Transcription Factor EB: A Promising Therapeutic Target for Ischemic Stroke


Citar

Texto integral

Resumo

Transcription factor EB (TFEB) is an important endogenous defensive protein that responds to ischemic stimuli. Acute ischemic stroke is a growing concern due to its high morbidity and mortality. Most survivors suffer from disabilities such as numbness or weakness in an arm or leg, facial droop, difficulty speaking or understanding speech, confusion, impaired balance or coordination, or loss of vision. Although TFEB plays a neuroprotective role, its potential effect on ischemic stroke remains unclear. This article describes the basic structure, regulation of transcriptional activity, and biological roles of TFEB relevant to ischemic stroke. Additionally, we explore the effects of TFEB on the various pathological processes underlying ischemic stroke and current therapeutic approaches. The information compiled here may inform clinical and basic studies on TFEB, which may be an effective therapeutic drug target for ischemic stroke.

Sobre autores

Jie Shao

Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University

Email: info@benthamscience.net

Yue Lang

Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University

Email: info@benthamscience.net

Manqiu Ding

Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University

Email: info@benthamscience.net

Xiang Yin

Department of Neurology and Neuroscience Center, The First Hospital of Jilin University,, Jilin University

Autor responsável pela correspondência
Email: info@benthamscience.net

Li Cui

Department of Neurology and Neuroscience Center, The First Hospital of Jilin University,, Jilin University

Autor responsável pela correspondência
Email: info@benthamscience.net

Bibliografia

  1. Mendelson, S.J.; Prabhakaran, S. Diagnosis and management of transient ischemic attack and acute ischemic stroke. JAMA, 2021, 325(11), 1088-1098. doi: 10.1001/jama.2020.26867 PMID: 33724327
  2. Feigin, V.L.; Norrving, B.; Mensah, G.A. Global burden of stroke. Circ. Res., 2017, 120(3), 439-448. doi: 10.1161/CIRCRESAHA.116.308413 PMID: 28154096
  3. Donnan, G.A.; Fisher, M.; Macleod, M.; Davis, S.M. Stroke. Lancet, 2008, 371(9624), 1612-1623. doi: 10.1016/S0140-6736(08)60694-7 PMID: 18468545
  4. Galluzzi, L.; Bravo-San Pedro, J.M.; Levine, B.; Green, D.R.; Kroemer, G. Pharmacological modulation of autophagy: Therapeutic potential and persisting obstacles. Nat. Rev. Drug Discov., 2017, 16(7), 487-511. doi: 10.1038/nrd.2017.22 PMID: 28529316
  5. Chen, M.Y.; Dai, Y.S.; Liu, S.Y.; Fan, Y.X.; Ding, Z.X.; Li, D. TFEB biology and agonists at a glance. Cells, 2021, 10(2), 333. doi: 10.3390/cells10020333 PMID: 33562649
  6. Napolitano, G.; Ballabio, A. TFEB at a glance. J. Cell Sci., 2016, 129(13), 2475-2481. PMID: 27252382
  7. Sardiello, M.; Palmieri, M.; di Ronza, A.; Medina, D.L.; Valenza, M.; Gennarino, V.A.; Di Malta, C.; Donaudy, F.; Embrione, V.; Polishchuk, R.S.; Banfi, S.; Parenti, G.; Cattaneo, E.; Ballabio, A. A gene network regulating lysosomal biogenesis and function. Science, 2009, 325(5939), 473-477. doi: 10.1126/science.1174447 PMID: 19556463
  8. Medina, D.L.; Fraldi, A.; Bouche, V.; Annunziata, F.; Mansueto, G.; Spampanato, C.; Puri, C.; Pignata, A.; Martina, J.A.; Sardiello, M.; Palmieri, M.; Polishchuk, R.; Puertollano, R.; Ballabio, A. Transcriptional activation of lysosomal exocytosis promotes cellular clearance. Dev. Cell, 2011, 21(3), 421-430. doi: 10.1016/j.devcel.2011.07.016 PMID: 21889421
  9. Settembre, C.; Di Malta, C.; Polito, V.A.; Arencibia, M.G.; Vetrini, F.; Erdin, S.; Erdin, S.U.; Huynh, T.; Medina, D.; Colella, P.; Sardiello, M.; Rubinsztein, D.C.; Ballabio, A. TFEB links autophagy to lysosomal biogenesis. Science, 2011, 332(6036), 1429-1433. doi: 10.1126/science.1204592 PMID: 21617040
  10. Settembre, C.; De Cegli, R.; Mansueto, G.; Saha, P.K.; Vetrini, F.; Visvikis, O.; Huynh, T.; Carissimo, A.; Palmer, D.; Klisch, T.J.; Wollenberg, A.C.; Di Bernardo, D.; Chan, L.; Irazoqui, J.E.; Ballabio, A. TFEB controls cellular lipid metabolism through a starvation-induced autoregulatory loop (vol 15, pg 647, 2013). Nat. Cell Biol., 2013, 15(8), 1016-1016. doi: 10.1038/ncb2814
  11. Mansueto, G.; Armani, A.; Viscomi, C.; D’Orsi, L.; De Cegli, R.; Polishchuk, E.V.; Lamperti, C.; Di Meo, I.; Romanello, V.; Marchet, S.; Saha, P.K.; Zong, H.; Blaauw, B.; Solagna, F.; Tezze, C.; Grumati, P.; Bonaldo, P.; Pessin, J.E.; Zeviani, M.; Sandri, M.; Ballabio, A. Transcription factor EB controls metabolic flexibility during exercise. Cell Metab., 2017, 25(1), 182-196. doi: 10.1016/j.cmet.2016.11.003 PMID: 28011087
  12. Fan, Y.; Lu, H.; Liang, W.; Garcia-Barrio, M.T.; Guo, Y.; Zhang, J.; Zhu, T.; Hao, Y.; Zhang, J.; Chen, Y.E. Endothelial TFEB (transcription factor EB) positively regulates postischemic angiogenesis. Circ. Res., 2018, 122(7), 945-957. doi: 10.1161/CIRCRESAHA.118.312672 PMID: 29467198
  13. Brady, O.A.; Martina, J.A.; Puertollano, R. Emerging roles for TFEB in the immune response and inflammation. Autophagy, 2018, 14(2), 181-189. doi: 10.1080/15548627.2017.1313943 PMID: 28738171
  14. Gu, S.; Tan, J.; Li, Q.; Liu, S.; Ma, J.; Zheng, Y.; Liu, J.; Bi, W.; Sha, P.; Li, X.; Wei, M.; Cao, N.; Yang, H.T. Downregulation of LAPTM4B contributes to the impairment of the autophagic flux via unopposed activation of mTORC1 signaling during myocardial Ischemia/reperfusion injury. Circ. Res., 2020, 127(7), e148-e165. doi: 10.1161/CIRCRESAHA.119.316388 PMID: 32693673
  15. Li, M.; Wang, Z.; Wang, P.; Li, H.; Yang, L. TFEB: A emerging regulator in lipid homeostasis for atherosclerosis. Front. Physiol., 2021, 12639920. doi: 10.3389/fphys.2021.639920 PMID: 33679452
  16. Martini-Stoica, H.; Xu, Y.; Ballabio, A.; Zheng, H. The autophagy-lysosomal pathway in neurodegeneration: A TFEB perspective. Trends Neurosci., 2016, 39(4), 221-234. doi: 10.1016/j.tins.2016.02.002 PMID: 26968346
  17. Bahrami, A.; Bianconi, V.; Pirro, M.; Orafai, H.M.; Sahebkar, A. The role of TFEB in tumor cell autophagy: Diagnostic and therapeutic opportunities. Life Sci., 2020, 244117341. doi: 10.1016/j.lfs.2020.117341 PMID: 31972208
  18. Zhang, W.; Li, X.; Wang, S.; Chen, Y.; Liu, H. Regulation of TFEB activity and its potential as a therapeutic target against kidney diseases. Cell Death Discov., 2020, 6(1), 32. doi: 10.1038/s41420-020-0265-4 PMID: 32377395
  19. Cheli, Y.; Ohanna, M.; Ballotti, R.; Bertolotto, C. Fifteen-year quest for microphthalmia-associated transcription factor target genes. Pigment Cell Melanoma Res., 2010, 23(1), 27-40. doi: 10.1111/j.1755-148X.2009.00653.x PMID: 19995375
  20. Puertollano, R.; Ferguson, S.M.; Brugarolas, J.; Ballabio, A. The complex relationship between TFEB transcription factor phosphorylation and subcellular localization. EMBO J., 2018, 37(11), e98804. doi: 10.15252/embj.201798804 PMID: 29764979
  21. Bouché, V.; Espinosa, A.P.; Leone, L.; Sardiello, M.; Ballabio, A.; Botas, J. Drosophila Mitf regulates the V-ATPase and the lysosomal-autophagic pathway. Autophagy, 2016, 12(3), 484-498. doi: 10.1080/15548627.2015.1134081 PMID: 26761346
  22. Hallsson, J.H.; Haflidadóttir, B.S.; Stivers, C.; Odenwald, W.; Arnheiter, H.; Pignoni, F.; Steingrímsson, E. The basic helix-loop-helix leucine zipper transcription factor Mitf is conserved in Drosophila and functions in eye development. Genetics, 2004, 167(1), 233-241. doi: 10.1534/genetics.167.1.233 PMID: 15166150
  23. Rehli, M.; Den Elzen, N.; Cassady, A.I.; Ostrowski, M.C.; Hume, D.A. Cloning and characterization of the murine genes for bHLH-ZIP transcription factors TFEC and TFEB reveal a common gene organization for all MiT subfamily members. Genomics, 1999, 56(1), 111-120. doi: 10.1006/geno.1998.5588 PMID: 10036191
  24. Steingrímsson, E.; Copeland, N.G.; Jenkins, N.A. Melanocytes and the microphthalmia transcription factor network. Annu. Rev. Genet., 2004, 38(1), 365-411. doi: 10.1146/annurev.genet.38.072902.092717 PMID: 15568981
  25. Pogenberg, V.; Ballesteros-Álvarez, J.; Schober, R.; Sigvaldadóttir, I.; Obarska-Kosinska, A.; Milewski, M.; Schindl, R.; Ögmundsdóttir, M.H.; Steingrímsson, E.; Wilmanns, M. Mechanism of conditional partner selectivity in MITF/TFE family transcription factors with a conserved coiled coil stammer motif. Nucleic Acids Res., 2020, 48(2), 934-948. doi: 10.1093/nar/gkz1104 PMID: 31777941
  26. La Spina, M.; Contreras, P.S.; Rissone, A.; Meena, N.K.; Jeong, E.; Martina, J.A. MiT/TFE Family of Transcription Factors: An Evolutionary Perspective. Front. Cell Dev. Biol., 2021, 8609683. doi: 10.3389/fcell.2020.609683 PMID: 33490073
  27. Aksan, I.; Goding, C.R. Targeting the microphthalmia basic helix-loop-helix-leucine zipper transcription factor to a subset of E-box elements in vitro and in vivo. Mol. Cell. Biol., 1998, 18(12), 6930-6938. doi: 10.1128/MCB.18.12.6930 PMID: 9819381
  28. Pogenberg, V.; Ögmundsdóttir, M.H.; Bergsteinsdóttir, K.; Schepsky, A.; Phung, B.; Deineko, V.; Milewski, M.; Steingrímsson, E.; Wilmanns, M. Restricted leucine zipper dimerization and specificity of DNA recognition of the melanocyte master regulator MITF. Genes Dev., 2012, 26(23), 2647-2658. doi: 10.1101/gad.198192.112 PMID: 23207919
  29. Napolitano, G.; Esposito, A.; Choi, H.; Matarese, M.; Benedetti, V.; Di Malta, C.; Monfregola, J.; Medina, D.L.; Lippincott-Schwartz, J.; Ballabio, A. mTOR-dependent phosphorylation controls TFEB nuclear export. Nat. Commun., 2018, 9(1), 3312. doi: 10.1038/s41467-018-05862-6 PMID: 30120233
  30. Zhao, G.Q.; Zhao, Q.; Zhou, X.; Mattei, M.G.; de Crombrugghe, B. TFEC, a basic helix-loop-helix protein, forms heterodimers with TFE3 and inhibits TFE3-dependent transcription activation. Mol. Cell. Biol., 1993, 13(8), 4505-4512. PMID: 8336698
  31. Martina, J.A.; Chen, Y.; Gucek, M.; Puertollano, R. MTORC1 functions as a transcriptional regulator of autophagy by preventing nuclear transport of TFEB. Autophagy, 2012, 8(6), 903-914. doi: 10.4161/auto.19653 PMID: 22576015
  32. Chen, L.; Wang, K.; Long, A.; Jia, L.; Zhang, Y.; Deng, H.; Li, Y.; Han, J.; Wang, Y. Fasting-induced hormonal regulation of lysosomal function. Cell Res., 2017, 27(6), 748-763. doi: 10.1038/cr.2017.45 PMID: 28374748
  33. Campbell, G.R.; Rawat, P.; Bruckman, R.S.; Spector, S.A. Human immunodeficiency virus type 1 Nef inhibits autophagy through transcription factor EB sequestration. PLoS Pathog., 2015, 11(6), e1005018. doi: 10.1371/journal.ppat.1005018 PMID: 26115100
  34. Visvikis, O.; Ihuegbu, N.; Labed, S.A.; Luhachack, L.G.; Alves, A.M.F.; Wollenberg, A.C.; Stuart, L.M.; Stormo, G.D.; Irazoqui, J.E. Innate host defense requires TFEB-mediated transcription of cytoprotective and antimicrobial genes. Immunity, 2014, 40(6), 896-909. doi: 10.1016/j.immuni.2014.05.002 PMID: 24882217
  35. Pastore, N.; Brady, O.A.; Diab, H.I.; Martina, J.A.; Sun, L.; Huynh, T.; Lim, J.A.; Zare, H.; Raben, N.; Ballabio, A.; Puertollano, R. TFEB and TFE3 cooperate in the regulation of the innate immune response in activated macrophages. Autophagy, 2016, 12(8), 1240-1258. doi: 10.1080/15548627.2016.1179405 PMID: 27171064
  36. Gray, M.A.; Choy, C.H.; Dayam, R.M.; Ospina-Escobar, E.; Somerville, A.; Xiao, X.; Ferguson, S.M.; Botelho, R.J. Phagocytosis enhances lysosomal and bactericidal properties by activating the transcription factor TFEB. Curr. Biol., 2016, 26(15), 1955-1964. doi: 10.1016/j.cub.2016.05.070 PMID: 27397893
  37. Nezich, C.L.; Wang, C.; Fogel, A.I.; Youle, R.J. MiT/TFE transcription factors are activated during mitophagy downstream of Parkin and Atg5. J. Cell Biol., 2015, 210(3), 435-450. doi: 10.1083/jcb.201501002 PMID: 26240184
  38. Martina, J.A.; Diab, H.I.; Brady, O.A.; Puertollano, R. TFEB and TFE 3 are novel components of the integrated stress response. EMBO J., 2016, 35(5), 479-495. doi: 10.15252/embj.201593428 PMID: 26813791
  39. Nardozzi, J.D.; Lott, K.; Cingolani, G. Phosphorylation meets nuclear import: a review. Cell Commun. Signal., 2010, 8(1), 32. doi: 10.1186/1478-811X-8-32 PMID: 21182795
  40. Peña-Llopis, S.; Vega-Rubin-de-Celis, S.; Schwartz, J.C.; Wolff, N.C.; Tran, T.A.T.; Zou, L.; Xie, X.J.; Corey, D.R.; Brugarolas, J. Regulation of TFEB and V-ATPases by mTORC1. EMBO J., 2011, 30(16), 3242-3258. doi: 10.1038/emboj.2011.257 PMID: 21804531
  41. Peña-Llopis, S.; Brugarolas, J. TFEB, a novel mTORC1 effector implicated in lysosome biogenesis, endocytosis and autophagy. Cell Cycle, 2011, 10(23), 3987-3988. doi: 10.4161/cc.10.23.18251 PMID: 22101272
  42. Szwed, A.; Kim, E.; Jacinto, E. Regulation and metabolic functions of mTORC1 and mTORC2. Physiol. Rev., 2021, 101(3), 1371-1426. doi: 10.1152/physrev.00026.2020 PMID: 33599151
  43. Vega-Rubin-de-Celis, S.; Peña-Llopis, S.; Konda, M.; Brugarolas, J. Multistep regulation of TFEB by MTORC1. Autophagy, 2017, 13(3), 464-472. doi: 10.1080/15548627.2016.1271514 PMID: 28055300
  44. Roczniak-Ferguson, A.; Petit, C.S.; Froehlich, F.; Qian, S.; Ky, J.; Angarola, B.; Walther, T.C.; Ferguson, S.M. The transcription factor TFEB links mTORC1 signaling to transcriptional control of lysosome homeostasis. Sci. Signal., 2012, 5(228), ra42. doi: 10.1126/scisignal.2002790 PMID: 22692423
  45. DeYoung, M.P.; Horak, P.; Sofer, A.; Sgroi, D.; Ellisen, L.W. Hypoxia regulates TSC1/2-mTOR signaling and tumor suppression through REDD1-mediated 14-3-3 shuttling. Genes Dev., 2008, 22(2), 239-251. doi: 10.1101/gad.1617608 PMID: 18198340
  46. Kaper, F.; Dornhoefer, N.; Giaccia, A.J. Mutations in the PI3K/PTEN/TSC2 pathway contribute to mammalian target of rapamycin activity and increased translation under hypoxic conditions. Cancer Res., 2006, 66(3), 1561-1569. doi: 10.1158/0008-5472.CAN-05-3375 PMID: 16452213
  47. Carling, D. AMPK signalling in health and disease. Curr. Opin. Cell Biol., 2017, 45, 31-37. doi: 10.1016/j.ceb.2017.01.005 PMID: 28232179
  48. Paquette, M.; El-Houjeiri, L. C Zirden, L.; Puustinen, P.; Blanchette, P.; Jeong, H.; Dejgaard, K.; Siegel, P.M.; Pause, A. AMPK-dependent phosphorylation is required for transcriptional activation of TFEB and TFE3. Autophagy, 2021, 17(12), 3957-3975. doi: 10.1080/15548627.2021.1898748 PMID: 33734022
  49. Manning, B.D.; Toker, A. AKT/PKB Signaling: Navigating the Network. Cell, 2017, 169(3), 381-405. doi: 10.1016/j.cell.2017.04.001 PMID: 28431241
  50. Palmieri, M.; Pal, R.; Nelvagal, H.R.; Lotfi, P.; Stinnett, G.R.; Seymour, M.L.; Chaudhury, A.; Bajaj, L.; Bondar, V.V.; Bremner, L.; Saleem, U.; Tse, D.Y.; Sanagasetti, D.; Wu, S.M.; Neilson, J.R.; Pereira, F.A.; Pautler, R.G.; Rodney, G.G.; Cooper, J.D.; Sardiello, M. mTORC1-independent TFEB activation via Akt inhibition promotes cellular clearance in neurodegenerative storage diseases. Nat. Commun., 2017, 8, 14338.
  51. Palmieri, M.; Pal, R.; Sardiello, M. AKT modulates the autophagy-lysosome pathway via TFEB. Cell Cycle, 2017, 16(13), 1237-1238. doi: 10.1080/15384101.2017.1337968 PMID: 28636416
  52. Li, S.; Song, Y.; Quach, C.; Guo, H.; Jang, G.B.; Maazi, H.; Zhao, S.; Sands, N.A.; Liu, Q. In, G.K.; Peng, D.; Yuan, W.; Machida, K.; Yu, M.; Akbari, O.; Hagiya, A.; Yang, Y.; Punj, V.; Tang, L.; Liang, C. Transcriptional regulation of autophagy-lysosomal function in BRAF-driven melanoma progression and chemoresistance. Nat. Commun., 2019, 10(1), 1693. doi: 10.1038/s41467-019-09634-8 PMID: 30979895
  53. Wang, L.; Li, J.; Di, L. Glycogen synthesis and beyond, a comprehensive review of GSK3 as a key regulator of metabolic pathways and a therapeutic target for treating metabolic diseases. Med. Res. Rev., 2022, 42(2), 946-982. doi: 10.1002/med.21867 PMID: 34729791
  54. Costa, A.; Metais, T.; Mouthon, F.; Kerkovich, D.; Charvériat, M. Evaluating and modulating TFEB in the control of autophagy: toward new treatments in CNS disorders. Fundam. Clin. Pharmacol., 2021, 35(3), 539-551. doi: 10.1111/fcp.12634 PMID: 33259088
  55. Zhang, Y.; Wu, Z.; Huang, Z.; Liu, Y.; Chen, X.; Zhao, X.; He, H.; Deng, Y. GSK-3β inhibition elicits a neuroprotection by restoring lysosomal dysfunction in neurons via facilitation of TFEB nuclear translocation after ischemic stroke. Brain Res., 2022, 1778147768. doi: 10.1016/j.brainres.2021.147768 PMID: 34968440
  56. Li, Y.; Xu, M.; Ding, X.; Yan, C.; Song, Z.; Chen, L.; Huang, X.; Wang, X.; Jian, Y.; Tang, G.; Tang, C.; Di, Y.; Mu, S.; Liu, X.; Liu, K.; Li, T.; Wang, Y.; Miao, L.; Guo, W.; Hao, X.; Yang, C. Protein kinase C controls lysosome biogenesis independently of mTORC1. Nat. Cell Biol., 2016, 18(10), 1065-1077. doi: 10.1038/ncb3407 PMID: 27617930
  57. Ferron, M.; Settembre, C.; Shimazu, J.; Lacombe, J.; Kato, S.; Rawlings, D.J.; Ballabio, A.; Karsenty, G. A RANKL-PKCβ-TFEB signaling cascade is necessary for lysosomal biogenesis in osteoclasts. Genes Dev., 2013, 27(8), 955-969. doi: 10.1101/gad.213827.113 PMID: 23599343
  58. Tong, Y.; Song, F. Intracellular calcium signaling regulates autophagy via calcineurin-mediated TFEB dephosphorylation. Autophagy, 2015, 11(7), 1192-1195. doi: 10.1080/15548627.2015.1054594 PMID: 26043755
  59. Medina, D.L.; Di Paola, S.; Peluso, I.; Armani, A.; De Stefani, D.; Venditti, R.; Montefusco, S.; Scotto-Rosato, A.; Prezioso, C.; Forrester, A.; Settembre, C.; Wang, W.; Gao, Q.; Xu, H.; Sandri, M.; Rizzuto, R.; De Matteis, M.A.; Ballabio, A. Lysosomal calcium signalling regulates autophagy through calcineurin and TFEB. Nat. Cell Biol., 2015, 17(3), 288-299. doi: 10.1038/ncb3114 PMID: 25720963
  60. Silvestrini, M.J.; Johnson, J.R.; Kumar, A.V.; Thakurta, T.G.; Blais, K.; Neill, Z.A.; Marion, S.W.; St Amand, V.; Reenan, R.A.; Lapierre, L.R. Nuclear Export Inhibition Enhances HLH-30/TFEB Activity, Autophagy, and Lifespan. Cell Rep., 2018, 23(7), 1915-1921. doi: 10.1016/j.celrep.2018.04.063 PMID: 29768192
  61. Li, L.; Friedrichsen, H.J.; Andrews, S.; Picaud, S.; Volpon, L.; Ngeow, K.; Berridge, G.; Fischer, R.; Borden, K.L.B.; Filippakopoulos, P.; Goding, C.R. A TFEB nuclear export signal integrates amino acid supply and glucose availability. Nat. Commun., 2018, 9(1), 2685. doi: 10.1038/s41467-018-04849-7 PMID: 29992949
  62. Kırlı, K.; Karaca, S.; Dehne, H.J.; Samwer, M.; Pan, K.T.; Lenz, C.; Urlaub, H.; Görlich, D. A deep proteomics perspective on CRM1-mediated nuclear export and nucleocytoplasmic partitioning. eLife, 2015, 4, e11466. doi: 10.7554/eLife.11466 PMID: 26673895
  63. Yang, M.; Zhang, Y.; Ren, J. Acetylation in cardiovascular diseases: Molecular mechanisms and clinical implications. Biochim. Biophys. Acta Mol. Basis Dis., 2020, 1866(10), 165836. doi: 10.1016/j.bbadis.2020.165836 PMID: 32413386
  64. Wang, Y.; Huang, Y.; Liu, J.; Zhang, J.; Xu, M.; You, Z.; Peng, C.; Gong, Z.; Liu, W. Acetyltransferase GCN5 regulates autophagy and lysosome biogenesis by targeting TFEB. EMBO Rep., 2020, 21(1), e48335. doi: 10.15252/embr.201948335 PMID: 31750630
  65. Bao, J.; Zheng, L.; Zhang, Q.; Li, X.; Zhang, X.; Li, Z.; Bai, X.; Zhang, Z.; Huo, W.; Zhao, X.; Shang, S.; Wang, Q.; Zhang, C.; Ji, J. Deacetylation of TFEB promotes fibrillar Aβ degradation by upregulating lysosomal biogenesis in microglia. Protein Cell, 2016, 7(6), 417-433. doi: 10.1007/s13238-016-0269-2 PMID: 27209302
  66. Brijmohan, A.S.; Batchu, S.N.; Majumder, S.; Alghamdi, T.A.; Thieme, K.; McGaugh, S.; Liu, Y.; Advani, S.L.; Bowskill, B.B.; Kabir, M.G.; Geldenhuys, L.; Siddiqi, F.S.; Advani, A. HDAC6 inhibition promotes transcription factor EB activation and is protective in experimental kidney disease. Front. Pharmacol., 2018, 9, 34. doi: 10.3389/fphar.2018.00034 PMID: 29449811
  67. Meacham, G.C.; Patterson, C.; Zhang, W.; Younger, J.M.; Cyr, D.M. The Hsc70 co-chaperone CHIP targets immature CFTR for proteasomal degradation. Nat. Cell Biol., 2001, 3(1), 100-105. doi: 10.1038/35050509 PMID: 11146634
  68. Rao, L.; Sha, Y.; Eissa, N.T. The E3 ubiquitin ligase STUB1 regulates autophagy and mitochondrial biogenesis by modulating TFEB activity. Mol. Cell. Oncol., 2017, 4(6), e1372867. doi: 10.1080/23723556.2017.1372867 PMID: 29209655
  69. Sha, Y.; Rao, L.; Settembre, C.; Ballabio, A.; Eissa, N.T. STUB 1 regulates TFEB‐induced autophagy-lysosome pathway. EMBO J., 2017, 36(17), 2544-2552. doi: 10.15252/embj.201796699 PMID: 28754656
  70. Lipton, P. Ischemic cell death in brain neurons. Physiol. Rev., 1999, 79(4), 1431-1568. doi: 10.1152/physrev.1999.79.4.1431 PMID: 10508238
  71. Bonora, M.; Patergnani, S.; Rimessi, A.; De Marchi, E.; Suski, J.M.; Bononi, A.; Giorgi, C.; Marchi, S.; Missiroli, S.; Poletti, F.; Wieckowski, M.R.; Pinton, P. ATP synthesis and storage. Purinergic Signal., 2012, 8(3), 343-357. doi: 10.1007/s11302-012-9305-8 PMID: 22528680
  72. Tuo, Q.; Zhang, S.; Lei, P. Mechanisms of neuronal cell death in ischemic stroke and their therapeutic implications. Med. Res. Rev., 2022, 42(1), 259-305. doi: 10.1002/med.21817 PMID: 33957000
  73. Back, T.; Hemmen, T.; Schüler, O.G. Lesion evolution in cerebral ischemia. J. Neurol., 2004, 251(4), 388-397. doi: 10.1007/s00415-004-0399-y PMID: 15083282
  74. Sifat, A.E.; Nozohouri, S.; Archie, S.R.; Chowdhury, E.A.; Abbruscato, T.J. Brain energy metabolism in ischemic stroke: Effects of smoking and diabetes. Int. J. Mol. Sci., 2022, 23(15), 8512. doi: 10.3390/ijms23158512 PMID: 35955647
  75. Oakhill, J.S.; Steel, R.; Chen, Z.P.; Scott, J.W.; Ling, N.; Tam, S.; Kemp, B.E. AMPK is a direct adenylate charge-regulated protein kinase. Science, 2011, 332(6036), 1433-1435. doi: 10.1126/science.1200094 PMID: 21680840
  76. Chun, Y.; Kim, J. AMPK-mTOR signaling and cellular adaptations in hypoxia. Int. J. Mol. Sci., 2021, 22(18), 9765. doi: 10.3390/ijms22189765 PMID: 34575924
  77. Inoki, K.; Ouyang, H.; Zhu, T.; Lindvall, C.; Wang, Y.; Zhang, X.; Yang, Q.; Bennett, C.; Harada, Y.; Stankunas, K.; Wang, C.; He, X.; MacDougald, O.A.; You, M.; Williams, B.O.; Guan, K.L. TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth. Cell, 2006, 126(5), 955-968. doi: 10.1016/j.cell.2006.06.055 PMID: 16959574
  78. Folbergrová, J.; Memezawa, H.; Smith, M.L.; Siesjö, B.K. Focal and perifocal changes in tissue energy state during middle cerebral artery occlusion in normo- and hyperglycemic rats. J. Cereb. Blood Flow Metab., 1992, 12(1), 25-33. doi: 10.1038/jcbfm.1992.4 PMID: 1727140
  79. Paschen, W.; Oláh, L.; Mies, G. Effect of transient focal ischemia of mouse brain on energy state and NAD levels: no evidence that NAD depletion plays a major role in secondary disturbances of energy metabolism. J. Neurochem., 2000, 75(4), 1675-1680. doi: 10.1046/j.1471-4159.2000.0751675.x PMID: 10987849
  80. Zoncu, R.; Bar-Peled, L.; Efeyan, A.; Wang, S.; Sancak, Y.; Sabatini, D.M. mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H(+)-ATPase. Science, 2011, 334(6056), 678-683. doi: 10.1126/science.1207056 PMID: 22053050
  81. Sancak, Y.; Bar-Peled, L.; Zoncu, R.; Markhard, A.L.; Nada, S.; Sabatini, D.M. Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell, 2010, 141(2), 290-303. doi: 10.1016/j.cell.2010.02.024 PMID: 20381137
  82. Sancak, Y.; Peterson, T.R.; Shaul, Y.D.; Lindquist, R.A.; Thoreen, C.C.; Bar-Peled, L.; Sabatini, D.M. The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science, 2008, 320(5882), 1496-1501. doi: 10.1126/science.1157535 PMID: 18497260
  83. Bar-Peled, L.; Schweitzer, L.D.; Zoncu, R.; Sabatini, D.M. Ragulator is a GEF for the rag GTPases that signal amino acid levels to mTORC1. Cell, 2012, 150(6), 1196-1208. doi: 10.1016/j.cell.2012.07.032 PMID: 22980980
  84. Martina, J.A.; Puertollano, R. Rag GTPases mediate amino acid-dependent recruitment of TFEB and MITF to lysosomes. J. Cell Biol., 2013, 200(4), 475-491. doi: 10.1083/jcb.201209135 PMID: 23401004
  85. Saucedo, L.J.; Gao, X.; Chiarelli, D.A.; Li, L.; Pan, D.; Edgar, B.A. Rheb promotes cell growth as a component of the insulin/TOR signalling network. Nat. Cell Biol., 2003, 5(6), 566-571. doi: 10.1038/ncb996 PMID: 12766776
  86. Martina, J.A.; Diab, H.I.; Lishu, L.; Jeong-A, L.; Patange, S.; Raben, N.; Puertollano, R. The nutrient-responsive transcription factor TFE3 promotes autophagy, lysosomal biogenesis, and clearance of cellular debris. Sci. Signal., 2014, 7(309), ra9. doi: 10.1126/scisignal.2004754 PMID: 24448649
  87. Settembre, C.; Zoncu, R.; Medina, D.L.; Vetrini, F.; Erdin, S.; Erdin, S.; Huynh, T.; Ferron, M.; Karsenty, G.; Vellard, M.C.; Facchinetti, V.; Sabatini, D.M.; Ballabio, A. A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB. EMBO J., 2012, 31(5), 1095-1108. doi: 10.1038/emboj.2012.32 PMID: 22343943
  88. Tsun, Z.Y.; Bar-Peled, L.; Chantranupong, L.; Zoncu, R.; Wang, T.; Kim, C.; Spooner, E.; Sabatini, D.M. The folliculin tumor suppressor is a GAP for the RagC/D GTPases that signal amino acid levels to mTORC1. Mol. Cell, 2013, 52(4), 495-505. doi: 10.1016/j.molcel.2013.09.016 PMID: 24095279
  89. Dibble, C.C.; Elis, W.; Menon, S.; Qin, W.; Klekota, J.; Asara, J.M.; Finan, P.M.; Kwiatkowski, D.J.; Murphy, L.O.; Manning, B.D. TBC1D7 is a third subunit of the TSC1-TSC2 complex upstream of mTORC1. Mol. Cell, 2012, 47(4), 535-546. doi: 10.1016/j.molcel.2012.06.009 PMID: 22795129
  90. Raben, N.; Puertollano, R. TFEB and TFE3: Linking lysosomes to cellular adaptation to stress. Annu. Rev. Cell Dev. Biol., 2016, 32(1), 255-278. doi: 10.1146/annurev-cellbio-111315-125407 PMID: 27298091
  91. Evans, T.D.; Zhang, X.; Jeong, S.J.; He, A.; Song, E.; Bhattacharya, S.; Holloway, K.B.; Lodhi, I.J.; Razani, B. TFEB drives PGC-1α expression in adipocytes to protect against diet-induced metabolic dysfunction. Sci. Signal., 2019, 12(606), eaau2281. doi: 10.1126/scisignal.aau2281 PMID: 31690633
  92. Chen, D.; Xie, J.; Fiskesund, R.; Dong, W.; Liang, X.; Lv, J.; Jin, X.; Liu, J.; Mo, S.; Zhang, T.; Cheng, F.; Zhou, Y.; Zhang, H.; Tang, K.; Ma, J.; Liu, Y.; Huang, B. Chloroquine modulates antitumor immune response by resetting tumor-associated macrophages toward M1 phenotype. Nat. Commun., 2018, 9(1), 873. doi: 10.1038/s41467-018-03225-9 PMID: 29491374
  93. Zhang, X.; Wei, M.; Fan, J.; Yan, W.; Zha, X.; Song, H.; Wan, R.; Yin, Y.; Wang, W. Ischemia-induced upregulation of autophagy preludes dysfunctional lysosomal storage and associated synaptic impairments in neurons. Autophagy, 2021, 17(6), 1519-1542. doi: 10.1080/15548627.2020.1840796 PMID: 33111641
  94. Yang, Y.; Lv, S.Y.; Lyu, S.K.; Wu, D.; Chen, Q. The protective effect of apelin on ischemia/reperfusion injury. Peptides, 2015, 63, 43-46. doi: 10.1016/j.peptides.2014.11.001 PMID: 25447414
  95. Wang, P.; Shao, B.Z.; Deng, Z.; Chen, S.; Yue, Z.; Miao, C.Y. Autophagy in ischemic stroke. Prog. Neurobiol., 2018, 163-164, 98-117. doi: 10.1016/j.pneurobio.2018.01.001 PMID: 29331396
  96. Sun, Y.L.; Zhu, Y.H.; Zhong, X.J.; Chen, X.L.; Wang, J.; Ying, G.Z. Crosstalk between autophagy and cerebral ischemia. Front. Neurosci., 2019, 12, 1022. doi: 10.3389/fnins.2018.01022 PMID: 30692904
  97. Ravikumar, B.; Sarkar, S.; Davies, J.E.; Futter, M.; Garcia-Arencibia, M.; Green-Thompson, Z.W.; Jimenez-Sanchez, M.; Korolchuk, V.I.; Lichtenberg, M.; Luo, S.; Massey, D.C.O.; Menzies, F.M.; Moreau, K.; Narayanan, U.; Renna, M.; Siddiqi, F.H.; Underwood, B.R.; Winslow, A.R.; Rubinsztein, D.C. Regulation of mammalian autophagy in physiology and pathophysiology. Physiol. Rev., 2010, 90(4), 1383-1435. doi: 10.1152/physrev.00030.2009 PMID: 20959619
  98. Liu, Y.; Xue, X.; Zhang, H.; Che, X.; Luo, J.; Wang, P.; Xu, J.; Xing, Z.; Yuan, L.; Liu, Y.; Fu, X.; Su, D.; Sun, S.; Zhang, H.; Wu, C.; Yang, J. Neuronal-targeted TFEB rescues dysfunction of the autophagy-lysosomal pathway and alleviates ischemic injury in permanent cerebral ischemia. Autophagy, 2019, 15(3), 493-509. doi: 10.1080/15548627.2018.1531196 PMID: 30304977
  99. Chen, J.H.; Kuo, H.C.; Lee, K.F.; Tsai, T.H. Global proteomic analysis of brain tissues in transient ischemia brain damage in rats. Int. J. Mol. Sci., 2015, 16(12), 11873-11891. doi: 10.3390/ijms160611873 PMID: 26016499
  100. Ahsan, A.; Zheng, Y.; Ma, S.; Liu, M.; Cao, M.; Li, Y.; Zheng, W.; Zhou, X.; Xin, M.; Hu, W.; Chen, Z.; Zhang, X. Tomatidine protects against ischemic neuronal injury by improving lysosomal function. Eur. J. Pharmacol., 2020, 882173280. doi: 10.1016/j.ejphar.2020.173280 PMID: 32580039
  101. Hossain, M.I.; Marcus, J.M.; Lee, J.H.; Garcia, P.L.; Singh, V.; Shacka, J.J.; Zhang, J.; Gropen, T.I.; Falany, C.N.; Andrabi, S.A. Restoration of CTSD (cathepsin D) and lysosomal function in stroke is neuroprotective. Autophagy, 2021, 17(6), 1330-1348. doi: 10.1080/15548627.2020.1761219 PMID: 32450052
  102. Bajaj, L.; Lotfi, P.; Pal, R.; Ronza, A.; Sharma, J.; Sardiello, M. Lysosome biogenesis in health and disease. J. Neurochem., 2019, 148(5), 573-589. doi: 10.1111/jnc.14564 PMID: 30092616
  103. Wu, Z.; Zhang, Y.; Liu, Y.; Chen, X.; Huang, Z.; Zhao, X.; He, H.; Deng, Y. Melibiose confers a neuroprotection against cerebral ischemia/reperfusion injury by ameliorating autophagy flux via facilitation of TFEB nuclear translocation in neurons. Life (Basel), 2021, 11(9), 948. doi: 10.3390/life11090948 PMID: 34575099
  104. Fu, X.; Liu, Y.; Zhang, H.; Yu, X.; Wang, X.; Wu, C.; Yang, J. Pseudoginsenoside F11 ameliorates the dysfunction of the autophagy-lysosomal pathway by activating calcineurin-mediated TFEB nuclear translocation in neuron during permanent cerebral ischemia. Exp. Neurol., 2021, 338113598. doi: 10.1016/j.expneurol.2021.113598 PMID: 33422553
  105. Judge, A.; Dodd, M.S. Metabolism. Essays Biochem., 2020, 64(4), 607-647. doi: 10.1042/EBC20190041 PMID: 32830223
  106. Pastore, N.; Vainshtein, A.; Klisch, T.J.; Armani, A.; Huynh, T.; Herz, N.J.; Polishchuk, E.V.; Sandri, M.; Ballabio, A. TFE 3 regulates whole‐body energy metabolism in cooperation with TFEB. EMBO Mol. Med., 2017, 9(5), 605-621. doi: 10.15252/emmm.201607204 PMID: 28283651
  107. Smith, R.A.J.; Hartley, R.C.; Cochemé, H.M.; Murphy, M.P. Mitochondrial pharmacology. Trends Pharmacol. Sci., 2012, 33(6), 341-352. doi: 10.1016/j.tips.2012.03.010 PMID: 22521106
  108. Zeng, M.; He, Y.; Du, H.; Yang, J.; Wan, H. Output regulation and function optimization of mitochondria in eukaryotes. Front. Cell Dev. Biol., 2020, 8, 598112. doi: 10.3389/fcell.2020.598112 PMID: 33330486
  109. Cunnane, S.C.; Trushina, E.; Morland, C.; Prigione, A.; Casadesus, G.; Andrews, Z.B.; Beal, M.F.; Bergersen, L.H.; Brinton, R.D.; de la Monte, S.; Eckert, A.; Harvey, J.; Jeggo, R.; Jhamandas, J.H.; Kann, O.; la Cour, C.M.; Martin, W.F.; Mithieux, G.; Moreira, P.I.; Murphy, M.P.; Nave, K.A.; Nuriel, T.; Oliet, S.H.R.; Saudou, F.; Mattson, M.P.; Swerdlow, R.H.; Millan, M.J. Brain energy rescue: an emerging therapeutic concept for neurodegenerative disorders of ageing. Nat. Rev. Drug Discov., 2020, 19(9), 609-633. doi: 10.1038/s41573-020-0072-x PMID: 32709961
  110. Alano, C.C.; Garnier, P.; Ying, W.; Higashi, Y.; Kauppinen, T.M.; Swanson, R.A. NAD+ depletion is necessary and sufficient for poly(ADP-ribose) polymerase-1-mediated neuronal death. J. Neurosci., 2010, 30(8), 2967-2978. doi: 10.1523/JNEUROSCI.5552-09.2010 PMID: 20181594
  111. Sun, J.; Lu, H.; Liang, W.; Zhao, G.; Ren, L.; Hu, D.; Chang, Z.; Liu, Y.; Garcia-Barrio, M.T.; Zhang, J.; Chen, Y.E.; Fan, Y. Endothelial TFEB (transcription factor EB) improves glucose tolerance via upregulation of IRS (insulin receptor substrate) 1 and IRS2. Arterioscler. Thromb. Vasc. Biol., 2021, 41(2), 783-795. doi: 10.1161/ATVBAHA.120.315310 PMID: 33297755
  112. Li, Y.; Ma, Z.; Jiang, S.; Hu, W.; Li, T.; Di, S.; Wang, D.; Yang, Y. A global perspective on FOXO1 in lipid metabolism and lipid-related diseases. Prog. Lipid Res., 2017, 66, 42-49. doi: 10.1016/j.plipres.2017.04.002 PMID: 28392404
  113. Thomes, P.G.; Rasineni, K.; Yang, L.; Donohue, T.M., Jr; Kubik, J.L.; McNiven, M.A.; Casey, C.A. Ethanol withdrawal mitigates fatty liver by normalizing lipid catabolism. Am. J. Physiol. Gastrointest. Liver Physiol., 2019, 316(4), G509-G518. doi: 10.1152/ajpgi.00376.2018 PMID: 30714813
  114. Zechner, R.; Zimmermann, R.; Eichmann, T.O.; Kohlwein, S.D.; Haemmerle, G.; Lass, A.; Madeo, F. FAT SIGNALS-lipases and lipolysis in lipid metabolism and signaling. Cell Metab., 2012, 15(3), 279-291. doi: 10.1016/j.cmet.2011.12.018 PMID: 22405066
  115. Martinez-Lopez, N.; Singh, R. Autophagy and lipid droplets in the liver. Annu. Rev. Nutr., 2015, 35(1), 215-237. doi: 10.1146/annurev-nutr-071813-105336 PMID: 26076903
  116. Chen, K.; Yuan, R.; Zhang, Y.; Geng, S.; Li, L. Tollip deficiency alters atherosclerosis and steatosis by disrupting lipophagy. J. Am. Heart Assoc., 2017, 6(4), e004078. doi: 10.1161/JAHA.116.004078 PMID: 28396568
  117. Lundquist, M.R.; Goncalves, M.D.; Loughran, R.M.; Possik, E.; Vijayaraghavan, T.; Yang, A.; Pauli, C.; Ravi, A.; Verma, A.; Yang, Z.; Johnson, J.L.; Wong, J.C.Y.; Ma, Y.; Hwang, K.S.K.; Weinkove, D.; Divecha, N.; Asara, J.M.; Elemento, O.; Rubin, M.A.; Kimmelman, A.C.; Pause, A.; Cantley, L.C.; Emerling, B.M. Phosphatidylinositol-5-phosphate 4-kinases regulate cellular lipid metabolism by facilitating autophagy. Mol. Cell, 2018, 70(3), 531-544.e9. doi: 10.1016/j.molcel.2018.03.037 PMID: 29727621
  118. Ye, M.; Zhou, J.; Zhong, Y.; Xu, J.; Hou, J.; Wang, X.; Wang, Z.; Guo, D. SR-A-Targeted phase-transition nanoparticles for the detection and treatment of atherosclerotic vulnerable plaques. ACS Appl. Mater. Interfaces, 2019, 11(10), 9702-9715. doi: 10.1021/acsami.8b18190 PMID: 30785263
  119. Zhu, Z.D.; Yu, T.; Liu, H.J.; Jin, J.; He, J. SOCE induced calcium overload regulates autophagy in acute pancreatitis via calcineurin activation. Cell Death Dis., 2018, 9(2), 50. doi: 10.1038/s41419-017-0073-9 PMID: 29352220
  120. Maus, M.; Cuk, M.; Patel, B.; Lian, J.; Ouimet, M.; Kaufmann, U.; Yang, J.; Horvath, R.; Hornig-Do, H.T.; Chrzanowska-Lightowlers, Z.M.; Moore, K.J.; Cuervo, A.M.; Feske, S. Store-operated Ca2+ entry controls induction of lipolysis and the transcriptional reprogramming to lipid metabolism. Cell Metab., 2017, 25(3), 698-712. doi: 10.1016/j.cmet.2016.12.021 PMID: 28132808
  121. Rutkai, I.; Merdzo, I.; Wunnava, S.V.; Curtin, G.T.; Katakam, P.V.G.; Busija, D.W. Cerebrovascular function and mitochondrial bioenergetics after ischemia-reperfusion in male rats. J. Cereb. Blood Flow Metab., 2019, 39(6), 1056-1068. doi: 10.1177/0271678X17745028 PMID: 29215305
  122. Anderson, M.F.; Sims, N.R. Mitochondrial respiratory function and cell death in focal cerebral ischemia. J. Neurochem., 1999, 73(3), 1189-1199. doi: 10.1046/j.1471-4159.1999.0731189.x PMID: 10461911
  123. Chouchani, E.T.; Pell, V.R.; James, A.M.; Work, L.M.; Saeb-Parsy, K.; Frezza, C.; Krieg, T.; Murphy, M.P. A unifying mechanism for mitochondrial superoxide production during ischemia-reperfusion injury. Cell Metab., 2016, 23(2), 254-263. doi: 10.1016/j.cmet.2015.12.009 PMID: 26777689
  124. An, H.; Zhou, B.; Ji, X. Mitochondrial quality control in acute ischemic stroke. J. Cereb. Blood Flow Metab., 2021, 41(12), 3157-3170. doi: 10.1177/0271678X211046992 PMID: 34551609
  125. Chan, D.C. Fusion and fission: interlinked processes critical for mitochondrial health. Annu. Rev. Genet., 2012, 46(1), 265-287. doi: 10.1146/annurev-genet-110410-132529 PMID: 22934639
  126. Chen, Z.; Li, Y.; Wang, Y.; Qian, J.; Ma, H.; Wang, X.; Jiang, G.; Liu, M.; An, Y.; Ma, L.; Kang, L.; Jia, J.; Yang, C.; Zhang, G.; Chen, Y.; Gao, W.; Fu, M.; Huang, Z.; Tang, H.; Zhu, Y.; Ge, J.; Gong, H.; Zou, Y. Cardiomyocyte-restricted low density lipoprotein receptor-related protein 6 (LRP6) deletion leads to lethal dilated cardiomyopathy partly through Drp1 signaling. Theranostics, 2018, 8(3), 627-643. doi: 10.7150/thno.22177 PMID: 29344294
  127. Ryter, S.W.; Bhatia, D.; Choi, M.E. Autophagy: A lysosome-dependent process with implications in cellular redox homeostasis and human disease. Antioxid. Redox Signal., 2019, 30(1), 138-159. doi: 10.1089/ars.2018.7518 PMID: 29463101
  128. Ivankovic, D.; Chau, K.Y.; Schapira, A.H.V.; Gegg, M.E. Mitochondrial and lysosomal biogenesis are activated following PINK 1/parkin‐mediated mitophagy. J. Neurochem., 2016, 136(2), 388-402. doi: 10.1111/jnc.13412 PMID: 26509433
  129. Settembre, C.; De Cegli, R.; Mansueto, G.; Saha, P.K.; Vetrini, F.; Visvikis, O.; Huynh, T.; Carissimo, A.; Palmer, D.; Jürgen Klisch, T.; Wollenberg, A.C.; Di Bernardo, D.; Chan, L.; Irazoqui, J.E.; Ballabio, A. TFEB controls cellular lipid metabolism through a starvation-induced autoregulatory loop. Nat. Cell Biol., 2013, 15(6), 647-658. doi: 10.1038/ncb2718 PMID: 23604321
  130. Wu, L.; Wang, R. Carbon monoxide: endogenous production, physiological functions, and pharmacological applications. Pharmacol. Rev., 2005, 57(4), 585-630. doi: 10.1124/pr.57.4.3 PMID: 16382109
  131. Shi, H. Hypoxia inducible factor 1 as a therapeutic target in ischemic stroke. Curr. Med. Chem., 2009, 16(34), 4593-4600. doi: 10.2174/092986709789760779 PMID: 19903149
  132. Kim, H.J.; Joe, Y.; Rah, S.Y.; Kim, S.K.; Park, S.U.; Park, J.; Kim, J.; Ryu, J.; Cho, G.J.; Surh, Y.J.; Ryter, S.W.; Kim, U.H.; Chung, H.T. Carbon monoxide-induced TFEB nuclear translocation enhances mitophagy/mitochondrial biogenesis in hepatocytes and ameliorates inflammatory liver injury. Cell Death Dis., 2018, 9(11), 1060. doi: 10.1038/s41419-018-1112-x PMID: 30333475
  133. Saito, A.; Maier, C.M.; Narasimhan, P.; Nishi, T.; Song, Y.S.; Yu, F.; Liu, J.; Lee, Y.S.; Nito, C.; Kamada, H.; Dodd, R.L.; Hsieh, L.B.; Hassid, B.; Kim, E.E.; González, M.; Chan, P.H. Oxidative stress and neuronal death/survival signaling in cerebral ischemia. Mol. Neurobiol., 2005, 31(1-3), 105-116. doi: 10.1385/MN:31:1-3:105 PMID: 15953815
  134. Zhang, P.; Cui, J. Neuroprotective effect of fisetin against the cerebral ischemia-reperfusion damage via suppression of oxidative stress and inflammatory parameters. Inflammation, 2021, 44(4), 1490-1506. doi: 10.1007/s10753-021-01434-x PMID: 33616827
  135. Martina, J.A.; Puertollano, R. Protein phosphatase 2A stimulates activation of TFEB and TFE3 transcription factors in response to oxidative stress. J. Biol. Chem., 2018, 293(32), 12525-12534. doi: 10.1074/jbc.RA118.003471 PMID: 29945972
  136. Yang, Z.; Huang, C.; Wu, Y.; Chen, B.; Zhang, W.; Zhang, J. Autophagy protects the blood-brain barrier through regulating the dynamic of claudin-5 in short-term starvation. Front. Physiol., 2019, 10, 2. doi: 10.3389/fphys.2019.00002 PMID: 30713499
  137. Campanella, M.; Klionsky, D.J. Keeping the engine clean. Autophagy, 2013, 9(11), 1647-1647. doi: 10.4161/auto.26915 PMID: 24162014
  138. Yamamoto, M.; Kensler, T.W.; Motohashi, H. The KEAP1-NRF2 system: A thiol-based sensor-effector apparatus for maintaining redox homeostasis. Physiol. Rev., 2018, 98(3), 1169-1203. doi: 10.1152/physrev.00023.2017 PMID: 29717933
  139. Li, D.; Shao, R.; Wang, N.; Zhou, N.; Du, K.; Shi, J.; Wang, Y.; Zhao, Z.; Ye, X.; Zhang, X.; Xu, H. Sulforaphane Activates a lysosome-dependent transcriptional program to mitigate oxidative stress. Autophagy, 2021, 17(4), 872-887. doi: 10.1080/15548627.2020.1739442 PMID: 32138578
  140. Lyman, M.; Lloyd, D.G.; Ji, X.; Vizcaychipi, M.P.; Ma, D. Neuroinflammation: The role and consequences. Neurosci. Res., 2014, 79, 1-12. doi: 10.1016/j.neures.2013.10.004 PMID: 24144733
  141. Gaire, B.P. Microglia as the critical regulators of neuroprotection and functional recovery in cerebral ischemia. Cell. Mol. Neurobiol., 2021. PMID: 34460037
  142. Michinaga, S.; Koyama, Y. Pathophysiological responses and roles of astrocytes in traumatic brain injury. Int. J. Mol. Sci., 2021, 22(12), 6418. doi: 10.3390/ijms22126418 PMID: 34203960
  143. Chen, Y.J.; Nguyen, H.M.; Maezawa, I.; Grössinger, E.M.; Garing, A.L.; Köhler, R.; Jin, L.W.; Wulff, H. The potassium channel KCa3.1 constitutes a pharmacological target for neuroinflammation associated with ischemia/reperfusion stroke. J. Cereb. Blood Flow Metab., 2016, 36(12), 2146-2161. doi: 10.1177/0271678X15611434 PMID: 26661208
  144. Lawrence, T. The nuclear factor NF-kappaB pathway in inflammation. Cold Spring Harb. Perspect. Biol., 2009, 1(6), a001651. doi: 10.1101/cshperspect.a001651 PMID: 20457564
  145. Wang, X.; Wang, Q.; Li, W.; Zhang, Q.; Jiang, Y.; Guo, D.; Sun, X.; Lu, W.; Li, C.; Wang, Y. TFEB-NF-κB inflammatory signaling axis: a novel therapeutic pathway of Dihydrotanshinone I in doxorubicin-induced cardiotoxicity. J. Exp. Clin. Cancer Res., 2020, 39(1), 93. doi: 10.1186/s13046-020-01595-x PMID: 32448281
  146. Song, W.; Zhang, C.L.; Gou, L.; He, L.; Gong, Y.Y.; Qu, D.; Zhao, L.; Jin, N.; Chan, T.F.; Wang, L.; Tian, X.Y.; Luo, J.Y.; Huang, Y. Endothelial TFEB (Transcription Factor EB) Restrains IKK (IκB Kinase)-p65 Pathway to Attenuate Vascular Inflammation in Diabetic db/db Mice. Arterioscler. Thromb. Vasc. Biol., 2019, 39(4), 719-730. doi: 10.1161/ATVBAHA.119.312316 PMID: 30816805
  147. Gong, Z.; Pan, J.R.; Shen, Q.Y.; Li, M.; Peng, Y. Mitochondrial dysfunction induces NLRP3 inflammasome activation during cerebral ischemia/reperfusion injury. J. Neuroinflammation, 2018, 15(1), 242. doi: 10.1186/s12974-018-1282-6 PMID: 30153825
  148. Biasizzo, M.; Kopitar-Jerala, N. Interplay Between NLRP3 Inflammasome and Autophagy. Front. Immunol., 2020, 11591803. doi: 10.3389/fimmu.2020.591803 PMID: 33163006
  149. Nakahira, K.; Haspel, J.A.; Rathinam, V.A.K.; Lee, S.J.; Dolinay, T.; Lam, H.C.; Englert, J.A.; Rabinovitch, M.; Cernadas, M.; Kim, H.P.; Fitzgerald, K.A.; Ryter, S.W.; Choi, A.M.K. Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat. Immunol., 2011, 12(3), 222-230. doi: 10.1038/ni.1980 PMID: 21151103
  150. Chen, J.; Mao, K.; Yu, H.; Wen, Y.; She, H.; Zhang, H.; Liu, L.; Li, M.; Li, W.; Zou, F. p38-TFEB pathways promote microglia activation through inhibiting CMA-mediated NLRP3 degradation in Parkinson’s disease. J. Neuroinflammation, 2021, 18(1), 295. doi: 10.1186/s12974-021-02349-y PMID: 34930303
  151. Shi, C.S.; Shenderov, K.; Huang, N.N.; Kabat, J.; Abu-Asab, M.; Fitzgerald, K.A.; Sher, A.; Kehrl, J.H. Activation of autophagy by inflammatory signals limits IL-1β production by targeting ubiquitinated inflammasomes for destruction. Nat. Immunol., 2012, 13(3), 255-263. doi: 10.1038/ni.2215 PMID: 22286270
  152. Harris, J.; Hartman, M.; Roche, C.; Zeng, S.G.; O’Shea, A.; Sharp, F.A.; Lambe, E.M.; Creagh, E.M.; Golenbock, D.T.; Tschopp, J.; Kornfeld, H.; Fitzgerald, K.A.; Lavelle, E.C. Autophagy controls IL-1beta secretion by targeting pro-IL-1beta for degradation. J. Biol. Chem., 2011, 286(11), 9587-9597. doi: 10.1074/jbc.M110.202911 PMID: 21228274
  153. Linnik, M.D.; Zobrist, R.H.; Hatfield, M.D. Evidence supporting a role for programmed cell death in focal cerebral ischemia in rats. Stroke, 1993, 24(12), 2002-2008. doi: 10.1161/01.STR.24.12.2002 PMID: 8248983
  154. Radak, D.; Katsiki, N.; Resanovic, I.; Jovanovic, A.; Sudar-Milovanovic, E.; Zafirovic, S.; Mousad, S.A.; Isenovic, E.R. Apoptosis and Acute Brain Ischemia in Ischemic Stroke. Curr. Vasc. Pharmacol., 2017, 15(2), 115-122. doi: 10.2174/1570161115666161104095522 PMID: 27823556
  155. Wang, R.; Dong, Y.; Lu, Y.; Zhang, W.; Brann, D.W.; Zhang, Q. Photobiomodulation for global cerebral ischemia: Targeting mitochondrial dynamics and functions. Mol. Neurobiol., 2019, 56(3), 1852-1869. doi: 10.1007/s12035-018-1191-9 PMID: 29951942
  156. Landshamer, S.; Hoehn, M.; Barth, N.; Duvezin-Caubet, S.; Schwake, G.; Tobaben, S.; Kazhdan, I.; Becattini, B.; Zahler, S.; Vollmar, A.; Pellecchia, M.; Reichert, A.; Plesnila, N.; Wagner, E.; Culmsee, C. Bid-induced release of AIF from mitochondria causes immediate neuronal cell death. Cell Death Differ., 2008, 15(10), 1553-1563. doi: 10.1038/cdd.2008.78 PMID: 18535584
  157. Culmsee, C.; Krieglstein, J. Ischaemic brain damage after stroke: new insights into efficient therapeutic strategies. EMBO Rep., 2007, 8(2), 129-133. doi: 10.1038/sj.embor.7400892 PMID: 17218952
  158. Szabó, M.R.; Pipicz, M.; Csont, T.; Csonka, C. Modulatory effect of myokines on reactive oxygen species in ischemia/reperfusion. Int. J. Mol. Sci., 2020, 21(24), 9382. doi: 10.3390/ijms21249382 PMID: 33317180
  159. Martin-Villalba, A.; Herr, I.; Jeremias, I.; Hahne, M.; Brandt, R.; Vogel, J.; Schenkel, J.; Herdegen, T.; Debatin, K.M. CD95 ligand (Fas-L/APO-1L) and tumor necrosis factor-related apoptosis-inducing ligand mediate ischemia-induced apoptosis in neurons. J. Neurosci., 1999, 19(10), 3809-3817. doi: 10.1523/JNEUROSCI.19-10-03809.1999 PMID: 10234013
  160. Muhammad, I.F.; Borné, Y.; Melander, O.; Orho-Melander, M.; Nilsson, J.; Söderholm, M.; Engström, G. FADD (fas-associated protein with death domain), caspase-3, and caspase-8 and incidence of ischemic stroke. Stroke, 2018, 49(9), 2224-2226. doi: 10.1161/STROKEAHA.118.022063 PMID: 30354994
  161. Morita-Fujimura, Y.; Fujimura, M.; Yoshimoto, T.; Chan, P.H. Superoxide during reperfusion contributes to caspase-8 expression and apoptosis after transient focal stroke. Stroke, 2001, 32(10), 2356-2361. doi: 10.1161/hs1001.097241 PMID: 11588326
  162. Plesnila, N.; Zinkel, S.; Le, D.A.; Amin-Hanjani, S.; Wu, Y.; Qiu, J.; Chiarugi, A.; Thomas, S.S.; Kohane, D.S.; Korsmeyer, S.J.; Moskowitz, M.A. BID mediates neuronal cell death after oxygen/glucose deprivation and focal cerebral ischemia. Proc. Natl. Acad. Sci. USA, 2001, 98(26), 15318-15323. doi: 10.1073/pnas.261323298 PMID: 11742085
  163. Yonekawa, T.; Gamez, G.; Kim, J.; Tan, A.C.; Thorburn, J.; Gump, J.; Thorburn, A.; Morgan, M.J. RIP 1 negatively regulates basal autophagic flux through TFEB to control sensitivity to apoptosis. EMBO Rep., 2015, 16(6), 700-708. doi: 10.15252/embr.201439496 PMID: 25908842
  164. Lu, H.; Sun, J.; Liang, W.; Chang, Z.; Rom, O.; Zhao, Y.; Zhao, G.; Xiong, W.; Wang, H.; Zhu, T.; Guo, Y.; Chang, L.; Garcia-Barrio, M.T.; Zhang, J.; Chen, Y.E.; Fan, Y. Cyclodextrin prevents abdominal aortic aneurysm via activation of vascular smooth muscle cell transcription factor EB. Circulation, 2020, 142(5), 483-498. doi: 10.1161/CIRCULATIONAHA.119.044803 PMID: 32354235
  165. Krupinski, J.; Kaluza, J.; Kumar, P.; Wang, M.; Kumar, S. Prognostic value of blood vessel density in ischaemic stroke. Lancet, 1993, 342(8873), 742. doi: 10.1016/0140-6736(93)91734-4 PMID: 8103843
  166. Steingrímsson, E.; Tessarollo, L.; Reid, S.W.; Jenkins, N.A.; Copeland, N.G. The bHLH-Zip transcription factor Tfeb is essential for placental vascularization. Development, 1998, 125(23), 4607-4616. doi: 10.1242/dev.125.23.4607 PMID: 9806910
  167. Doronzo, G.; Astanina, E.; Corà, D.; Chiabotto, G.; Comunanza, V.; Noghero, A.; Neri, F.; Puliafito, A.; Primo, L.; Spampanato, C.; Settembre, C.; Ballabio, A.; Camussi, G.; Oliviero, S.; Bussolino, F. TFEB controls vascular development by regulating the proliferation of endothelial cells. EMBO J., 2019, 38(3), e98250. doi: 10.15252/embj.201798250 PMID: 30591554
  168. Wang, L.; Xiong, X.; Zhang, L.; Shen, J. Neurovascular Unit: A critical role in ischemic stroke. CNS Neurosci. Ther., 2021, 27(1), 7-16. doi: 10.1111/cns.13561 PMID: 33389780
  169. Davis, C.; Savitz, S.I.; Satani, N. Mesenchymal stem cell derived extracellular vesicles for repairing the neurovascular unit after ischemic stroke. Cells, 2021, 10(4), 767. doi: 10.3390/cells10040767 PMID: 33807314
  170. Du, H.; Xu, Y.; Zhu, L. Role of semaphorins in ischemic stroke. Front. Mol. Neurosci., 2022, 15, 848506. doi: 10.3389/fnmol.2022.848506 PMID: 35350431
  171. Eroglu, C.; Barres, B.A. Regulation of synaptic connectivity by glia. Nature, 2010, 468(7321), 223-231. doi: 10.1038/nature09612 PMID: 21068831
  172. Beard, E.; Lengacher, S.; Dias, S.; Magistretti, P.J.; Finsterwald, C. Astrocytes as key regulators of brain energy metabolism: New therapeutic perspectives. Front. Physiol., 2022, 12825816. doi: 10.3389/fphys.2021.825816 PMID: 35087428
  173. Guo, H.; Zhang, Z.; Gu, T.; Yu, D.; Shi, Y.; Gao, Z.; Wang, Z.; Liu, W.; Fan, Z.; Hou, W.; Wang, H.; Cai, Y. Astrocytic glycogen mobilization participates in salvianolic acid B-mediated neuroprotection against reperfusion injury after ischemic stroke. Exp. Neurol., 2022, 349, 113966. doi: 10.1016/j.expneurol.2021.113966 PMID: 34973964
  174. Bednarski, E.; Lauterborn, J.C.; Gall, C.M.; Lynch, G. Lysosomal dysfunction reduces brain-derived neurotrophic factor expression. Exp. Neurol., 1998, 150(1), 128-135. doi: 10.1006/exnr.1997.6747 PMID: 9514826
  175. Di Malta, C.; Fryer, J.D.; Settembre, C.; Ballabio, A. Astrocyte dysfunction triggers neurodegeneration in a lysosomal storage disorder. Proc. Natl. Acad. Sci. USA, 2012, 109(35), E2334-E2342. doi: 10.1073/pnas.1209577109 PMID: 22826245
  176. Lee, J.W.; Nam, H.; Kim, L.E.; Jeon, Y.; Min, H.; Ha, S.; Lee, Y.; Kim, S.Y.; Lee, S.J.; Kim, E.K.; Yu, S.W. TLR4 (toll-like receptor 4) activation suppresses autophagy through inhibition of FOXO3 and impairs phagocytic capacity of microglia. Autophagy, 2019, 15(5), 753-770. doi: 10.1080/15548627.2018.1556946 PMID: 30523761
  177. Saab, A.S.; Nave, K.A. Myelin dynamics: Protecting and shaping neuronal functions. Curr. Opin. Neurobiol., 2017, 47, 104-112. doi: 10.1016/j.conb.2017.09.013 PMID: 29065345
  178. Garcia-Martin, G.; Alcover-Sanchez, B.; Wandosell, F.; Cubelos, B. Pathways involved in remyelination after cerebral ischemia. Curr. Neuropharmacol., 2022, 20(4), 751-765. doi: 10.2174/1570159X19666210610093658 PMID: 34151767
  179. Sun, L.O.; Mulinyawe, S.B.; Collins, H.Y.; Ibrahim, A.; Li, Q.; Simon, D.J.; Tessier-Lavigne, M.; Barres, B.A. Spatiotemporal control of CNS myelination by oligodendrocyte programmed cell death through the TFEB-PUMA Axis. Cell, 2018, 175(7), 1811-1826.e21. doi: 10.1016/j.cell.2018.10.044 PMID: 30503207
  180. Meireles, A.M.; Shen, K.; Zoupi, L.; Iyer, H.; Bouchard, E.L.; Williams, A.; Talbot, W.S. The lysosomal transcription factor TFEB represses myelination downstream of the rag-ragulator complex. Dev. Cell, 2018, 47(3), 319-330.e5. doi: 10.1016/j.devcel.2018.10.003 PMID: 30399334
  181. Duchemin, S.; Boily, M.; Sadekova, N.; Girouard, H. The complex contribution of NOS interneurons in the physiology of cerebrovascular regulation. Front. Neural Circuits, 2012, 6, 51. doi: 10.3389/fncir.2012.00051 PMID: 22907993
  182. Yoo, J.; Jeong, I.K.; Ahn, K.J.; Chung, H.Y.; Hwang, Y.C. Fenofibrate, a PPARα agonist, reduces hepatic fat accumulation through the upregulation of TFEB-mediated lipophagy. Metabolism, 2021, 120, 154798. doi: 10.1016/j.metabol.2021.154798 PMID: 33984335
  183. Fang, Y.; Ji, L.; Zhu, C.; Xiao, Y.; Zhang, J.; Lu, J.; Yin, J.; Wei, L. Liraglutide alleviates hepatic steatosis by activating the TFEB-regulated autophagy-lysosomal pathway. Front. Cell Dev. Biol., 2020, 8, 602574. doi: 10.3389/fcell.2020.602574 PMID: 33330497
  184. Wu, H.; Ding, J.; Li, S.; Lin, J.; Jiang, R.; Lin, C.; Dai, L.; Xie, C.; Lin, D.; Xu, H.; Gao, W.; Zhou, K. Metformin promotes the survival of random-pattern skin flaps by inducing autophagy via the AMPK-mTOR-TFEB signaling pathway. Int. J. Biol. Sci., 2019, 15(2), 325-340. doi: 10.7150/ijbs.29009 PMID: 30745824
  185. Chandra, S.; Jana, M.; Pahan, K. Aspirin induces lysosomal biogenesis and attenuates amyloid plaque pathology in a mouse model of Alzheimer’s disease via PPARα. J. Neurosci., 2018, 38(30), 6682-6699. doi: 10.1523/JNEUROSCI.0054-18.2018 PMID: 29967008
  186. Li, J.; Xiang, X.; Xu, Z. Cilostazol protects against myocardial ischemia and reperfusion injury by activating transcription factor EB (TFEB). Biotechnol. Appl. Biochem., 2019, 66(4), 555-563. doi: 10.1002/bab.1754 PMID: 30994947
  187. Bhogal, P.; Brouwer, P.A.; Makalanda, H.L.D. Cilostazol: an antiplatelet agent for the neurointerventionist? J. Neurointerv. Surg., 2016, 8(2), 208-209. doi: 10.1136/neurintsurg-2014-011570 PMID: 25526917
  188. Zhang, W.; Wang, J.; Yang, C. Celastrol, a TFEB (transcription factor EB) agonist, is a promising drug candidate for Alzheimer disease. Autophagy, 2022, 18(7), 1740-1742. doi: 10.1080/15548627.2022.2046437 PMID: 35253615
  189. Rusmini, P.; Cortese, K.; Crippa, V.; Cristofani, R.; Cicardi, M.E.; Ferrari, V.; Vezzoli, G.; Tedesco, B.; Meroni, M.; Messi, E.; Piccolella, M.; Galbiati, M.; Garrè, M.; Morelli, E.; Vaccari, T.; Poletti, A. Trehalose induces autophagy via lysosomal-mediated TFEB activation in models of motoneuron degeneration. Autophagy, 2019, 15(4), 631-651. doi: 10.1080/15548627.2018.1535292 PMID: 30335591
  190. Moskot, M.; Montefusco, S.; Jakóbkiewicz-Banecka, J.; Mozolewski, P.; Węgrzyn, A.; Di Bernardo, D.; Węgrzyn, G.; Medina, D.L.; Ballabio, A.; Gabig-Cimińska, M. The phytoestrogen genistein modulates lysosomal metabolism and transcription factor EB (TFEB) activation. J. Biol. Chem., 2014, 289(24), 17054-17069. doi: 10.1074/jbc.M114.555300 PMID: 24770416
  191. Jia, Y.; Zhang, L.; Liu, Z.; Mao, C.; Ma, Z.; Li, W.; Yu, F.; Wang, Y.; Huang, Y.; Zhang, W.; Zheng, J.; Wang, X.; Xu, Q.; Zhang, J.; Feng, W.; Yun, C.; Liu, C.; Sun, J.; Fu, Y.; Cui, Q.; Kong, W. Targeting macrophage TFEB-14-3-3 epsilon interface by naringenin inhibits abdominal aortic aneurysm. Cell Discov., 2022, 8(1), 21. doi: 10.1038/s41421-021-00363-1 PMID: 35228523
  192. Song, J.X.; Sun, Y.R.; Peluso, I.; Zeng, Y.; Yu, X.; Lu, J.H.; Xu, Z.; Wang, M.Z.; Liu, L.F.; Huang, Y.Y.; Chen, L.L.; Durairajan, S.S.K.; Zhang, H.J.; Zhou, B.; Zhang, H.Q.; Lu, A.; Ballabio, A.; Medina, D.L.; Guo, Z.; Li, M. A novel curcumin analog binds to and activates TFEB in vitro and in vivo independent of MTOR inhibition. Autophagy, 2016, 12(8), 1372-1389. doi: 10.1080/15548627.2016.1179404 PMID: 27172265
  193. Cao, S.; Wang, C.; Yan, J.; Li, X.; Wen, J.; Hu, C. Curcumin ameliorates oxidative stress-induced intestinal barrier injury and mitochondrial damage by promoting Parkin dependent mitophagy through AMPK-TFEB signal pathway. Free Radic. Biol. Med., 2020, 147, 8-22. doi: 10.1016/j.freeradbiomed.2019.12.004 PMID: 31816386
  194. Si, Q.; Wu, G.; Cao, X. Effects of electroacupuncture on acute cerebral infarction. Acupunct. Electrother. Res., 1998, 23(2), 117-124. doi: 10.3727/036012998816356562 PMID: 9789586
  195. Xiong, L.; Lu, Z.; Hou, L.; Zheng, H.; Zhu, Z.; Wang, Q.; Chen, S. Pretreatment with repeated electroacupuncture attenuates transient focal cerebral ischemic injury in rats. Chin. Med. J. (Engl.), 2003, 116(1), 108-111. PMID: 12667400
  196. Jing, L.; Zonglu, B.; Yuanhao, D.; Yongfeng, L.; Xuezhu, Z.; Bo, P.; Jingjing, Z.; Li, Y. Effect of Electroacupuncture on expression of Ang/Tie-2 mRNA and protein in rats with acute cerebral infarction. J. Tradit. Chin. Med., 2017, 37(5), 659-666. doi: 10.1016/S0254-6272(17)30320-5 PMID: 32188227
  197. Zheng, X.; Lin, W.; Jiang, Y.; Lu, K.; Wei, W.; Huo, Q.; Cui, S.; Yang, X.; Li, M.; Xu, N.; Tang, C.; Song, J.X. Electroacupuncture ameliorates beta-amyloid pathology and cognitive impairment in Alzheimer disease via a novel mechanism involving activation of TFEB (transcription factor EB). Autophagy, 2021, 17(11), 3833-3847. doi: 10.1080/15548627.2021.1886720 PMID: 33622188
  198. Zheng, G.; Chen, B.; Fang, Q.; Yi, H.; Lin, Q.; Chen, L.; Tao, J.; Li, J.; Zheng, X.; Li, M.; Lan, X. Primary prevention for risk factors of ischemic stroke with Baduanjin exercise intervention in the community elder population: Study protocol for a randomized controlled trial. Trials, 2014, 15(1), 113. doi: 10.1186/1745-6215-15-113 PMID: 24712684
  199. Yasuhara, T.; Anthony, S.S.; Date, I. Limiting exercise inhibits neuronal recovery from neurological disorders. Brain Circ., 2017, 3(3), 124-129. doi: 10.4103/bc.bc_16_17 PMID: 30276313
  200. Zhang, Y.; Zhang, P.; Shen, X.; Tian, S.; Wu, Y.; Zhu, Y.; Jia, J.; Wu, J.; Hu, Y. Early exercise protects the blood-brain barrier from ischemic brain injury via the regulation of MMP-9 and occludin in rats. Int. J. Mol. Sci., 2013, 14(6), 11096-11112. doi: 10.3390/ijms140611096 PMID: 23708107
  201. Terashi, T.; Otsuka, S.; Takada, S.; Nakanishi, K.; Ueda, K.; Sumizono, M.; Kikuchi, K.; Sakakima, H. Neuroprotective effects of different frequency preconditioning exercise on neuronal apoptosis after focal brain ischemia in rats. Neurol. Res., 2019, 41(6), 510-518. doi: 10.1080/01616412.2019.1580458 PMID: 30822224
  202. Bernhardt, J.; Langhorne, P.; Lindley, R.I.; Thrift, A.G.; Ellery, F.; Collier, J.; Churilov, L.; Moodie, M.; Dewey, H.; Donnan, G.; Grp, A.T.C. Efficacy and safety of very early mobilisation within 24 h of stroke onset (AVERT): a randomised controlled trial. Lancet, 2015, 386(9988), 46-55. doi: 10.1016/S0140-6736(15)60690-0 PMID: 25892679
  203. MacKay-Lyons, M.; Billinger, S.A.; Eng, J.J.; Dromerick, A.; Giacomantonio, N.; Hafer-Macko, C.; Macko, R.; Nguyen, E.; Prior, P.; Suskin, N.; Tang, A.; Thornton, M.; Unsworth, K. Aerobic Exercise Recommendations to Optimize Best Practices in Care After Stroke: AEROBICS 2019 Update. Phys. Ther., 2020, 100(1), 149-156. doi: 10.1093/ptj/pzz153 PMID: 31596465
  204. Huang, J.; Wang, X.; Zhu, Y.; Li, Z.; Zhu, Y.T.; Wu, J.C.; Qin, Z.H.; Xiang, M.; Lin, F. Exercise activates lysosomal function in the brain through AMPK‐SIRT1‐TFEB pathway. CNS Neurosci. Ther., 2019, 25(6), 796-807. doi: 10.1111/cns.13114 PMID: 30864262
  205. Wang, X.; Zhu, Y.T.; Zhu, Y.; Sun, Y.L.; Huang, J.; Li, Z.; Wang, Y.; Wu, J.C.; Qin, Z.H.; Lin, F. Long-term running exercise alleviates cognitive dysfunction in APP/PSEN1 transgenic mice via enhancing brain lysosomal function. Acta Pharmacol. Sin., 2021. PMID: 34272505
  206. Li, Z.; Cui, X.; Lv, H.; Liu, J.; Di, W.; Jiang, F.; Liu, Y.; Cheng, X. Remote ischemic postconditioning attenuates damage in rats with chronic cerebral ischemia by upregulating the autophagolysosome pathway via the activation of TFEB. Exp. Mol. Pathol., 2020, 115, 104475. doi: 10.1016/j.yexmp.2020.104475 PMID: 32473154
  207. He, W.; Wang, H.; Zhao, C.; Tian, X.; Li, L.; Wang, H. Role of liraglutide in brain repair promotion through Sirt1‐mediated mitochondrial improvement in stroke. J. Cell. Physiol., 2020, 235(3), 2986-3001. doi: 10.1002/jcp.29204 PMID: 31535381
  208. Tu, W.J.; Zeng, Q.J.; Wang, K.; Wang, Y.; Sun, B.L.; Zeng, X.W.; Liu, Q. Prestroke metformin use on the 1-year prognosis of intracerebral hemorrhage patients with type 2 diabetes. Oxid. Med. Cell. Longev., 2021, 2021, 2027359. doi: 10.1155/2021/2027359 PMID: 34567407
  209. Gautier, S.; Ouk, T.; Petrault, M.; Petrault, O.; Berezowski, V.; Bordet, R. PPAR-Alpha agonist used at the acute phase of experimental ischemic stroke reduces occurrence of thrombolysis-induced hemorrhage in rats. PPAR Res., 2015, 2015, 246329. doi: 10.1155/2015/246329 PMID: 26106408
  210. Toyoda, K.; Omae, K.; Hoshino, H.; Uchiyama, S.; Kimura, K.; Miwa, K.; Minematsu, K.; Yamaguchi, K.; Suda, Y.; Toru, S.; Kitagawa, K.; Ihara, M.; Koga, M.; Yamaguchi, T. Association of timing for starting dual antiplatelet treatment with cilostazol and recurrent stroke. Neurology, 2022, 98(10), e983-e992. doi: 10.1212/WNL.0000000000200064 PMID: 35074890
  211. Chen, J.; Ji, L.; Tong, X.; Han, M.; Zhao, S.; Qin, Y.; He, Z.; Jiang, Z.; Liu, A. Economic evaluation of ticagrelor plus aspirin versus aspirin alone for acute ischemic stroke and transient ischemic attack. Front. Pharmacol., 2022, 13, 790048. doi: 10.3389/fphar.2022.790048 PMID: 35370758
  212. Wang, C.; Niederstrasser, H.; Douglas, P.M.; Lin, R.; Jaramillo, J.; Li, Y.; Oswald, N.W.; Zhou, A.; McMillan, E.A.; Mendiratta, S.; Wang, Z.; Zhao, T.; Lin, Z.; Luo, M.; Huang, G.; Brekken, R.A.; Posner, B.A.; MacMillan, J.B.; Gao, J.; White, M.A. Small-molecule TFEB pathway agonists that ameliorate metabolic syndrome in mice and extend C. elegans lifespan. Nat. Commun., 2017, 8(1), 2270. doi: 10.1038/s41467-017-02332-3 PMID: 29273768
  213. Lai, K.C.; Chen, S.J.; Lin, C.S.; Yang, F.C.; Lin, C.L.; Hsu, C.W.; Huang, W.C.; Kao, C.H. Digoxin and amiodarone on the risk of ischemic stroke in atrial fibrillation: An observational study. Front. Pharmacol., 2018, 9, 448. doi: 10.3389/fphar.2018.00448 PMID: 29867460
  214. Li, Z.W.; Cui, X.L.; Lv, H.; Liu, J.; Di, W.; Jiang, F.; Liu, Y.; Cheng, X.S. Remote ischemic postconditioning attenuates damage in rats with chronic cerebral ischemia by upregulating the autophagolysosome pathway via the activation of TFEB (vol 115, 104475, 2020). Exp. Mol. Pathol., 2021, 121.
  215. Wang, M.; Ran, Q.; Chen, H.; Liu, Y.; Yu, H.; Shi, F. Electroacupuncture preconditioning attenuates ischemic brain injury by activation of the adenosine monophosphate-activated protein kinase signaling pathway. Neural Regen. Res., 2015, 10(7), 1069-1075. doi: 10.4103/1673-5374.160095 PMID: 26330828
  216. Dornbos, D., III; Zwagerman, N.; Guo, M.; Ding, J.Y.; Peng, C.; Esmail, F.; Sikharam, C.; Geng, X.; Guthikonda, M.; Ding, Y. Preischemic exercise reduces brain damage by ameliorating metabolic disorder in ischemia/reperfusion injury. J. Neurosci. Res., 2013, 91(6), 818-827. doi: 10.1002/jnr.23203 PMID: 23553672
  217. Tsao, C.W.; Aday, A.W.; Almarzooq, Z.I.; Alonso, A.; Beaton, A.Z.; Bittencourt, M.S.; Boehme, A.K.; Buxton, A.E.; Carson, A.P.; Commodore-Mensah, Y.; Elkind, M.S.V.; Evenson, K.R.; Eze-Nliam, C.; Ferguson, J.F.; Generoso, G.; Ho, J.E.; Kalani, R.; Khan, S.S.; Kissela, B.M.; Knutson, K.L.; Levine, D.A.; Lewis, T.T.; Liu, J.; Loop, M.S.; Ma, J.; Mussolino, M.E.; Navaneethan, S.D.; Perak, A.M.; Poudel, R.; Rezk-Hanna, M.; Roth, G.A.; Schroeder, E.B.; Shah, S.H.; Thacker, E.L.; VanWagner, L.B.; Virani, S.S.; Voecks, J.H.; Wang, N.Y.; Yaffe, K.; Martin, S.S. Heart Disease and Stroke Statistics—2022 Update: A Report From the American Heart Association. Circulation, 2022, 145(8), e153-e639. doi: 10.1161/CIR.0000000000001052 PMID: 35078371
  218. Dong, X. Current strategies for brain drug delivery. Theranostics, 2018, 8(6), 1481-1493. doi: 10.7150/thno.21254 PMID: 29556336

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Bentham Science Publishers, 2024