Interaction of Brain-derived Neurotrophic Factor, Exercise, and Fear Extinction: Implications for Post-traumatic Stress Disorder
- Authors: Antolasic E.1, Jaehne E.1, van den Buuse M.1
-
Affiliations:
- School of Psychology and Public Health, La Trobe University
- Issue: Vol 22, No 4 (2024)
- Pages: 543-556
- Section: Neurology
- URL: https://rjpbr.com/1570-159X/article/view/644722
- DOI: https://doi.org/10.2174/1570159X21666230724101321
- ID: 644722
Cite item
Full Text
Abstract
Brain-Derived Neurotrophic Factor (BDNF) plays an important role in brain development, neural plasticity, and learning and memory. The Val66Met single-nucleotide polymorphism is a common genetic variant that results in deficient activity-dependent release of BDNF. This polymorphism and its impact on fear conditioning and extinction, as well as on symptoms of post-traumatic stress disorder (PTSD), have been of increasing research interest over the last two decades. More recently, it has been demonstrated that regular physical activity may ameliorate impairments in fear extinction and alleviate symptoms in individuals with PTSD via an action on BDNF levels and that there are differential responses to exercise between the Val66Met genotypes. This narrative literature review first describes the theoretical underpinnings of the development and persistence of intrusive and hypervigilance symptoms commonly seen in PTSD and their treatment. It then discusses recent literature on the involvement of BDNF and the Val66Met polymorphism in fear conditioning and extinction and its involvement in PTSD diagnosis and severity. Finally, it investigates research on the impact of physical activity on BDNF secretion, the differences between the Val66Met genotypes, and the effect on fear extinction learning and memory and symptoms of PTSD.
About the authors
Emily Antolasic
School of Psychology and Public Health, La Trobe University
Email: info@benthamscience.net
Emily Jaehne
School of Psychology and Public Health, La Trobe University
Email: info@benthamscience.net
Maarten van den Buuse
School of Psychology and Public Health, La Trobe University
Author for correspondence.
Email: info@benthamscience.net
References
- Koenen, K.C.; Ratanatharathorn, A.; Ng, L.; McLaughlin, K.A.; Bromet, E.J.; Stein, D.J.; Karam, E.G.; Meron Ruscio, A.; Benjet, C.; Scott, K.; Atwoli, L.; Petukhova, M.; Lim, C.C.W.; Aguilar-Gaxiola, S.; Al-Hamzawi, A.; Alonso, J.; Bunting, B.; Ciutan, M.; de Girolamo, G.; Degenhardt, L.; Gureje, O.; Haro, J.M.; Huang, Y.; Kawakami, N.; Lee, S.; Navarro-Mateu, F.; Pennell, B.E.; Piazza, M.; Sampson, N.; ten Have, M.; Torres, Y.; Viana, M.C.; Williams, D.; Xavier, M.; Kessler, R.C. Posttraumatic stress disorder in the world mental health surveys. Psychol. Med., 2017, 47(13), 2260-2274. doi: 10.1017/S0033291717000708 PMID: 28385165
- Lewis, S.J.; Arseneault, L.; Caspi, A.; Fisher, H.L.; Matthews, T.; Moffitt, T.E.; Odgers, C.L.; Stahl, D.; Teng, J.Y.; Danese, A. The epidemiology of trauma and post-traumatic stress disorder in a representative cohort of young people in England and Wales. Lancet Psychiatry, 2019, 6(3), 247-256. doi: 10.1016/S2215-0366(19)30031-8 PMID: 30798897
- Salehi, M.; Amanat, M.; Mohammadi, M.; Salmanian, M.; Rezaei, N.; Saghazadeh, A.; Garakani, A. The prevalence of post-traumatic stress disorder related symptoms in Coronavirus outbreaks: A systematic-review and meta-analysis. J. Affect. Disord., 2021, 282, 527-538. doi: 10.1016/j.jad.2020.12.188 PMID: 33433382
- Woolgar, F.; Garfield, H.; Dalgleish, T.; Meiser-Stedman, R. Systematic review and meta-analysis: prevalence of posttraumatic stress disorder in trauma-exposed preschool-aged children. J. Am. Acad. Child Adolesc. Psychiatry, 2022, 61(3), 366-377.
- Olff, M. Sex and gender differences in post-traumatic stress disorder: An update. Eur. J. Psychotraumatol., 2017, 8(sup4), 1351204. doi: 10.1080/20008198.2017.1351204
- Diagnostic and statistical manual of mental disorders (DSM-5), 5th ed; American Psychiatric Association: Arlington, VA, 2013.
- Hayes, J.P.; LaBar, K.S.; McCarthy, G.; Selgrade, E.; Nasser, J.; Dolcos, F.; Morey, R.A. Reduced hippocampal and amygdala activity predicts memory distortions for trauma reminders in combat-related PTSD. J. Psychiatr. Res., 2011, 45(5), 660-669.
- Li, H.; Penzo, M.A.; Taniguchi, H.; Kopec, C.D.; Huang, Z.J.; Li, B. Experience-dependent modification of a central amygdala fear circuit. Nat. Neurosci., 2013, 16(3), 332-339. doi: 10.1038/nn.3322 PMID: 23354330
- Nievergelt, C.M.; Maihofer, A.X.; Klengel, T.; Atkinson, E.G.; Chen, C.Y.; Choi, K.W.; Coleman, J.R.I.; Dalvie, S.; Duncan, L.E.; Gelernter, J.; Levey, D.F.; Logue, M.W.; Polimanti, R.; Provost, A.C.; Ratanatharathorn, A.; Stein, M.B.; Torres, K.; Aiello, A.E.; Almli, L.M.; Amstadter, A.B.; Andersen, S.B.; Andreassen, O.A.; Arbisi, P.A.; Ashley-Koch, A.E.; Austin, S.B.; Avdibegovic, E.; Babić, D.; Bækvad-Hansen, M.; Baker, D.G.; Beckham, J.C.; Bierut, L.J.; Bisson, J.I.; Boks, M.P.; Bolger, E.A.; Børglum, A.D.; Bradley, B.; Brashear, M.; Breen, G.; Bryant, R.A.; Bustamante, A.C.; Bybjerg-Grauholm, J.; Calabrese, J.R. Caldas- de- Almeida, J.M.; Dale, A.M.; Daly, M.J.; Daskalakis, N.P.; Deckert, J.; Delahanty, D.L.; Dennis, M.F.; Disner, S.G.; Domschke, K.; Dzubur-Kulenovic, A.; Erbes, C.R.; Evans, A.; Farrer, L.A.; Feeny, N.C.; Flory, J.D.; Forbes, D.; Franz, C.E.; Galea, S.; Garrett, M.E.; Gelaye, B.; Geuze, E.; Gillespie, C.; Uka, A.G.; Gordon, S.D.; Guffanti, G.; Hammamieh, R.; Harnal, S.; Hauser, M.A.; Heath, A.C.; Hemmings, S.M.J.; Hougaard, D.M.; Jakovljevic, M.; Jett, M.; Johnson, E.O.; Jones, I.; Jovanovic, T.; Qin, X.J.; Junglen, A.G.; Karstoft, K.I.; Kaufman, M.L.; Kessler, R.C.; Khan, A.; Kimbrel, N.A.; King, A.P.; Koen, N.; Kranzler, H.R.; Kremen, W.S.; Lawford, B.R.; Lebois, L.A.M.; Lewis, C.E.; Linnstaedt, S.D.; Lori, A.; Lugonja, B.; Luykx, J.J.; Lyons, M.J.; Maples-Keller, J.; Marmar, C.; Martin, A.R.; Martin, N.G.; Maurer, D.; Mavissakalian, M.R.; McFarlane, A.; McGlinchey, R.E.; McLaughlin, K.A.; McLean, S.A.; McLeay, S.; Mehta, D.; Milberg, W.P.; Miller, M.W.; Morey, R.A.; Morris, C.P.; Mors, O.; Mortensen, P.B.; Neale, B.M.; Nelson, E.C.; Nordentoft, M.; Norman, S.B.; ODonnell, M.; Orcutt, H.K.; Panizzon, M.S.; Peters, E.S.; Peterson, A.L.; Peverill, M.; Pietrzak, R.H.; Polusny, M.A.; Rice, J.P.; Ripke, S.; Risbrough, V.B.; Roberts, A.L.; Rothbaum, A.O.; Rothbaum, B.O.; Roy-Byrne, P.; Ruggiero, K.; Rung, A.; Rutten, B.P.F.; Saccone, N.L.; Sanchez, S.E.; Schijven, D.; Seedat, S.; Seligowski, A.V.; Seng, J.S.; Sheerin, C.M.; Silove, D.; Smith, A.K.; Smoller, J.W.; Sponheim, S.R.; Stein, D.J.; Stevens, J.S.; Sumner, J.A.; Teicher, M.H.; Thompson, W.K.; Trapido, E.; Uddin, M.; Ursano, R.J.; van den Heuvel, L.L.; Van Hooff, M.; Vermetten, E.; Vinkers, C.H.; Voisey, J.; Wang, Y.; Wang, Z.; Werge, T.; Williams, M.A.; Williamson, D.E.; Winternitz, S.; Wolf, C.; Wolf, E.J.; Wolff, J.D.; Yehuda, R.; Young, R.M.; Young, K.A.; Zhao, H.; Zoellner, L.A.; Liberzon, I.; Ressler, K.J.; Haas, M.; Koenen, K.C. International meta-analysis of PTSD genome-wide association studies identifies sex- and ancestry-specific genetic risk loci. Nat. Commun., 2019, 10(1), 4558. doi: 10.1038/s41467-019-12576-w PMID: 31594949
- Friedman, M.J.; Keane, T.M.; Resick, P.A.; Amaya-Jackson, L.M. Handbook of PTSD: Science and practice, 2nd ed; Guilford Press: New York, 2014.
- Lancaster, C.; Teeters, J.; Gros, D.; Back, S. Posttraumatic Stress Disorder: Overview of evidence-based assessment and treatment. J. Clin. Med., 2016, 5(11), 105. doi: 10.3390/jcm5110105 PMID: 27879650
- Flandreau, E.I.; Toth, M. Animal models of PTSD: A critical review. Curr. Top. Behav. Neurosci., 2017, 38, 47-68. doi: 10.1007/7854_2016_65 PMID: 28070873
- Milad, M.R.; Rauch, S.L.; Pitman, R.K.; Quirk, G.J. Fear extinction in rats: Implications for human brain imaging and anxiety disorders. Biol. Psychol., 2006, 73(1), 61-71. doi: 10.1016/j.biopsycho.2006.01.008 PMID: 16476517
- Fanselow, M.S. What is conditioned fear? Trends Neurosci., 1984, 7(12), 460-462. doi: 10.1016/S0166-2236(84)80253-2
- Milad, M.R.; Quirk, G.J. Fear extinction as a model for translational neuroscience: Ten years of progress. Annu. Rev. Psychol., 2012, 63, 129-151. doi: 10.1146/annurev.psych.121208.131631
- Andero, R.; Ressler, K.J. Fear extinction and BDNF: Translating animal models of PTSD to the clinic. Genes Brain Behav., 2012, 11(5), 503-512. doi: 10.1111/j.1601-183X.2012.00801.x PMID: 22530815
- Kim, J.J.; Jung, M.W. Neural circuits and mechanisms involved in Pavlovian fear conditioning: A critical review. Neurosci. Biobehav. Rev., 2006, 30(2), 188-202. doi: 10.1016/j.neubiorev.2005.06.005 PMID: 16120461
- Milad, M.R.; Quirk, G.J. Neurons in medial prefrontal cortex signal memory for fear extinction. Nature, 2002, 420(6911), 70-74. doi: 10.1038/nature01138 PMID: 12422216
- Ravindran, L.N.; Stein, M.B. Pharmacotherapy of PTSD: Premises, principles, and priorities. Brain Res., 2009, 1293, 24-39. doi: 10.1016/j.brainres.2009.03.037 PMID: 19332035
- Asnis, G.M.; Kohn, S.R.; Henderson, M.; Brown, N.L. SSRIs versus non-SSRIs in post-traumatic stress disorder: An update with recommendations. Drugs, 2004, 64(4), 383-404. doi: 10.2165/00003495-200464040-00004 PMID: 14969574
- Huang, E.J.; Reichardt, L.F. Neurotrophins: Roles in neuronal development and function. Ann. Rev. Neurosci., 2001, 24(1), 677-736.
- Notaras, M.; van den Buuse, M. Brain-derived neurotrophic factor and its role in stress-related disorders. Stress: Genetics, epigenetics, and genomics; Fink, G., Ed.; Academic Press, Elsevier: San Diego, Cambridge, Oxford, 2021, Vol. 4, pp. 253-261. doi: 10.1016/B978-0-12-813156-5.00023-6
- Notaras, M.; Hill, R.; van den Buuse, M. The BDNF gene Val66Met polymorphism as a modifier of psychiatric disorder susceptibility: progress and controversy. Mol. Psychiatry, 2015, 20(8), 916-930. doi: 10.1038/mp.2015.27 PMID: 25824305
- Notaras, M.; van den Buuse, M. Brain-Derived Neurotrophic Factor (BDNF): Novel insights into regulation and genetic variation. Neuroscientist, 2019, 25(5), 434-454. doi: 10.1177/1073858418810142 PMID: 30387693
- Yang, J.; Siao, C.J.; Nagappan, G.; Marinic, T.; Jing, D.; McGrath, K.; Chen, Z.Y.; Mark, W.; Tessarollo, L.; Lee, F.S.; Lu, B.; Hempstead, B.L. Neuronal release of proBDNF. Nat. Neurosci., 2009, 12(2), 113-115. doi: 10.1038/nn.2244 PMID: 19136973
- Nagappan, G.; Zaitsev, E.; Senatorov, V.V., Jr; Yang, J.; Hempstead, B.L.; Lu, B. Control of extracellular cleavage of ProBDNF by high frequency neuronal activity. Proc. Natl. Acad. Sci. USA, 2009, 106(4), 1267-1272. doi: 10.1073/pnas.0807322106 PMID: 19147841
- Notaras, M.; van den Buuse, M. Neurobiology of BDNF in fear memory, sensitivity to stress, and stress-related disorders. Mol. Psychiatry, 2020, 25(10), 2251-2274. doi: 10.1038/s41380-019-0639-2 PMID: 31900428
- Conner, J.M.; Lauterborn, J.C.; Yan, Q.; Gall, C.M.; Varon, S. Distribution of brain-derived neurotrophic factor (BDNF) protein and mRNA in the normal adult rat CNS: evidence for anterograde axonal transport. J. Neurosci., 1997, 17(7), 2295-2313. doi: 10.1523/JNEUROSCI.17-07-02295.1997 PMID: 9065491
- Minichiello, L. TrkB signalling pathways in LTP and learning. Nat. Rev. Neurosci., 2009, 10(12), 850-860. doi: 10.1038/nrn2738 PMID: 19927149
- Miranda, M.; Morici, J.F.; Zanoni, M.B.; Bekinschtein, P. Brain-Derived Neurotrophic Factor: A key molecule for memory in the healthy and the pathological brain. Front. Cell. Neurosci., 2019, 13, 363. doi: 10.3389/fncel.2019.00363
- Figurov, A.; Pozzo-Miller, L.D.; Olafsson, P.; Wang, T.; Lu, B. Regulation of synaptic responses to high-frequency stimulation and LTP by neurotrophins in the hippocampus. Nature, 1996, 381(6584), 706-709. doi: 10.1038/381706a0 PMID: 8649517
- Sasi, M.; Vignoli, B.; Canossa, M.; Blum, R. Neurobiology of local and intercellular BDNF signaling. Pflugers Arch., 2017, 469(5-6), 593-610. doi: 10.1007/s00424-017-1964-4 PMID: 28280960
- Hill, R.A.; van den Buuse, M. Sex-dependent and region-specific changes in TrkB signaling in BDNF heterozygous mice. Brain Res., 2011, 1384, 51-60. doi: 10.1016/j.brainres.2011.01.060
- Klug, M.; Hill, R.A.; Choy, K.H.C.; Kyrios, M.; Hannan, A.J.; van den Buuse, M. Long-term behavioral and NMDA receptor effects of young-adult corticosterone treatment in BDNF heterozygous mice. Neurobiol. Dis., 2012, 46(3), 722-731. doi: 10.1016/j.nbd.2012.03.015 PMID: 22426399
- Montkowski, A.; Holsboer, F. Intact spatial learning and memory in transgenic mice with reduced BDNF. Neuroreport, 1997, 8(3), 779-782. doi: 10.1097/00001756-199702100-00040 PMID: 9106766
- Gray, J.; Yeo, G.S.H.; Cox, J.J.; Morton, J.; Adlam, A.L.R.; Keogh, J.M.; Yanovski, J.A.; El Gharbawy, A.; Han, J.C.; Tung, Y.C.L.; Hodges, J.R.; Raymond, F.L.; ORahilly, S.; Farooqi, I.S. Hyperphagia, severe obesity, impaired cognitive function, and hyperactivity associated with functional loss of one copy of the brain-derived neurotrophic factor (BDNF) gene. Diabetes, 2006, 55(12), 3366-3371. doi: 10.2337/db06-0550 PMID: 17130481
- Gray, J.; Yeo, G.; Hung, C.; Keogh, J.; Clayton, P.; Banerjee, K.; McAulay, A.; ORahilly, S.; Farooqi, I.S. Functional characterization of human NTRK2 mutations identified in patients with severe early-onset obesity. Int. J. Obes., 2007, 31(2), 359-364. doi: 10.1038/sj.ijo.0803390
- Yeo, G.S.H.; Connie Hung, C.C.; Rochford, J.; Keogh, J.; Gray, J.; Sivaramakrishnan, S.; ORahilly, S.; Farooqi, I.S. A de novo mutation affecting human TrkB associated with severe obesity and developmental delay. Nat. Neurosci., 2004, 7(11), 1187-1189. doi: 10.1038/nn1336 PMID: 15494731
- Arosio, B.; Guerini, F.R.; Voshaar, R.C.O.; Aprahamian, I. Blood Brain-Derived Neurotrophic Factor (BDNF) and Major Depression: Do we have a translational perspective? Front. Behav. Neurosci., 2021, 15, 626906. doi: 10.3389/fnbeh.2021.626906 PMID: 33643008
- Arumugam, V.; John, V.; Augustine, N.; Jacob, T.; Joy, S.; Sen, S.; Sen, T. The impact of antidepressant treatment on brain-derived neurotrophic factor level: An evidence-based approach through systematic review and meta-analysis. Indian J. Pharmacol., 2017, 49(3), 236-242. doi: 10.4103/ijp.IJP_700_16 PMID: 29033483
- Casarotto, P.C.; Girych, M.; Fred, S.M.; Kovaleva, V.; Moliner, R.; Enkavi, G.; Biojone, C.; Cannarozzo, C.; Sahu, M.P.; Kaurinkoski, K.; Brunello, C.A.; Steinzeig, A.; Winkel, F.; Patil, S.; Vestring, S.; Serchov, T.; Diniz, C.R.A.F.; Laukkanen, L.; Cardon, I.; Antila, H.; Rog, T.; Piepponen, T.P.; Bramham, C.R.; Normann, C.; Lauri, S.E.; Saarma, M.; Vattulainen, I.; Castrén, E. Antidepressant drugs act by directly binding to TRKB neurotrophin receptors. Cell, 2021, 184(5), 1299-1313.e19. doi: 10.1016/j.cell.2021.01.034 PMID: 33606976
- Rosas-Vidal, L.E.; Do-Monte, F.H.; Sotres-Bayon, F.; Quirk, G.J. Hippocampal--prefrontal BDNF and memory for fear extinction. Neuropsychopharmacology, 2014, 39(9), 2161-2169. doi: 10.1038/npp.2014.64 PMID: 24625752
- Kataoka, T.; Fuchikami, M.; Nojima, S.; Nagashima, N.; Araki, M.; Omura, J.; Miyagi, T.; Okamoto, Y.; Morinobu, S. Combined brain-derived neurotrophic factor with extinction training alleviate impaired fear extinction in an animal model of post-traumatic stress disorder. Genes Brain Behav., 2018, 12520. doi: 10.1111/gbb.12520 PMID: 30246290
- Chaaya, N.; Wang, J.; Jacques, A.; Beecher, K.; Chaaya, M.; Battle, A.R.; Johnson, L.R.; Chehrehasa, F.; Belmer, A.; Bartlett, S.E. Contextual fear memory maintenance changes expression of pMAPK, BDNF and IBA-1 in the prelimbic cortex in a layer-specific manner. Front. Neural Circuits, 2021, 15, 660199. doi: 10.3389/fncir.2021.660199 PMID: 34295224
- Peters, J.; Dieppa-Perea, L.M.; Melendez, L.M.; Quirk, G.J. Induction of fear extinction with hippocampal-infralimbic BDNF. Science, 2010, 328(5983), 1288-1290. doi: 10.1126/science.1186909 PMID: 20522777
- Chang, S.H.; Yu, Y.H.; He, A.; Ou, C.Y.; Shyu, B.C.; Huang, A.C.W. BDNF protein and BDNF mRNA expression of the medial prefrontal cortex, amygdala, and hippocampus during situational reminder in the PTSD animal model. Behav. Neurol., 2021, 2021, 1-13. doi: 10.1155/2021/6657716 PMID: 33763156
- Kirtley, A.; Thomas, K.L. The exclusive induction of extinction is gated by BDNF. Learn. Mem., 2010, 17(12), 612-619. doi: 10.1101/lm.1877010 PMID: 21127000
- Radiske, A.; Rossato, J.I.; Köhler, C.A.; Gonzalez, M.C.; Medina, J.H.; Cammarota, M. Requirement for BDNF in the reconsolidation of fear extinction. J. Neurosci., 2015, 35(16), 6570-6574. doi: 10.1523/JNEUROSCI.4093-14.2015 PMID: 25904806
- Chaaya, N.; Jacques, A.; Belmer, A.; Beecher, K.; Ali, S.A.; Chehrehasa, F.; Battle, A.R.; Johnson, L.R.; Bartlett, S.E. Contextual fear conditioning alter microglia number and morphology in the rat dorsal hippocampus. Front. Cell. Neurosci., 2019, 13, 214. doi: 10.3389/fncel.2019.00214 PMID: 31139053
- Endres, T.; Lessmann, V. Age-dependent deficits in fear learning in heterozygous BDNF knock-out mice. Learn. Mem., 2012, 19(12), 561-570. doi: 10.1101/lm.028068.112 PMID: 23154927
- Meis, S.; Endres, T.; Munsch, T.; Lessmann, V. The relation between long-term synaptic plasticity at glutamatergic synapses in the amygdala and fear learning in adult heterozygous BDNF-knockout Mice. Cereb. Cortex, 2018, 28(4), 1195-1208. doi: 10.1093/cercor/bhx032 PMID: 28184413
- Psotta, L.; Lessmann, V.; Endres, T. Impaired fear extinction learning in adult heterozygous BDNF knock-out mice. Neurobiol. Learn. Mem., 2013, 103, 34-38. doi: 10.1016/j.nlm.2013.03.003 PMID: 23578839
- Hill, J.L.; Hardy, N.F.; Jimenez, D.V.; Maynard, K.R.; Kardian, A.S.; Pollock, C.J.; Schloesser, R.J.; Martinowich, K. Loss of promoter IV-driven BDNF expression impacts oscillatory activity during sleep, sensory information processing and fear regulation. Transl. Psychiatry, 2016, 6(8), e873. doi: 10.1038/tp.2016.153 PMID: 27552586
- Choi, D.C.; Maguschak, K.A.; Ye, K.; Jang, S.W.; Myers, K.M.; Ressler, K.J. Prelimbic cortical BDNF is required for memory of learned fear but not extinction or innate fear. Proc. Natl. Acad. Sci. USA, 2010, 107(6), 2675-2680. doi: 10.1073/pnas.0909359107 PMID: 20133801
- McEwen, B.S.; Bowles, N.P.; Gray, J.D.; Hill, M.N.; Hunter, R.G.; Karatsoreos, I.N.; Nasca, C. Mechanisms of stress in the brain. Nat. Neurosci., 2015, 18(10), 1353-1363. doi: 10.1038/nn.4086 PMID: 26404710
- Gururajan, A.; Hill, R.A.; van den Buuse, M. Brain-derived neurotrophic factor heterozygous mutant rats show selective cognitive changes and vulnerability to chronic corticosterone treatment. Neuroscience, 2015, 284, 297-310. doi: 10.1016/j.neuroscience.2014.10.009 PMID: 25445195
- Wu, Y.C.; Hill, R.A.; Gogos, A.; van den Buuse, M. Sex differences and the role of estrogen in animal models of schizophrenia: Interaction with BDNF. Neuroscience, 2013, 239, 67-83. doi: 10.1016/j.neuroscience.2012.10.024 PMID: 23085218
- Baker-Andresen, D.; Flavell, C.R.; Li, X.; Bredy, T.W. Activation of BDNF signaling prevents the return of fear in female mice. Learn. Mem., 2013, 20(5), 237-240. doi: 10.1101/lm.029520.112 PMID: 23589089
- Aksu, S.; Unlu, G.; Kardesler, A.C.; Cakaloz, B.; Aybek, H. Altered levels of brain-derived neurotrophic factor, proBDNF and tissue plasminogen activator in children with posttraumatic stress disorder. Psychiatry Res., 2018, 268, 478-483. doi: 10.1016/j.psychres.2018.07.013 PMID: 30142554
- Stratta, P.; Sanità, P.; Bonanni, R.L.; de Cataldo, S.; Angelucci, A.; Rossi, R.; Origlia, N.; Domenici, L.; Carmassi, C.; Piccinni, A.; DellOsso, L.; Rossi, A. Clinical correlates of plasma brain-derived neurotrophic factor in post-traumatic stress disorder spectrum after a natural disaster. Psychiatry Res., 2016, 244, 165-170. doi: 10.1016/j.psychres.2016.07.019 PMID: 27479108
- Bücker, J.; Fries, G.R.; Kapczinski, F.; Post, R.M.; Yatham, L.N.; Vianna, P.; Bogo Chies, J.A.; Gama, C.S.; Magalhães, P.V.; Aguiar, B.W.; Pfaffenseller, B. Kauer-SantAnna, M. Brain-derived neurotrophic factor and inflammatory markers in school-aged children with early trauma. Acta Psychiatr. Scand., 2015, 131(5), 360-368. doi: 10.1111/acps.12358 PMID: 25401224
- Matsuoka, Y.; Nishi, D.; Noguchi, H.; Kim, Y.; Hashimoto, K. Longitudinal changes in serum brain-derived neurotrophic factor in accident survivors with posttraumatic stress disorder. Neuropsychobiology, 2013, 68(1), 44-50. doi: 10.1159/000350950 PMID: 23774996
- Su, S.; Xiao, Z.; Lin, Z.; Qiu, Y.; Jin, Y.; Wang, Z. Plasma brain-derived neurotrophic factor levels in patients suffering from post-traumatic stress disorder. Psychiatry Res., 2015, 229(1-2), 365-369. doi: 10.1016/j.psychres.2015.06.038 PMID: 26160204
- Howie, H.; Rijal, C.M.; Ressler, K.J. A review of epigenetic contributions to post-traumatic stress disorder. Dialogues Clin. Neurosci., 2019, 21(4), 417-428. doi: 10.31887/DCNS.2019.21.4/kressler PMID: 31949409
- Kim, T.Y.; Kim, S.J.; Chung, H.G.; Choi, J.H.; Kim, S.H.; Kang, J.I. Epigenetic alterations of the BDNF gene in combat-related post-traumatic stress disorder. Acta Psychiatr. Scand., 2017, 135(2), 170-179. doi: 10.1111/acps.12675 PMID: 27886370
- Pilakka-Kanthikeel, S.; Atluri, V.S.; Sagar, V.; Saxena, S.K.; Nair, M. Targeted brain derived neurotropic factors (BDNF) delivery across the blood-brain barrier for neuro-protection using magnetic nano carriers: an in-vitro study. PLoS One, 2013, 8(4), e62241.
- Mahan, A.L.; Ressler, K.J. Fear conditioning, synaptic plasticity and the amygdala: implications for posttraumatic stress disorder. Trends Neurosci., 2012, 35(1), 24-35. doi: 10.1016/j.tins.2011.06.007 PMID: 21798604
- Zeng, Y.; Liu, Y.; Wu, M.; Liu, J.; Hu, Q. Activation of TrkB by 7,8-dihydroxyflavone prevents fear memory defects and facilitates amygdalar synaptic plasticity in aging. J. Alzheimers Dis., 2012, 31(4), 765-778. doi: 10.3233/JAD-2012-120886 PMID: 22710915
- Andero, R.; Heldt, S.A.; Ye, K.; Liu, X.; Armario, A.; Ressler, K.J. Effect of 7,8-dihydroxyflavone, a small-molecule TrkB agonist, on emotional learning. Am. J. Psychiatry, 2011, 168(2), 163-172.
- Flavell, C.R.; Lambert, E.A.; Winters, B.D.; Bredy, T.W. Mechanisms governing the reactivation-dependent destabilization of memories and their role in extinction. Front. Behav. Neurosci., 2013, 7, 214. doi: 10.3389/fnbeh.2013.00214 PMID: 24421762
- Klein, R.; Nanduri, V.; Jing, S.; Lamballe, F.; Tapley, P.; Bryant, S.; Cordon-Cardo, C.; Jones, K.R.; Reichardt, L.F.; Barbacid, M. The trkB tyrosine protein kinase is a receptor for brain-derived neurotrophic factor and neurotrophin-3. Cell, 1991, 66(2), 395-403. doi: 10.1016/0092-8674(91)90628-C PMID: 1649702
- Soppet, D.; Escandon, E.; Maragos, J.; Middlemas, D.S.; Raid, S.W.; Blair, J.; Burton, L.E.; Stanton, B.R.; Kaplan, D.R.; Hunter, T.; Nikolics, K.; Parade, L.F. The neurotrophic factors brain-derived neurotrophic factor and neurotrophin-3 are ligands for the trkB tyrosine kinase receptor. Cell, 1991, 65(5), 895-903. doi: 10.1016/0092-8674(91)90396-G PMID: 1645620
- Chen, Z.Y.; Ieraci, A.; Teng, H.; Dall, H.; Meng, C.X.; Herrera, D.G.; Nykjaer, A.; Hempstead, B.L.; Lee, F.S. Sortilin controls intracellular sorting of brain-derived neurotrophic factor to the regulated secretory pathway. J. Neurosci., 2005, 25(26), 6156-6166. doi: 10.1523/JNEUROSCI.1017-05.2005 PMID: 15987945
- Yang, M.; Lim, Y.; Li, X.; Zhong, J.H.; Zhou, X.F. Precursor of brain-derived neurotrophic factor (proBDNF) forms a complex with Huntingtin-associated protein-1 (HAP1) and sortilin that modulates proBDNF trafficking, degradation, and processing. J. Biol. Chem., 2011, 286(18), 16272-16284. doi: 10.1074/jbc.M110.195347 PMID: 21357693
- Chen, Z.Y.; Jing, D.; Bath, K.G.; Ieraci, A.; Khan, T.; Siao, C.J.; Herrera, D.G.; Toth, M.; Yang, C.; McEwen, B.S.; Hempstead, B.L.; Lee, F.S. Genetic variant BDNF (Val66Met) polymorphism alters anxiety-related behavior. Science, 2006, 314(5796), 140-143. doi: 10.1126/science.1129663 PMID: 17023662
- Mercado, N.M.; Stancati, J.A.; Sortwell, C.E.; Mueller, R.L.; Boezwinkle, S.A.; Duffy, M.F.; Fischer, D.L.; Sandoval, I.M.; Manfredsson, F.P.; Collier, T.J.; Steece-Collier, K. The BDNF Val66Met polymorphism (rs6265) enhances dopamine neuron graft efficacy and side-effect liability in rs6265 knock-in rats. Neurobiol. Dis., 2021, 148, 105175. doi: 10.1016/j.nbd.2020.105175 PMID: 33188920
- Egan, M.F.; Kojima, M.; Callicott, J.H.; Goldberg, T.E.; Kolachana, B.S.; Bertolino, A.; Zaitsev, E.; Gold, B.; Goldman, D.; Dean, M.; Lu, B.; Weinberger, D.R. The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell, 2003, 112(2), 257-269. doi: 10.1016/S0092-8674(03)00035-7 PMID: 12553913
- Petryshen, T.L.; Sabeti, P.C.; Aldinger, K.A.; Fry, B.; Fan, J.B.; Schaffner, S.F.; Waggoner, S.G.; Tahl, A.R.; Sklar, P. Population genetic study of the brain-derived neurotrophic factor (BDNF) gene. Mol. Psychiatry, 2010, 15(8), 810-815. doi: 10.1038/mp.2009.24 PMID: 19255578
- Dincheva, I.; Pattwell, S.S.; Tessarollo, L.; Bath, K.G.; Lee, F.S. BDNF modulates contextual fear learning during adolescence. Dev. Neurosci., 2014, 36(3-4), 269-276. doi: 10.1159/000358824 PMID: 24992985
- Felmingham, K.L.; Zuj, D.V.; Hsu, K.C.M.; Nicholson, E.; Palmer, M.A.; Stuart, K.; Vickers, J.C.; Malhi, G.S.; Bryant, R.A. The BDNF Val66Met polymorphism moderates the relationship between Posttraumatic Stress Disorder and fear extinction learning. Psychoneuroendocrinology, 2018, 91, 142-148. doi: 10.1016/j.psyneuen.2018.03.002 PMID: 29550677
- Giza, J.I.; Kim, J.; Meyer, H.C.; Anastasia, A.; Dincheva, I.; Zheng, C.I.; Lopez, K.; Bains, H.; Yang, J.; Bracken, C.; Liston, C.; Jing, D.; Hempstead, B.L.; Lee, F.S. The BDNF val66met prodomain disassembles dendritic spines altering fear extinction circuitry and behavior. Neuron, 2018, 99(1), 163-178.e6. doi: 10.1016/j.neuron.2018.05.024 PMID: 29909994
- Mühlberger, A.; Andreatta, M.; Ewald, H.; Glotzbach-Schoon, E.; Tröger, C.; Baumann, C.; Reif, A.; Deckert, J.; Pauli, P. The BDNF Val66Met polymorphism modulates the generalization of cued fear responses to a novel context. Neuropsychopharmacology, 2014, 39(5), 1187-1195. doi: 10.1038/npp.2013.320 PMID: 24247044
- Soliman, F.; Glatt, C.E.; Bath, K.G.; Levita, L.; Jones, R.M.; Pattwell, S.S.; Jing, D.; Tottenham, N.; Amso, D.; Somerville, L.H.; Voss, H.U.; Glover, G.; Ballon, D.J.; Liston, C.; Teslovich, T.; Van Kempen, T.; Lee, F.S.; Casey, B.J. A genetic variant BDNF polymorphism alters extinction learning in both mouse and human. Science, 2010, 327(5967), 863-866. doi: 10.1126/science.1181886 PMID: 20075215
- Lonsdorf, T.B.; Golkar, A.; Lindström, K.M.; Haaker, J.; Öhman, A.; Schalling, M.; Ingvar, M. BDNF val66met affects neural activation pattern during fear conditioning and 24 h delayed fear recall. Soc. Cogn. Affect. Neurosci., 2015, 10(5), 664-671. doi: 10.1093/scan/nsu102 PMID: 25103087
- Lonsdorf, T.B.; Weike, A.I.; Golkar, A.; Schalling, M.; Hamm, A.O.; Öhman, A. Amygdala-dependent fear conditioning in humans is modulated by the BDNFval66met polymorphism. Behav. Neurosci., 2010, 124(1), 9-15. doi: 10.1037/a0018261 PMID: 20141276
- Asthana, M.K.; Brunhuber, B.; Mühlberger, A.; Reif, A.; Schneider, S.; Herrmann, M.J. Preventing the return of fear using reconsolidation update mechanisms depends on the met-allele of the brain derived neurotrophic factor val66met polymorphism. Int. J. Neuropsychopharmacol., 2015, 19(6), pyv137. doi: 10.1093/ijnp/pyv137 PMID: 26721948
- Jaehne, E.J.; Kent, J.N.; Antolasic, E.J.; Wright, B.J.; Spiers, J.G.; Creutzberg, K.C.; De Rosa, F.; Riva, M.A.; Sortwell, C.E.; Collier, T.J.; van den Buuse, M. Behavioral phenotyping of a rat model of the BDNF Val66Met polymorphism reveals selective impairment of fear memory. Transl. Psychiatry, 2022, 12(1), 93. doi: 10.1038/s41398-022-01858-5 PMID: 35256586
- Long, V.A.; Fanselow, M.S. Stress-enhanced fear learning in rats is resistant to the effects of immediate massed extinction. Stress, 2012, 15(6), 627-636. doi: 10.3109/10253890.2011.650251 PMID: 22176467
- Raju, S.; Notaras, M.; Grech, A.M.; Schroeder, A.; van den Buuse, M.; Hill, R.A. BDNF Val66Met genotype and adolescent glucocorticoid treatment induce sex-specific disruptions to fear extinction and amygdala GABAergic interneuron expression in mice. Horm. Behav., 2022, 144, 105231. doi: 10.1016/j.yhbeh.2022.105231 PMID: 35779519
- Notaras, M.; Hill, R.; Gogos, J.A.; van den Buuse, M. BDNF Val66Met genotype determines hippocampus-dependent behavior via sensitivity to glucocorticoid signaling. Mol. Psychiatry, 2016, 21(6), 730-732. doi: 10.1038/mp.2015.152 PMID: 26821977
- Corrone, M.; Ratnayake, R.; De Oliveira, N.; Jaehne, E.J.; van den Buuse, M. Methamphetamine-induced locomotor sensitization in mice is not associated with deficits in a range of cognitive, affective and social behaviours: Interaction with brain-derived neurotrophic factor (BDNF) Val66Met. Behav. Pharmacol., 2022, 34(1), 20-36.
- Richter-Levin, G.; Stork, O.; Schmidt, M.V. Animal models of PTSD: A challenge to be met. Mol. Psychiatry, 2019, 24(8), 1135-1156. doi: 10.1038/s41380-018-0272-5 PMID: 30816289
- Osterburg, A.R.; Hexley, P.; Supp, D.M.; Robinson, C.T.; Noel, G.; Ogle, C.; Boyce, S.T.; Aronow, B.J.; Babcock, G.F. Concerns over interspecies transcriptional comparisons in mice and humans after trauma. Proc. Natl. Acad. Sci. USA, 2013, 110(36), E3370. doi: 10.1073/pnas.1306033110 PMID: 23847210
- Cohen, H.; Geva, A.B.; Matar, M.A.; Zohar, J.; Kaplan, Z. Post-traumatic stress behavioural responses in inbred mouse strains: can genetic predisposition explain phenotypic vulnerability? Int. J. Neuropsychopharmacol., 2008, 11(3), 331-349. doi: 10.1017/S1461145707007912 PMID: 17655807
- Shansky, R.M. Sex differences in PTSD resilience and susceptibility: Challenges for animal models of fear learning. Neurobiol. Stress, 2015, 1, 60-65.
- Dai, W.; Kaminga, A.C.; Wu, X.; Wen, S.W.; Tan, H.; Yan, J.; Deng, J.; Lai, Z.; Liu, A. Brain-derived neurotropic factor val66met polymorphism and posttraumatic stress disorder among survivors of the 1998 Dongting lake flood in China. BioMed Res. Int., 2017, 2017, 1-9. doi: 10.1155/2017/4569698 PMID: 28589140
- Guo, J.C.; Yang, Y.J.; Zheng, J.F.; Guo, M.; Wang, X.D.; Gao, Y.S.; Fu, L.Q.; Jiang, X.L.; Fu, L.M.; Huang, T. Functional rs6265 polymorphism in the brain‐derived neurotrophic factor gene confers protection against neurocognitive dysfunction in posttraumatic stress disorder among Chinese patients with hepatocellular carcinoma. J. Cell. Biochem., 2019, 120(6), 10434-10443. doi: 10.1002/jcb.28328 PMID: 30659644
- Young, D.A.; Neylan, T.C.; ODonovan, A.; Metzler, T.; Richards, A.; Ross, J.A.; Inslicht, S.S. The interaction of BDNF Val66Met, PTSD, and child abuse on psychophysiological reactivity and HPA axis function in a sample of Gulf War Veterans. J. Affect. Disord., 2018, 235, 52-60. doi: 10.1016/j.jad.2018.04.004 PMID: 29649711
- Li, R.H.; Fan, M.; Hu, M.S.; Ran, M.S.; Fang, D.Z. Reduced severity of posttraumatic stress disorder associated with Val allele of Val66Met polymorphism at brain-derived neurotrophic factor gene among Chinese adolescents after Wenchuan earthquake. Psychophysiology, 2016, 53(5), 705-711. doi: 10.1111/psyp.12603 PMID: 26751724
- Zhang, L.; Benedek, D.M.; Fullerton, C.S.; Forsten, R.D.; Naifeh, J.A.; Li, X.X.; Hu, X.Z.; Li, H.; Jia, M.; Xing, G.Q.; Benevides, K.N.; Ursano, R.J. PTSD risk is associated with BDNF Val66Met and BDNF overexpression. Mol. Psychiatry, 2014, 19(1), 8-10. doi: 10.1038/mp.2012.180 PMID: 23319005
- Nedic Erjavec, G.; Nikolac Perkovic, M.; Tudor, L.; Uzun, S.; Kovacic Petrovic, Z.; Konjevod, M.; Sagud, M.; Kozumplik, O.; Svob Strac, D.; Peraica, T.; Mimica, N.; Havelka, M.A.; Zilic, D.; Pivac, N. Moderating effects of BDNF genetic variants and smoking on cognition in PTSD veterans. Biomolecules, 2021, 11(5), 641. doi: 10.3390/biom11050641 PMID: 33926045
- Dretsch, M.N.; Williams, K.; Emmerich, T.; Crynen, G.; Ait-Ghezala, G.; Chaytow, H.; Mathura, V.; Crawford, F.C.; Iverson, G.L. Brain‐derived neurotropic factor polymorphisms, traumatic stress, mild traumatic brain injury, and combat exposure contribute to postdeployment traumatic stress. Brain Behav., 2016, 6(1), e00392. doi: 10.1002/brb3.392 PMID: 27110438
- Pivac, N.; Kozaric-Kovacic, D.; Grubisic-Ilic, M.; Nedic, G.; Rakos, I.; Nikolac, M.; Blazev, M.; Muck-Seler, D. The association between brain-derived neurotrophic factor Val66Met variants and psychotic symptoms in posttraumatic stress disorder. World J. Biol. Psychiatry, 2012, 13(4), 306-311. doi: 10.3109/15622975.2011.582883 PMID: 21728904
- Felmingham, K.L.; Dobson-Stone, C.; Schofield, P.R.; Quirk, G.J.; Bryant, R.A. The brain-derived neurotrophic factor val66met polymorphism predicts response to exposure therapy in posttraumatic stress disorder. Biol. Psychiatry, 2013, 73(11), 1059-1063. doi: 10.1016/j.biopsych.2012.10.033
- Lyoo, I.K.; Kim, J.E.; Yoon, S.J.; Hwang, J.; Bae, S.; Kim, D.J. The neurobiological role of the dorsolateral prefrontal cortex in recovery from trauma. Longitudinal brain imaging study among survivors of the South Korean subway disaster. Arch. Gen. Psychiatry, 2011, 68(7), 701-713. doi: 10.1001/archgenpsychiatry.2011.70 PMID: 21727254
- Jin, M.J.; Jeon, H.; Hyun, M.H.; Lee, S.H. Influence of childhood trauma and brain-derived neurotrophic factor Val66Met polymorphism on posttraumatic stress symptoms and cortical thickness. Sci. Rep., 2019, 9(1), 6028. doi: 10.1038/s41598-019-42563-6 PMID: 30988377
- van den Heuvel, L.; Suliman, S.; Malan-Müller, S.; Hemmings, S.; Seedat, S. Brain-derived neurotrophic factor Val66met polymorphism and plasma levels in road traffic accident survivors. Anxiety Stress Coping, 2016, 29(6), 616-629. doi: 10.1080/10615806.2016.1163545 PMID: 26999419
- Valente, N.L.M.; Vallada, H.; Cordeiro, Q.; Miguita, K.; Bressan, R.A.; Andreoli, S.B.; Mari, J.J.; Mello, M.F. Candidate-gene approach in posttraumatic stress disorder after urban violence: Association analysis of the genes encoding serotonin transporter, dopamine transporter, and BDNF. J. Mol. Neurosci., 2011, 44(1), 59-67. doi: 10.1007/s12031-011-9513-7 PMID: 21491204
- Bruenig, D.; Lurie, J.; Morris, C.P.; Harvey, W.; Lawford, B.; Young, R.M.; Voisey, J. A case-control study and meta-analysis reveal BDNF val66met is a possible risk factor for PTSD. Neural Plast., 2016, 2016, 1-10. doi: 10.1155/2016/6979435 PMID: 27413557
- Guo, J.C.; Yang, Y.J.; Guo, M.; Wang, X.D.; Juan, Y.; Gao, Y.S.; Fu, L.Q.; Jiang, X.L.; Fu, L.M.; Huang, T. Guo; Yang, Y.-J.; Guo, M.; Wang, X.-D.; Juan, Y.; Gao, Y.-S.; Fu, L.-Q.; Jiang, X.-L.; Fu, L.-M.; Huang, T., Correlations of four genetic single nucleotide polymorphisms in brain-derived neurotrophic factor with posttraumatic stress disorder. Psychiatry Investig., 2018, 15(4), 407-412. doi: 10.30773/pi.2017.06.17.1 PMID: 29551049
- Bountress, K.E.; Bacanu, S.A.; Tomko, R.L.; Korte, K.J.; Hicks, T.; Sheerin, C.; Lind, M.J.; Marraccini, M.; Nugent, N.; Amstadter, A.B. The effects of a BDNF val66met polymorphism on posttraumatic stress disorder: A meta-analysis. Neuropsychobiology, 2017, 76(3), 136-142. doi: 10.1159/000489407 PMID: 29874672
- Tudor, L.; Konjevod, M.; Nikolac Perkovic, M.; Svob Strac, D.; Nedic Erjavec, G.; Uzun, S.; Kozumplik, O.; Sagud, M.; Kovacic Petrovic, Z.; Pivac, N. Genetic variants of the brain-derived neurotrophic factor and metabolic indices in veterans with posttraumatic stress disorder. Front. Psychiatry, 2018, 9, 637. doi: 10.3389/fpsyt.2018.00637 PMID: 30542302
- Dinoff, A.; Herrmann, N.; Swardfager, W.; Lanctôt, K.L. The effect of acute exercise on blood concentrations of brain-derived neurotrophic factor in healthy adults: A meta-analysis. Eur. J. Neurosci., 2017, 46(1), 1635-1646. doi: 10.1111/ejn.13603 PMID: 28493624
- Patki, G.; Li, L.; Allam, F.; Solanki, N.; Dao, A.T.; Alkadhi, K.; Salim, S. Moderate treadmill exercise rescues anxiety and depression-like behavior as well as memory impairment in a rat model of posttraumatic stress disorder. Physiol. Behav., 2014, 130, 47-53. doi: 10.1016/j.physbeh.2014.03.016
- Vaynman, S.; Ying, Z.; Gomez-Pinilla, F. Hippocampal BDNF mediates the efficacy of exercise on synaptic plasticity and cognition. Eur. J. Neurosci., 2004, 20(10), 2580-2590. doi: 10.1111/j.1460-9568.2004.03720.x PMID: 15548201
- Fang, Z.H.; Lee, C.H.; Seo, M.K.; Cho, H.; Lee, J.G.; Lee, B.J.; Park, S.W.; Kim, Y.H. Effect of treadmill exercise on the BDNF-mediated pathway in the hippocampus of stressed rats. Neurosci. Res., 2013, 76(4), 187-194. doi: 10.1016/j.neures.2013.04.005 PMID: 23665137
- Lu, J.; Xu, Y.; Hu, W.; Gao, Y.; Ni, X.; Sheng, H.; Liu, Y. Exercise ameliorates depression-like behavior and increases hippocampal BDNF level in ovariectomized rats. Neurosci. Lett., 2014, 573, 13-18. doi: 10.1016/j.neulet.2014.04.053
- Marais, L.; Stein, D.J.; Daniels, W.M.U. Exercise increases BDNF levels in the striatum and decreases depressive-like behavior in chronically stressed rats. Metab. Brain Dis., 2009, 24(4), 587-597. doi: 10.1007/s11011-009-9157-2 PMID: 19844781
- Marlatt, M.W.; Potter, M.C.; Lucassen, P.J.; van Praag, H. Running throughout middle-age improves memory function, hippocampal neurogenesis, and BDNF levels in female C57BL/6J mice. Dev. Neurobiol., 2012, 72(6), 943-952. doi: 10.1002/dneu.22009 PMID: 22252978
- Shafia, S.; Vafaei, A.A.; Samaei, S.A.; Bandegi, A.R.; Rafiei, A.; Valadan, R.; Hosseini-Khah, Z.; Mohammadkhani, R.; Rashidy-Pour, A. Effects of moderate treadmill exercise and fluoxetine on behavioural and cognitive deficits, hypothalamic-pituitary-adrenal axis dysfunction and alternations in hippocampal BDNF and mRNA expression of apoptosis related proteins in a rat model of post-traumatic stress disorder. Neurobiol. Learn. Mem., 2017, 139, 165-178. doi: 10.1016/j.nlm.2017.01.009 PMID: 28137660
- Neeper, S.A.; Gómez-Pinilla, F.; Choi, J.; Cotman, C.W. Physical activity increases mRNA for brain-derived neurotrophic factor and nerve growth factor in rat brain. Brain Res., 1996, 726(1-2), 49-56. doi: 10.1016/0006-8993(96)00273-9 PMID: 8836544
- Sun, L.; Cui, K.; Xing, F.; Liu, X. Akt dependent adult hippocampal neurogenesis regulates the behavioral improvement of treadmill running to mice model of post-traumatic stress disorder. Behav. Brain Res., 2020, 379, 112375. doi: 10.1016/j.bbr.2019.112375 PMID: 31759046
- van Praag, H. Neurogenesis and exercise: past and future directions. Neuromol. Med., 2008, 10(2), 128-140. doi: 10.1007/s12017-008-8028-z PMID: 18286389
- Nowacka-Chmielewska, M.; Grabowska, K.; Grabowski, M.; Meybohm, P.; Burek, M.; Małecki, A. Running from stress: Neurobiological mechanisms of exercise-induced stress resilience. Int. J. Mol. Sci., 2022, 23(21), 13348. doi: 10.3390/ijms232113348 PMID: 36362131
- Ishikawa, R.; Uchida, C.; Kitaoka, S.; Furuyashiki, T.; Kida, S. Improvement of PTSD-like behavior by the forgetting effect of hippocampal neurogenesis enhancer memantine in a social defeat stress paradigm. Mol. Brain, 2019, 12(1), 68. doi: 10.1186/s13041-019-0488-6 PMID: 31370877
- Schoenfeld, T.J.; Rhee, D.; Martin, L.; Smith, J.A.; Sonti, A.N.; Padmanaban, V.; Cameron, H.A. New neurons restore structural and behavioral abnormalities in a rat model of PTSD. Hippocampus, 2019, 29(9), 848-861. doi: 10.1002/hipo.23087 PMID: 30865372
- Powers, M.B.; Medina, J.L.; Burns, S.; Kauffman, B.Y.; Monfils, M.; Asmundson, G.J.; Diamond, A.; McIntyre, C.; Smits, J.A. Exercise augmentation of exposure therapy for PTSD: Rationale and pilot efficacy data. Cogn. Behav. Ther., 2015, 44(4), 314-327.
- Crombie, K.M.; Sartin-Tarm, A.; Sellnow, K.; Ahrenholtz, R.; Lee, S.; Matalamaki, M.; Almassi, N.E.; Hillard, C.J.; Koltyn, K.F.; Adams, T.G.; Cisler, J.M. Exercise-induced increases in Anandamide and BDNF during extinction consolidation contribute to reduced threat following reinstatement: Preliminary evidence from a randomized controlled trial. Psychoneuroendocrinology, 2021, 132, 105355. doi: 10.1016/j.psyneuen.2021.105355 PMID: 34280820
- Szuhany, K.L.; Bugatti, M.; Otto, M.W. A meta-analytic review of the effects of exercise on brain-derived neurotrophic factor. J. Psychiatr. Res., 2015, 60, 56-64. doi: 10.1016/j.jpsychires.2014.10.003 PMID: 25455510
- Hu, S.; Tucker, L.; Wu, C.; Yang, L. Beneficial effects of exercise on depression and anxiety during the COVID-19 pandemic: A narrative review. Front. Psychiatry, 2020, 11, 587557. doi: 10.3389/fpsyt.2020.587557 PMID: 33329133
- Ruiz-González, D.; Hernández-Martínez, A.; Valenzuela, P.L.; Morales, J.S.; Soriano-Maldonado, A. Effects of physical exercise on plasma brain-derived neurotrophic factor in neurodegenerative disorders: A systematic review and meta-analysis of randomized controlled trials. Neurosci. Biobehav. Rev., 2021, 128, 394-405. doi: 10.1016/j.neubiorev.2021.05.025 PMID: 34087277
- Cavalcante, B.R.R.; Improta-Caria, A.C.; Melo, V.H.; De Sousa, R.A.L. Exercise-linked consequences on epilepsy. Epilepsy Behav., 2021, 121(Pt A), 108079. doi: 10.1016/j.yebeh.2021.108079 PMID: 34058490
- Murawska-Ciałowicz, E.; Wiatr, M.; Ciałowicz, M.; Gomes de Assis, G.; Borowicz, W.; Rocha-Rodrigues, S.; Paprocka-Borowicz, M.; Marques, A. BDNF impact on biological markers of depression - Role of physical exercise and training. Int. J. Environ. Res. Public Health, 2021, 18(14), 7553. doi: 10.3390/ijerph18147553 PMID: 34300001
- Jaehne, E.J.; Kent, J.N.; Lam, N.; Schonfeld, L.; Spiers, J.G.; Begni, V.; De Rosa, F.; Riva, M.A.; van den Buuse, M. Chronic running‐wheel exercise from adolescence leads to increased anxiety and depression‐like phenotypes in adulthood in rats: Effects on stress markers and interaction with BDNF Val66Met genotype. Dev. Psychobiol., 2023, 65(1), e22347. doi: 10.1002/dev.22347 PMID: 36567651
- Nascimento, C.M.C.; Pereira, J.R.; Pires de Andrade, L.; Garuffi, M.; Ayan, C.; Kerr, D.S.; Talib, L.L.; Cominetti, M.R.; Stella, F. Physical exercise improves peripheral BDNF levels and cognitive functions in mild cognitive impairment elderly with different bdnf Val66Met genotypes. J. Alzheimers Dis., 2014, 43(1), 81-91. doi: 10.3233/JAD-140576 PMID: 25062900
- Rahman, M.S.; Millischer, V.; Zeebari, Z.; Forsell, Y.; Lavebratt, C. BDNF Val66Met and childhood adversity on response to physical exercise and internet-based cognitive behavioural therapy in depressed Swedish adults. J. Psychiatr. Res., 2017, 93, 50-58.
- Kim, J.M.; Stewart, R.; Bae, K.Y.; Kim, S.W.; Yang, S.J.; Park, K.H.; Shin, I.S.; Yoon, J.S. Role of BDNF val66met polymorphism on the association between physical activity and incident dementia. Neurobiol. Aging, 2011, 32(3), 551.e5-12. doi: 10.1016/j.neurobiolaging.2010.01.018
- Liu, T.; Canon, M.D.; Shen, L.; Marples, B.A.; Colton, J.P.; Lo, W.J.; Gray, M.; Li, C. The influence of the BDNF Val66Met polymorphism on the association of regular physical activity with cognition among individuals with diabetes. Biol. Res. Nurs., 2021, 23(3), 318-330. doi: 10.1177/1099800420966648 PMID: 33063528
- Zarza-Rebollo, J.A.; Molina, E.; López-Isac, E.; Pérez-Gutiérrez, A.M.; Gutiérrez, B.; Cervilla, J.A.; Rivera, M. Interaction effect between physical activity and the BDNF Val66Met polymorphism on depression in women from the PISMA-ep study. Int. J. Environ. Res. Public Health, 2022, 19(4), 2068. doi: 10.3390/ijerph19042068 PMID: 35206257
- Mata, J.; Thompson, R.J.; Gotlib, I.H. BDNF genotype moderates the relation between physical activity and depressive symptoms. Health Psychol., 2010, 29(2), 130-133. doi: 10.1037/a0017261 PMID: 20230085
- Takeuchi, H.; Tomita, H.; Taki, Y.; Kikuchi, Y.; Ono, C.; Yu, Z.; Sekiguchi, A.; Nouchi, R.; Kotozaki, Y.; Nakagawa, S.; Miyauchi, C.M.; Iizuka, K.; Yokoyama, R.; Shinada, T.; Yamamoto, Y.; Hanawa, S.; Araki, T.; Kunitoki, K.; Sassa, Y.; Kawashima, R. Effect of the interaction between BDNF Val66Met polymorphism and daily physical activity on mean diffusivity. Brain Imaging Behav., 2020, 14(3), 806-820. doi: 10.1007/s11682-018-0025-8 PMID: 30617785
- Caldwell, H.A.E.; Bryan, A.D.; Hagger, M.S. What keeps a body moving? The brain-derived neurotrophic factor val66met polymorphism and intrinsic motivation to exercise in humans. J. Behav. Med., 2014, 37(6), 1180-1192. doi: 10.1007/s10865-014-9567-4 PMID: 24805993
- Ieraci, A.; Madaio, A.I.; Mallei, A.; Lee, F.S.; Popoli, M. Brain-derived neurotrophic factor val66met human polymorphism impairs the beneficial exercise-induced neurobiological changes in mice. Neuropsychopharmacology, 2016, 41(13), 3070-3079. doi: 10.1038/npp.2016.120 PMID: 27388329
- Lemos, J.R., Jr; Alves, C.R.; de Souza, S.B.C.; Marsiglia, J.D.C.; Silva, M.S.M.; Pereira, A.C.; Teixeira, A.L.; Vieira, E.L.M.; Krieger, J.E.; Negrão, C.E.; Alves, G.B.; de Oliveira, E.M.; Bolani, W.; Dias, R.G.; Trombetta, I.C. Peripheral vascular reactivity and serum BDNF responses to aerobic training are impaired by the BDNF Val66Met polymorphism. Physiol. Genomics, 2016, 48(2), 116-123. doi: 10.1152/physiolgenomics.00086.2015 PMID: 26603150
- Watts, A.; Andrews, S.J.; Anstey, K.J. Sex differences in the impact of BDNF genotype on the longitudinal relationship between physical activity and cognitive performance. Gerontology, 2018, 64(4), 361-372. doi: 10.1159/000486369 PMID: 29402782
- Helm, E.E.; Matt, K.S.; Kirschner, K.F.; Pohlig, R.T.; Kohl, D.; Reisman, D.S. The influence of high intensity exercise and the Val66Met polymorphism on circulating BDNF and locomotor learning. Neurobiol. Learn. Mem., 2017, 144, 77-85. doi: 10.1016/j.nlm.2017.06.003 PMID: 28668279
- Keyan, D.; Bryant, R.A. Acute exercise-induced enhancement of fear inhibition is moderated by BDNF Val66Met polymorphism. Transl. Psychiatry, 2019, 9(1), 131. doi: 10.1038/s41398-019-0464-z PMID: 30967530
- Pitts, B.L.; Whealin, J.M.; Harpaz-Rotem, I.; Duman, R.S.; Krystal, J.H.; Southwick, S.M.; Pietrzak, R.H. BDNF Val66Met polymorphism and posttraumatic stress symptoms in U.S. military veterans: Protective effect of physical exercise. Psychoneuroendocrinology, 2019, 100, 198-202. doi: 10.1016/j.psyneuen.2018.10.011 PMID: 30388593
- Keyan, D.; Bryant, R.A. Role of BDNF val66met polymorphism in modulating exercised-induced emotional memories. Psychoneuroendocrinology, 2017, 77, 150-157. doi: 10.1016/j.psyneuen.2016.12.013 PMID: 28056410
Supplementary files
