The Interplay between Meningeal Lymphatic Vessels and Neuroinflammation in Neurodegenerative Diseases


Дәйексөз келтіру

Толық мәтін

Аннотация

Meningeal lymphatic vessels (MLVs) are essential for the drainage of cerebrospinal fluid, macromolecules, and immune cells in the central nervous system. They play critical roles in modulating neuroinflammation in neurodegenerative diseases. Dysfunctional MLVs have been demonstrated to increase neuroinflammation by horizontally blocking the drainage of neurotoxic proteins to the peripheral lymph nodes. Conversely, MLVs protect against neuroinflammation by preventing immune cells from becoming fully encephalitogenic. Furthermore, evidence suggests that neuroinflammation affects the structure and function of MLVs, causing vascular anomalies and angiogenesis. Although this field is still in its infancy, the strong link between MLVs and neuroinflammation has emerged as a potential target for slowing the progression of neurodegenerative diseases. This review provides a brief history of the discovery of MLVs, introduces in vivo and in vitro MLV models, highlights the molecular mechanisms through which MLVs contribute to and protect against neuroinflammation, and discusses the potential impact of neuroinflammation on MLVs, focusing on recent progress in neurodegenerative diseases.

Авторлар туралы

Junmei Chen

Science and Technology Innovation Center, Guangzhou University of Chinese Medicine

Email: info@benthamscience.net

Yaru Pan

Science and Technology Innovation Center, Guangzhou University of Chinese Medicin

Email: info@benthamscience.net

Qihua Liu

Science and Technology Innovation Center, Guangzhou University of Chinese Medicine

Email: info@benthamscience.net

Guangyao Li

Science and Technology Innovation Center, Guangzhou University of Chinese Medicine

Email: info@benthamscience.net

Gongcan Chen

Science and Technology Innovation Center, Guangzhou University of Chinese Medicine

Email: info@benthamscience.net

Weirong Li

Science and Technology Innovation Center, Guangzhou University of Chinese Medicine

Email: info@benthamscience.net

Wei Zhao

Science and Technology Innovation Center, Guangzhou University of Chinese Medicine

Хат алмасуға жауапты Автор.
Email: info@benthamscience.net

Qi Wang

Science and Technology Innovation Center, Guangzhou University of Chinese Medicine

Хат алмасуға жауапты Автор.
Email: info@benthamscience.net

Әдебиет тізімі

  1. Louveau, A.; Smirnov, I.; Keyes, T.J.; Eccles, J.D.; Rouhani, S.J.; Peske, J.D.; Derecki, N.C.; Castle, D.; Mandell, J.W.; Lee, K.S.; Harris, T.H.; Kipnis, J. Structural and functional features of central nervous system lymphatic vessels. Nature, 2015, 523(7560), 337-341. doi: 10.1038/nature14432 PMID: 26030524
  2. Antila, S.; Karaman, S.; Nurmi, H.; Airavaara, M.; Voutilainen, M.H.; Mathivet, T.; Chilov, D.; Li, Z.; Koppinen, T.; Park, J.H.; Fang, S.; Aspelund, A.; Saarma, M.; Eichmann, A.; Thomas, J.L.; Alitalo, K. Development and plasticity of meningeal lymphatic vessels. J. Exp. Med., 2017, 214(12), 3645-3667. doi: 10.1084/jem.20170391 PMID: 29141865
  3. Da Mesquita, S.; Louveau, A.; Vaccari, A.; Smirnov, I.; Cornelison, R.C.; Kingsmore, K.M.; Contarino, C.; Onengut-Gumuscu, S.; Farber, E.; Raper, D.; Viar, K.E.; Powell, R.D.; Baker, W.; Dabhi, N.; Bai, R.; Cao, R.; Hu, S.; Rich, S.S.; Munson, J.M.; Lopes, M.B.; Overall, C.C.; Acton, S.T.; Kipnis, J. Functional aspects of meningeal lymphatics in ageing and Alzheimer’s disease. Nature, 2018, 560(7717), 185-191. doi: 10.1038/s41586-018-0368-8 PMID: 30046111
  4. Da Mesquita, S.; Fu, Z.; Kipnis, J. The meningeal lymphatic system: A new player in neurophysiology. Neuron, 2018, 100(2), 375-388. doi: 10.1016/j.neuron.2018.09.022 PMID: 30359603
  5. Aspelund, A.; Antila, S.; Proulx, S.T.; Karlsen, T.V.; Karaman, S.; Detmar, M.; Wiig, H.; Alitalo, K. A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. J. Exp. Med., 2015, 212(7), 991-999. doi: 10.1084/jem.20142290 PMID: 26077718
  6. Ahn, J.H.; Cho, H.; Kim, J.H.; Kim, S.H.; Ham, J.S.; Park, I.; Suh, S.H.; Hong, S.P.; Song, J.H.; Hong, Y.K.; Jeong, Y.; Park, S.H.; Koh, G.Y. Meningeal lymphatic vessels at the skull base drain cerebrospinal fluid. Nature, 2019, 572(7767), 62-66. doi: 10.1038/s41586-019-1419-5 PMID: 31341278
  7. Sweeney, M.D.; Zlokovic, B.V. A lymphatic waste-disposal system implicated in Alzheimer’s disease. Nature, 2018, 560(7717), 172-174. doi: 10.1038/d41586-018-05763-0 PMID: 30076374
  8. Wang, L.; Zhang, Y.; Zhao, Y.; Marshall, C.; Wu, T.; Xiao, M. Deep cervical lymph node ligation aggravates AD-like pathology of APP/PS1 mice. Brain Pathol., 2019, 29(2), 176-192. doi: 10.1111/bpa.12656 PMID: 30192999
  9. Patel, T.K.; Habimana-Griffin, L.; Gao, X.; Xu, B.; Achilefu, S.; Alitalo, K.; McKee, C.A.; Sheehan, P.W.; Musiek, E.S.; Xiong, C.; Coble, D.; Holtzman, D.M. Dural lymphatics regulate clearance of extracellular tau from the CNS. Mol. Neurodegener., 2019, 14(1), 11. doi: 10.1186/s13024-019-0312-x PMID: 30813965
  10. Zou, W.; Pu, T.; Feng, W.; Lu, M.; Zheng, Y.; Du, R.; Xiao, M.; Hu, G. Blocking meningeal lymphatic drainage aggravates Parkinson’s disease-like pathology in mice overexpressing mutated α-synuclein. Transl. Neurodegener., 2019, 8(1), 7. doi: 10.1186/s40035-019-0147-y PMID: 30867902
  11. Louveau, A.; Herz, J.; Alme, M.N.; Salvador, A.F.; Dong, M.Q.; Viar, K.E.; Herod, S.G.; Knopp, J.; Setliff, J.C.; Lupi, A.L.; Da Mesquita, S.; Frost, E.L.; Gaultier, A.; Harris, T.H.; Cao, R.; Hu, S.; Lukens, J.R.; Smirnov, I.; Overall, C.C.; Oliver, G.; Kipnis, J. CNS lymphatic drainage and neuroinflammation are regulated by meningeal lymphatic vasculature. Nat. Neurosci., 2018, 21(10), 1380-1391. doi: 10.1038/s41593-018-0227-9 PMID: 30224810
  12. Yanev, P.; Poinsatte, K.; Hominick, D.; Khurana, N.; Zuurbier, K.R.; Berndt, M.; Plautz, E.J.; Dellinger, M.T.; Stowe, A.M. Impaired meningeal lymphatic vessel development worsens stroke outcome. J. Cereb. Blood Flow Metab., 2020, 40(2), 263-275. doi: 10.1177/0271678X18822921 PMID: 30621519
  13. Chen, J.; He, J.; Ni, R.; Yang, Q.; Zhang, Y.; Luo, L. Cerebrovascular Injuries Induce Lymphatic Invasion into Brain Parenchyma to Guide Vascular Regeneration in Zebrafish. Dev. Cell, 2019, 49(5), 697-710.e5. doi: 10.1016/j.devcel.2019.03.022 PMID: 31006646
  14. Esposito, E.; Ahn, B.J.; Shi, J.; Nakamura, Y.; Park, J.H.; Mandeville, E.T.; Yu, Z.; Chan, S.J.; Desai, R.; Hayakawa, A.; Ji, X.; Lo, E.H.; Hayakawa, K. Brain-to-cervical lymph node signaling after stroke. Nat. Commun., 2019, 10(1), 5306. doi: 10.1038/s41467-019-13324-w PMID: 31757960
  15. Chachaj, A.; Gąsiorowski, K.; Szuba, A.; Sieradzki, A.; Leszek, J. Lymphatic system in the brain clearance mechanisms - new therapeutic perspectives for Alzheimer’s disease. Curr. Neuropharmacol., 2023, 21(2), 380-391. doi: 10.2174/1570159X20666220411091332 PMID: 35410605
  16. Nikolenko, V.N.; Oganesyan, M.V.; Vovkogon, A.D.; Nikitina, A.T.; Sozonova, E.A.; Kudryashova, V.A.; Rizaeva, N.A.; Cabezas, R.; Avila-Rodriguez, M.; Neganova, M.E.; Mikhaleva, L.M.; Bachurin, S.O.; Somasundaram, S.G.; Kirkland, C.E.; Tarasov, V.V.; Aliev, G. Current understanding of central nervous system drainage systems: Implications in the context of neurodegenerative diseases. Curr. Neuropharmacol., 2020, 18(11), 1054-1063. doi: 10.2174/1570159X17666191113103850 PMID: 31729299
  17. Guzman-Martinez, L.; Maccioni, R.B.; Andrade, V.; Navarrete, L.P.; Pastor, M.G.; Ramos-Escobar, N. Neuroinflammation as a common feature of neurodegenerative disorders. Front. Pharmacol., 2019, 10, 1008. doi: 10.3389/fphar.2019.01008 PMID: 31572186
  18. Ransohoff, R.M. How neuroinflammation contributes to neurodegeneration. Science, 2016, 353(6301), 777-783. doi: 10.1126/science.aag2590 PMID: 27540165
  19. Beuker, C.; Schafflick, D.; Strecker, J.K.; Heming, M.; Li, X.; Wolbert, J.; Schmidt-Pogoda, A.; Thomas, C.; Kuhlmann, T.; Aranda-Pardos, I. A-Gonzalez, N.; Kumar, P.A.; Werner, Y.; Kilic, E.; Hermann, D.M.; Wiendl, H.; Stumm, R.; Meyer zu Hörste, G.; Minnerup, J. Stroke induces disease-specific myeloid cells in the brain parenchyma and pia. Nat. Commun., 2022, 13(1), 945. doi: 10.1038/s41467-022-28593-1 PMID: 35177618
  20. Kwon, H.S.; Koh, S.H. Neuroinflammation in neurodegenerative disorders: the roles of microglia and astrocytes. Transl. Neurodegener., 2020, 9(1), 42. doi: 10.1186/s40035-020-00221-2 PMID: 33239064
  21. Minoretti, P.; Gazzaruso, C.; Vito, C.D.; Emanuele, E.; Bianchi, M.; Coen, E.; Reino, M.; Geroldi, D. Effect of the functional toll-like receptor 4 Asp299Gly polymorphism on susceptibility to late-onset Alzheimer’s disease. Neurosci. Lett., 2006, 391(3), 147-149. doi: 10.1016/j.neulet.2005.08.047 PMID: 16157451
  22. Simon, D.K.; Simuni, T.; Elm, J.; Clark-Matott, J.; Graebner, A.K.; Baker, L.; Dunlop, S.R.; Emborg, M.; Kamp, C.; Morgan, J.C.; Ross, G.W.; Sharma, S.; Ravina, B. Peripheral biomarkers of Parkinson’s disease progression and pioglitazone effects. J. Parkinsons Dis., 2015, 5(4), 731-736. doi: 10.3233/JPD-150666 PMID: 26444095
  23. Hossain, M.J.; Morandi, E.; Tanasescu, R.; Frakich, N.; Caldano, M.; Onion, D.; Faraj, T.A.; Erridge, C.; Gran, B. The soluble form of toll-like receptor 2 is elevated in serum of multiple sclerosis patients: A novel potential disease biomarker. Front. Immunol., 2018, 9, 457. doi: 10.3389/fimmu.2018.00457 PMID: 29593720
  24. Comabella, M.; Pericot, I.; Goertsches, R.; Nos, C.; Castillo, M.; Blas, N.J.; Río, J.; Montalban, X. Plasma osteopontin levels in multiple sclerosis. J. Neuroimmunol., 2005, 158(1-2), 231-239. doi: 10.1016/j.jneuroim.2004.09.004 PMID: 15589058
  25. Chen, J.; Wang, L.; Xu, H.; Xing, L.; Zhuang, Z.; Zheng, Y.; Li, X.; Wang, C.; Chen, S.; Guo, Z.; Liang, Q.; Wang, Y. Meningeal lymphatics clear erythrocytes that arise from subarachnoid hemorrhage. Nat. Commun., 2020, 11(1), 3159. doi: 10.1038/s41467-020-16851-z PMID: 32572022
  26. Da Mesquita, S.; Papadopoulos, Z.; Dykstra, T.; Brase, L.; Farias, F.G.; Wall, M.; Jiang, H.; Kodira, C.D.; de Lima, K.A.; Herz, J.; Louveau, A.; Goldman, D.H.; Salvador, A.F.; Onengut-Gumuscu, S.; Farber, E.; Dabhi, N.; Kennedy, T.; Milam, M.G.; Baker, W.; Smirnov, I.; Rich, S.S.; Benitez, B.A.; Karch, C.M.; Perrin, R.J.; Farlow, M.; Chhatwal, J.P.; Holtzman, D.M.; Cruchaga, C.; Harari, O.; Kipnis, J. Meningeal lymphatics affect microglia responses and anti-Aβ immunotherapy. Nature, 2021, 593(7858), 255-260. doi: 10.1038/s41586-021-03489-0 PMID: 33911285
  27. Raper, D.; Louveau, A.; Kipnis, J. How do meningeal lymphatic vessels drain the CNS? Trends Neurosci., 2016, 39(9), 581-586. doi: 10.1016/j.tins.2016.07.001 PMID: 27460561
  28. Dá Mesquita, S.; Ferreira, A.C.; Sousa, J.C.; Correia-Neves, M.; Sousa, N.; Marques, F. Insights on the pathophysiology of Alzheimer’s disease: The crosstalk between amyloid pathology, neuroinflammation and the peripheral immune system. Neurosci. Biobehav. Rev., 2016, 68, 547-562. doi: 10.1016/j.neubiorev.2016.06.014 PMID: 27328788
  29. Hsu, S.J.; Zhang, C.; Jeong, J.; Lee, S.; McConnell, M.; Utsumi, T.; Iwakiri, Y. Enhanced meningeal lymphatic drainage ameliorates neuroinflammation and hepatic encephalopathy in cirrhotic rats. Gastroenterology, 2021, 160(4), 1315-1329.e13. doi: 10.1053/j.gastro.2020.11.036 PMID: 33227282
  30. He, X.; Li, L.; Xian, W.; Li, M.; Zhang, L.; Xu, J.; Pei, Z.; Zheng, H.; Hu, X. Chronic colitis exacerbates NLRP3-dependent neuroinflammation and cognitive impairment in middle-aged brain. J. Neuroinflammation, 2021, 18(1), 153. doi: 10.1186/s12974-021-02199-8 PMID: 34229722
  31. Wojciechowski, S.; Virenque, A.; Vihma, M.; Galbardi, B.; Rooney, E.J.; Keuters, M.H.; Antila, S.; Koistinaho, J.; Noe, F.M. Developmental dysfunction of the central nervous system lymphatics modulates the adaptive neuro-immune response in the perilesional cortex in a mouse model of traumatic brain injury. Front. Immunol., 2021, 11, 559810. doi: 10.3389/fimmu.2020.559810 PMID: 33584640
  32. Song, E.; Mao, T.; Dong, H.; Boisserand, L.S.B.; Antila, S.; Bosenberg, M.; Alitalo, K.; Thomas, J.L.; Iwasaki, A. VEGF-C-driven lymphatic drainage enables immunosurveillance of brain tumours. Nature, 2020, 577(7792), 689-694. doi: 10.1038/s41586-019-1912-x PMID: 31942068
  33. das Neves, S.P.; Delivanoglou, N.; Da Mesquita, S. CNS-draining meningeal lymphatic vasculature: Roles, conundrums and future challenges. Front. Pharmacol., 2021, 12, 655052. doi: 10.3389/fphar.2021.655052 PMID: 33995074
  34. Mogensen, F.L.H.; Delle, C.; Nedergaard, M. The glymphatic system (En)during inflammation. Int. J. Mol. Sci., 2021, 22(14), 7491. doi: 10.3390/ijms22147491 PMID: 34299111
  35. Hsu, M.; Laaker, C.; Sandor, M.; Fabry, Z. Neuroinflammation-driven lymphangiogenesis in CNS diseases. Front. Cell. Neurosci., 2021, 15, 683676. doi: 10.3389/fncel.2021.683676 PMID: 34248503
  36. Tavares, G.A.; Louveau, A. Meningeal lymphatics: An immune gateway for the central nervous system. Cells, 2021, 10(12), 3385. doi: 10.3390/cells10123385 PMID: 34943894
  37. Bucchieri, F.; Farina, F.; Zummo, G.; Cappello, F. Lymphatic vessels of the dura mater: a new discovery? J. Anat., 2015, 227(5), 702-703. doi: 10.1111/joa.12381 PMID: 26383824
  38. Lecco, V. Probable modification of the lymphatic fissures of the walls of the venous sinuses of the dura mater. Arch. Ital. Otol. Rinol. Laringol., 1953, 64(3), 287-296. PMID: 13081359
  39. Földi, M.; Gellért, A.; Kozma, M.; Poberai, M.; Zoltán, Ö.T.; Csanda, E. New contributions to the anatomical connections of the brain and the lymphatic system. Cells Tissues Organs, 1966, 64(4), 498-505. doi: 10.1159/000142849 PMID: 5957959
  40. Andres, K.H.; von Düring, M.; Muszynski, K.; Schmidt, R.F. Nerve fibres and their terminals of the dura mater encephali of the rat. Anat. Embryol. (Berl.), 1987, 175(3), 289-301. doi: 10.1007/BF00309843 PMID: 3826655
  41. Li, J.; Zhou, J.; Shi, Y. Scanning electron microscopy of human cerebral meningeal stomata. Ann. Anat., 1996, 178(3), 259-261. doi: 10.1016/S0940-9602(96)80059-8 PMID: 8712374
  42. Sun, B.L.; Xia, Z.L.; Wang, J.R.; Yuan, H.; Li, W.X.; Chen, Y.S.; Yang, M.F.; Zhang, S.M. Effects of blockade of cerebral lymphatic drainage on regional cerebral blood flow and brain edema after subarachnoid hemorrhage. Clin. Hemorheol. Microcirc., 2006, 34(1-2), 227-232. PMID: 16543641
  43. Sun, B.L.; Xia, Z.L.; Yan, Z.W.; Chen, Y.S.; Yang, M.F. Effects of blockade of cerebral lymphatic drainage on cerebral ischemia after middle cerebral artery occlusion in rats. Clin. Hemorheol. Microcirc., 2000, 23(2-4), 321-325. PMID: 11321458
  44. Si, J.; Chen, L.; Xia, Z. Effects of cervical-lymphatic blockade on brain edema and infarction volume in cerebral ischemic rats. Chin. J. Physiol., 2006, 49(5), 258-265. PMID: 17294834
  45. Sun, B.; Xie, F.; Yang, M.; Cao, M.; Yuan, H.; Wang, H.; Wang, J.; Jia, L. Blocking cerebral lymphatic drainage deteriorates cerebral oxidative injury in rats with subarachnoid hemorrhage. Acta Neurochir. Suppl. (Wien), 2011, 110(Pt 2), 49-53. doi: 10.1007/978-3-7091-0356-2_10 PMID: 21125445
  46. Absinta, M.; Ha, S.K.; Nair, G.; Sati, P.; Luciano, N.J.; Palisoc, M.; Louveau, A.; Zaghloul, K.A.; Pittaluga, S.; Kipnis, J.; Reich, D.S. Human and nonhuman primate meninges harbor lymphatic vessels that can be visualized noninvasively by MRI. eLife, 2017, 6, e29738. doi: 10.7554/eLife.29738 PMID: 28971799
  47. Wu, C.H.; Lirng, J.F.; Ling, Y.H.; Wang, Y.F.; Wu, H.M.; Fuh, J.L.; Lin, P.C.; Wang, S.J.; Chen, S.P. Noninvasive characterization of human glymphatics and meningeal lymphatics in an in vivo model of blood-brain barrier leakage. Ann. Neurol., 2021, 89(1), 111-124. doi: 10.1002/ana.25928 PMID: 33030257
  48. Yao, Z-B.; Wen, Y-R.; Yang, J-H.; Wang, X. Induced dural lymphangiogenesis facilities soluble amyloid-beta clearance from brain in a transgenic mouse model of Alzheimer’s disease. Neural Regen. Res., 2018, 13(4), 709-716. doi: 10.4103/1673-5374.230299 PMID: 29722325
  49. Ringstad, G.; Eide, P.K. Cerebrospinal fluid tracer efflux to parasagittal dura in humans. Nat. Commun., 2020, 11(1), 354. doi: 10.1038/s41467-019-14195-x PMID: 31953399
  50. Bolte, A.C.; Dutta, A.B.; Hurt, M.E.; Smirnov, I.; Kovacs, M.A.; McKee, C.A.; Ennerfelt, H.E.; Shapiro, D.; Nguyen, B.H.; Frost, E.L.; Lammert, C.R.; Kipnis, J.; Lukens, J.R. Meningeal lymphatic dysfunction exacerbates traumatic brain injury pathogenesis. Nat. Commun., 2020, 11(1), 4524. doi: 10.1038/s41467-020-18113-4 PMID: 32913280
  51. Shimada, R.; Tatara, Y.; Kibayashi, K. Gene expression in meningeal lymphatic endothelial cells following traumatic brain injury in mice. PLoS One, 2022, 17(9), e0273892. doi: 10.1371/journal.pone.0273892 PMID: 36067135
  52. Castranova, D.; Samasa, B.; Venero, G.M.; Jung, H.M.; Pham, V.N.; Weinstein, B.M. Live imaging of intracranial lymphatics in the zebrafish. Circ. Res., 2021, 128(1), 42-58. doi: 10.1161/CIRCRESAHA.120.317372 PMID: 33135960
  53. Mezey, É.; Szalayova, I.; Hogden, C.T.; Brady, A.; Dósa, Á.; Sótonyi, P.; Palkovits, M. An immunohistochemical study of lymphatic elements in the human brain. Proc. Natl. Acad. Sci. USA, 2021, 118(3), e2002574118. doi: 10.1073/pnas.2002574118 PMID: 33446503
  54. Ding, X.B.; Wang, X.X.; Xia, D.H.; Liu, H.; Tian, H.Y.; Fu, Y.; Chen, Y.K.; Qin, C.; Wang, J.Q.; Xiang, Z.; Zhang, Z.X.; Cao, Q.C.; Wang, W.; Li, J.Y.; Wu, E.; Tang, B.S.; Ma, M.M.; Teng, J.F.; Wang, X.J. Impaired meningeal lymphatic drainage in patients with idiopathic Parkinson’s disease. Nat. Med., 2021, 27(3), 411-418. doi: 10.1038/s41591-020-01198-1 PMID: 33462448
  55. Hsu, M.; Laaker, C.; Madrid, A.; Herbath, M.; Choi, Y.H.; Sandor, M.; Fabry, Z. Neuroinflammation creates an immune regulatory niche at the meningeal lymphatic vasculature near the cribriform plate. Nat. Immunol., 2022, 23(4), 581-593. doi: 10.1038/s41590-022-01158-6 PMID: 35347285
  56. Li, Q.; Chen, Y.; Feng, W.; Cai, J.; Gao, J.; Ge, F.; Zhou, T.; Wang, Z.; Ding, F.; Marshall, C.; Sheng, C.; Zhang, Y.; Sun, M.; Shi, J.; Xiao, M. Drainage of senescent astrocytes from brain via meningeal lymphatic routes. Brain Behav. Immun., 2022, 103, 85-96. doi: 10.1016/j.bbi.2022.04.005 PMID: 35427759
  57. Li, X.; Qi, L.; Yang, D.; Hao, S.; Zhang, F.; Zhu, X.; Sun, Y.; Chen, C.; Ye, J.; Yang, J.; Zhao, L.; Altmann, D.M.; Cao, S.; Wang, H.; Wei, B. Meningeal lymphatic vessels mediate neurotropic viral drainage from the central nervous system. Nat. Neurosci., 2022, 25(5), 577-587. doi: 10.1038/s41593-022-01063-z PMID: 35524140
  58. Jacob, L.; Boisserand, L.S.B.; Geraldo, L.H.M.; de Brito Neto, J.; Mathivet, T.; Antila, S.; Barka, B.; Xu, Y.; Thomas, J.M.; Pestel, J.; Aigrot, M.S.; Song, E.; Nurmi, H.; Lee, S.; Alitalo, K.; Renier, N.; Eichmann, A.; Thomas, J.L. Anatomy and function of the vertebral column lymphatic network in mice. Nat. Commun., 2019, 10(1), 4594. doi: 10.1038/s41467-019-12568-w PMID: 31597914
  59. Elham, E.; Wumaier, R.; Wang, C.; Luo, X.; Chen, T.; Zhong, N. Anatomic evidence shows that lymphatic drainage exists in the pituitary to loop the cerebral lymphatic circulation. Med. Hypotheses, 2020, 143, 109898. doi: 10.1016/j.mehy.2020.109898 PMID: 32504926
  60. Shibata-Germanos, S.; Goodman, J.R.; Grieg, A.; Trivedi, C.A.; Benson, B.C.; Foti, S.C.; Faro, A.; Castellan, R.F.P.; Correra, R.M.; Barber, M.; Ruhrberg, C.; Weller, R.O.; Lashley, T.; Iliff, J.J.; Hawkins, T.A.; Rihel, J. Structural and functional conservation of non-lumenized lymphatic endothelial cells in the mammalian leptomeninges. Acta Neuropathol., 2020, 139(2), 383-401. doi: 10.1007/s00401-019-02091-z PMID: 31696318
  61. Albayram, M.S.; Smith, G.; Tufan, F.; Tuna, I.S.; Bostancıklıoğlu, M.; Zile, M.; Albayram, O. Non-invasive MR imaging of human brain lymphatic networks with connections to cervical lymph nodes. Nat. Commun., 2022, 13(1), 203. doi: 10.1038/s41467-021-27887-0 PMID: 35017525
  62. Rasmussen, M.K.; Mestre, H.; Nedergaard, M. The glymphatic pathway in neurological disorders. Lancet Neurol., 2018, 17(11), 1016-1024. doi: 10.1016/S1474-4422(18)30318-1 PMID: 30353860
  63. Zhou, Y.; Cai, J.; Zhang, W.; Gong, X.; Yan, S.; Zhang, K.; Luo, Z.; Sun, J.; Jiang, Q.; Lou, M. Impairment of the glymphatic pathway and putative meningeal lymphatic vessels in the aging human. Ann. Neurol., 2020, 87(3), 357-369. doi: 10.1002/ana.25670 PMID: 31916277
  64. Cheng, Y.; Tian, D.Y.; Wang, Y.J. Peripheral clearance of brain-derived Aβ in Alzheimer’s disease: pathophysiology and therapeutic perspectives. Transl. Neurodegener., 2020, 9(1), 16. doi: 10.1186/s40035-020-00195-1 PMID: 32381118
  65. Ma, Q.; Ineichen, B.V.; Detmar, M.; Proulx, S.T. Outflow of cerebrospinal fluid is predominantly through lymphatic vessels and is reduced in aged mice. Nat. Commun., 2017, 8(1), 1434. doi: 10.1038/s41467-017-01484-6 PMID: 29127332
  66. Brady, M.; Rahman, A.; Combs, A.; Venkatraman, C.; Kasper, R.T.; McQuaid, C.; Kwok, W.C.E.; Wood, R.W.; Deane, R. Cerebrospinal fluid drainage kinetics across the cribriform plate are reduced with aging. Fluids Barriers CNS, 2020, 17(1), 71. doi: 10.1186/s12987-020-00233-0 PMID: 33256800
  67. Schafflick, D.; Wolbert, J.; Heming, M.; Thomas, C.; Hartlehnert, M.; Börsch, A.L.; Ricci, A.; Martín-Salamanca, S.; Li, X.; Lu, I.N.; Pawlak, M.; Minnerup, J.; Strecker, J.K.; Seidenbecher, T.; Meuth, S.G.; Hidalgo, A.; Liesz, A.; Wiendl, H.; Meyer zu Horste, G. Single-cell profiling of CNS border compartment leukocytes reveals that B cells and their progenitors reside in non-diseased meninges. Nat. Neurosci., 2021, 24(9), 1225-1234. doi: 10.1038/s41593-021-00880-y PMID: 34253922
  68. Van Hove, H.; Martens, L.; Scheyltjens, I.; De Vlaminck, K.; Pombo Antunes, A.R.; De Prijck, S.; Vandamme, N.; De Schepper, S.; Van Isterdael, G.; Scott, C.L.; Aerts, J.; Berx, G.; Boeckxstaens, G.E.; Vandenbroucke, R.E.; Vereecke, L.; Moechars, D.; Guilliams, M.; Van Ginderachter, J.A.; Saeys, Y.; Movahedi, K. A single-cell atlas of mouse brain macrophages reveals unique transcriptional identities shaped by ontogeny and tissue environment. Nat. Neurosci., 2019, 22(6), 1021-1035. doi: 10.1038/s41593-019-0393-4 PMID: 31061494
  69. McMenamin, P.G. Distribution and phenotype of dendritic cells and resident tissue macrophages in the dura mater, leptomeninges, and choroid plexus of the rat brain as demonstrated in wholemount preparations. J. Comp. Neurol., 1999, 405(4), 553-562. doi: 10.1002/(SICI)1096-9861(19990322)405:43.0.CO;2-6 PMID: 10098945
  70. Rustenhoven, J.; Drieu, A.; Mamuladze, T.; de Lima, K.A.; Dykstra, T.; Wall, M.; Papadopoulos, Z.; Kanamori, M.; Salvador, A.F.; Baker, W.; Lemieux, M.; Da Mesquita, S.; Cugurra, A.; Fitzpatrick, J.; Sviben, S.; Kossina, R.; Bayguinov, P.; Townsend, R.R.; Zhang, Q.; Erdmann-Gilmore, P.; Smirnov, I.; Lopes, M.B.; Herz, J.; Kipnis, J. Functional characterization of the dural sinuses as a neuroimmune interface. Cell, 2021, 184(4), 1000-1016.e27. doi: 10.1016/j.cell.2020.12.040 PMID: 33508229
  71. Fitzpatrick, Z.; Frazer, G.; Ferro, A.; Clare, S.; Bouladoux, N.; Ferdinand, J.; Tuong, Z.K.; Negro-Demontel, M.L.; Kumar, N.; Suchanek, O.; Tajsic, T.; Harcourt, K.; Scott, K.; Bashford-Rogers, R.; Helmy, A.; Reich, D.S.; Belkaid, Y.; Lawley, T.D.; McGavern, D.B.; Clatworthy, M.R. Gut-educated IgA plasma cells defend the meningeal venous sinuses. Nature, 2020, 587(7834), 472-476. doi: 10.1038/s41586-020-2886-4 PMID: 33149302
  72. Da Mesquita, S.; Herz, J.; Wall, M.; Dykstra, T.; de Lima, K.A.; Norris, G.T.; Dabhi, N.; Kennedy, T.; Baker, W.; Kipnis, J. Aging-associated deficit in CCR7 is linked to worsened glymphatic function, cognition, neuroinflammation, and β-amyloid pathology. Sci. Adv., 2021, 7(21), eabe4601. doi: 10.1126/sciadv.abe4601 PMID: 34020948
  73. Hu, X.; Deng, Q.; Ma, L.; Li, Q.; Chen, Y.; Liao, Y.; Zhou, F.; Zhang, C.; Shao, L.; Feng, J.; He, T.; Ning, W.; Kong, Y.; Huo, Y.; He, A.; Liu, B.; Zhang, J.; Adams, R.; He, Y.; Tang, F.; Bian, X.; Luo, J. Meningeal lymphatic vessels regulate brain tumor drainage and immunity. Cell Res., 2020, 30(3), 229-243. doi: 10.1038/s41422-020-0287-8 PMID: 32094452
  74. Hauser, M.A.; Legler, D.F. Common and biased signaling pathways of the chemokine receptor CCR7 elicited by its ligands CCL19 and CCL21 in leukocytes. J. Leukoc. Biol., 2016, 99(6), 869-882. doi: 10.1189/jlb.2MR0815-380R PMID: 26729814
  75. Salem, A.; Alotaibi, M.; Mroueh, R.; Basheer, H.A.; Afarinkia, K. CCR7 as a therapeutic target in Cancer. Biochim. Biophys. Acta Rev. Cancer, 2021, 1875(1), 188499. doi: 10.1016/j.bbcan.2020.188499 PMID: 33385485
  76. Brandum, E.P.; Jørgensen, A.S.; Rosenkilde, M.M.; Hjortø, G.M. Dendritic cells and CCR7 expression: An important factor for autoimmune diseases, chronic inflammation, and cancer. Int. J. Mol. Sci., 2021, 22(15), 8340. doi: 10.3390/ijms22158340 PMID: 34361107
  77. Merlini, A.; Haberl, M.; Strauß, J.; Hildebrand, L.; Genc, N.; Franz, J.; Chilov, D.; Alitalo, K.; Flügel-Koch, C.; Stadelmann, C.; Flügel, A.; Odoardi, F. Distinct roles of the meningeal layers in CNS autoimmunity. Nat. Neurosci., 2022, 25(7), 887-899. doi: 10.1038/s41593-022-01108-3 PMID: 35773544
  78. Goodman, J.R.; Adham, Z.O.; Woltjer, R.L.; Lund, A.W.; Iliff, J.J. Characterization of dural sinus-associated lymphatic vasculature in human Alzheimer’s dementia subjects. Brain Behav. Immun., 2018, 73, 34-40. doi: 10.1016/j.bbi.2018.07.020 PMID: 30055243
  79. Park, M.; Kim, J.W.; Ahn, S.J.; Cha, Y.J.; Suh, S.H. Aging is positively associated with peri-sinus lymphatic space volume: Assessment using 3T black-blood MRI. J. Clin. Med., 2020, 9(10), 3353. doi: 10.3390/jcm9103353 PMID: 33086702
  80. Jacob, L.; de Brito Neto, J.; Lenck, S.; Corcy, C.; Benbelkacem, F.; Geraldo, L.H.; Xu, Y.; Thomas, J.M.; El Kamouh, M.R.; Spajer, M.; Potier, M.C.; Haik, S.; Kalamarides, M.; Stankoff, B.; Lehericy, S.; Eichmann, A.; Thomas, J.L. Conserved meningeal lymphatic drainage circuits in mice and humans. J. Exp. Med., 2022, 219(8), e20220035. doi: 10.1084/jem.20220035 PMID: 35776089
  81. Correia, J.H.; Rodrigues, J.A.; Pimenta, S.; Dong, T.; Yang, Z. Photodynamic therapy review: Principles, photosensitizers, applications, and future directions. Pharmaceutics, 2021, 13(9), 1332. doi: 10.3390/pharmaceutics13091332 PMID: 34575408
  82. Scott, L.J.; Goa, K.L. Verteporfin. Drugs Aging, 2000, 16(2), 139-146. doi: 10.2165/00002512-200016020-00005 PMID: 10755329
  83. Furlan, C.; Berenbeim, J.A.; Dessent, C.E.H. Photoproducts of the photodynamic therapy agent verteporfin identified via laser interfaced mass spectrometry. Molecules, 2020, 25(22), 5280. doi: 10.3390/molecules25225280 PMID: 33198255
  84. Semyachkina-Glushkovskaya, O.; Chehonin, V.; Borisova, E.; Fedosov, I.; Namykin, A.; Abdurashitov, A.; Shirokov, A.; Khlebtsov, B.; Lyubun, Y.; Navolokin, N.; Ulanova, M.; Shushunova, N.; Khorovodov, A.; Agranovich, I.; Bodrova, A.; Sagatova, M.; Shareef, A.E.; Saranceva, E.; Iskra, T.; Dvoryatkina, M.; Zhinchenko, E.; Sindeeva, O.; Tuchin, V.; Kurths, J. Photodynamic opening of the blood-brain barrier and pathways of brain clearing. J. Biophotonics, 2018, 11(8), e201700287. doi: 10.1002/jbio.201700287 PMID: 29380947
  85. Zhao, P.; Le, Z.; Liu, L.; Chen, Y. Therapeutic delivery to the brain via the lymphatic vasculature. Nano Lett., 2020, 20(7), 5415-5420. doi: 10.1021/acs.nanolett.0c01806 PMID: 32510957
  86. Li, M.; Jing, Y.; Wu, C.; Li, X.; Liang, F.; Li, G.; Dai, P.; Yu, H.; Pei, Z.; Xu, G.; Lan, Y. Continuous theta burst stimulation dilates meningeal lymphatic vessels by up-regulating VEGF-C in meninges. Neurosci. Lett., 2020, 735, 135197. doi: 10.1016/j.neulet.2020.135197 PMID: 32590044
  87. Mäkinen, T.; Jussila, L.; Veikkola, T.; Karpanen, T.; Kettunen, M.I.; Pulkkanen, K.J.; Kauppinen, R.; Jackson, D.G.; Kubo, H.; Nishikawa, S.I.; Ylä-Herttuala, S.; Alitalo, K. Inhibition of lymphangiogenesis with resulting lymphedema in transgenic mice expressing soluble VEGF receptor-3. Nat. Med., 2001, 7(2), 199-205. doi: 10.1038/84651 PMID: 11175851
  88. Rustenhoven, J.; Tanumihardja, C.; Kipnis, J. Cerebrovascular anomalies: Perspectives from immunology and cerebrospinal fluid Flow. Circ. Res., 2021, 129(1), 174-194. doi: 10.1161/CIRCRESAHA.121.318173 PMID: 34166075
  89. González, A.; González-González, A.; Alonso-González, C.; Menéndez-Menéndez, J.; Martínez-Campa, C.; Cos, S. Melatonin inhibits angiogenesis in SH-SY5Y human neuroblastoma cells by downregulation of VEGF. Oncol. Rep., 2017, 37(4), 2433-2440. doi: 10.3892/or.2017.5446 PMID: 28259965
  90. Wachowska, M.; Osiak, A.; Muchowicz, A.; Gabrysiak, M. Domagała, A.; Kilarski, W.W.; Golab, J. Investigation of cell death mechanisms in human lymphatic endothelial cells undergoing photodynamic therapy. Photodiagn. Photodyn. Ther., 2016, 14, 57-65. doi: 10.1016/j.pdpdt.2016.02.004 PMID: 26868051
  91. Tammela, T.; Saaristo, A.; Holopainen, T.; Ylä-Herttuala, S.; Andersson, L.C.; Virolainen, S.; Immonen, I.; Alitalo, K. Photodynamic ablation of lymphatic vessels and intralymphatic cancer cells prevents metastasis. Sci. Transl. Med., 2011, 3(69), 69ra11. doi: 10.1126/scitranslmed.3001699 PMID: 21307301
  92. Muchowicz, A.; Wachowska, M.; Stachura, J.; Tonecka, K.; Gabrysiak, M.; Wołosz, D.; Pilch, Z.; Kilarski, W.W.; Boon, L.; Klaus, T.J.; Golab, J. Inhibition of lymphangiogenesis impairs antitumour effects of photodynamic therapy and checkpoint inhibitors in mice. Eur. J. Cancer, 2017, 83, 19-27. doi: 10.1016/j.ejca.2017.06.004 PMID: 28709135
  93. Wei, C.; Li, X. The Role of Photoactivated and non-photoactivated verteporfin on tumor. Front. Pharmacol., 2020, 11, 557429. doi: 10.3389/fphar.2020.557429 PMID: 33178014
  94. Hou, Y.; Le, V.N.H.; Clahsen, T.; Schneider, A.C.; Bock, F.; Cursiefen, C. Photodynamic therapy leads to time-dependent regression of pathologic corneal (lymph) angiogenesis and promotes high-risk corneal allograft survival. Invest. Ophthalmol. Vis. Sci., 2017, 58(13), 5862-5869. doi: 10.1167/iovs.17-22904 PMID: 29145577
  95. Bucher, F.; Bi, Y.; Gehlsen, U.; Hos, D.; Cursiefen, C.; Bock, F. Regression of mature lymphatic vessels in the cornea by photodynamic therapy. Br. J. Ophthalmol., 2014, 98(3), 391-395. doi: 10.1136/bjophthalmol-2013-303887 PMID: 24414403
  96. Nowak-Sliwinska, P.; van den Bergh, H.; Sickenberg, M.; Koh, A.H.C. Photodynamic therapy for polypoidal choroidal vasculopathy. Prog. Retin. Eye Res., 2013, 37, 182-199. doi: 10.1016/j.preteyeres.2013.09.003 PMID: 24140257
  97. Solenov, E.; Watanabe, H.; Manley, G.T.; Verkman, A.S. Sevenfold-reduced osmotic water permeability in primary astrocyte cultures from AQP-4-deficient mice, measured by a fluorescence quenching method. Am. J. Physiol. Cell Physiol., 2004, 286(2), C426-C432. doi: 10.1152/ajpcell.00298.2003 PMID: 14576087
  98. Heo, J.; Meng, F.; Hua, S.Z. Contribution of aquaporins to cellular water transport observed by a microfluidic cell volume sensor. Anal. Chem., 2008, 80(18), 6974-6980. doi: 10.1021/ac8008498 PMID: 18698799
  99. MacAulay, N. Molecular mechanisms of brain water transport. Nat. Rev. Neurosci., 2021, 22(6), 326-344. doi: 10.1038/s41583-021-00454-8 PMID: 33846637
  100. Heneka, M.T.; Carson, M.J.; Khoury, J.E.; Landreth, G.E.; Brosseron, F.; Feinstein, D.L.; Jacobs, A.H.; Wyss-Coray, T.; Vitorica, J.; Ransohoff, R.M.; Herrup, K.; Frautschy, S.A.; Finsen, B.; Brown, G.C.; Verkhratsky, A.; Yamanaka, K.; Koistinaho, J.; Latz, E.; Halle, A.; Petzold, G.C.; Town, T.; Morgan, D.; Shinohara, M.L.; Perry, V.H.; Holmes, C.; Bazan, N.G.; Brooks, D.J.; Hunot, S.; Joseph, B.; Deigendesch, N.; Garaschuk, O.; Boddeke, E.; Dinarello, C.A.; Breitner, J.C.; Cole, G.M.; Golenbock, D.T.; Kummer, M.P. Neuroinflammation in Alzheimer’s disease. Lancet Neurol., 2015, 14(4), 388-405. doi: 10.1016/S1474-4422(15)70016-5 PMID: 25792098
  101. Wang, Q.; Liu, Y.; Zhou, J. Neuroinflammation in Parkinson’s disease and its potential as therapeutic target. Transl. Neurodegener., 2015, 4(1), 19. doi: 10.1186/s40035-015-0042-0 PMID: 26464797
  102. Uddin, M.S.; Kabir, M.T.; Jalouli, M.; Rahman, M.A.; Jeandet, P.; Behl, T.; Alexiou, A.; Albadrani, G.M.; Abdel-Daim, M.M.; Perveen, A.; Ashraf, G.M. Neuroinflammatory signaling in the pathogenesis of Alzheimer’s disease. Curr. Neuropharmacol., 2022, 20(1), 126-146. doi: 10.2174/1570159X19666210826130210 PMID: 34525932
  103. Boland, B.; Yu, W.H.; Corti, O.; Mollereau, B.; Henriques, A.; Bezard, E.; Pastores, G.M.; Rubinsztein, D.C.; Nixon, R.A.; Duchen, M.R.; Mallucci, G.R.; Kroemer, G.; Levine, B.; Eskelinen, E.L.; Mochel, F.; Spedding, M.; Louis, C.; Martin, O.R.; Millan, M.J. Promoting the clearance of neurotoxic proteins in neurodegenerative disorders of ageing. Nat. Rev. Drug Discov., 2018, 17(9), 660-688. doi: 10.1038/nrd.2018.109 PMID: 30116051
  104. Tang, Y.; Le, W. Differential roles of M1 and M2 microglia in neurodegenerative diseases. Mol. Neurobiol., 2016, 53(2), 1181-1194. doi: 10.1007/s12035-014-9070-5 PMID: 25598354
  105. Alitalo, K.; Tammela, T.; Petrova, T.V. Lymphangiogenesis in development and human disease. Nature, 2005, 438(7070), 946-953. doi: 10.1038/nature04480 PMID: 16355212
  106. Secker, G.A.; Harvey, N.L. VEGFR signaling during lymphatic vascular development: From progenitor cells to functional vessels. Dev. Dyn., 2015, 244(3), 323-331. doi: 10.1002/dvdy.24227 PMID: 25399804
  107. Lee, Y.G.; Koh, G.Y. Coordinated lymphangiogenesis is critical in lymph node development and maturation. Dev. Dyn., 2016, 245(12), 1189-1197. doi: 10.1002/dvdy.24456 PMID: 27623309
  108. Deng, Y.; Zhang, X.; Simons, M. Molecular controls of lymphatic VEGFR3 signaling. Arterioscler. Thromb. Vasc. Biol., 2015, 35(2), 421-429. doi: 10.1161/ATVBAHA.114.304881 PMID: 25524775
  109. Nava Catorce, M.; Gevorkian, G. LPS-induced murine neuroinflammation model: Main features and suitability for pre-clinical assessment of nutraceuticals. Curr. Neuropharmacol., 2016, 14(2), 155-164. doi: 10.2174/1570159X14666151204122017 PMID: 26639457
  110. Qin, L.; Wu, X.; Block, M.L.; Liu, Y.; Breese, G.R.; Hong, J.S.; Knapp, D.J.; Crews, F.T. Systemic LPS causes chronic neuroinflammation and progressive neurodegeneration. Glia, 2007, 55(5), 453-462. doi: 10.1002/glia.20467 PMID: 17203472
  111. Park, S.H.; Kim, N.D.; Jung, J.K.; Lee, C.K.; Han, S.B.; Kim, Y. Myeloid differentiation 2 as a therapeutic target of inflammatory disorders. Pharmacol. Ther., 2012, 133(3), 291-298. doi: 10.1016/j.pharmthera.2011.11.001 PMID: 22119168
  112. Holdbrook, D.A.; Huber, R.G.; Marzinek, J.K.; Stubbusch, A.; Schmidtchen, A.; Bond, P.J. Multiscale modeling of innate immune receptors: Endotoxin recognition and regulation by host defense peptides. Pharmacol. Res., 2019, 147, 104372. doi: 10.1016/j.phrs.2019.104372 PMID: 31351116
  113. Manouchehrian, O.; Ramos, M.; Bachiller, S.; Lundgaard, I.; Deierborg, T. Acute systemic LPS-exposure impairs perivascular CSF distribution in mice. J. Neuroinflammation, 2021, 18(1), 34. doi: 10.1186/s12974-021-02082-6 PMID: 33514389
  114. Sun, B.L.; Wang, L.; Yang, T.; Sun, J.; Mao, L.; Yang, M.; Yuan, H.; Colvin, R.A.; Yang, X. Lymphatic drainage system of the brain: A novel target for intervention of neurological diseases. Prog. Neurobiol., 2018, 163-164, 118-143. doi: 10.1016/j.pneurobio.2017.08.007 PMID: 28903061
  115. Kim, H.; Kim, S.; Shin, S.J.; Park, Y.H.; Nam, Y.; Kim, C.; Lee, K.; Kim, S.M.; Jung, I.D.; Yang, H.D.; Park, Y.M.; Moon, M. Gram-negative bacteria and their lipopolysaccharides in Alzheimer’s disease: pathologic roles and therapeutic implications. Transl. Neurodegener., 2021, 10(1), 49. doi: 10.1186/s40035-021-00273-y PMID: 34876226
  116. Zhang, J.; Boska, M.; Zheng, Y.; Liu, J.; Fox, H.S.; Xiong, H. Minocycline attenuation of rat corpus callosum abnormality mediated by low-dose lipopolysaccharide-induced microglia activation. J. Neuroinflammation, 2021, 18(1), 100. doi: 10.1186/s12974-021-02142-x PMID: 33902641
  117. Kirk, R.A.; Kesner, R.P.; Wang, L.M.; Wu, Q.; Towner, R.A.; Hoffman, J.M.; Morton, K.A. Lipopolysaccharide exposure in a rat sepsis model results in hippocampal amyloid-β plaque and phosphorylated tau deposition and corresponding behavioral deficits. Geroscience, 2019, 41(4), 467-481. doi: 10.1007/s11357-019-00089-9 PMID: 31473912
  118. Zhu, L.; Yuan, Q.; Zeng, Z.; Zhou, R.; Luo, R.; Zhang, J.; Tsang, C.K.; Bi, W. Rifampicin suppresses amyloid-β accumulation through enhancing autophagy in the hippocampus of a lipopolysaccharide-induced mouse model of cognitive decline. J. Alzheimers Dis., 2021, 79(3), 1171-1184. doi: 10.3233/JAD-200690 PMID: 33386800
  119. Iliff, J.J.; Wang, M.; Liao, Y.; Plogg, B.A.; Peng, W.; Gundersen, G.A.; Benveniste, H.; Vates, G.E.; Deane, R.; Goldman, S.A.; Nagelhus, E.A.; Nedergaard, M. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci. Transl. Med., 2012, 4(147), 147ra111. doi: 10.1126/scitranslmed.3003748 PMID: 22896675
  120. Cao, X.; Xu, H.; Feng, W.; Su, D.; Xiao, M. Deletion of aquaporin-4 aggravates brain pathology after blocking of the meningeal lymphatic drainage. Brain Res. Bull., 2018, 143, 83-96. doi: 10.1016/j.brainresbull.2018.10.007 PMID: 30347264
  121. Sun, H.; Liang, R.; Yang, B.; Zhou, Y.; Liu, M.; Fang, F.; Ding, J.; Fan, Y.; Hu, G. Aquaporin-4 mediates communication between astrocyte and microglia: Implications of neuroinflammation in experimental Parkinson’s disease. Neuroscience, 2016, 317, 65-75. doi: 10.1016/j.neuroscience.2016.01.003 PMID: 26774050
  122. Lan, Y.L.; Fang, D.Y.; Zhao, J.; Ma, T.H.; Li, S. A research update on the potential roles of aquaporin 4 in neuroinflammation. Acta Neurol. Belg., 2016, 116(2), 127-134. doi: 10.1007/s13760-015-0520-2 PMID: 26259614
  123. Radjavi, A.; Smirnov, I.; Derecki, N.; Kipnis, J. Dynamics of the meningeal CD4+ T-cell repertoire are defined by the cervical lymph nodes and facilitate cognitive task performance in mice. Mol. Psychiatry, 2014, 19(5), 531-532. doi: 10.1038/mp.2013.79 PMID: 23752249
  124. Negi, N.; Das, B.K. CNS: Not an immunoprivilaged site anymore but a virtual secondary lymphoid organ. Int. Rev. Immunol., 2018, 37(1), 57-68. doi: 10.1080/08830185.2017.1357719 PMID: 28961037
  125. Kivisäkk, P.; Imitola, J.; Rasmussen, S.; Elyaman, W.; Zhu, B.; Ransohoff, R.M.; Khoury, S.J. Localizing central nervous system immune surveillance: Meningeal antigen-presenting cells activate T cells during experimental autoimmune encephalomyelitis. Ann. Neurol., 2009, 65(4), 457-469. doi: 10.1002/ana.21379 PMID: 18496841
  126. Tanabe, K.; Wada, J.; Sato, Y. Targeting angiogenesis and lymphangiogenesis in kidney disease. Nat. Rev. Nephrol., 2020, 16(5), 289-303. doi: 10.1038/s41581-020-0260-2 PMID: 32144398
  127. Yoshimatsu, Y.; Miyazaki, H.; Watabe, T. Roles of signaling and transcriptional networks in pathological lymphangiogenesis. Adv Drug Deliv Rev, 2016, 99(Pt B), 161-171.2016, doi: 10.1016/j.addr.2016.01.020 PMID: 26850127
  128. Varricchi, G.; Granata, F.; Loffredo, S.; Genovese, A.; Marone, G. Angiogenesis and lymphangiogenesis in inflammatory skin disorders. J. Am. Acad. Dermatol., 2015, 73(1), 144-153. doi: 10.1016/j.jaad.2015.03.041 PMID: 25922287
  129. Hsu, M.; Rayasam, A.; Kijak, J.A.; Choi, Y.H.; Harding, J.S.; Marcus, S.A.; Karpus, W.J.; Sandor, M.; Fabry, Z. Neuroinflammation-induced lymphangiogenesis near the cribriform plate contributes to drainage of CNS-derived antigens and immune cells. Nat. Commun., 2019, 10(1), 229. doi: 10.1038/s41467-018-08163-0 PMID: 30651548
  130. Lawson, N.D. On the right track: Meningeal lymphatics guide angiogenesis during tissue repair in the brain. Dev. Cell, 2019, 49(5), 655-656. doi: 10.1016/j.devcel.2019.05.029 PMID: 31163169
  131. Koh, B.I.; Lee, H.J.; Kwak, P.A.; Yang, M.J.; Kim, J.H.; Kim, H.S.; Koh, G.Y.; Kim, I. VEGFR2 signaling drives meningeal vascular regeneration upon head injury. Nat. Commun., 2020, 11(1), 3866. doi: 10.1038/s41467-020-17545-2 PMID: 32737287
  132. Bower, N.I.; Koltowska, K.; Pichol-Thievend, C.; Virshup, I.; Paterson, S.; Lagendijk, A.K.; Wang, W.; Lindsey, B.W.; Bent, S.J.; Baek, S.; Rondon-Galeano, M.; Hurley, D.G.; Mochizuki, N.; Simons, C.; Francois, M.; Wells, C.A.; Kaslin, J.; Hogan, B.M. Mural lymphatic endothelial cells regulate meningeal angiogenesis in the zebrafish. Nat. Neurosci., 2017, 20(6), 774-783. doi: 10.1038/nn.4558 PMID: 28459441
  133. Jurisic, G.; Maby-El Hajjami, H.; Karaman, S.; Ochsenbein, A.M.; Alitalo, A.; Siddiqui, S.S.; Ochoa Pereira, C.; Petrova, T.V.; Detmar, M. An unexpected role of semaphorin3a-neuropilin-1 signaling in lymphatic vessel maturation and valve formation. Circ. Res., 2012, 111(4), 426-436. doi: 10.1161/CIRCRESAHA.112.269399 PMID: 22723300
  134. Greenberg, S.M.; Bacskai, B.J.; Hernandez-Guillamon, M.; Pruzin, J.; Sperling, R.; van Veluw, S.J. Cerebral amyloid angiopathy and Alzheimer disease — one peptide, two pathways. Nat. Rev. Neurol., 2020, 16(1), 30-42. doi: 10.1038/s41582-019-0281-2 PMID: 31827267
  135. Asby, D.; Boche, D.; Allan, S.; Love, S.; Miners, J.S. Systemic infection exacerbates cerebrovascular dysfunction in Alzheimer’s disease. Brain, 2021, 144(6), 1869-1883. doi: 10.1093/brain/awab094 PMID: 33723589
  136. Li, Y.; Wu, P.; Bihl, J.C.; Shi, H. Underlying mechanisms and potential therapeutic molecular targets in blood-brain barrier disruption after subarachnoid hemorrhage. Curr. Neuropharmacol., 2020, 18(12), 1168-1179. doi: 10.2174/1570159X18666200106154203 PMID: 31903882
  137. Mentis, A.F.A.; Dardiotis, E.; Chrousos, G.P. Apolipoprotein E4 and meningeal lymphatics in Alzheimer disease: a conceptual framework. Mol. Psychiatry, 2021, 26(4), 1075-1097. doi: 10.1038/s41380-020-0731-7 PMID: 32355332
  138. Soto-Rojas, L.O.; Campa-Córdoba, B.B.; Harrington, C.R.; Salas-Casas, A.; Hernandes-Alejandro, M.; Villanueva-Fierro, I.; Bravo-Muñoz, M.; Garcés-Ramírez, L.; De La Cruz-López, F.; Ontiveros-Torres, M.Á.; Gevorkian, G.; Pacheco-Herrero, M.; Luna-Muñoz, J. Insoluble vascular amyloid deposits trigger disruption of the neurovascular unit in Alzheimer’s disease brains. Int. J. Mol. Sci., 2021, 22(7), 3654. doi: 10.3390/ijms22073654 PMID: 33915754
  139. Szu, J.I.; Obenaus, A. Cerebrovascular phenotypes in mouse models of Alzheimer’s disease. J. Cereb. Blood Flow Metab., 2021, 41(8), 1821-1841. doi: 10.1177/0271678X21992462 PMID: 33557692
  140. Janota, C.; Lemere, C.A.; Brito, M.A. Dissecting the contribution of vascular alterations and aging to Alzheimer’s disease. Mol. Neurobiol., 2016, 53(6), 3793-3811. doi: 10.1007/s12035-015-9319-7 PMID: 26143259
  141. Gireud-Goss, M.; Mack, A.F.; McCullough, L.D.; Urayama, A. Cerebral amyloid angiopathy and blood-brain barrier dysfunction. Neuroscientist, 2021, 27(6), 668-684. doi: 10.1177/1073858420954811 PMID: 33238806
  142. Yamazaki, Y.; Zhao, N.; Caulfield, T.R.; Liu, C.C.; Bu, G. Apolipoprotein E and Alzheimer disease: pathobiology and targeting strategies. Nat. Rev. Neurol., 2019, 15(9), 501-518. doi: 10.1038/s41582-019-0228-7 PMID: 31367008
  143. Perry, V.H.; Nicoll, J.A.R.; Holmes, C. Microglia in neurodegenerative disease. Nat. Rev. Neurol., 2010, 6(4), 193-201. doi: 10.1038/nrneurol.2010.17 PMID: 20234358
  144. Li, C.Q.; Zheng, Q.; Wang, Q.; Zeng, Q.P. Biotic/abiotic stress-driven Alzheimer’s disease. Front. Cell. Neurosci., 2016, 10, 269. doi: 10.3389/fncel.2016.00269 PMID: 27932953
  145. Varatharaj, A.; Galea, I. The blood-brain barrier in systemic inflammation. Brain Behav. Immun., 2017, 60, 1-12. doi: 10.1016/j.bbi.2016.03.010 PMID: 26995317
  146. Vargas-Caraveo, A.; Sayd, A.; Maus, S.R.; Caso, J.R.; Madrigal, J.L.M.; García-Bueno, B.; Leza, J.C. Lipopolysaccharide enters the rat brain by a lipoprotein-mediated transport mechanism in physiological conditions. Sci. Rep., 2017, 7(1), 13113. doi: 10.1038/s41598-017-13302-6 PMID: 29030613
  147. Sumbria, R.K.; Grigoryan, M.M.; Vasilevko, V.; Krasieva, T.B.; Scadeng, M.; Dvornikova, A.K.; Paganini-Hill, A.; Kim, R.; Cribbs, D.H.; Fisher, M.J. A murine model of inflammation-induced cerebral microbleeds. J. Neuroinflammation, 2016, 13(1), 218. doi: 10.1186/s12974-016-0693-5 PMID: 27577728
  148. Banks, W.A.; Gray, A.M.; Erickson, M.A.; Salameh, T.S.; Damodarasamy, M.; Sheibani, N.; Meabon, J.S.; Wing, E.E.; Morofuji, Y.; Cook, D.G.; Reed, M.J. Lipopolysaccharide-induced blood-brain barrier disruption: roles of cyclooxygenase, oxidative stress, neuroinflammation, and elements of the neurovascular unit. J. Neuroinflammation, 2015, 12(1), 223. doi: 10.1186/s12974-015-0434-1 PMID: 26608623
  149. Mizobuchi, H.; Soma, G.I. Low-dose lipopolysaccharide as an immune regulator for homeostasis maintenance in the central nervous system through transformation to neuroprotective microglia. Neural Regen. Res., 2021, 16(10), 1928-1934. doi: 10.4103/1673-5374.308067 PMID: 33642362
  150. Plog, B.A.; Lou, N.; Pierre, C.A.; Cove, A.; Kenney, H.M.; Hitomi, E.; Kang, H.; Iliff, J.J.; Zeppenfeld, D.M.; Nedergaard, M.; Vates, G.E. When the air hits your brain: decreased arterial pulsatility after craniectomy leading to impaired glymphatic flow. J. Neurosurg., 2019, 1-14. PMID: 31100725
  151. Holste, K.G.; Xia, F.; Ye, F.; Keep, R.F.; Xi, G. Mechanisms of neuroinflammation in hydrocephalus after intraventricular hemorrhage: a review. Fluids Barriers CNS, 2022, 19(1), 28. doi: 10.1186/s12987-022-00324-0 PMID: 35365172
  152. Haider, M.N.; Leddy, J.J.; Hinds, A.L.; Aronoff, N.; Rein, D.; Poulsen, D.; Willer, B.S. Intracranial pressure changes after mild traumatic brain injury: a systematic review. Brain Inj., 2018, 32(7), 809-815. doi: 10.1080/02699052.2018.1469045 PMID: 29701515
  153. Mortimer, J.A.; Van Duijn, C.M.; Chandra, V.; Fratiglioni, L.; Graves, A.B.; Heyman, A.; Jorm, A.F.; Kokmen, E.; Kondo, K.; Rocca, W.A.; Shalat, S.L.; Soininen, H.; Hofman, A. Head trauma as a risk factor for Alzheimer’s disease: a collaborative re-analysis of case-control studies. Int. J. Epidemiol., 1991, 20(Suppl. 2), S28-S35. doi: 10.1093/ije/20.Supplement_2.S28 PMID: 1833351
  154. Gardner, R.C.; Burke, J.F.; Nettiksimmons, J.; Goldman, S.; Tanner, C.M.; Yaffe, K. Traumatic brain injury in later life increases risk for Parkinson disease. Ann. Neurol., 2015, 77(6), 987-995. doi: 10.1002/ana.24396 PMID: 25726936
  155. Liu, G.; Ou, S.; Cui, H.; Li, X.; Yin, Z.; Gu, D.; Wang, Z. Head injury and amyotrophic lateral sclerosis: A meta-analysis. Neuroepidemiology, 2021, 55(1), 11-19. doi: 10.1159/000510987 PMID: 33621971
  156. Pu, T.; Zou, W.; Feng, W.; Zhang, Y.; Wang, L.; Wang, H.; Xiao, M. Persistent malfunction of glymphatic and meningeal lymphatic drainage in a mouse model of subarachnoid hemorrhage. Exp. Neurobiol., 2019, 28(1), 104-118. doi: 10.5607/en.2019.28.1.104 PMID: 30853828
  157. Calabrese, V.; Mancuso, C.; Calvani, M.; Rizzarelli, E.; Butterfield, D.A.; Giuffrida Stella, A.M. Nitric oxide in the central nervous system: Neuroprotection versus neurotoxicity. Nat. Rev. Neurosci., 2007, 8(10), 766-775. doi: 10.1038/nrn2214 PMID: 17882254
  158. Perluigi, M.; Di Domenico, F.; Giorgi, A.; Schininà, M.E.; Coccia, R.; Cini, C.; Bellia, F.; Cambria, M.T.; Cornelius, C.; Butterfield, D.A.; Calabrese, V. Redox proteomics in aging rat brain: Involvement of mitochondrial reduced glutathione status and mitochondrial protein oxidation in the aging process. J. Neurosci. Res., 2010, 88(16), 3498-3507. doi: 10.1002/jnr.22500 PMID: 20936692
  159. Drake, J.; Sultana, R.; Aksenova, M.; Calabrese, V.; Butterfield, D.A. Elevation of mitochondrial glutathione by gamma-glutamylcysteine ethyl ester protects mitochondria against peroxynitrite-induced oxidative stress. J. Neurosci. Res., 2003, 74(6), 917-927. doi: 10.1002/jnr.10810 PMID: 14648597
  160. Singla, B.; Aithabathula, R.V.; Kiran, S.; Kapil, S.; Kumar, S.; Singh, U.P. Reactive oxygen species in regulating lymphangiogenesis and lymphatic function. Cells, 2022, 11(11), 1750. doi: 10.3390/cells11111750 PMID: 35681445
  161. Calabrese, V.; Cornelius, C.; Dinkova-Kostova, A.T.; Calabrese, E.J.; Mattson, M.P. Cellular stress responses, the hormesis paradigm, and vitagenes: novel targets for therapeutic intervention in neurodegenerative disorders. Antioxid. Redox Signal., 2010, 13(11), 1763-1811. doi: 10.1089/ars.2009.3074 PMID: 20446769

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Bentham Science Publishers, 2024