Developmental Neuroendocrinology of Early-Life Stress: Impact on Child Development and Behavior

  • Authors: Nicolaides N.1, Kanaka-Gantenbein C.2, Pervanidou P.3
  • Affiliations:
    1. Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatric, National and Kapodistrian Uni- versity of Athens, School of Medicine, ‘Aghia Sophia’ Children's Hospital
    2. Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian Uni- versity of Athens, School of Medicine, ‘Aghia Sophia’ Children's Hospital
    3. Unit of Developmental and Behavioral Pediatrics, First Department of Pediatrics, School of Medicine,, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital
  • Issue: Vol 22, No 3 (2024)
  • Pages: 461-474
  • Section: Neurology
  • URL: https://rjpbr.com/1570-159X/article/view/644696
  • DOI: https://doi.org/10.2174/1570159X21666230810162344
  • ID: 644696

Cite item

Full Text

Abstract

Our internal balance, or homeostasis, is threatened or perceived as threatened by stressful stimuli, the stressors. The stress system is a highly conserved system that adjusts homeostasis to the resting state. Through the concurrent activation of the hypothalamic-pituitary-adrenal axis and the locus coeruleus/norepinephrine-autonomic nervous systems, the stress system provides the appropriate physical and behavioral responses, collectively termed as "stress response", to restore homeostasis. If the stress response is prolonged, excessive or even inadequate, several acute or chronic stress-related pathologic conditions may develop in childhood, adolescence and adult life. On the other hand, earlylife exposure to stressors has been recognized as a major contributing factor underlying the pathogenesis of non-communicable disorders, including neurodevelopmental disorders. Accumulating evidence suggests that early-life stress has been associated with an increased risk for attention deficit hyperactivity disorder and autism spectrum disorder in the offspring, although findings are still controversial. Nevertheless, at the molecular level, early-life stressors alter the chemical structure of cytosines located in the regulatory regions of genes, mostly through the addition of methyl groups. These epigenetic modifications result in the suppression of gene expression without changing the DNA sequence. In addition to DNA methylation, several lines of evidence support the role of non-coding RNAs in the evolving field of epigenetics. In this review article, we present the anatomical and functional components of the stress system, discuss the proper, in terms of quality and quantity, stress response, and provide an update on the impact of early-life stress on child development and behavior.

About the authors

Nicolas Nicolaides

Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatric, National and Kapodistrian Uni- versity of Athens, School of Medicine, ‘Aghia Sophia’ Children's Hospital

Email: info@benthamscience.net

Christina Kanaka-Gantenbein

Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian Uni- versity of Athens, School of Medicine, ‘Aghia Sophia’ Children's Hospital

Email: info@benthamscience.net

Panagiota Pervanidou

Unit of Developmental and Behavioral Pediatrics, First Department of Pediatrics, School of Medicine,, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital

Author for correspondence.
Email: info@benthamscience.net

References

  1. Chrousos, G.P. Stress and disorders of the stress system. Nat. Rev. Endocrinol., 2009, 5(7), 374-381. doi: 10.1038/nrendo.2009.106 PMID: 19488073
  2. Chrousos, G.P.; Gold, P.W. The concepts of stress and stress system disorders. Overview of physical and behavioral homeostasis. JAMA, 1992, 267(9), 1244-1252. doi: 10.1001/jama.1992.03480090092034 PMID: 1538563
  3. Nicolaides, N.C.; Kyratzi, E.; Lamprokostopoulou, A.; Chrousos, G.P.; Charmandari, E. Stress, the stress system and the role of glucocorticoids. Neuroimmunomodulation, 2015, 22(1-2), 6-19. doi: 10.1159/000362736 PMID: 25227402
  4. Stavrou, S.; Nicolaides, N.C.; Critselis, E.; Darviri, C.; Charmandari, E.; Chrousos, G.P. Paediatric stress: From neuroendocrinology to contemporary disorders. Eur. J. Clin. Invest., 2017, 47(3), 262-269. doi: 10.1111/eci.12724
  5. Nicolaides, N.C.; Charmandari, E.; Kino, T.; Chrousos, G.P. Stress-related and circadian secretion and target tissue actions of glucocorticoids: Impact on health. Front. Endocrinol., 2017, 8, 70. doi: 10.3389/fendo.2017.00070 PMID: 28503165
  6. Nicolaides, N.C.; Galata, Z.; Kino, T.; Chrousos, G.P.; Charmandari, E. The human glucocorticoid receptor: Molecular basis of biologic function. Steroids, 2010, 75(1), 1-12. doi: 10.1016/j.steroids.2009.09.002 PMID: 19818358
  7. Nicolaides, N.C.; Chrousos, G.; Kino, T. Endotext; MDText.comIn: Inc.: South Dartmouth (MA),; , 2000.
  8. Nicolaides, N.C.; Charmandari, E. Primary generalized glucocorticoid resistance and hypersensitivity syndromes: A 2021 update. Int. J. Mol. Sci., 2021, 22(19), 10839. doi: 10.3390/ijms221910839 PMID: 34639183
  9. Agorastos, A.; Nicolaides, N.C.; Bozikas, V.P.; Chrousos, G.P.; Pervanidou, P. Multilevel interactions of stress and circadian system: Implications for traumatic stress. Front. Psychiatry, 2020, 10, 1003. doi: 10.3389/fpsyt.2019.01003 PMID: 32047446
  10. Charmandari, E.; Kino, T.; Souvatzoglou, E.; Chrousos, G.P. Pediatric stress: Hormonal mediators and human development. Horm. Res., 2003, 59(4), 161-179. PMID: 12649570
  11. Charmandari, E.; Tsigos, C.; Chrousos, G. Endocrinology of the stress response. Annu. Rev. Physiol., 2005, 67(1), 259-284. doi: 10.1146/annurev.physiol.67.040403.120816 PMID: 15709959
  12. Chrousos, G.P. The hypothalamic-pituitary-adrenal axis and immune-mediated inflammation. N. Engl. J. Med., 1995, 332(20), 1351-1363. doi: 10.1056/NEJM199505183322008 PMID: 7715646
  13. Chrousos, G.P.; Calabrese, J.R.; Avgerinos, P.; Kling, M.A.; Rubinow, D.; Oldfield, E.H.; Schuermeyer, T.; Kellner, C.H.; Cutler, G.B., Jr; Loriaux, D.L.; Gold, P.W. Corticotropin releasing factor: Basic studies and clinical applications. Prog. Neuropsychopharmacol. Biol. Psychiatry, 1985, 9(4), 349-359. doi: 10.1016/0278-5846(85)90187-3 PMID: 2999871
  14. Calogero, A.E.; Bernardini, R.; Gold, P.W.; Chrousos, G.P. Regulation of rat hypothalamic corticotropin-releasing hormone secretion in vitro: Potential clinical implications. Adv. Exp. Med. Biol., 1988, 245, 167-181. doi: 10.1007/978-1-4899-2064-5_13 PMID: 2906518
  15. Smith, M.A.; Kling, M.A.; Whitfield, H.J.; Brandt, H.A.; Demitrack, M.A.; Geracioti, T.D.; Chrousos, G.P.; Gold, P.W. Corticotropin-releasing hormone: From endocrinology to psychobiology. Horm. Res., 1989, 31(1-2), 66-71. doi: 10.1159/000181089 PMID: 2656470
  16. Bornstein, S.R.; Chrousos, G.P. Clinical review 104: Adrenocorticotropin (ACTH)- and non-ACTH-mediated regulation of the adrenal cortex: neural and immune inputs. J. Clin. Endocrinol. Metab., 1999, 84(5), 1729-1736. doi: 10.1210/jcem.84.5.5631 PMID: 10323408
  17. Nicolaides, N.C.; Chrousos, G.P. Adrenal Cortex Hormones.In:Hormonal Signaling in Biology and Medicine: Comprehensive Modern Endocrinology; Litwack, G., Ed.; Academic Press, 2020, pp. 619-633. doi: 10.1016/B978-0-12-813814-4.00028-6
  18. Chrousos, G.P.; Kino, T. Intracellular glucocorticoid signaling: A formerly simple system turns stochastic. Sci. STKE, 2005, 2005(304), pe48. doi: 10.1126/stke.3042005pe48 PMID: 16204701
  19. Nicolaides, N.C. The human glucocorticoid receptor beta: From molecular mechanisms to clinical implications. Endocrinology, 2022, 163(11), bqac150. doi: 10.1210/endocr/bqac150 PMID: 36059139
  20. Lu, N.Z.; Cidlowski, J.A. Translational regulatory mechanisms generate N-terminal glucocorticoid receptor isoforms with unique transcriptional target genes. Mol. Cell, 2005, 18(3), 331-342. doi: 10.1016/j.molcel.2005.03.025 PMID: 15866175
  21. Nader, N.; Chrousos, G.P.; Kino, T. Circadian rhythm transcription factor CLOCK regulates the transcriptional activity of the glucocorticoid receptor by acetylating its hinge region lysine cluster: Potential physiological implications. FASEB J., 2009, 23(5), 1572-1583. doi: 10.1096/fj.08-117697 PMID: 19141540
  22. Charmandari, E.; Chrousos, G.P.; Lambrou, G.I.; Pavlaki, A.; Koide, H.; Ng, S.S.M.; Kino, T. Peripheral CLOCK regulates target-tissue glucocorticoid receptor transcriptional activity in a circadian fashion in man. PLoS One, 2011, 6(9), e25612. doi: 10.1371/journal.pone.0025612 PMID: 21980503
  23. Song, I.H.; Buttgereit, F. Non-genomic glucocorticoid effects to provide the basis for new drug developments. Mol. Cell. Endocrinol., 2006, 246(1-2), 142-146. doi: 10.1016/j.mce.2005.11.012 PMID: 16388891
  24. Hinz, B.; Hirschelmann, R. Rapid non-genomic feedback effects of glucocorticoids on CRF-induced ACTH secretion in rats. Pharm. Res., 2000, 17(10), 1273-1277. doi: 10.1023/A:1026499604848 PMID: 11145234
  25. Karst, H.; Berger, S.; Turiault, M.; Tronche, F.; Schütz, G.; Joëls, M. Mineralocorticoid receptors are indispensable for nongenomic modulation of hippocampal glutamate transmission by corticosterone. Proc. Natl. Acad. Sci. USA, 2005, 102(52), 19204-19207. doi: 10.1073/pnas.0507572102 PMID: 16361444
  26. Hafezi-Moghadam, A.; Simoncini, T.; Yang, Z.; Limbourg, F.P.; Plumier, J.C.; Rebsamen, M.C.; Hsieh, C.M.; Chui, D.S.; Thomas, K.L.; Prorock, A.J.; Laubach, V.E.; Moskowitz, M.A.; French, B.A.; Ley, K.; Liao, J.K. Acute cardiovascular protective effects of corticosteroids are mediated by non-transcriptional activation of endothelial nitric oxide synthase. Nat. Med., 2002, 8(5), 473-479. doi: 10.1038/nm0502-473 PMID: 11984591
  27. Löwenberg, M.; Verhaar, A.P.; Bilderbeek, J.; van Marle, J.; Buttgereit, F.; Peppelenbosch, M.P.; van Deventer, S.J.; Hommes, D.W. Glucocorticoids cause rapid dissociation of a T‐cell‐receptor‐associated protein complex containing LCK and FYN. EMBO Rep., 2006, 7(10), 1023-1029. doi: 10.1038/sj.embor.7400775 PMID: 16888650
  28. Nicolaides, N.C.; Kino, T.; Roberts, M.L.; Katsantoni, E.; Sertedaki, A.; Moutsatsou, P.; Psarra, A.G.; Chrousos, G.P.; Charmandari, E. The role of S-palmitoylation of the human glucocorticoid receptor (hGR) in mediating the nongenomic glucocorticoid actions. J. Mol. Biochem., 2017, 6(1), 3-12. PMID: 28775968
  29. Sapolsky, R.M.; Romero, L.M.; Munck, A.U. How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr. Rev., 2000, 21(1), 55-89. PMID: 10696570
  30. Galon, J.; Franchimont, D.; Hiroi, N.; Frey, G.; Boettner, A.; Ehrhart-Bornstein, M.; O’shea, J.J.; Chrousos, G.P.; Bornstein, S.R. Gene profiling reveals unknown enhancing and suppressive actions of glucocorticoids on immune cells. FASEB J., 2002, 16(1), 61-71. doi: 10.1096/fj.01-0245com PMID: 11772937
  31. Groeneweg, F.L.; Karst, H.; de Kloet, E.R.; Joëls, M. Rapid non-genomic effects of corticosteroids and their role in the central stress response. J. Endocrinol., 2011, 209(2), 153-167. doi: 10.1530/JOE-10-0472 PMID: 21357682
  32. Prager, E.M.; Johnson, L.R. Stress at the synapse: signal transduction mechanisms of adrenal steroids at neuronal membranes. Sci. Signal., 2009, 2(86), re5. doi: 10.1126/scisignal.286re5 PMID: 19724063
  33. Tasker, J.G.; Di, S.; Malcher-Lopes, R. Minireview: Rapid glucocorticoid signaling via membrane-associated receptors. Endocrinology, 2006, 147(12), 5549-5556. doi: 10.1210/en.2006-0981 PMID: 16946006
  34. Nicolaides, N.C.; Makridakis, M.; Stroggilos, R.; Lygirou, V.; Koniari, E.; Papageorgiou, I.; Sertedaki, A.; Zoidakis, J.; Charmandari, E. Plasma proteomics in healthy subjects with differences in tissue glucocorticoid sensitivity identifies a novel proteomic signature. Biomedicines, 2022, 10(1), 184. doi: 10.3390/biomedicines10010184 PMID: 35052863
  35. Manzari, N.; Matvienko-Sikar, K.; Baldoni, F.; O’Keeffe, G.W.; Khashan, A.S. Prenatal maternal stress and risk of neurodevelopmental disorders in the offspring: A systematic review and meta-analysis. Soc. Psychiatry Psychiatr. Epidemiol., 2019, 54(11), 1299-1309. doi: 10.1007/s00127-019-01745-3 PMID: 31324962
  36. Charil, A.; Laplante, D.P.; Vaillancourt, C.; King, S. Prenatal stress and brain development. Brain Res. Brain Res. Rev., 2010, 65(1), 56-79. doi: 10.1016/j.brainresrev.2010.06.002 PMID: 20550950
  37. Davis, E.P.; Sandman, C.A.; Buss, C.; Wing, D.A.; Head, K. Fetal glucocorticoid exposure is associated with preadolescent brain development. Biol. Psychiatry, 2013, 74(9), 647-655. doi: 10.1016/j.biopsych.2013.03.009 PMID: 23611262
  38. Kassotaki, I.; Valsamakis, G.; Mastorakos, G.; Grammatopoulos, D.K. Placental CRH as a signal of pregnancy adversity and impact on fetal neurodevelopment. Front. Endocrinol., 2021, 12(August), 714214. doi: 10.3389/fendo.2021.714214 PMID: 34408727
  39. Anifantaki, F.; Pervanidou, P.; Lambrinoudaki, I.; Panoulis, K.; Vlahos, N.; Eleftheriades, M. Maternal prenatal stress, thyroid function and neurodevelopment of the offspring: A mini review of the literature. Front. Neurosci., 2021, 15, 692446. doi: 10.3389/fnins.2021.692446 PMID: 34566560
  40. Davis, E.P.; Sandman, C.A. The timing of prenatal exposure to maternal cortisol and psychosocial stress is associated with human infant cognitive development. Child Dev., 2010, 81(1), 131-148. doi: 10.1111/j.1467-8624.2009.01385.x PMID: 20331658
  41. Bomysoad, R.N.; Francis, L.A. Adverse childhood experiences and mental health conditions among adolescents. J. Adolesc. Health, 2020, 67(6), 868-870. doi: 10.1016/j.jadohealth.2020.04.013 PMID: 32576484
  42. Li, J.; Olsen, J.; Vestergaard, M.; Obel, C. Attention-deficit/hyperactivity disorder in the offspring following prenatal maternal bereavement: A nationwide follow-up study in Denmark. Eur. Child Adolesc. Psychiatry, 2010, 19(10), 747-753. doi: 10.1007/s00787-010-0113-9 PMID: 20495989
  43. Class, Q.A.; Abel, K.M.; Khashan, A.S.; Rickert, M.E.; Dalman, C.; Larsson, H.; Hultman, C.M.; Långström, N.; Lichtenstein, P.; D’Onofrio, B.M. Offspring psychopathology following preconception, prenatal and postnatal maternal bereavement stress. Psychol. Med., 2014, 44(1), 71-84. doi: 10.1017/S0033291713000780 PMID: 23591021
  44. Say, G.N. Karabekiroğlu, K.; Babadağı Z.; Yüce, M. Maternal stress and perinatal features in autism and attention deficit/hyperactivity disorder. Pediatr. Int., 2016, 58(4), 265-269. doi: 10.1111/ped.12822 PMID: 26338105
  45. Rodriguez, A.; Bohlin, G. Are maternal smoking and stress during pregnancy related to ADHD symptoms in children? J. Child Psychol. Psychiatry, 2005, 46(3), 246-254. doi: 10.1111/j.1469-7610.2004.00359.x PMID: 15755301
  46. Shao, S.; Wang, J.; Huang, K.; Wang, S.; Liu, H.; Wan, S.; Yan, S.; Hao, J.; Zhu, P.; Tao, F. Prenatal pregnancy-related anxiety predicts boys’ ADHD symptoms via placental C-reactive protein. Psychoneuroendocrinology, 2020, 120, 104797. doi: 10.1016/j.psyneuen.2020.104797 PMID: 32682173
  47. Grizenko, N.; Shayan, Y.R.; Polotskaia, A.; Ter-Stepanian, M.; Joober, R. Relation of maternal stress during pregnancy to symptom severity and response to treatment in children with ADHD. J. Psychiatry Neurosci., 2008, 33(1), 10-16. PMID: 18197267
  48. Brown, N.M.; Brown, S.N.; Briggs, R.D.; Germán, M.; Belamarich, P.F.; Oyeku, S.O. Associations between adverse childhood experiences and ADHD diagnosis and severity. Acad. Pediatr., 2017, 17(4), 349-355. doi: 10.1016/j.acap.2016.08.013 PMID: 28477799
  49. Walker, C.S.; Walker, B.H.; Brown, D.C.; Buttross, S.; Sarver, D.E. Defining the role of exposure to ACEs in ADHD: Examination in a national sample of US children. Child Abuse Negl., 2021, 112, 104884. doi: 10.1016/j.chiabu.2020.104884 PMID: 33360863
  50. Windle, M.; Haardörfer, R.; Getachew, B.; Shah, J.; Payne, J.; Pillai, D.; Berg, C.J. A multivariate analysis of adverse childhood experiences and health behaviors and outcomes among college students. J. Am. Coll. Health, 2018, 66(4), 246-251. doi: 10.1080/07448481.2018.1431892 PMID: 29405856
  51. Hunt, T.K.A.; Slack, K.S.; Berger, L.M. Adverse childhood experiences and behavioral problems in middle childhood. Child Abuse Negl., 2017, 67(12), 391-402. doi: 10.1016/j.chiabu.2016.11.005 PMID: 27884508
  52. Jimenez, M.E.; Wade, R., Jr; Schwartz-Soicher, O.; Lin, Y.; Reichman, N.E. Adverse childhood experiences and ADHD diagnosis at age 9 years in a national urban sample. Acad. Pediatr., 2017, 17(4), 356-361. doi: 10.1016/j.acap.2016.12.009 PMID: 28003143
  53. González, R.A.; Vélez-Pastrana, M.C.; McCrory, E.; Kallis, C.; Aguila, J.; Canino, G.; Bird, H. Evidence of concurrent and prospective associations between early maltreatment and ADHD through childhood and adolescence. Soc. Psychiatry Psychiatr. Epidemiol., 2019, 54(6), 671-682. doi: 10.1007/s00127-019-01659-0 PMID: 30903235
  54. Roberts, A.L.; Lyall, K.; Rich-Edwards, J.W.; Ascherio, A.; Weisskopf, M.G. Maternal exposure to childhood abuse is associated with elevated risk of autism. JAMA Psychiatry, 2013, 70(5), 508-515. doi: 10.1001/jamapsychiatry.2013.447 PMID: 23553149
  55. Kinney, D.K.; Miller, A.M.; Crowley, D.J.; Huang, E.; Gerber, E. Autism prevalence following prenatal exposure to hurricanes and tropical storms in Louisiana. J. Autism Dev. Disord., 2008, 38(3), 481-488. doi: 10.1007/s10803-007-0414-0 PMID: 17619130
  56. Roberts, A.L.; Lyall, K.; Rich-Edwards, J.W.; Ascherio, A.; Weisskopf, M.G. Maternal exposure to intimate partner abuse before birth is associated with autism spectrum disorder in offspring. Autism, 2016, 20(1), 26-36. doi: 10.1177/1362361314566049 PMID: 25662292
  57. Rai, D.; Golding, J.; Magnusson, C.; Steer, C.; Lewis, G.; Dalman, C. Prenatal and early life exposure to stressful life events and risk of autism spectrum disorders: Population-based studies in Sweden and England. PLoS One, 2012, 7(6), e38893. doi: 10.1371/journal.pone.0038893 PMID: 22719977
  58. Cattane, N.; Richetto, J.; Cattaneo, A. Prenatal exposure to environmental insults and enhanced risk of developing Schizophrenia and Autism Spectrum Disorder: focus on biological pathways and epigenetic mechanisms. Neurosci. Biobehav. Rev., 2020, 117, 253-278. doi: 10.1016/j.neubiorev.2018.07.001 PMID: 29981347
  59. Beversdorf, D.Q.; Manning, S.E.; Hillier, A.; Anderson, S.L.; Nordgren, R.E.; Walters, S.E.; Nagaraja, H.N.; Cooley, W.C.; Gaelic, S.E.; Bauman, M.L. Timing of prenatal stressors and autism. J. Autism Dev. Disord., 2005, 35(4), 471-478. doi: 10.1007/s10803-005-5037-8 PMID: 16134032
  60. Kerns, C.M.; Newschaffer, C.J.; Berkowitz, S.J. Traumatic childhood events and autism spectrum disorder. J. Autism Dev. Disord., 2015, 45(11), 3475-3486. doi: 10.1007/s10803-015-2392-y PMID: 25711547
  61. Kerns, C.M.; Newschaffer, C.J.; Berkowitz, S.; Lee, B.K. Examining the association of autism and adverse childhood experiences in the National Survey of Children’s Health: the important role of income and co-occurring mental health conditions. J. Autism Dev. Disord., 2017, 47(7), 2275-2281. doi: 10.1007/s10803-017-3111-7 PMID: 28378271
  62. Stack, A.; Lucyshyn, J. Autism spectrum disorder and the experience of traumatic events: Review of the current literature to inform modifications to a treatment model for children with autism. J. Autism Dev. Disord., 2019, 49(4), 1613-1625. doi: 10.1007/s10803-018-3854-9 PMID: 30539370
  63. Hoover, D.W.; Kaufman, J. Adverse childhood experiences in children with autism spectrum disorder. Curr. Opin. Psychiatry, 2018, 31(2), 128-132. doi: 10.1097/YCO.0000000000000390 PMID: 29206686
  64. Makris, G.; Eleftheriades, A.; Pervanidou, P. Early life stress, hormones and neurodevelopmental disorders. Horm. Res. Paediatr., 2022. PMID: 35259742
  65. Makris, G.; Agorastos, A.; Chrousos, G.P.; Pervanidou, P. Stress system activation in children and adolescents with autism spectrum disorder. Front. Neurosci., 2022, 15, 756628. doi: 10.3389/fnins.2021.756628 PMID: 35095389
  66. Anesiadou, S.; Makris, G.; Michou, M.; Bali, P.; Papassotiriou, I.; Apostolakou, F.; Korkoliakou, P.; Papageorgiou, C.; Chrousos, G.; Pervanidou, P. Salivary cortisol and alpha‐amylase daily profiles and stress responses to an academic performance test and a moral cognition task in children with neurodevelopmental disorders. Stress Health, 2021, 37(1), 45-59. doi: 10.1002/smi.2971 PMID: 32608561
  67. Angeli, E.; Korpa, T.; Johnson, E.O.; Apostolakou, F.; Papassotiriou, I.; Chrousos, G.P.; Pervanidou, P. Salivary cortisol and alpha-amylase diurnal profiles and stress reactivity in children with Attention Deficit Hyperactivity Disorder. Psychoneuroendocrinology, 2018, 90, 174-181. doi: 10.1016/j.psyneuen.2018.02.026 PMID: 29501948
  68. Korpa, T.; Pervanidou, P.; Angeli, E.; Apostolakou, F.; Papanikolaou, K.; Papassotiriou, I.; Chrousos, G.P.; Kolaitis, G. Mothers’ parenting stress is associated with salivary cortisol profiles in children with attention deficit hyperactivity disorder. Stress, 2017, 20(2), 149-158. doi: 10.1080/10253890.2017.1303472 PMID: 28264636
  69. Pervanidou, P.; Agorastos, A.; Chrousos, G.P. Editorial: Stress and neurodevelopment. Front. Neurosci., 2022, 16, 898872. doi: 10.3389/fnins.2022.898872 PMID: 35495052
  70. Khoury, L.; Tang, Y.L.; Bradley, B.; Cubells, J.F.; Ressler, K.J. Substance use, childhood traumatic experience, and Posttraumatic Stress Disorder in an urban civilian population. Depress. Anxiety, 2010, 27(12), 1077-1086. doi: 10.1002/da.20751 PMID: 21049532
  71. Pervanidou, P. Biology of post-traumatic stress disorder in childhood and adolescence. J. Neuroendocrinol., 2008, 20(5), 632-638. doi: 10.1111/j.1365-2826.2008.01701.x PMID: 18363804
  72. Pervanidou, P.; Chrousos, G.P. Neuroendocrinology of post-traumatic stress disorder., Prog. Brain Res., 2010, 182, 149-16. doi: 10.1016/S0079-6123(10)82005-9 PMID: 20541663
  73. Pervanidou, P.; Makris, G.; Chrousos, G.; Agorastos, A. Early life stress and pediatric posttraumatic stress disorder. Brain Sci., 2020, 10(3), 169. doi: 10.3390/brainsci10030169 PMID: 32183256
  74. Copeland, W.E.; Keeler, G.; Angold, A.; Costello, E.J. Traumatic events and posttraumatic stress in childhood. Arch. Gen. Psychiatry, 2007, 64(5), 577-584. doi: 10.1001/archpsyc.64.5.577 PMID: 17485609
  75. Weems, C.F.; Russell, J.D.; Neill, E.L.; McCurdy, B.H. Annual Research Review: Pediatric posttraumatic stress disorder from a neurodevelopmental network perspective. J. Child Psychol. Psychiatry, 2019, 60(4), 395-408. doi: 10.1111/jcpp.12996 PMID: 30357832
  76. McLaughlin, K.A.; Koenen, K.C.; Hill, E.D.; Petukhova, M.; Sampson, N.A.; Zaslavsky, A.M.; Kessler, R.C. Trauma exposure and posttraumatic stress disorder in a national sample of adolescents. J. Am. Acad. Child Adolesc. Psychiatry, 2013, 52(8), 815-830.e14. doi: 10.1016/j.jaac.2013.05.011 PMID: 23880492
  77. Merikangas, K.R. Lifetime prevalence of mental disorders in U.S. adolescents: results from the National Comorbidity Survey Replication-Adolescent Supplement (NCS-A). J. Am. Acad. Child Adolesc. Psychiatry, 2010, 49(10), 980-989.
  78. American Psychiatric Association Diagnostic and Statistical Manual of Mental Disorders, 5th ed; , 2013.
  79. Baker, D.G.; Buxbaum, J.D.; Russo, S.J.; Yehuda, R. New translational perspectives for blood-based biomarkers of PTSD: From glucocorticoid to immune mediators of stress susceptibility. Exp Neurol, 2016, 84((Pt B)), 133-140.
  80. Agorastos, A.; Pervanidou, P.; Chrousos, G.P.; Baker, D.G. Developmental trajectories of early life stress and trauma: A narrative review on neurobiological aspects beyond stress system dysregulation. Front. Psychiatry, 2019, 10, 118. doi: 10.3389/fpsyt.2019.00118 PMID: 30914979
  81. Pan, X.; Wang, Z.; Wu, X.; Wen, S.W.; Liu, A. Salivary cortisol in post-traumatic stress disorder: A systematic review and meta-analysis. BMC Psychiatry, 2018, 18(1), 324. doi: 10.1186/s12888-018-1910-9 PMID: 30290789
  82. Pan, X.; Kaminga, A.C.; Wen, S.W.; Liu, A. Catecholamines in post-traumatic stress disorder: A systematic review and meta-analysis. Front. Mol. Neurosci., 2018, 11, 450. doi: 10.3389/fnmol.2018.00450 PMID: 30564100
  83. De Bellis, M.D.; Lefter, L.; Trickett, P.K.; Putnam, F.W., Jr Urinary catecholamine excretion in sexually abused girls. J. Am. Acad. Child Adolesc. Psychiatry, 1994, 33(3), 320-327. doi: 10.1097/00004583-199403000-00004 PMID: 8169176
  84. Cicchetti, D.; Rogosch, F.A. Diverse patterns of neuroendocrine activity in maltreated children. Dev. Psychopathol., 2001, 13(3), 677-693. doi: 10.1017/S0954579401003145 PMID: 11523854
  85. Gordis, E.B.; Granger, D.A.; Susman, E.J.; Trickett, P.K. Salivary alpha amylase–cortisol asymmetry in maltreated youth. Horm. Behav., 2008, 53(1), 96-103. doi: 10.1016/j.yhbeh.2007.09.002 PMID: 17945232
  86. MacMillan, H.L.; Georgiades, K.; Duku, E.K.; Shea, A.; Steiner, M.; Niec, A.; Tanaka, M.; Gensey, S.; Spree, S.; Vella, E.; Walsh, C.A.; De Bellis, M.D.; Van der Meulen, J.; Boyle, M.H.; Schmidt, L.A. Cortisol response to stress in female youths exposed to childhood maltreatment: Results of the youth mood project. Biol. Psychiatry, 2009, 66(1), 62-68. doi: 10.1016/j.biopsych.2008.12.014 PMID: 19217075
  87. Trickett, P.K.; Noll, J.G.; Susman, E.J.; Shenk, C.E.; Putnam, F.W. Attenuation of cortisol across development for victims of sexual abuse. Dev. Psychopathol., 2010, 22(1), 165-175. doi: 10.1017/S0954579409990332 PMID: 20102654
  88. Goenjian, A.K.; Yehuda, R.; Pynoos, R.S.; Steinberg, A.M.; Tashjian, M.; Yang, R.K.; Najarian, L.M.; Fairbanks, L.A. Basal cortisol, dexamethasone suppression of cortisol, and MHPG in adolescents after the 1988 earthquake in Armenia. Am. J. Psychiatry, 1996, 153(7), 929-934. doi: 10.1176/ajp.153.7.929 PMID: 8659616
  89. Pervanidou, P.; Kolaitis, G.; Charitaki, S.; Margeli, A.; Ferentinos, S.; Bakoula, C.; Lazaropoulou, C.; Papassotiriou, I.; Tsiantis, J.; Chrousos, G.P. Elevated morning serum interleukin (IL)-6 or evening salivary cortisol concentrations predict posttraumatic stress disorder in children and adolescents six months after a motor vehicle accident. Psychoneuroendocrinology, 2007, 32(8-10), 991-999. doi: 10.1016/j.psyneuen.2007.07.001 PMID: 17825995
  90. Pervanidou, P.; Kolaitis, G.; Charitaki, S.; Lazaropoulou, C.; Papassotiriou, I.; Hindmarsh, P.; Bakoula, C.; Tsiantis, J.; Chrousos, G.P. The natural history of neuroendocrine changes in pediatric posttraumatic stress disorder (PTSD) after motor vehicle accidents: Progressive divergence of noradrenaline and cortisol concentrations over time. Biol. Psychiatry, 2007, 62(10), 1095-1102. doi: 10.1016/j.biopsych.2007.02.008 PMID: 17624319
  91. Pervanidou, P.; Chrousos, G.P. Early-life stress: From neuroendocrine mechanisms to stress-related disorders. Horm. Res. Paediatr., 2018, 89(5), 372-379. doi: 10.1159/000488468 PMID: 29886495
  92. Marchetti, D.; Musso, P.; Verrocchio, M.C.; Manna, G.; Kopala-Sibley, D.C.; De Berardis, D.; De Santis, S.; Falgares, G. Childhood maltreatment, personality vulnerability profiles, and borderline personality disorder symptoms in adolescents. Dev. Psychopathol., 2022, 34(3), 1163-1176. doi: 10.1017/S0954579420002151 PMID: 33494855
  93. Caldirola, D.; Torti, T.; Cuniberti, F.; Daccò, S.; Alciati, A.; Schruers, K.; Martinotti, G.; De Berardis, D.; Perna, G. No sex differences in self-reported childhood maltreatment in major depressive and bipolar disorders: A retrospective study. Brain Sci., 2022, 12(6), 804. doi: 10.3390/brainsci12060804 PMID: 35741691
  94. Perna, G.; Daccò, S.; Alciati, A.; Cuniberti, F.; De Berardis, D.; Caldirola, D. Childhood maltreatment history for guiding personalized antidepressant choice in major depressive disorder: Preliminary results from a systematic review. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2021, 107, 110208. doi: 10.1016/j.pnpbp.2020.110208 PMID: 33338557
  95. Gkesoglou, T.; Pervanidou, P.; Bozikas, V.P.; Agorastos, A. Neurobiology of early life traumatic stress and trauma: Prolonged neuroendocrine dysregulation as a neurodevelopmental risk factor. Psychiatriki, 2022, 34(2) doi: 10.22365/jpsych.2022.059 PMID: 35255464
  96. Agorastos, A.; Chrousos, G.P. The neuroendocrinology of stress: the stress-related continuum of chronic disease development. Mol. Psychiatry, 2022, 27(1), 502-513. doi: 10.1038/s41380-021-01224-9 PMID: 34290370
  97. Kazakou, P.; Nicolaides, N.C.; Chrousos, G.P. Basic concepts and hormonal regulators of the stress system. Horm. Res. Paediatr., 2022. PMID: 35272295
  98. Murgatroyd, C.; Wu, Y.; Bockmühl, Y.; Spengler, D. Genes learn from stress: How infantile trauma programs us for depression. Epigenetics, 2010, 5(3), 194-199. doi: 10.4161/epi.5.3.11375 PMID: 20339319
  99. Meaney, M.J.; Aitken, D.H.; Bodnoff, S.R.; Iny, L.J.; Tatarewicz, J.E.; Sapolsky, R.M. Early postnatal handling alters glucocorticoid receptor concentrations in selected brain regions. Behav. Neurosci., 1985, 99(4), 765-770. doi: 10.1037/0735-7044.99.4.765 PMID: 3843740
  100. Meaney, M.J.; Aitken, D.H.; Sapolsky, R.M. Thyroid hormones influence the development of hippocampal glucocorticoid receptors in the rat: A mechanism for the effects of postnatal handling on the development of the adrenocortical stress response. Neuroendocrinology, 1987, 45(4), 278-283. doi: 10.1159/000124741 PMID: 3574606
  101. Mitchell, J.B.; Iny, L.J.; Meaney, M.J. The role of serotonin in the development and environmental regulation of type II corticosteroid receptor binding in rat hippocampus. Brain Res. Dev. Brain Res., 1990, 55(2), 231-235. doi: 10.1016/0165-3806(90)90204-C PMID: 1701365
  102. Champagne, F.A. Early environments, glucocorticoid receptors, and behavioral epigenetics. Behav. Neurosci., 2013, 127(5), 628-636. doi: 10.1037/a0034186 PMID: 24128352
  103. Liu, D.; Diorio, J.; Tannenbaum, B.; Caldji, C.; Francis, D.; Freedman, A.; Sharma, S.; Pearson, D.; Plotsky, P.M.; Meaney, M.J. Maternal care, hippocampal glucocorticoid receptors, and hypothalamic-pituitary-adrenal responses to stress. Science, 1997, 277(5332), 1659-1662. doi: 10.1126/science.277.5332.1659 PMID: 9287218
  104. Hellstrom, I.C.; Dhir, S.K.; Diorio, J.C.; Meaney, M.J. Maternal licking regulates hippocampal glucocorticoid receptor transcription through a thyroid hormone–serotonin–NGFI-A signalling cascade. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2012, 367(1601), 2495-2510. doi: 10.1098/rstb.2012.0223 PMID: 22826348
  105. Weaver, I.C.G.; Cervoni, N.; Champagne, F.A.; D’Alessio, A.C.; Sharma, S.; Seckl, J.R.; Dymov, S.; Szyf, M.; Meaney, M.J. Epigenetic programming by maternal behavior. Nat. Neurosci., 2004, 7(8), 847-854. doi: 10.1038/nn1276 PMID: 15220929
  106. Rahman, M.F.; McGowan, P.O. Cell-type-specific epigenetic effects of early life stress on the brain. Transl. Psychiatry, 2022, 12(1), 326. doi: 10.1038/s41398-022-02076-9 PMID: 35948532
  107. Friedman, R.C.; Farh, K.K.H.; Burge, C.B.; Bartel, D.P. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res., 2009, 19(1), 92-105. doi: 10.1101/gr.082701.108 PMID: 18955434
  108. Weaver, I.C.G.; Champagne, F.A.; Brown, S.E.; Dymov, S.; Sharma, S.; Meaney, M.J.; Szyf, M. Reversal of maternal programming of stress responses in adult offspring through methyl supplementation: Altering epigenetic marking later in life. J. Neurosci., 2005, 25(47), 11045-11054. doi: 10.1523/JNEUROSCI.3652-05.2005 PMID: 16306417
  109. Meaney, M.J. Nature, nurture, and the disunity of knowledge. Ann. N. Y. Acad. Sci., 2001, 935(1), 50-61. doi: 10.1111/j.1749-6632.2001.tb03470.x PMID: 11411175
  110. Eleftheriades, M.; Vousoura, E.; Eleftheriades, A.; Pervanidou, P.; Zervas, I.M.; Chrousos, G.; Vlahos, N.F.; Sotiriadis, A. Physical health, media use, stress, and mental health in pregnant women during the COVID-19 pandemic. Diagnostics, 2022, 12(5), 1125. doi: 10.3390/diagnostics12051125 PMID: 35626281
  111. De Berardis, D.; Di Carlo, F.; Di Giannantonio, M.; Pettorruso, M. Legacy of neuropsychiatric symptoms associated with past COVID-19 infection: A cause of concern. World J. Psychiatry, 2022, 12(6), 773-778. doi: 10.5498/wjp.v12.i6.773 PMID: 35978974
  112. De Berardis, D.; Fornaro, M.; Orsolini, L.; Ventriglio, A.; Vellante, F.; Di Giannantonio, M. Emotional dysregulation in adolescents: Implications for the development of severe psychiatric disorders, substance abuse, and suicidal ideation and behaviors. Brain Sci., 2020, 10(9), 591. doi: 10.3390/brainsci10090591 PMID: 32858969
  113. Korpa, T.; Pappa, T.; Chouliaras, G.; Sfinari, A.; Eleftheriades, A.; Katsounas, M.; Kanaka-Gantenbein, C.; Pervanidou, P. Daily behaviors, worries and emotions in children and adolescents with ADHD and learning difficulties during the COVID-19 pandemic. Children, 2021, 8(11), 995. doi: 10.3390/children8110995 PMID: 34828708
  114. Sfinari, A.; Pervanidou, P.; Chouliaras, G.; Zoumakis, E.; Vasilakis, I.A.; Nicolaides, N.C.; Kanaka-Gantenbein, C. Perceived changes in emotions, worries and everyday behaviors in children and adolescents aged 5-18 years with Type 1 Diabetes during the COVID-19 pandemic. Children, 2022, 9(5), 736. doi: 10.3390/children9050736 PMID: 35626913
  115. Zisopoulou, T.; Varvogli, L. Stress management methods in children and adolescents - past, present, and future. Horm. Res. Paediatr., 2023, 96(1), 97-107. doi: 10.1159/000526946 PMID: 36096110
  116. Scott, S.R.; O’Daffer, A.G.; Bradford, M.C.; Fladeboe, K.; Lau, N.; Steineck, A.; Taylor, M.; Yi-Frazier, J.P.; Rosenberg, A.R. Adverse childhood experiences (ACEs) and medically traumatic events (TEs) in adolescents and young adults (AYAs) with cancer: A report from the Promoting Resilience in Stress Management (PRISM) randomized controlled trial. Support. Care Cancer, 2021, 29(7), 3773-3781. doi: 10.1007/s00520-020-05888-x PMID: 33219407

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers