The Diverse Network of Brain Histamine in Feeding: Dissect its Functions in a Circuit-Specific Way
- Authors: Xu L.1, Lin W.1, Zheng Y.2, Wang Y.2, Chen Z.3
-
Affiliations:
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University
- stitute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University
- Issue: Vol 22, No 2 (2024)
- Pages: 241-259
- Section: Neurology
- URL: https://rjpbr.com/1570-159X/article/view/644623
- DOI: https://doi.org/10.2174/1570159X21666221117153755
- ID: 644623
Cite item
Full Text
Abstract
Abstracts:Feeding is an intrinsic and important behavior regulated by complex molecular, cellular and circuit-level mechanisms, one of which is the brain histaminergic network. In the past decades, many studies have provided a foundation of knowledge about the relationship between feeding and histamine receptors, which are deemed to have therapeutic potential but are not successful in treating feeding- related diseases. Indeed, the histaminergic circuits underlying feeding are poorly understood and characterized. This review describes current knowledge of histamine in feeding at the receptor level. Further, we provide insight into putative histamine-involved feeding circuits based on the classic feeding circuits. Understanding the histaminergic network in a circuit-specific way may be therapeutically relevant for increasing the drug specificity and precise treatment in feeding-related diseases.
About the authors
Lingyu Xu
Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University
Email: info@benthamscience.net
Wenkai Lin
Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University
Email: info@benthamscience.net
Yanrong Zheng
Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University
Email: info@benthamscience.net
Yi Wang
Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University
Email: info@benthamscience.net
Zhong Chen
stitute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University
Author for correspondence.
Email: info@benthamscience.net
References
- Schwartz, J.C.; Arrang, J.M.; Garbarg, M.; Pollard, H.; Ruat, M. Histaminergic transmission in the mammalian brain. Physiol. Rev., 1991, 71(1), 1-51. doi: 10.1152/physrev.1991.71.1.1 PMID: 1846044
- Panula, P.; Yang, H.Y.; Costa, E. Histamine-containing neurons in the rat hypothalamus. Proc. Natl. Acad. Sci. USA, 1984, 81(8), 2572-2576. doi: 10.1073/pnas.81.8.2572 PMID: 6371818
- Volonté, C.; Apolloni, S.; Amadio, S. The histamine and multiple sclerosis alliance: Pleiotropic actions and functional validation. Curr. Top. Behav. Neurosci., 2021, 59, 1-23. doi: 10.1007/7854_2021_240 PMID: 34432258
- Sharma, A.; Muresanu, D.F.; Patnaik, R.; Menon, P.K.; Tian, Z.R.; Sahib, S.; Castellani, R.J.; Nozari, A.; Lafuente, J.V.; Buzoianu, A.D.; Skaper, S.D.; Bryukhovetskiy, I.; Manzhulo, I.; Wiklund, L.; Sharma, H.S. Histamine H3 and H4 receptors modulate Parkinsons disease induced brain pathology. Neuroprotective effects of nanowired BF-2649 and clobenpropit with anti-histamine-antibody therapy.Prog. Brain Res; , 2021, 266, pp. 1-73. doi: 10.1016/bs.pbr.2021.06.003 PMID: 34689857
- Fang, Q.; Xicoy, H.; Shen, J.; Luchetti, S.; Dai, D.; Zhou, P.; Qi, X.R.; Martens, G.J.M.; Huitinga, I.; Swaab, D.F.; Liu, C.; Shan, L. Histamine-4 receptor antagonist ameliorates Parkinson-like pathology in the striatum. Brain Behav. Immun., 2021, 92, 127-138. doi: 10.1016/j.bbi.2020.11.036 PMID: 33249171
- Zheng, Y.; Chen, Z. Targeting histamine and histamine receptors for the precise regulation of feeding. Curr. Top. Behav. Neurosci., 2021, 59, 1-33. doi: 10.1007/7854_2021_258 PMID: 34622397
- Shulpekova, Y.O.; Nechaev, V.M.; Popova, I.R.; Deeva, T.A.; Kopylov, A.T.; Malsagova, K.A.; Kaysheva, A.L.; Ivashkin, V.T. Food intolerance: The role of histamine. Nutrients, 2021, 13(9), 3207. doi: 10.3390/nu13093207 PMID: 34579083
- Haas, H.L.; Sergeeva, O.A.; Selbach, O. Histamine in the nervous system. Physiol. Rev., 2008, 88(3), 1183-1241. doi: 10.1152/physrev.00043.2007 PMID: 18626069
- Fukudo, S.; Kano, M.; Sato, Y.; Muratsubaki, T.; Kanazawa, M.; Tashiro, M.; Yanai, K. Histamine neuroimaging in stress-related disorders. Curr. Top. Behav. Neurosci., 2021, 59, 1-17. doi: 10.1007/7854_2021_262 PMID: 35156186
- Passani, M.B.; Blandina, P.; Torrealba, F. The histamine H3 receptor and eating behavior. J. Pharmacol. Exp. Ther., 2011, 336(1), 24-29. doi: 10.1124/jpet.110.171306 PMID: 20864503
- Passani, M.B.; Blandina, P. Histamine receptors in the CNS as targets for therapeutic intervention. Trends Pharmacol. Sci., 2011, 32(4), 242-249. doi: 10.1016/j.tips.2011.01.003 PMID: 21324537
- Lei, X.G.; Ruan, J.Q.; Lai, C.; Sun, Z.; Yang, X. Efficacy and safety of phentermine/topiramate in adults with overweight or obesity: A systematic review and meta‐analysis. Obesity (Silver Spring), 2021, 29(6), 985-994. doi: 10.1002/oby.23152 PMID: 33864346
- Tak, Y.J.; Lee, S.Y. Long-term efficacy and safety of anti-obesity treatment: Where do we stand? Curr. Obes. Rep., 2021, 10(1), 14-30. doi: 10.1007/s13679-020-00422-w PMID: 33410104
- Hu, W.W.; Chen, Z. Role of histamine and its receptors in cerebral ischemia. ACS Chem. Neurosci., 2012, 3(4), 238-247. doi: 10.1021/cn200126p PMID: 22860191
- Hu, W.; Chen, Z. The roles of histamine and its receptor ligands in central nervous system disorders: An update. Pharmacol. Ther., 2017, 175, 116-132. doi: 10.1016/j.pharmthera.2017.02.039 PMID: 28223162
- Black, J.W.; Duncan, W.A.M.; Durant, C.J.; Ganellin, C.R.; Parsons, E.M. Definition and antagonism of histamine H 2 -receptors. Nature, 1972, 236(5347), 385-390. doi: 10.1038/236385a0 PMID: 4401751
- Arrang, J.M.; Garbarg, M.; Schwartz, J.C. Auto-inhibition of brain histamine release mediated by a novel class (H3) of histamine receptor. Nature, 1983, 302(5911), 832-837. doi: 10.1038/302832a0 PMID: 6188956
- Nguyen, T.; Shapiro, D.A.; George, S.R.; Setola, V.; Lee, D.K.; Cheng, R.; Rauser, L.; Lee, S.P.; Lynch, K.R.; Roth, B.L.; ODowd, B.F. Discovery of a novel member of the histamine receptor family. Mol. Pharmacol., 2001, 59(3), 427-433. doi: 10.1124/mol.59.3.427 PMID: 11179435
- Kobayashi, T.; Inoue, I.; Jenkins, N.A.; Gilbert, D.J.; Copeland, N.G.; Watanabe, T. Cloning, RNA expression, and chromosomal location of a mouse histamine H2 receptor gene. Genomics, 1996, 37(3), 390-394. doi: 10.1006/geno.1996.0575 PMID: 8938453
- Martinez-Mir, M.I.; Pollard, H.; Moreau, J.; Arrang, J.M.; Ruat, M.; Traiffort, E.; Schwartz, J.C.; Palacios, J.M. Three histamine receptors (H1, H2 and H3) visualized in the brain of human and non-human primates. Brain Res., 1990, 526(2), 322-327. doi: 10.1016/0006-8993(90)91240-H PMID: 1979518
- Terao, A.; Steininger, T.L.; Morairty, S.R.; Kilduff, T.S. Age-related changes in histamine receptor mRNA levels in the mouse brain. Neurosci. Lett., 2004, 355(1-2), 81-84. doi: 10.1016/j.neulet.2003.10.061 PMID: 14729240
- Deshetty, U.M.; Tamatam, A.; Bhattacharjee, M.; Perumal, E.; Natarajan, G.; Khanum, F. Ameliorative effect of hesperidin against motion sickness by modulating histamine and histamine H1 receptor expression. Neurochem. Res., 2020, 45(2), 371-384. doi: 10.1007/s11064-019-02923-0 PMID: 31782104
- Provensi, G.; Fabbri, R.; Munari, L.; Costa, A.; Baldi, E.; Bucherelli, C.; Blandina, P.; Passani, M.B. Histaminergic neurotransmission as a gateway for the cognitive effect of oleoylethanolamide in contextual fear conditioning. Int. J. Neuropsychopharmacol., 2017, 20(5), 392-399. doi: 10.1093/ijnp/pyw110 PMID: 28339575
- Reiner, P.B.; Kamondi, A. Mechanisms of antihistamine-induced sedation in the human brain: H1 receptor activation reduces a background leakage potassium current. Neuroscience, 1994, 59(3), 579-588. doi: 10.1016/0306-4522(94)90178-3 PMID: 8008209
- Korotkova, T.M.; Sergeeva, O.A.; Ponomarenko, A.A.; Haas, H.L. Histamine excites noradrenergic neurons in locus coeruleus in rats. Neuropharmacology, 2005, 49(1), 129-134. doi: 10.1016/j.neuropharm.2005.03.001 PMID: 15992588
- Lin, J.S.; Hou, Y.; Sakai, K.; Jouvet, M. Histaminergic descending inputs to the mesopontine tegmentum and their role in the control of cortical activation and wakefulness in the cat. J. Neurosci., 1996, 16(4), 1523-1537. doi: 10.1523/JNEUROSCI.16-04-01523.1996 PMID: 8778302
- Zhou, F.W.; Xu, J.J.; Zhao, Y.; LeDoux, M.S.; Zhou, F.M. Opposite functions of histamine H1 and H2 receptors and H3 receptor in substantia nigra pars reticulata. J. Neurophysiol., 2006, 96(3), 1581-1591. doi: 10.1152/jn.00148.2006 PMID: 16738217
- Xu, C.; Michelsen, K.A.; Wu, M.; Morozova, E.; Panula, P.; Alreja, M. Histamine innervation and activation of septohippocampal GABAergic neurones: Involvement of local ACh release. J. Physiol., 2004, 561(3), 657-670. doi: 10.1113/jphysiol.2004.071712 PMID: 15486020
- Manahan-Vaughan, D.; Reymann, K.G.; Brown, R.E. In vivo electrophysiological investigations into the role of histamine in the dentate gyrus of the rat. Neuroscience, 1998, 84(3), 783-790. doi: 10.1016/S0306-4522(97)00540-X PMID: 9579783
- Ruat, M.; Traiffort, E.; Bouthenet, M.L.; Schwartz, J.C.; Hirschfeld, J.; Buschauer, A.; Schunack, W. Reversible and irreversible labeling and autoradiographic localization of the cerebral histamine H2 receptor using 125Iiodinated probes. Proc. Natl. Acad. Sci. USA, 1990, 87(5), 1658-1662. doi: 10.1073/pnas.87.5.1658 PMID: 2308927
- Vizuete, M.L.; Traiffort, E.; Bouthenet, M.L.; Ruat, M.; Souil, E.; Tardivel-Lacombe, J.; Schwartz, J.C. Detailed mapping of the histamine H2 receptor and its gene transcripts in guinea-pig brain. Neuroscience, 1997, 80(2), 321-343. doi: 10.1016/S0306-4522(97)00010-9 PMID: 9284338
- Provensi, G.; Blandina, P.; Passani, M.B. The histaminergic system as a target for the prevention of obesity and metabolic syndrome. Neuropharmacology, 2016, 106, 3-12. doi: 10.1016/j.neuropharm.2015.07.002 PMID: 26164344
- Haas, H.; Panula, P. The role of histamine and the tuberomamillary nucleus in the nervous system. Nat. Rev. Neurosci., 2003, 4(2), 121-130. doi: 10.1038/nrn1034 PMID: 12563283
- Arrang, J.M.; Garbarg, M.; Lancelo, J-C.; Lecomte, J.M.; Pollard, H.; Robba, M.; Schunack, W.; Schwartz, J.C. Highly potent and selective ligands for histamine H3-receptors. Nature, 1987, 327(6118), 117-123. doi: 10.1038/327117a0 PMID: 3033516
- Yamamoto, Y.; Mochizuki, T.; Okakura-Mochizuki, K.; Uno, A.; Yamatodani, A. Thioperamide, a histamine H3 receptor antagonist, increases GABA release from the rat hypothalamus. Methods Find. Exp. Clin. Pharmacol., 1997, 19(5), 289-298. PMID: 9379777
- Blandina, P.; Giorgetti, M.; Cecchi, M.; Leurs, R.; Timmerman, H.; Giovannini, M.G. Histamine H3 receptor inhibition of K+-evoked release of acetylcholine from rat cortex in vivo. Inflamm. Res., 1996, 45(S1)(Suppl. 1), S54-S55. doi: 10.1007/BF03354086 PMID: 8696930
- Schlicker, E.; Kathmann, M.; Detzner, M.; Exner, H.J.; Göthert, M. H3 receptor-mediated inhibition of noradrenaline release: An investigation into the involvement of Ca2+ and K+ ions, G protein and adenylate cyclase. Naunyn Schmiedebergs Arch. Pharmacol., 1994, 350(1), 34-41. doi: 10.1007/BF00180008 PMID: 7935852
- Chazot, P.L.; Hann, V.; Wilson, C.; Lees, G.; Thompson, C.L. Immunological identification of the mammalian H3 histamine receptor in the mouse brain. Neuroreport, 2001, 12(2), 259-262. doi: 10.1097/00001756-200102120-00016 PMID: 11209931
- Pillot, C.; Heron, A.; Cochois, V.; Tardivel-Lacombe, J.; Ligneau, X.; Schwartz, J.C.; Arrang, J.M. A detailed mapping of the histamine H3 receptor and its gene transcripts in rat brain. Neuroscience, 2002, 114(1), 173-193. doi: 10.1016/S0306-4522(02)00135-5 PMID: 12207964
- Strakhova, M.I.; Nikkel, A.L.; Manelli, A.M.; Hsieh, G.C.; Esbenshade, T.A.; Brioni, J.D.; Bitner, R.S. Localization of histamine H4 receptors in the central nervous system of human and rat. Brain Res., 2009, 1250, 41-48. doi: 10.1016/j.brainres.2008.11.018 PMID: 19046950
- Gbahou, F.; Rouleau, A.; Morisset, S.; Parmentier, R.; Crochet, S.; Lin, J.S.; Ligneau, X.; Tardivel-Lacombe, J.; Stark, H.; Schunack, W.; Ganellin, C.R.; Schwartz, J.C.; Arrang, J.M. Protean agonism at histamine H 3 receptors in vitro and in vivo. Proc. Natl. Acad. Sci. USA, 2003, 100(19), 11086-11091. doi: 10.1073/pnas.1932276100 PMID: 12960366
- Clineschmidt, B.V.; Lotti, V.J. Histamine: Intraventricular injection suppresses ingestive behavior of the cat. Arch. Int. Pharmacodyn. Ther., 1973, 206(2), 288-298. PMID: 4778620
- Mika, K.; Szafarz, M.; Bednarski, M.; Kuder, K.; Szczepańska, K.; Pociecha, K.; Pomierny, B.; Kieć-Kononowicz, K.; Sapa, J.; Kotańska, M. Metabolic benefits of novel histamine H3 receptor ligands in the model of excessive eating: The importance of intrinsic activity and pharmacokinetic properties. Biomed. Pharmacother., 2021, 142, 111952. doi: 10.1016/j.biopha.2021.111952 PMID: 34325303
- Kumar, A.; Pasam, V.R.; Thakur, R.K.; Singh, M.; Singh, K.; Shukla, M.; Yadav, A.; Dogra, S.; Sona, C.; Umrao, D.; Jaiswal, S.; Ahmad, H.; Rashid, M.; Singh, S.K.; Wahajuddin, M.; Dwivedi, A.K.; Siddiqi, M.I.; Lal, J.; Tripathi, R.P.; Yadav, P.N. Novel tetrahydroquinazolinamines as selective histamine 3 receptor antagonists for the treatment of obesity. J. Med. Chem., 2019, 62(9), 4638-4655. doi: 10.1021/acs.jmedchem.9b00241 PMID: 30998358
- Cohn, C.K.; Ball, G.G.; Hirsch, J. Histamine: Effect on selfstimulation. Science, 1973, 180(4087), 757-758. doi: 10.1126/science.180.4087.757
- Machidori, H.; Sakata, T.; Yoshimatsu, H.; Ookuma, K.; Fujimoto, K.; Kurokawa, M.; Yamatodani, A.; Wada, H. Zucker obese rats: Defect in brain histamine control of feeding. Brain Res., 1992, 590(1-2), 180-186. doi: 10.1016/0006-8993(92)91093-T PMID: 1330211
- Ookuma, K.; Sakata, T.; Fukagawa, K.; Yoshimatsu, H.; Kurokawa, M.; Machidori, H.; Fujimoto, K. Neuronal histamine in the hypothalamus suppresses food intake in rats. Brain Res., 1993, 628(1-2), 235-242. doi: 10.1016/0006-8993(93)90960-U PMID: 8313152
- Kasaoka, S.; Tsuboyama-Kasaoka, N.; Kawahara, Y.; Inoue, S.; Tsuji, M.; Ezaki, O.; Kato, H.; Tsuchiya, T.; Okuda, H.; Nakajima, S. Histidine supplementation suppresses food intake and fat accumulation in rats. Nutrition, 2004, 20(11-12), 991-996. doi: 10.1016/j.nut.2004.08.006 PMID: 15561489
- Sakata, T.; Yoshimatsu, H.; Kurokawa, M. Hypothalamic neuronal histamine: Implications of its homeostatic control of energy metabolism. Nutrition, 1997, 13(5), 403-411. doi: 10.1016/S0899-9007(97)91277-6 PMID: 9225331
- Yoshimoto, R.; Miyamoto, Y.; Shimamura, K.; Ishihara, A.; Takahashi, K.; Kotani, H.; Chen, A.S.; Chen, H.Y.; MacNeil, D.J.; Kanatani, A.; Tokita, S. Therapeutic potential of histamine H3 receptor agonist for the treatment of obesity and diabetes mellitus. Proc. Natl. Acad. Sci. USA, 2006, 103(37), 13866-13871. doi: 10.1073/pnas.0506104103 PMID: 16954192
- Masaki, T.; Yoshimatsu, H. The hypothalamic H1 receptor: A novel therapeutic target for disrupting diurnal feeding rhythm and obesity. Trends Pharmacol. Sci., 2006, 27(5), 279-284. doi: 10.1016/j.tips.2006.03.008 PMID: 16584790
- Masaki, T.; Chiba, S.; Yasuda, T.; Noguchi, H.; Kakuma, T.; Watanabe, T.; Sakata, T.; Yoshimatsu, H. Involvement of hypothalamic histamine H1 receptor in the regulation of feeding rhythm and obesity. Diabetes, 2004, 53(9), 2250-2260. doi: 10.2337/diabetes.53.9.2250 PMID: 15331534
- Masaki, T.; Yoshimatsu, H.; Chiba, S.; Watanabe, T.; Sakata, T. Targeted disruption of histamine H1-receptor attenuates regulatory effects of leptin on feeding, adiposity, and UCP family in mice. Diabetes, 2001, 50(2), 385-391. doi: 10.2337/diabetes.50.2.385 PMID: 11272151
- Morimoto, T.; Yamamoto, Y.; Mobarakeh, J.I.; Yanai, K.; Watanabe, T.; Watanabe, T.; Yamatodani, A. Involvement of the histaminergic system in leptin-induced suppression of food intake. Physiol. Behav., 1999, 67(5), 679-683. doi: 10.1016/S0031-9384(99)00123-7 PMID: 10604837
- Yoshimatsu, H.; Itateyama, E.; Kondou, S.; Tajima, D.; Himeno, K.; Hidaka, S.; Kurokawa, M.; Sakata, T. Hypothalamic neuronal histamine as a target of leptin in feeding behavior. Diabetes, 1999, 48(12), 2286-2291. doi: 10.2337/diabetes.48.12.2286 PMID: 10580415
- Mollet, A.; Lutz, T.A.; Meier, S.; Riediger, T.; Rushing, P.A.; Scharrer, E. Histamine H 1 receptors mediate the anorectic action of the pancreatic hormone amylin. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2001, 281(5), R1442-R1448. doi: 10.1152/ajpregu.2001.281.5.R1442 PMID: 11641114
- Mollet, A.; Meier, S.; Riediger, T.; Lutz, T.A. Histamine H1 receptors in the ventromedial hypothalamus mediate the anorectic action of the pancreatic hormone amylin. Peptides, 2003, 24(1), 155-158. doi: 10.1016/S0196-9781(02)00288-7 PMID: 12576097
- Davidowa, H. Histamine H1-receptors differentially mediate the action of amylin on hypothalamic neurons in control and in overweight rats. Behav. Brain Res., 2007, 182(1), 28-35. doi: 10.1016/j.bbr.2007.05.001 PMID: 17586064
- Gotoh, K.; Masaki, T.; Chiba, S.; Ando, H.; Shimasaki, T.; Mitsutomi, K.; Fujiwara, K.; Katsuragi, I.; Kakuma, T.; Sakata, T.; Yoshimatsu, H. Nesfatin-1, corticotropin-releasing hormone, thyrotropin-releasing hormone, and neuronal histamine interact in the hypothalamus to regulate feeding behavior. J. Neurochem., 2013, 124(1), 90-99. doi: 10.1111/jnc.12066 PMID: 23106615
- Itowi, N.; Nagai, K.; Nakagawa, H.; Watanabe, T.; Wada, H. Changes in the feeding behavior of rats elicited by histamine infusion. Physiol. Behav., 1988, 44(2), 221-226. doi: 10.1016/0031-9384(88)90142-4 PMID: 3237828
- Lecklin, A.; Tuomisto, L. The blockade of H1 receptors attenuates the suppression of feeding and diuresis induced by inhibition of histamine catabolism. Pharmacol. Biochem. Behav., 1998, 59(3), 753-758. doi: 10.1016/S0091-3057(97)00465-6 PMID: 9512082
- Vaziri, P.; Dang, K.; Anderson, G.H. Evidence for histamine involvement in the effect of histidine loads on food and water intake in rats. J. Nutr., 1997, 127(8), 1519-1526. doi: 10.1093/jn/127.8.1519 PMID: 9237947
- Lecklin, A.; Etu-Seppälä, P.; Stark, H.; Tuomisto, L. Effects of intracerebroventricularly infused histamine and selective H1, H2 and H3 agonists on food and water intake and urine flow in Wistar rats. Brain Res., 1998, 793(1-2), 279-288. doi: 10.1016/S0006-8993(98)00186-3 PMID: 9630675
- Kobayashi, T.; Tonai, S.; Ishihara, Y.; Koga, R.; Okabe, S.; Watanabe, T. Abnormal functional and morphological regulation of the gastric mucosa in histamine H2 receptordeficient mice. J. Clin. Invest., 2000, 105(12), 1741-1749. doi: 10.1172/JCI9441 PMID: 10862789
- Scott Kraly, F.; Specht, S.M. Histamine plays a major role for drinking elicited by spontaneous eating in rats. Physiol. Behav., 1984, 33(4), 611-614. doi: 10.1016/0031-9384(84)90379-2 PMID: 6522479
- Kjaer, A.; Knigge, U.; Rouleau, A.; Garbarg, M.; Warberg, J. Dehydration-induced release of vasopressin involves activation of hypothalamic histaminergic neurons. Endocrinology, 1994, 135(2), 675-681. doi: 10.1210/endo.135.2.8033816 PMID: 8033816
- Wang, K.Y.; Tanimoto, A.; Yamada, S.; Guo, X.; Ding, Y.; Watanabe, T.; Watanabe, T.; Kohno, K.; Hirano, K.I.; Tsukada, H.; Sasaguri, Y. Histamine regulation in glucose and lipid metabolism via histamine receptors: Model for nonalcoholic steatohepatitis in mice. Am. J. Pathol., 2010, 177(2), 713-723. doi: 10.2353/ajpath.2010.091198 PMID: 20566747
- Støa-Birketvedt, G. Effect of cimetidine suspension on appetite and weight in overweight subjects. BMJ, 1993, 306(6885), 1091-1093. doi: 10.1136/bmj.306.6885.1091 PMID: 8388285
- Støa-Birketvedt, G.; Paus, P.N.; Ganss, R.; Ingebretsen, O.C.; Florholmen, J. Cimetidine reduces weight and improves metabolic control in overweight patients with Type 2 diabetes. Int. J. Obes., 1998, 22(11), 1041-1045. doi: 10.1038/sj.ijo.0800721 PMID: 9822940
- Xu, L.; Lin, W.; Zheng, Y.; Chen, J.; Fang, Z.; Tan, N.; Hu, W.; Guo, Y.; Wang, Y.; Chen, Z. An H2R-dependent medial septum histaminergic circuit mediates feeding behavior. Curr. Biol., 2022, 32(9), 1937-1948.e5. doi: 10.1016/j.cub.2022.03.010 PMID: 35338850
- Sakata, T.; Fukagawa, K.; Ookuma, K.; Fujimoto, K.; Yoshimatsu, H.; Yamatodani, A.; Wada, H. Hypothalamic neuronal histamine modulates ad libitum feeding by rats. Brain Res., 1990, 537(1-2), 303-306. doi: 10.1016/0006-8993(90)90373-J PMID: 2085781
- Malmlöf, K.; Zaragoza, F.; Golozoubova, V.; Refsgaard, H.H.F.; Cremers, T.; Raun, K.; Wulff, B.S.; Johansen, P.B.; Westerink, B.; Rimvall, K. Influence of a selective histamine H3 receptor antagonist on hypothalamic neural activity, food intake and body weight. Int. J. Obes., 2005, 29(12), 1402-1412. doi: 10.1038/sj.ijo.0803036 PMID: 16151415
- Malmlöf, K.; Golozoubova, V.; Peschke, B.; Wulff, B.S.; Refsgaard, H.H.F.; Johansen, P.B.; Cremers, T.; Rimvall, K. Increase of neuronal histamine in obese rats is associated with decreases in body weight and plasma triglycerides. Obesity (Silver Spring), 2006, 14(12), 2154-2162. doi: 10.1038/oby.2006.252 PMID: 17189541
- Malmlöf, K.; Hastrup, S.; Wulff, B.S.; Hansen, B.C.; Peschke, B.; Jeppesen, C.B.; Hohlweg, R.; Rimvall, K. Antagonistic targeting of the histamine H3 receptor decreases caloric intake in higher mammalian species. Biochem. Pharmacol., 2007, 73(8), 1237-1242. doi: 10.1016/j.bcp.2007.01.034 PMID: 17328868
- Itoh, E.; Fujimiya, M.; Inui, A. Thioperamide, a histamine H3 receptor antagonist, suppresses NPY-but not Dynorphin A-induced feeding in rats. Regul. Pept., 1998, 75-76, 373-376. doi: 10.1016/S0167-0115(98)00090-1 PMID: 9802431
- Itoh, E.; Fujimiya, M.; Inui, A. Thioperamide, a histamine H3 receptor antagonist, powerfully suppresses peptide YY-induced food intake in rats. Biol. Psychiatry, 1999, 45(4), 475-481. doi: 10.1016/S0006-3223(98)00044-4 PMID: 10071721
- Henry, M.B.; Zheng, S.; Duan, C.; Patel, B.; Vassileva, G.; Sondey, C.; Lachowicz, J.; Hwa, J.J. Antidiabetic properties of the histamine H3 receptor protean agonist proxyfan. Endocrinology, 2011, 152(3), 828-835. doi: 10.1210/en.2010-0757 PMID: 21239440
- Tokita, S.; Takahashi, K.; Kotani, H. Recent advances in molecular pharmacology of the histamine systems: Physiology and pharmacology of histamine H3 receptor: Roles in feeding regulation and therapeutic potential for metabolic disorders. J. Pharmacol. Sci., 2006, 101(1), 12-18. doi: 10.1254/jphs.FMJ06001X4 PMID: 16648667
- Thurmond, R.L. The histamine H4 receptor: From orphan to the clinic. Front. Pharmacol., 2015, 6, 65. doi: 10.3389/fphar.2015.00065 PMID: 25873897
- Doi, T.; Sakata, T.; Yoshimatsu, H.; Machidori, H.; Kurokawa, M.; Jayasekara, L.A.L.W.; Niki, N. Hypothalamic neuronal histamine regulates feeding circadian rhythm in rats. Brain Res., 1994, 641(2), 311-318. doi: 10.1016/0006-8993(94)90160-0 PMID: 8012834
- Abe, H.; Honma, S.; Ohtsu, H.; Honma, K. Circadian rhythms in behavior and clock gene expressions in the brain of mice lacking histidine decarboxylase. Brain Res. Mol. Brain Res., 2004, 124(2), 178-187. doi: 10.1016/j.molbrainres.2004.02.015 PMID: 15135226
- Ishizuka, T.; Yamatodani, A. Integrative role of the histaminergic system in feeding and taste perception. Front. Syst. Neurosci., 2012, 6, 44. doi: 10.3389/fnsys.2012.00044 PMID: 22654740
- Itoh, Y.; Oishi, R.; Saeki, K. Feeding-induced increase in the extracellular concentration of histamine in rat hypothalamus as measured by in vivo microdialysis. Neurosci. Lett., 1991, 125(2), 235-237. doi: 10.1016/0304-3940(91)90037-T PMID: 1881601
- Valdés, J.L.; Sánchez, C.; Riveros, M.E.; Blandina, P.; Contreras, M.; Farías, P.; Torrealba, F. The histaminergic tuberomammillary nucleus is critical for motivated arousal. Eur. J. Neurosci., 2010, 31(11), 2073-2085. doi: 10.1111/j.1460-9568.2010.07241.x PMID: 20529118
- Inzunza, O.; Serón-Ferré, M.J.; Bravo, H.; Torrealba, F. Tuberomammillary nucleus activation anticipates feeding under a restricted schedule in rats. Neurosci. Lett., 2000, 293(2), 139-142. doi: 10.1016/S0304-3940(00)01516-0 PMID: 11027853
- Meynard, M.; Valdés, J.; Recabarren, M.; Serónferré, M.; Torrealba, F. Specific activation of histaminergic neurons during daily feeding anticipatory behavior in rats. Behav. Brain Res., 2005, 158(2), 311-319. doi: 10.1016/j.bbr.2004.09.010 PMID: 15698898
- Umehara, H.; Mizuguchi, H.; Mizukawa, N.; Matsumoto, M.; Takeda, N.; Senba, E.; Fukui, H. Deprivation of anticipated food under scheduled feeding induces c-Fos expression in the caudal part of the arcuate nucleus of hypothalamus through histamine H1 receptors in rats: Potential involvement of E3 subgroup of histaminergic neurons in tuberomammillary nucleus. Brain Res., 2011, 1387, 61-70. doi: 10.1016/j.brainres.2011.02.018 PMID: 21320473
- Poyurovsky, M.; Fuchs, C.; Pashinian, A.; Levi, A.; Weizman, R.; Weizman, A. Reducing antipsychotic-induced weight gain in schizophrenia: A double-blind placebo-controlled study of reboxetinebetahistine combination. Psychopharmacology (Berl.), 2013, 226(3), 615-622. doi: 10.1007/s00213-012-2935-2 PMID: 23239133
- Barak, N.; Beck, Y.; Albeck, J.H. Betahistine decreases olanzapine-induced weight gain and somnolence in humans. J. Psychopharmacol., 2016, 30(3), 237-241. doi: 10.1177/0269881115626349 PMID: 26839321
- Barak, N.; Greenway, F.L.; Fujioka, K.; Aronne, L.J.; Kushner, R.F. Effect of histaminergic manipulation on weight in obese adults: A randomized placebo controlled trial. Int. J. Obes., 2008, 32(10), 1559-1565. doi: 10.1038/ijo.2008.135 PMID: 18698316
- Raveendran, V.V.; Kassel, K.M.; Smith, D.D.; Luyendyk, J.P.; Williams, K.J.; Cherian, R.; Reed, G.A.; Flynn, C.A.; Csanaky, I.L.; Lickteig, A.L.; Pratt-Hyatt, M.J.; Klaassen, C.D.; Dileepan, K.N. H1-antihistamines exacerbate high-fat diet-induced hepatic steatosis in wild-type but not in apolipoprotein E knockout mice. Am. J. Physiol. Gastrointest. Liver Physiol., 2014, 307(2), G219-G228. doi: 10.1152/ajpgi.00027.2014 PMID: 24852568
- Hancock, A.A.; Bennani, Y.L.; Bush, E.N.; Esbenshade, T.A.; Faghih, R.; Fox, G.B.; Jacobson, P.; Knourek-Segel, V.; Krueger, K.M.; Nuss, M.E.; Pan, J.B.; Shapiro, R.; Witte, D.G.; Yao, B.B. Antiobesity effects of A-331440, a novel non-imidazole histamine H3 receptor antagonist. Eur. J. Pharmacol., 2004, 487(1-3), 183-197. doi: 10.1016/j.ejphar.2004.01.015 PMID: 15033391
- Pierson, P.D.; Fettes, A.; Freichel, C.; Gatti-McArthur, S.; Hertel, C.; Huwyler, J.; Mohr, P.; Nakagawa, T.; Nettekoven, M.; Plancher, J.M.; Raab, S.; Richter, H.; Roche, O.; Rodríguez Sarmiento, R.M.; Schmitt, M.; Schuler, F.; Takahashi, T.; Taylor, S.; Ullmer, C.; Wiegand, R. 5-hydroxyindole-2-carboxylic acid amides: Novel histamine-3 receptor inverse agonists for the treatment of obesity. J. Med. Chem., 2009, 52(13), 3855-3868. doi: 10.1021/jm900409x PMID: 19456097
- Ericson, H.; Watanabe, T.; Köhler, C. Morphological analysis of the tuberomammmillary nucleus in the rat brain: Delineation of subgroups with antibody again L-histidine decarboxylase as a marker. J. Comp. Neurol., 1987, 263(1), 1-24. doi: 10.1002/cne.902630102 PMID: 2822770
- Miklós, I.H.; Kovács, K.J. Functional heterogeneity of the responses of histaminergic neuron subpopulations to various stress challenges. Eur. J. Neurosci., 2003, 18(11), 3069-3079. doi: 10.1111/j.1460-9568.2003.03033.x PMID: 14656302
- Panula, P.; Nuutinen, S. The histaminergic network in the brain: Basic organization and role in disease. Nat. Rev. Neurosci., 2013, 14(7), 472-487. doi: 10.1038/nrn3526 PMID: 23783198
- Medhurst, A.D.; Atkins, A.R.; Beresford, I.J.; Brackenborough, K.; Briggs, M.A.; Calver, A.R.; Cilia, J.; Cluderay, J.E.; Crook, B.; Davis, J.B.; Davis, R.K.; Davis, R.P.; Dawson, L.A.; Foley, A.G.; Gartlon, J.; Gonzalez, M.I.; Heslop, T.; Hirst, W.D.; Jennings, C.; Jones, D.N.C.; Lacroix, L.P.; Martyn, A.; Ociepka, S.; Ray, A.; Regan, C.M.; Roberts, J.C.; Schogger, J.; Southam, E.; Stean, T.O.; Trail, B.K.; Upton, N.; Wadsworth, G.; Wald, J.A.; White, T.; Witherington, J.; Woolley, M.L.; Worby, A.; Wilson, D.M. GSK189254, a novel H3 receptor antagonist that binds to histamine H3 receptors in Alzheimers disease brain and improves cognitive performance in preclinical models. J. Pharmacol. Exp. Ther., 2007, 321(3), 1032-1045. doi: 10.1124/jpet.107.120311 PMID: 17327487
- Giannoni, P.; Passani, M.B.; Nosi, D.; Chazot, P.L.; Shenton, F.C.; Medhurst, A.D.; Munari, L.; Blandina, P. Heterogeneity of histaminergic neurons in the tuberomammillary nucleus of the rat. Eur. J. Neurosci., 2009, 29(12), 2363-2374. doi: 10.1111/j.1460-9568.2009.06765.x PMID: 19490084
- Giannoni, P.; Medhurst, A.D.; Passani, M.B.; Giovannini, M.G.; Ballini, C.; Corte, L.D.; Blandina, P. Regional differential effects of the novel histamine H3 receptor antagonist 6-(3-cyclobutyl-2,3,4,5-tetrahydro-1H-3-benzazepin-7-yl)oxy-N-methyl-3-pyridine- carboxamide hydrochloride (GSK189254) on histamine release in the central nervous system of freely moving rats. J. Pharmacol. Exp. Ther., 2010, 332(1), 164-172. doi: 10.1124/jpet.109.158444 PMID: 19815811
- Sakata, T.; Ookuma, K.; Fukagawa, K.; Fujimoto, K.; Yoshimatsu, H.; Shiraishi, T.; Wada, H. Blockade of the histamine H1-receptor in the rat ventromedial hypothalamus and feeding elicitation. Brain Res., 1988, 441(1-2), 403-407. doi: 10.1016/0006-8993(88)91423-0 PMID: 3359243
- Sakata, T.; Fukagawa, K.; Ookuma, K.; Fujimoto, K.; Yoshimatsu, H.; Yamatodani, A.; Wada, H. Modulation of neuronal histamine in control of food intake. Physiol. Behav., 1988, 44(4-5), 539-543. doi: 10.1016/0031-9384(88)90316-2 PMID: 3237844
- Ookuma, K.; Yoshimatsu, H.; Sakata, T.; Fujimoto, K.; Fukagawa, K. Hypothalamic sites of neuronal histamine action on food intake by rats. Brain Res., 1989, 490(2), 268-275. doi: 10.1016/0006-8993(89)90244-8 PMID: 2765863
- Morton, G.J.; Cummings, D.E.; Baskin, D.G.; Barsh, G.S.; Schwartz, M.W. Central nervous system control of food intake and body weight. Nature, 2006, 443(7109), 289-295. doi: 10.1038/nature05026 PMID: 16988703
- Gao, Q.; Horvath, T.L. Neurobiology of feeding and energy expenditure. Annu. Rev. Neurosci., 2007, 30(1), 367-398. doi: 10.1146/annurev.neuro.30.051606.094324 PMID: 17506645
- Stuber, G.D.; Wise, R.A. Lateral hypothalamic circuits for feeding and reward. Nat. Neurosci., 2016, 19(2), 198-205. doi: 10.1038/nn.4220 PMID: 26814589
- Wang, Y.; Kim, J.; Schmit, M.B.; Cho, T.S.; Fang, C.; Cai, H. A bed nucleus of stria terminalis microcircuit regulating inflammation-associated modulation of feeding. Nat. Commun., 2019, 10(1), 2769. doi: 10.1038/s41467-019-10715-x PMID: 31235690
- Zhao, Z.; Chen, Z.; Xiang, X.; Hu, M.; Xie, H.; Jia, X.; Cai, F.; Cui, Y.; Chen, Z.; Qian, L.; Liu, J.; Shang, C.; Yang, Y.; Ni, X.; Sun, W.; Hu, J.; Cao, P.; Li, H.; Shen, W.L. Zona incerta GABAergic neurons integrate prey-related sensory signals and induce an appetitive drive to promote hunting. Nat. Neurosci., 2019, 22(6), 921-932. doi: 10.1038/s41593-019-0404-5 PMID: 31127258
- Luo, S.X.; Huang, J.; Li, Q.; Mohammad, H.; Lee, C.Y.; Krishna, K.; Kok, A.M.Y.; Tan, Y.L.; Lim, J.Y.; Li, H.; Yeow, L.Y.; Sun, J.; He, M.; Grandjean, J.; Sajikumar, S.; Han, W.; Fu, Y. Regulation of feeding by somatostatin neurons in the tuberal nucleus. Science, 2018, 361(6397), 76-81. doi: 10.1126/science.aar4983 PMID: 29976824
- Petrovich, G.D. Feeding behavior survival circuit: Anticipation & competition. Curr. Opin. Behav. Sci., 2018, 24, 137-142. doi: 10.1016/j.cobeha.2018.09.007 PMID: 31086808
- Sternson, S.M.; Eiselt, A.K. Three pillars for the neural control of appetite. Annu. Rev. Physiol., 2017, 79(1), 401-423. doi: 10.1146/annurev-physiol-021115-104948 PMID: 27912679
- Krashes, M.J.; Koda, S.; Ye, C.; Rogan, S.C.; Adams, A.C.; Cusher, D.S.; Maratos-Flier, E.; Roth, B.L.; Lowell, B.B. Rapid, reversible activation of AgRP neurons drives feeding behavior in mice. J. Clin. Invest., 2011, 121(4), 1424-1428. doi: 10.1172/JCI46229 PMID: 21364278
- Luquet, S.; Perez, F.A.; Hnasko, T.S.; Palmiter, R.D. NPY/AgRP neurons are essential for feeding in adult mice but can be ablated in neonates. Science, 2005, 310(5748), 683-685. doi: 10.1126/science.1115524
- Aponte, Y.; Atasoy, D.; Sternson, S.M. AGRP neurons are sufficient to orchestrate feeding behavior rapidly and without training. Nat. Neurosci., 2011, 14(3), 351-355. doi: 10.1038/nn.2739 PMID: 21209617
- Livneh, Y.; Ramesh, R.N.; Burgess, C.R.; Levandowski, K.M.; Madara, J.C.; Fenselau, H.; Goldey, G.J.; Diaz, V.E.; Jikomes, N.; Resch, J.M.; Lowell, B.B.; Andermann, M.L. Homeostatic circuits selectively gate food cue responses in insular cortex. Nature, 2017, 546(7660), 611-616. doi: 10.1038/nature22375 PMID: 28614299
- Scott, M.M.; Williams, K.W.; Rossi, J.; Lee, C.E.; Elmquist, J.K. Leptin receptor expression in hindbrain Glp-1 neurons regulates food intake and energy balance in mice. J. Clin. Invest., 2011, 121(6), 2413-2421. doi: 10.1172/JCI43703 PMID: 21606595
- Zhan, C.; Zhou, J.; Feng, Q.; Zhang, J.; Lin, S.; Bao, J.; Wu, P.; Luo, M. Acute and long-term suppression of feeding behavior by POMC neurons in the brainstem and hypothalamus, respectively. J. Neurosci., 2013, 33(8), 3624-3632. doi: 10.1523/JNEUROSCI.2742-12.2013 PMID: 23426689
- Garfield, A.S.; Li, C.; Madara, J.C.; Shah, B.P.; Webber, E.; Steger, J.S.; Campbell, J.N.; Gavrilova, O.; Lee, C.E.; Olson, D.P.; Elmquist, J.K.; Tannous, B.A.; Krashes, M.J.; Lowell, B.B. A neural basis for melanocortin-4 receptorregulated appetite. Nat. Neurosci., 2015, 18(6), 863-871. doi: 10.1038/nn.4011 PMID: 25915476
- Essner, R.A.; Smith, A.G.; Jamnik, A.A.; Ryba, A.R.; Trutner, Z.D.; Carter, M.E. AgRP neurons can increase food intake during conditions of appetite suppression and inhibit anorexigenic parabrachial neurons. J. Neurosci., 2017, 37(36), 8678-8687. doi: 10.1523/JNEUROSCI.0798-17.2017 PMID: 28821663
- Qiu, J.; Rivera, H.M.; Bosch, M.A.; Padilla, S.L.; Stincic, T.L.; Palmiter, R.D.; Kelly, M.J.; Rønnekleiv, O.K. Estrogenic-dependent glutamatergic neurotransmission from kisspeptin neurons governs feeding circuits in females. eLife, 2018, 7, e35656. doi: 10.7554/eLife.35656 PMID: 30079889
- Wei, Q.; Krolewski, D.M.; Moore, S.; Kumar, V.; Li, F.; Martin, B.; Tomer, R.; Murphy, G.G.; Deisseroth, K.; Watson, S.J., Jr; Akil, H. Uneven balance of power between hypothalamic peptidergic neurons in the control of feeding. Proc. Natl. Acad. Sci. USA, 2018, 115(40), E9489-E9498. doi: 10.1073/pnas.1802237115 PMID: 30224492
- Bouret, S.G.; Draper, S.J.; Simerly, R.B. Formation of projection pathways from the arcuate nucleus of the hypothalamus to hypothalamic regions implicated in the neural control of feeding behavior in mice. J. Neurosci., 2004, 24(11), 2797-2805. doi: 10.1523/JNEUROSCI.5369-03.2004 PMID: 15028773
- Minokoshi, Y.; Alquier, T.; Furukawa, N.; Kim, Y.B.; Lee, A.; Xue, B.; Mu, J.; Foufelle, F.; Ferré, P.; Birnbaum, M.J.; Stuck, B.J.; Kahn, B.B. AMP-kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus. Nature, 2004, 428(6982), 569-574. doi: 10.1038/nature02440 PMID: 15058305
- Taylor, J.E.; Richelson, E. High affinity binding of tricyclic antidepressants to histamine H1-receptors: Fact and artifact. Eur. J. Pharmacol., 1980, 67(1), 41-46. doi: 10.1016/0014-2999(80)90006-0 PMID: 6106553
- Ookuma, K.; Sakata, T.; Fujimoto, K. Evidence for feeding elicited through antihistaminergic effects of tricyclic antidepressants in the rat hypothalamus. Psychopharmacology (Berl.), 1990, 101(4), 481-485. doi: 10.1007/BF02244225 PMID: 1975106
- Kim, S.F.; Huang, A.S.; Snowman, A.M.; Teuscher, C.; Snyder, S.H. Antipsychotic drug-induced weight gain mediated by histamine H 1 receptor-linked activation of hypothalamic AMP-kinase. Proc. Natl. Acad. Sci. USA, 2007, 104(9), 3456-3459. doi: 10.1073/pnas.0611417104 PMID: 17360666
- Morimoto, T.; Yamamoto, Y.; Yamatodani, A. Brain histamine and feeding behavior. Behav. Brain Res., 2001, 124(2), 145-150. doi: 10.1016/S0166-4328(01)00225-X PMID: 11640967
- Tuomisto, J.; Männistö, P. Neurotransmitter regulation of anterior pituitary hormones. Pharmacol. Rev., 1985, 37(3), 249-332. PMID: 2869509
- Wu, Z.; Kim, E.R.; Sun, H.; Xu, Y.; Mangieri, L.R.; Li, D.P.; Pan, H.L.; Xu, Y.; Arenkiel, B.R.; Tong, Q. GABAergic projections from lateral hypothalamus to paraventricular hypothalamic nucleus promote feeding. J. Neurosci., 2015, 35(8), 3312-3318. doi: 10.1523/JNEUROSCI.3720-14.2015 PMID: 25716832
- Stamatakis, A.M.; Van Swieten, M.; Basiri, M.L.; Blair, G.A.; Kantak, P.; Stuber, G.D. Lateral hypothalamic area glutamatergic neurons and their projections to the lateral habenula regulate feeding and reward. J. Neurosci., 2016, 36(2), 302-311. doi: 10.1523/JNEUROSCI.1202-15.2016 PMID: 26758824
- Mangieri, L.R.; Lu, Y.; Xu, Y.; Cassidy, R.M.; Xu, Y.; Arenkiel, B.R.; Tong, Q. A neural basis for antagonistic control of feeding and compulsive behaviors. Nat. Commun., 2018, 9(1), 52. doi: 10.1038/s41467-017-02534-9 PMID: 29302029
- Kita, H.; Oomura, Y. Reciprocal connections between the lateral hypothalamus and the frontal cortex in the rat: Electrophysiological and anatomical observations. Brain Res., 1981, 213(1), 1-16. doi: 10.1016/0006-8993(81)91244-0 PMID: 6165439
- Lin, J.S.; Sakai, K.; Jouvet, M. Evidence for histaminergic arousal mechanisms in the hypothalamus of cat. Neuropharmacology, 1988, 27(2), 111-122. doi: 10.1016/0028-3908(88)90159-1 PMID: 2965315
- Anthony, T.E.; Dee, N.; Bernard, A.; Lerchner, W.; Heintz, N.; Anderson, D.J. Control of stress-induced persistent anxiety by an extra-amygdala septohypothalamic circuit. Cell, 2014, 156(3), 522-536. doi: 10.1016/j.cell.2013.12.040 PMID: 24485458
- Sakurai, T. The neural circuit of orexin (hypocretin): Maintaining sleep and wakefulness. Nat. Rev. Neurosci., 2007, 8(3), 171-181. doi: 10.1038/nrn2092 PMID: 17299454
- Yao, L.; Ramirez, A.D.; Roecker, A.J.; Fox, S.V.; Uslaner, J.M.; Smith, S.M.; Hodgson, R.; Coleman, P.J.; Renger, J.J.; Winrow, C.J.; Gotter, A.L. The dual orexin receptor antagonist, DORA-22, lowers histamine levels in the lateral hypothalamus and prefrontal cortex without lowering hippocampal acetylcholine. J. Neurochem., 2017, 142(2), 204-214. doi: 10.1111/jnc.14055 PMID: 28444767
- Jones, B.E.; Moore, R.Y. Ascending projections of the locus coeruleus in the rat. II. Autoradiographic study. Brain Res., 1977, 127(1), 23-53. doi: 10.1016/0006-8993(77)90378-X PMID: 301051
- Moore, R.Y.; Halaris, A.E.; Jones, B.E. Serotonin neurons of the midbrain raphe: Ascending projections. J. Comp. Neurol., 1978, 180(3), 417-438. doi: 10.1002/cne.901800302 PMID: 77865
- Eriksson, K.S.; Sergeeva, O.; Brown, R.E.; Haas, H.L. Orexin/hypocretin excites the histaminergic neurons of the tuberomammillary nucleus. J. Neurosci., 2001, 21(23), 9273-9279. doi: 10.1523/JNEUROSCI.21-23-09273.2001 PMID: 11717361
- Li, Y.; Gao, X.B.; Sakurai, T.; van den Pol, A.N. Hypocretin/ Orexin excites hypocretin neurons via a local glutamate neuron-A potential mechanism for orchestrating the hypothalamic arousal system. Neuron, 2002, 36(6), 1169-1181. doi: 10.1016/S0896-6273(02)01132-7 PMID: 12495630
- Zeltser, L.M. Feeding circuit development and early-life influences on future feeding behaviour. Nat. Rev. Neurosci., 2018, 19(5), 302-316. doi: 10.1038/nrn.2018.23 PMID: 29662204
- Betley, J.N.; Cao, Z.F.H.; Ritola, K.D.; Sternson, S.M. Parallel, redundant circuit organization for homeostatic control of feeding behavior. Cell, 2013, 155(6), 1337-1350. doi: 10.1016/j.cell.2013.11.002 PMID: 24315102
- Chen, Y.; Lin, Y.C.; Zimmerman, C.A.; Essner, R.A.; Knight, Z.A. Hunger neurons drive feeding through a sustained, positive reinforcement signal. eLife, 2016, 5, e18640. doi: 10.7554/eLife.18640 PMID: 27554486
- Jennings, J.H.; Rizzi, G.; Stamatakis, A.M.; Ung, R.L.; Stuber, G.D. The inhibitory circuit architecture of the lateral hypothalamus orchestrates feeding. Science, 2013, 341(6153), 1517-1521. doi: 10.1126/science.1241812
- Cumming, P.; Damsma, G.; Fibiger, H.C.; Vincent, S.R. Characterization of extracellular histamine in the striatum and bed nucleus of the stria terminalis of the rat: An in vivo microdialysis study. J. Neurochem., 1991, 56(5), 1797-1803. doi: 10.1111/j.1471-4159.1991.tb02083.x PMID: 1707442
- Schneeberger, M.; Gomis, R.; Claret, M. Hypothalamic and brainstem neuronal circuits controlling homeostatic energy balance. J. Endocrinol., 2014, 220(2), T25-T46. doi: 10.1530/JOE-13-0398 PMID: 24222039
- King, B.M. The rise, fall, and resurrection of the ventromedial hypothalamus in the regulation of feeding behavior and body weight. Physiol. Behav., 2006, 87(2), 221-244. doi: 10.1016/j.physbeh.2005.10.007 PMID: 16412483
- Choi, Y.H.; Fujikawa, T.; Lee, J.; Reuter, A.; Kim, K.W. Revisiting the ventral medial nucleus of the hypothalamus: The roles of SF-1 neurons in energy homeostasis. Front. Neurosci., 2013, 7, 71. doi: 10.3389/fnins.2013.00071 PMID: 23675313
- Mieda, M.; Williams, S.C.; Richardson, J.A.; Tanaka, K.; Yanagisawa, M. The dorsomedial hypothalamic nucleus as a putative food-entrainable circadian pacemaker. Proc. Natl. Acad. Sci. USA, 2006, 103(32), 12150-12155. doi: 10.1073/pnas.0604189103 PMID: 16880388
- Gooley, J.J.; Schomer, A.; Saper, C.B. The dorsomedial hypothalamic nucleus is critical for the expression of food-entrainable circadian rhythms. Nat. Neurosci., 2006, 9(3), 398-407. doi: 10.1038/nn1651 PMID: 16491082
- Garfield, A.S.; Shah, B.P.; Burgess, C.R.; Li, M.M.; Li, C.; Steger, J.S.; Madara, J.C.; Campbell, J.N.; Kroeger, D.; Scammell, T.E.; Tannous, B.A.; Myers, M.G., Jr; Andermann, M.L.; Krashes, M.J.; Lowell, B.B. Dynamic GABAergic afferent modulation of AgRP neurons. Nat. Neurosci., 2016, 19(12), 1628-1635. doi: 10.1038/nn.4392 PMID: 27643429
- Otgon-Uul, Z.; Suyama, S.; Onodera, H.; Yada, T. Optogenetic activation of leptin- and glucose-regulated GABAergic neurons in dorsomedial hypothalamus promotes food intake via inhibitory synaptic transmission to paraventricular nucleus of hypothalamus. Mol. Metab., 2016, 5(8), 709-715. doi: 10.1016/j.molmet.2016.06.010 PMID: 27656408
- Jeong, J.H.; Lee, D.K.; Jo, Y.H. Cholinergic neurons in the dorsomedial hypothalamus regulate food intake. Mol. Metab., 2017, 6(3), 306-312. doi: 10.1016/j.molmet.2017.01.001 PMID: 28271037
- Angeles-Castellanos, M.; Aguilar-Roblero, R.; Escobar, C. c-Fos expression in hypothalamic nuclei of food-entrained rats. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2004, 286(1), R158-R165. doi: 10.1152/ajpregu.00216.2003 PMID: 12933360
- Fukagawa, K.; Sakata, T.; Shiraishi, T.; Yoshimatsu, H.; Fujimoto, K.; Ookuma, K.; Wada, H. Neuronal histamine modulates feeding behavior through H1-receptor in rat hypothalamus. Am. J. Physiol. Regul. Integr. Comp. Physiol., 1989, 256(3), R605-R611. doi: 10.1152/ajpregu.1989.256.3.R605 PMID: 2564258
- Chou, T.C.; Scammell, T.E.; Gooley, J.J.; Gaus, S.E.; Saper, C.B.; Lu, J. Critical role of dorsomedial hypothalamic nucleus in a wide range of behavioral circadian rhythms. J. Neurosci., 2003, 23(33), 10691-10702. doi: 10.1523/JNEUROSCI.23-33-10691.2003 PMID: 14627654
- Bernardis, L.L.; Bellinger, L.L. The dorsomedial hypothalamic nucleus revisited: 1986 update. Brain Res. Brain Res. Rev., 1987, 12(3), 321-381. doi: 10.1016/0165-0173(87)90004-X PMID: 3300862
- Sutton, A.K.; Myers, M.G., Jr; Olson, D.P. The role of PVH circuits in leptin action and energy balance. Annu. Rev. Physiol., 2016, 78(1), 207-221. doi: 10.1146/annurev-physiol-021115-105347 PMID: 26863324
- Shorposner, G.; Azar, A.; Insinga, S.; Leibowitz, S. Deficits in the control of food intake after hypothalamic paraventricular nucleus lesions. Physiol. Behav., 1985, 35(6), 883-890. doi: 10.1016/0031-9384(85)90255-0 PMID: 3006098
- Leibowitz, S.F.; Hammer, N.J.; Chang, K. Hypothalamic paraventricular nucleus lesions produce overeating and obesity in the rat. Physiol. Behav., 1981, 27(6), 1031-1040. doi: 10.1016/0031-9384(81)90366-8 PMID: 7335803
- Sims, J.S.; Lorden, J.F. Effect of paraventricular nucleus lesions on body weight, food intake and insulin levels. Behav. Brain Res., 1986, 22(3), 265-281. doi: 10.1016/0166-4328(86)90071-9 PMID: 3098259
- Balthasar, N.; Dalgaard, L.T.; Lee, C.E.; Yu, J.; Funahashi, H.; Williams, T.; Ferreira, M.; Tang, V.; McGovern, R.A.; Kenny, C.D.; Christiansen, L.M.; Edelstein, E.; Choi, B.; Boss, O.; Aschkenasi, C.; Zhang, C.; Mountjoy, K.; Kishi, T.; Elmquist, J.K.; Lowell, B.B. Divergence of melanocortin pathways in the control of food intake and energy expenditure. Cell, 2005, 123(3), 493-505. doi: 10.1016/j.cell.2005.08.035 PMID: 16269339
- Huszar, D.; Lynch, C.A.; Fairchild-Huntress, V.; Dunmore, J.H.; Fang, Q.; Berkemeier, L.R.; Gu, W.; Kesterson, R.A.; Boston, B.A.; Cone, R.D.; Smith, F.J.; Campfield, L.A.; Burn, P.; Lee, F. Targeted disruption of the melanocortin-4 receptor results in obesity in mice. Cell, 1997, 88(1), 131-141. doi: 10.1016/S0092-8674(00)81865-6 PMID: 9019399
- Vaisse, C.; Clement, K.; Guy-Grand, B.; Froguel, P. A frameshift mutation in human MC4R is associated with a dominant form of obesity. Nat. Genet., 1998, 20(2), 113-114. doi: 10.1038/2407 PMID: 9771699
- Stachniak, T.J.; Ghosh, A.; Sternson, S.M. Chemogenetic synaptic silencing of neural circuits localizes a hypothalamus→midbrain pathway for feeding behavior. Neuron, 2014, 82(4), 797-808. doi: 10.1016/j.neuron.2014.04.008 PMID: 24768300
- Krashes, M.J.; Shah, B.P.; Madara, J.C.; Olson, D.P.; Strochlic, D.E.; Garfield, A.S.; Vong, L.; Pei, H.; Watabe-Uchida, M.; Uchida, N.; Liberles, S.D.; Lowell, B.B. An excitatory paraventricular nucleus to AgRP neuron circuit that drives hunger. Nature, 2014, 507(7491), 238-242. doi: 10.1038/nature12956 PMID: 24487620
- Orthen-Gambill, N. Antihistaminic drugs increase feeding, while histidine suppresses feeding in rats. Pharmacol. Biochem. Behav., 1988, 31(1), 81-86. doi: 10.1016/0091-3057(88)90315-2 PMID: 2908065
- Orthen-Gambill, N.; Salomon, M. Differential effects of psychotropic drugs on feeding in rats: Is histamine blockade involved? Pharmacol. Biochem. Behav., 1990, 36(4), 837-841. doi: 10.1016/0091-3057(90)90086-W PMID: 2217511
- Toftegaard, C.L.; Knigge, U.; Kjær, A.; Warberg, J. The role of hypothalamic histamine in leptin-induced suppression of short-term food intake in fasted rats. Regul. Pept., 2003, 111(1-3), 83-90. doi: 10.1016/S0167-0115(02)00260-4 PMID: 12609753
- Jørgensen, E.A.; Knigge, U.; Watanabe, T.; Warberg, J.; Kjaer, A. Histaminergic neurons are involved in the orexigenic effect of orexin-A. Neuroendocrinology, 2005, 82(2), 70-77. doi: 10.1159/000090982 PMID: 16415597
- Gotoh, K.; Fukagawa, K.; Fukagawa, T.; Noguchi, H.; Kakuma, T.; Sakata, T.; Yoshimatsu, H. Glucagon‐like peptide‐1, corticotropin‐releasing hormone, and hypothalamic neuronal histamine interact in the leptin‐signaling pathway to regulate feeding behavior. FASEB J., 2005, 19(9), 1131-1133. doi: 10.1096/fj.04-2384fje PMID: 15894564
- Herman, A.M.; Ortiz-Guzman, J.; Kochukov, M.; Herman, I.; Quast, K.B.; Patel, J.M.; Tepe, B.; Carlson, J.C.; Ung, K.; Selever, J.; Tong, Q.; Arenkiel, B.R. A cholinergic basal forebrain feeding circuit modulates appetite suppression. Nature, 2016, 538(7624), 253-256. doi: 10.1038/nature19789 PMID: 27698417
- Sweeney, P.; Yang, Y. An inhibitory septum to lateral hypothalamus circuit that suppresses feeding. J. Neurosci., 2016, 36(44), 11185-11195. doi: 10.1523/JNEUROSCI.2042-16.2016 PMID: 27807162
- Zhang, Y.; Jiang, Y.Y.; Shao, S.; Zhang, C.; Liu, F.Y.; Wan, Y.; Yi, M. Inhibiting medial septal cholinergic neurons with DREADD alleviated anxiety-like behaviors in mice. Neurosci. Lett., 2017, 638, 139-144. doi: 10.1016/j.neulet.2016.12.010 PMID: 27939976
- Sweeney, P.; Li, C.; Yang, Y. Appetite suppressive role of medial septal glutamatergic neurons. Proc. Natl. Acad. Sci. USA, 2017, 114(52), 13816-13821. doi: 10.1073/pnas.1707228114 PMID: 29229861
- Tabarean, I.V. Histamine receptor signaling in energy homeostasis. Neuropharmacology, 2016, 106, 13-19. doi: 10.1016/j.neuropharm.2015.04.011 PMID: 26107117
- Boyden, E.S.; Zhang, F.; Bamberg, E.; Nagel, G.; Deisseroth, K. Millisecond-timescale, genetically targeted optical control of neural activity. Nat. Neurosci., 2005, 8(9), 1263-1268. doi: 10.1038/nn1525 PMID: 16116447
- Feng, G.; Mellor, R.H.; Bernstein, M.; Keller-Peck, C.; Nguyen, Q.T.; Wallace, M.; Nerbonne, J.M.; Lichtman, J.W.; Sanes, J.R. Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron, 2000, 28(1), 41-51. doi: 10.1016/S0896-6273(00)00084-2 PMID: 11086982
- Zong, H.; Espinosa, J.S.; Su, H.H.; Muzumdar, M.D.; Luo, L. Mosaic analysis with double markers in mice. Cell, 2005, 121(3), 479-492. doi: 10.1016/j.cell.2005.02.012 PMID: 15882628
- Chung, K.; Wallace, J.; Kim, S.Y.; Kalyanasundaram, S.; Andalman, A.S.; Davidson, T.J.; Mirzabekov, J.J.; Zalocusky, K.A.; Mattis, J.; Denisin, A.K.; Pak, S.; Bernstein, H.; Ramakrishnan, C.; Grosenick, L.; Gradinaru, V.; Deisseroth, K. Structural and molecular interrogation of intact biological systems. Nature, 2013, 497(7449), 332-337. doi: 10.1038/nature12107 PMID: 23575631
- Zecharia, A.Y.; Yu, X.; Götz, T.; Ye, Z.; Carr, D.R.; Wulff, P.; Bettler, B.; Vyssotski, A.L.; Brickley, S.G.; Franks, N.P.; Wisden, W. GABAergic inhibition of histaminergic neurons regulates active waking but not the sleep-wake switch or propofol-induced loss of consciousness. J. Neurosci., 2012, 32(38), 13062-13075. doi: 10.1523/JNEUROSCI.2931-12.2012 PMID: 22993424
- Zhang, X.Y.; Peng, S.Y.; Shen, L.P.; Zhuang, Q.X.; Li, B.; Xie, S.T.; Li, Q.X.; Shi, M.R.; Ma, T.Y.; Zhang, Q.; Wang, J.J.; Zhu, J.N. Targeting presynaptic H3 heteroreceptor in nucleus accumbens to improve anxiety and obsessive-compulsive-like behaviors. Proc. Natl. Acad. Sci. USA, 2020, 117(50), 32155-32164. doi: 10.1073/pnas.2008456117 PMID: 33257584
- Yu, X.; Ye, Z.; Houston, C.M.; Zecharia, A.Y.; Ma, Y.; Zhang, Z.; Uygun, D.S.; Parker, S.; Vyssotski, A.L.; Yustos, R.; Franks, N.P.; Brickley, S.G.; Wisden, W. Wakefulness is governed by GABA and histamine cotransmission. Neuron, 2015, 87(1), 164-178. doi: 10.1016/j.neuron.2015.06.003 PMID: 26094607
- Silva, C.; McNaughton, N. Are periaqueductal gray and dorsal raphe the foundation of appetitive and aversive control? A comprehensive review. Prog. Neurobiol., 2019, 177(January), 33-72. doi: 10.1016/j.pneurobio.2019.02.001 PMID: 30786258
- Pollard, H.; Moreau, J.; Arrang, J.M.; Schwartz, J.C. A detailed autoradiographic mapping of histamine H3 receptors in rat brain areas. Neuroscience, 1993, 52(1), 169-189. doi: 10.1016/0306-4522(93)90191-H PMID: 8381924
- Santos, N.R.; Huston, J.P.; Brandão, M.L. Further evidence for the involvement of histamine H2 receptors in the control of defensive behaviour generated in the midbrain tectum. Behav. Pharmacol., 2002, 13(1), 73-80. doi: 10.1097/00008877-200202000-00007 PMID: 11990721
- Santos, N.R.; Huston, J.P.; Brandão, M.L. Blockade of histamine H2 receptors of the periaqueductal gray and inferior colliculus induces fear-like behaviors. Pharmacol. Biochem. Behav., 2003, 75(1), 25-33. doi: 10.1016/S0091-3057(03)00033-9 PMID: 12759110
- Santos, N.; Huston, J.P.; Brandão, M.L. Escape behavior under tonic inhibitory control of histamine H2-receptor mediated mechanisms in the midbrain tectum. Behav. Brain Res., 2001, 124(2), 167-175. doi: 10.1016/S0166-4328(01)00228-5 PMID: 11640970
- Nalwalk, J.W.; Svokos, K.; Taraschenko, O.; Leurs, R.; Timmerman, H.; Hough, L.B. Activation of brain stem nuclei by improgan, a non-opioid analgesic. Brain Res., 2004, 1021(2), 248-255. doi: 10.1016/j.brainres.2004.06.066 PMID: 15342273
- Thoburn, K.K.; Hough, L.B.; Nalwalk, J.W.; Mischler, S.A. Histamine-induced modulation of nociceptive responses. Pain, 1994, 58(1), 29-37. doi: 10.1016/0304-3959(94)90182-1 PMID: 7970837
- Liao, R.; Jiang, L.; Wang, R.; Zhao, H.; Chen, Y.; Li, Y.; Wang, L.; Jie, L.Y.; Zhou, Y.; Zhang, X.; Chen, Z.; Hu, W. Histidine provides long-term neuroprotection after cerebral ischemia through promoting astrocyte migration. Sci. Rep., 2015, 5(1), 15356. doi: 10.1038/srep15356 PMID: 26481857
- Liao, R.; Chen, Y.; Cheng, L.; Fan, L.; Chen, H.; Wan, Y.; You, Y.; Zheng, Y.; Jiang, L.; Chen, Z.; Zhang, X.; Hu, W. Histamine H1 receptors in neural stem cells are required for the promotion of neurogenesis conferred by H3 receptor antagonism following traumatic brain injury. Stem Cell Reports, 2019, 12(3), 532-544. doi: 10.1016/j.stemcr.2019.01.004 PMID: 30745032
- Hösli, L.; Hösli, E.; Schneider, U.; Wiget, W. Evidence for the existence of histamine H1- and H2-receptors on astrocytes of cultured rat central nervous system. Neurosci. Lett., 1984, 48(3), 287-291. doi: 10.1016/0304-3940(84)90052-1 PMID: 6148726
- Jurič, D.M.; Kran, M.; Lipnik-Stangelj, M. Histamine and astrocyte function. Pharmacol. Res., 2016, 111, 774-783. doi: 10.1016/j.phrs.2016.07.035 PMID: 27475882
- Inagaki, N.; Fukui, H.; Taguchi, Y.; Wang, N.P.; Yamatodani, A.; Wada, H. Characterization of histamine H1-receptors on astrocytes in primary culture: 3Hmepyramine binding studies. Eur. J. Pharmacol., 1989, 173(1), 43-51. doi: 10.1016/0014-2999(89)90007-1 PMID: 2575040
- Xia, P.; Logiacco, F.; Huang, Y.; Kettenmann, H.; Semtner, M. Histamine triggers microglial responses indirectly via astrocytes and purinergic signaling. Glia, 2021, 69(9), 2291-2304. doi: 10.1002/glia.24039 PMID: 34080730
- Jung, S.; Pfeiffer, F.; Deitmer, J.W. Histamine‐induced calcium entry in rat cerebellar astrocytes: Evidence for capacitative and non‐capacitative mechanisms. J. Physiol., 2000, 527(3), 549-561. doi: 10.1111/j.1469-7793.2000.00549.x PMID: 10990540
- Nakahata, N.; Martin, M.W.; Hughes, A.R.; Hepler, J.R.; Harden, T.K. H1-histamine receptors on human astrocytoma cells. Mol. Pharmacol., 1986, 29(2), 188-195. PMID: 2419744
- Kárpáti, A.; Yoshikawa, T.; Nakamura, T.; Iida, T.; Matsuzawa, T.; Kitano, H.; Harada, R.; Yanai, K. Histamine elicits glutamate release from cultured astrocytes. J. Pharmacol. Sci., 2018, 137(2), 122-128. doi: 10.1016/j.jphs.2018.05.002 PMID: 29858014
- Jiang, L.; Cheng, L.; Chen, H.; Dai, H.; An, D.; Ma, Q.; Zheng, Y.; Zhang, X.; Hu, W.; Chen, Z. Histamine H2 receptor negatively regulates oligodendrocyte differentiation in neonatal hypoxic-ischemic white matter injury. J. Exp. Med., 2021, 218(1), e20191365. doi: 10.1084/jem.20191365 PMID: 32991666
- Cheng, L.; Xu, C.; Wang, L.; An, D.; Jiang, L.; Zheng, Y.; Xu, Y.; Wang, Y.; Wang, Y.; Zhang, K.; Wang, X.; Zhang, X.; Bao, A.; Zhou, Y.; Yang, J.; Duan, S.; Swaab, D.F.; Hu, W.; Chen, Z. Histamine H1 receptor deletion in cholinergic neurons induces sensorimotor gating ability deficit and social impairments in mice. Nat. Commun., 2021, 12(1), 1142. doi: 10.1038/s41467-021-21476-x PMID: 33602941
- Toyota, H.; Dugovic, C.; Koehl, M.; Laposky, A.D.; Weber, C.; Ngo, K.; Wu, Y.; Lee, D.H.; Yanai, K.; Sakurai, E.; Watanabe, T.; Liu, C.; Chen, J.; Barbier, A.J.; Turek, F.W.; Fung-Leung, W.P.; Lovenberg, T.W. Behavioral characterization of mice lacking histamine H(3) receptors. Mol. Pharmacol., 2002, 62(2), 389-397. doi: 10.1124/mol.62.2.389 PMID: 12130692
- Fülöp, A.K.; Földes, A.; Buzás, E.; Hegyi, K.; Miklós, I.H.; Romics, L.; Kleiber, M.; Nagy, A.; Falus, A.; Kovács, K.J. Hyperleptinemia, visceral adiposity, and decreased glucose tolerance in mice with a targeted disruption of the histidine decarboxylase gene. Endocrinology, 2003, 144(10), 4306-4314. doi: 10.1210/en.2003-0222 PMID: 12960041
- Jørgensen, E.A.; Vogelsang, T.W.; Knigge, U.; Watanabe, T.; Warberg, J.; Kjaer, A. Increased susceptibility to diet-induced obesity in histamine-deficient mice. Neuroendocrinology, 2006, 83(5-6), 289-294. doi: 10.1159/000095339 PMID: 16926531
- Parmentier, R.; Ohtsu, H.; Djebbara-Hannas, Z.; Valatx, J.L.; Watanabe, T.; Lin, J.S. Anatomical, physiological, and pharmacological characteristics of histidine decarboxylase knock-out mice: Evidence for the role of brain histamine in behavioral and sleep-wake control. J. Neurosci., 2002, 22(17), 7695-7711. doi: 10.1523/JNEUROSCI.22-17-07695.2002 PMID: 12196593
- Attoub, S.; Moizo, L.; Sobhani, I.; Laigneau, J.P.; Lewin, M.J.M.; Bado, A. The H3 receptor is involved in cholecystokinin inhibition of food intake in rats. Life Sci., 2001, 69(4), 469-478. doi: 10.1016/S0024-3205(01)01138-9 PMID: 11459437
- Hancock, A.A.; Brune, M.E. Assessment of pharmacology and potential anti-obesity properties of H3 receptor antagonists/inverse agonists. Expert Opin. Investig. Drugs, 2005, 14(3), 223-241. doi: 10.1517/13543784.14.3.223 PMID: 15833055
- Hancock, A.A.; Diehl, M.S.; Faghih, R.; Bush, E.N.; Krueger, K.M.; Krishna, G.; Miller, T.R.; Wilcox, D.M.; Nguyen, P.; Pratt, J.K.; Cowart, M.D.; Esbenshade, T.A.; Jacobson, P.B. In vitro optimization of structure activity relationships of analogues of A-331440 combining radioligand receptor binding assays and micronucleus assays of potential antiobesity histamine H3 receptor antagonists. Pharmacol. Toxicol., 2004, 95(3), 144-152. doi: 10.1111/j.1742-7843.2004.950307.x PMID: 15447739
- Kang, D.; Jing, Z.; Li, R.; Hei, G.; Shao, T.; Li, L.; Sun, M.; Yang, Y.; Wang, Y.; Wang, X.; Long, Y.; Huang, X.; Wu, R. Effect of betahistine and metformin on antipsychotic-induced weight gain: An analysis of two clinical trials. Front. Psychiatry, 2018, 9, 620. doi: 10.3389/fpsyt.2018.00620 PMID: 30542300
- Mehta, V.S.; Ram, D. Efficacy of ranitidine in olanzapine-induced weight gain: A dose-response study. Early Interv. Psychiatry, 2016, 10(6), 522-527. doi: 10.1111/eip.12205 PMID: 25529756
- Poyurovsky, M.; Tal, V.; Maayan, R.; Gil-Ad, I.; Fuchs, C.; Weizman, A. The effect of famotidine addition on olanzapine-induced weight gain in first-episode schizophrenia patients: A double-blind placebo-controlled pilot study. Eur. Neuropsychopharmacol., 2004, 14(4), 332-336. doi: 10.1016/j.euroneuro.2003.10.004 PMID: 15163444
- Atmaca, M.; Kuloglu, M.; Tezcan, E.; Ustundag, B. Nizatidine treatment and its relationship with leptin levels in patients with olanzapine-induced weight gain. Hum. Psychopharmacol., 2003, 18(6), 457-461. doi: 10.1002/hup.514 PMID: 12923824
- Assunção, S.S.M.; Ruschel, S.I.; Rosa, L.C.R.; Campos, J.A.O.; Alves, M.J.O.; Bracco, O.L.; Lima, M.S. Weight gain management in patients with schizophrenia during treatment with olanzapine in association with nizatidine. Rev. Bras. Psiquiatr., 2006, 28(4), 270-276. doi: 10.1590/S1516-44462006000400005 PMID: 17242805
- Cavazzoni, P.; Tanaka, Y.; Roychowdhury, S.M.; Breier, A.; Allison, D.B. Nizatidine for prevention of weight gain with olanzapine: A double-blind placebo-controlled trial. Eur. Neuropsychopharmacol., 2003, 13(2), 81-85. doi: 10.1016/S0924-977X(02)00127-X PMID: 12650950
Supplementary files
