and target engagement of Lu AF82422, a monoclonal IgG1 antibody against alpha-synuclein in development for treatment of synucleinopathies. MAbs, 2021, 13(1), 1994690. doi: 10.1080/19420862.2021.1994690 PMID: 34709986
  362. Kallab, M.; Herrera-Vaquero, M.; Johannesson, M.; Eriksson, F.; Sigvardson, J.; Poewe, W.; Wenning, G.K.; Nordström, E.; Stefanova, N. Region-specific effects of immunotherapy with antibodies targeting α-synuclein in a transgenic model of synucleinopathy. Front. Neurosci., 2018, 12, 452. doi: 10.3389/fnins.2018.00452 PMID: 30022929
  363. Nordström, E.; Eriksson, F.; Sigvardson, J.; Johannesson, M.; Kasrayan, A.; Jones-Kostalla, M.; Appelkvist, P.; Söderberg, L.; Nygren, P.; Blom, M.; Rachalski, A.; Nordenankar, K.; Zachrisson, O.; Amandius, E.; Osswald, G.; Moge, M.; Ingelsson, M.; Bergström, J.; Lannfelt, L.; Möller, C.; Giorgetti, M.; Fälting, J. ABBV-0805, a novel antibody selective for soluble aggregated α-synuclein, prolongs lifespan and prevents buildup of α-synuclein pathology in mouse models of Parkinson’s disease. Neurobiol. Dis., 2021, 161, 105543. doi: 10.1016/j.nbd.2021.105543 PMID: 34737044
  364. Gibbs, E.; Zhao, B.; Roman, A.; Plotkin, S.S.; Peng, X.; Hsueh, S.C.C.; Aina, A.; Wang, J.; Shyu, C.; Yip, C.K.; Nam, S.E.; Kaplan, J.M.; Cashman, N.R. Rational generation of monoclonal antibodies selective for pathogenic forms of alpha-synuclein. Biomedicines, 2022, 10(9), 2168. doi: 10.3390/biomedicines10092168 PMID: 36140270
  365. Valiukas, Z.; Ephraim, R.; Tangalakis, K.; Davidson, M.; Apostolopoulos, V.; Feehan, J. Immunotherapies for Alzheimer’s disease: A review. Vaccines, 2022, 10(9), 1527. doi: 10.3390/vaccines10091527 PMID: 36146605
  366. Knecht, L.; Folke, J.; Dodel, R.; Ross, J.A.; Albus, A. Alpha-synuclein immunization strategies for synucleinopathies in clinical studies: A biological perspective. Neurotherapeutics, 2022, 19(5), 1489-1502. doi: 10.1007/s13311-022-01288-7 PMID: 36083395
  367. Meissner, W.G.; Traon, A.P.L.; Foubert-Samier, A.; Galabova, G.; Galitzky, M.; Kutzelnigg, A.; Laurens, B.; Lührs, P.; Medori, R.; Péran, P.; Sabatini, U.; Vergnet, S.; Volc, D.; Poewe, W.; Schneeberger, A.; Staffler, G.; Rascol, O.; Anheim, M.; Castrioto, A.; Derkinderen, P.; Drapier, S.; Eusebio, A.; Grabli, D.; Marques, A.; Moreau, C.; Moro, E.; Tranchant, C. A Phase 1 Randomized Trial of Specific Active α-SYNUCLEIN Immunotherapies PD01A and PD03A in Multiple System Atrophy. Mov. Disord., 2020, 35(11), 1957-1965. doi: 10.1002/mds.28218 PMID: 32882100
  368. Yu, H.J.; Thijssen, E.; van Brummelen, E.; van der Plas, J.L.; Radanovic, I.; Moerland, M.; Hsieh, E.; Groeneveld, G.J.; Dodart, J.C. A randomized first-in-human study with UB-312, a UBITh® α-synuclein peptide vaccine. Mov. Disord., 2022, 37(7), 1416-1424. doi: 10.1002/mds.29016 PMID: 35426173
  369. Nimmo, J.T.; Smith, H.; Wang, C.Y.; Teeling, J.L.; Nicoll, J.A.R.; Verma, A.; Dodart, J-C.; Liu, Z.; Lin, F.; Carare, R.O. Immunisation with UB-312 in the Thy1SNCA mouse prevents motor performance deficits and oligomeric α-synuclein accumulation in the brain and gut. Acta Neuropathol., 2022, 143(1), 55-73. doi: 10.1007/s00401-021-02381-5 PMID: 34741635
  370. Schmidhuber, S.; Scheiblhofer, S.; Weiss, R.; Cserepes, M.; Tóvári, J.; Gadermaier, G.; Bezard, E.; De Giorgi, F.; Ichas, F.; Strunk, D.; Mandler, M. A Novel C-type lectin receptor-targeted α-synuclein-based parkinson vaccine induces potent immune responses and therapeutic efficacy in mice. Vaccines, 2022, 10(9), 1432. doi: 10.3390/vaccines10091432 PMID: 36146508
  371. Chen, Z.; Yang, Y.; Yang, X.; Zhou, C.; Li, F.; Lei, P.; Zhong, L.; Jin, X.; Peng, G. Immune effects of optimized DNA vaccine and protective effects in a MPTP model of Parkinson’s disease. Neurol. Sci., 2013, 34(9), 1559-1570. doi: 10.1007/s10072-012-1284-6 PMID: 23354599
  372. Petrushina, I.; Hovakimyan, A.; Harahap-Carrillo, I.S.; Davtyan, H.; Antonyan, T.; Chailyan, G.; Kazarian, K.; Antonenko, M.; Jullienne, A.; Hamer, M.M.; Obenaus, A.; King, O.; Zagorski, K.; Blurton-Jones, M.; Cribbs, D.H.; Lander, H.; Ghochikyan, A.; Agadjanyan, M.G. Characterization and preclinical evaluation of the cGMP grade DNA based vaccine, AV-1959D to enter the first-in-human clinical trials. Neurobiol. Dis., 2020, 139, 104823. doi: 10.1016/j.nbd.2020.104823 PMID: 32119976
  373. Kim, C.; Hovakimyan, A.; Zagorski, K.; Antonyan, T.; Petrushina, I.; Davtyan, H.; Chailyan, G.; Hasselmann, J.; Iba, M.; Adame, A.; Rockenstein, E.; Szabo, M.; Blurton-Jones, M.; Cribbs, D.H.; Ghochikyan, A.; Masliah, E.; Agadjanyan, M.G. Efficacy and immunogenicity of MultiTEP-based DNA vaccines targeting human α-synuclein: Prelude for IND enabling studies. NPJ Vaccines, 2022, 7(1), 1. doi: 10.1038/s41541-021-00424-2 PMID: 35013319
  374. Masliah, E.; Rockenstein, E.; Mante, M.; Crews, L.; Spencer, B.; Adame, A.; Patrick, C.; Trejo, M.; Ubhi, K.; Rohn, T.T.; Mueller-Steiner, S.; Seubert, P.; Barbour, R.; McConlogue, L.; Buttini, M.; Games, D.; Schenk, D. Passive immunization reduces behavioral and neuropathological deficits in an alpha-synuclein transgenic model of Lewy body disease. PLoS One, 2011, 6(4), e19338. doi: 10.1371/journal.pone.0019338 PMID: 21559417
  375. Nimmo, J.T.; Verma, A.; Dodart, J.C.; Wang, C.Y.; Savistchenko, J.; Melki, R.; Carare, R.O.; Nicoll, J.A.R. Novel antibodies detect additional α-synuclein pathology in synucleinopathies: Potential development for immunotherapy. Alzheimers Res. Ther., 2020, 12(1), 159. doi: 10.1186/s13195-020-00727-x PMID: 33256825
  376. Games, D.; Valera, E.; Spencer, B.; Rockenstein, E.; Mante, M.; Adame, A.; Patrick, C.; Ubhi, K.; Nuber, S.; Sacayon, P.; Zago, W.; Seubert, P.; Barbour, R.; Schenk, D.; Masliah, E. Reducing C-terminal-truncated alpha-synuclein by immunotherapy attenuates neurodegeneration and propagation in Parkinson’s disease-like models. J. Neurosci., 2014, 34(28), 9441-9454. doi: 10.1523/JNEUROSCI.5314-13.2014 PMID: 25009275
  377. Wang, S.; Yu, Y.; Geng, S.; Wang, D.; Zhang, L.; Xie, X.; Wu, B.; Li, C.; Xu, H.; Li, X.; Hu, Y.; Zhang, L.; Kaether, C.; Wang, B. A coimmunization vaccine of Aβ42 ameliorates cognitive deficits without brain inflammation in an Alzheimer’s disease model. Alzheimers Res. Ther., 2014, 6(3), 26. doi: 10.1186/alzrt256 PMID: 24987466
  378. Xiao, B.; Tan, E.K. Immunotherapy trials in parkinson’s disease: Challenges. J. Transl. Med., 2023, 21(1), 178. doi: 10.1186/s12967-023-04012-x PMID: 36879300
  379. Nicoll, J.A.R.; Buckland, G.R.; Harrison, C.H.; Page, A.; Harris, S.; Love, S.; Neal, J.W.; Holmes, C.; Boche, D. Persistent neuropathological effects 14 years following amyloid-β immunization in Alzheimer’s disease. Brain, 2019, 142(7), 2113-2126. doi: 10.1093/brain/awz142 PMID: 31157360
  380. Chu, W.T.; Hall, J.; Gurrala, A.; Becsey, A.; Raman, S.; Okun, M.S.; Flores, C.T.; Giasson, B.I.; Vaillancourt, D.E.; Vedam-Mai, V. Evaluation of an adoptive cellular therapy-based vaccine in a transgenic mouse model of α-synucleinopathy. ACS Chem. Neurosci., 2023, 14(2), 235-245. doi: 10.1021/acschemneuro.2c00539 PMID: 36571847
  381. Olson, K.E.; Namminga, K.L.; Schwab, A.D.; Thurston, M.J.; Lu, Y.; Woods, A.; Lei, L.; Shen, W.; Wang, F.; Joseph, S.B.; Gendelman, H.E.; Mosley, R.L. Neuroprotective activities of long-acting granulocyte–macrophage colony-stimulating factor (mpdm608) in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-intoxicated mice. Neurotherapeutics, 2020, 17(4), 1861-1877. doi: 10.1007/s13311-020-00877-8 PMID: 32638217
  382. Olson, K.E.; Namminga, K.L.; Lu, Y.; Schwab, A.D.; Thurston, M.J.; Abdelmoaty, M.M.; Kumar, V.; Wojtkiewicz, M.; Obaro, H.; Santamaria, P.; Mosley, R.L.; Gendelman, H.E. Safety, tolerability, and immune-biomarker profiling for year-long sargramostim treatment of Parkinson’s disease. EBioMedicine, 2021, 67, 103380. doi: 10.1016/j.ebiom.2021.103380 PMID: 34000620
  383. Gendelman, H.E.; Zhang, Y.; Santamaria, P.; Olson, K.E.; Schutt, C.R.; Bhatti, D.; Shetty, B.L.D.; Lu, Y.; Estes, K.A.; Standaert, D.G.; Heinrichs-Graham, E.; Larson, L.; Meza, J.L.; Follett, M.; Forsberg, E.; Siuzdak, G.; Wilson, T.W.; Peterson, C.; Mosley, R.L. Evaluation of the safety and immunomodulatory effects of sargramostim in a randomized, double-blind phase 1 clinical Parkinson’s disease trial. NPJ Parkinsons Dis., 2017, 3(1), 10. doi: 10.1038/s41531-017-0013-5 PMID: 28649610
  384. Rohrer, L.; Yunce, M.; Montine, T.J.; Shan, H. Plasma exchange in Alzheimer’s disease. Transfus. Med. Rev., 2023, 37(1), 10-15.
  385. Boada, M.; López, O.L.; Olazarán, J.; Núñez, L.; Pfeffer, M.; Paricio, M.; Lorites, J.; Piñol-Ripoll, G.; Gámez, J.E.; Anaya, F.; Kiprov, D.; Lima, J.; Grifols, C.; Torres, M.; Costa, M.; Bozzo, J.; Szczepiorkowski, Z.M.; Hendrix, S.; Páez, A. A randomized, controlled clinical trial of plasma exchange with albumin replacement for Alzheimer’s disease: Primary results of the AMBAR Study. Alzheimers Dement., 2020, 16(10), 1412-1425. doi: 10.1002/alz.12137 PMID: 32715623
  386. Singh, S.; Kumar, K.; Panda, M.; Srivastava, A.; Mishra, A.; Prajapati, V.K. High-throughput virtual screening of small-molecule inhibitors targeting immune cell checkpoints to discover new immunotherapeutics for human diseases. Mol. Divers., 2023, 27(2), 729-751. doi: 10.1007/s11030-022-10452-2 PMID: 35633442
  387. Liu, Y.; Meng, Y.; Zhou, C.; Yan, J.; Guo, C.; Dong, W. Activation of the IL-17/TRAF6/NF-κB pathway is implicated in Aβ-induced neurotoxicity. BMC Neurosci., 2023, 24(1), 14. doi: 10.1186/s12868-023-00782-8 PMID: 36823558
  388. Badr, M.; McFleder, R.L.; Wu, J.; Knorr, S.; Koprich, J.B.; Hünig, T.; Brotchie, J.M.; Volkmann, J.; Lutz, M.B.; Ip, C.W. Expansion of regulatory T cells by CD28 superagonistic antibodies attenuates neurodegeneration in A53T-α-synuclein Parkinson’s disease mice. J. Neuroinflammation, 2022, 19(1), 319. doi: 10.1186/s12974-022-02685-7 PMID: 36587195

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Bentham Science Publishers, 2024