In Silico Prediction of Quercetin Analogs for Targeting Death-Associated Protein Kinase 1 (DAPK1) Against Alzheimer’s Disease


如何引用文章

全文:

详细

:Alzheimer’s Disease (AD) is a progressive neurodegenerative disorder that greatly affects the health and life quality of the elderly population. Existing drugs mainly alleviate symptoms but fail to halt disease progression, underscoring the urgent need for the development of novel drugs. Based on the neuroprotective effects of flavonoid quercetin in AD, this study was designed to identify potential AD-related targets for quercetin and perform in silico prediction of promising analogs for the treatment of AD. Database mining suggested death-associated protein kinase 1 (DAPK1) as the most promising AD-related target for quercetin among seven protein candidates. To achieve better biological effects for the treatment of AD, we devised a series of quercetin analogs as ligands for DAPK1, and molecular docking analyses, absorption, distribution, metabolism, and excretion (ADME) predictions, as well as molecular dynamics (MD) simulations, were performed. The energy for drug-protein interaction was predicted and ranked. As a result, quercetin-A1a and quercetin-A1a1 out of 19 quercetin analogs exhibited the lowest interaction energy for binding to DAPK1 than quercetin, and they had similar dynamics performance with quercetin. In addition, quercetin-A1a and quercetin-A1a1 were predicted to have better water solubility. Thus, quercetin-A1a and quercetin-A1a1 could be promising agents for the treatment of AD. Our findings paved the way for further experimental studies and the development of novel drugs.

作者简介

Yilu Sun

Department of Chinese Medicine, The University of Hong Kong Shenzhen Hospital

Email: info@benthamscience.net

Jia Zhao

Department of Chinese Medicine, The University of Hong Kong Shenzhen Hospital

Email: info@benthamscience.net

Yizhu Lu

School of Chinese Medicine, The University of Hong Kong

Email: info@benthamscience.net

Fung Ngo

School of Chinese Medicine, The University of Hong Kong

Email: info@benthamscience.net

Bo Shuai

Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology

Email: info@benthamscience.net

Zhang-Jin Zhang

Department of Chinese Medicine, The University of Hong Kong Shenzhen Hospital

Email: info@benthamscience.net

Yibin Feng

School of Chinese Medicine, The University of Hong Kong

编辑信件的主要联系方式.
Email: info@benthamscience.net

Jianhui Rong

School of Chinese Medicine, The University of Hong Kong

编辑信件的主要联系方式.
Email: info@benthamscience.net

参考

  1. Nichols, E.; Szoeke, C.E.I.; Vollset, S.E.; Abbasi, N.; Abd-Allah, F.; Abdela, J.; Aichour, M.T.E.; Akinyemi, R.O.; Alahdab, F.; Asgedom, S.W.; Awasthi, A.; Barker-Collo, S.L.; Baune, B.T.; Béjot, Y.; Belachew, A.B.; Bennett, D.A.; Biadgo, B.; Bijani, A.; Bin Sayeed, M.S.; Brayne, C.; Carpenter, D.O.; Carvalho, F.; Catalá-López, F.; Cerin, E.; Choi, J-Y.J.; Dang, A.K.; Degefa, M.G.; Djalalinia, S.; Dubey, M.; Duken, E.E.; Edvardsson, D.; Endres, M.; Eskandarieh, S.; Faro, A.; Farzadfar, F.; Fereshtehnejad, S-M.; Fernandes, E.; Filip, I.; Fischer, F.; Gebre, A.K.; Geremew, D.; Ghasemi-Kasman, M.; Gnedovskaya, E.V.; Gupta, R.; Hachinski, V.; Hagos, T.B.; Hamidi, S.; Hankey, G.J.; Haro, J.M.; Hay, S.I.; Irvani, S.S.N.; Jha, R.P.; Jonas, J.B.; Kalani, R.; Karch, A.; Kasaeian, A.; Khader, Y.S.; Khalil, I.A.; Khan, E.A.; Khanna, T.; Khoja, T.A.M.; Khubchandani, J.; Kisa, A.; Kissimova-Skarbek, K.; Kivimäki, M.; Koyanagi, A.; Krohn, K.J.; Logroscino, G.; Lorkowski, S.; Majdan, M.; Malekzadeh, R.; März, W.; Massano, J.; Mengistu, G.; Meretoja, A.; Mohammadi, M.; Mohammadi-Khanaposhtani, M.; Mokdad, A.H.; Mondello, S.; Moradi, G.; Nagel, G.; Naghavi, M.; Naik, G.; Nguyen, L.H.; Nguyen, T.H.; Nirayo, Y.L.; Nixon, M.R.; Ofori-Asenso, R.; Ogbo, F.A.; Olagunju, A.T.; Owolabi, M.O.; Panda-Jonas, S.; Passos, V.M.A.; Pereira, D.M.; Pinilla-Monsalve, G.D.; Piradov, M.A.; Pond, C.D.; Poustchi, H.; Qorbani, M.; Radfar, A.; Reiner, R.C., Jr; Robinson, S.R.; Roshandel, G.; Rostami, A.; Russ, T.C.; Sachdev, P.S.; Safari, H.; Safiri, S.; Sahathevan, R.; Salimi, Y.; Satpathy, M.; Sawhney, M.; Saylan, M.; Sepanlou, S.G.; Shafieesabet, A.; Shaikh, M.A.; Sahraian, M.A.; Shigematsu, M.; Shiri, R.; Shiue, I.; Silva, J.P.; Smith, M.; Sobhani, S.; Stein, D.J.; Tabarés-Seisdedos, R.; Tovani-Palone, M.R.; Tran, B.X.; Tran, T.T.; Tsegay, A.T.; Ullah, I.; Venketasubramanian, N.; Vlassov, V.; Wang, Y-P.; Weiss, J.; Westerman, R.; Wijeratne, T.; Wyper, G.M.A.; Yano, Y.; Yimer, E.M.; Yonemoto, N.; Yousefifard, M.; Zaidi, Z.; Zare, Z.; Vos, T.; Feigin, V.L.; Murray, C.J.L. Global, regional, and national burden of Alzheimer’s disease and other dementias, 1990-2016: A systematic analysis for the global burden of disease study 2016. Lancet Neurol., 2019, 18(1), 88-106. doi: 10.1016/S1474-4422(18)30403-4 PMID: 30497964
  2. Alzheimer’s disease facts and figures. Alzheimers Dement., 2020, 2020. PMID: 32157811
  3. Chen, G.; Xu, T.; Yan, Y.; Zhou, Y.; Jiang, Y.; Melcher, K.; Xu, H.E. Amyloid beta: Structure, biology and structure-based therapeutic development. Acta Pharmacol. Sin., 2017, 38(9), 1205-1235. doi: 10.1038/aps.2017.28 PMID: 28713158
  4. Binder, L.I.; Guillozet-Bongaarts, A.L.; Garcia-Sierra, F.; Berry, R.W. Tau, tangles, and Alzheimer’s disease. Biochim. Biophys. Acta Mol. Basis Dis., 2005, 1739(2-3), 216-223. doi: 10.1016/j.bbadis.2004.08.014 PMID: 15615640
  5. Lyketsos, C.G.; Carrillo, M.C.; Ryan, J.M.; Khachaturian, A.S.; Trzepacz, P.; Amatniek, J.; Cedarbaum, J.; Brashear, R.; Miller, D.S. Neuropsychiatric symptoms in Alzheimer’s disease. Alzheimers Dement., 2011, 7(5), 532-539. doi: 10.1016/j.jalz.2011.05.2410 PMID: 21889116
  6. Jacobsen, J.S.; Wu, C.C.; Redwine, J.M.; Comery, T.A.; Arias, R.; Bowlby, M.; Martone, R.; Morrison, J.H.; Pangalos, M.N.; Reinhart, P.H.; Bloom, F.E. Early-onset behavioral and synaptic deficits in a mouse model of Alzheimer’s disease. Proc. Natl. Acad. Sci. , 2006, 103(13), 5161-5166. doi: 10.1073/pnas.0600948103 PMID: 16549764
  7. Murphy, M.P.; LeVine, H., III Alzheimer’s disease and the amyloid-beta peptide. J. Alzheimers Dis., 2010, 19(1), 311-323. doi: 10.3233/JAD-2010-1221 PMID: 20061647
  8. Yao, M.; Nguyen, T.V.V.; Pike, C.J. Beta-amyloid-induced neuronal apoptosis involves c-Jun N-terminal kinase-dependent downregulation of Bcl-w. J. Neurosci., 2005, 25(5), 1149-1158. doi: 10.1523/JNEUROSCI.4736-04.2005 PMID: 15689551
  9. Tan, Z.; Shi, L.; Schreiber, S.S. Differential expression of redox factor-1 associated with beta-amyloid-mediated neurotoxicity. Open Neurosci. J., 2009, 3(1), 26-34. doi: 10.2174/1874082000903010026 PMID: 19898678
  10. Misonou, H.; Morishima-Kawashima, M.; Ihara, Y. Oxidative stress induces intracellular accumulation of amyloid beta-protein (Abeta) in human neuroblastoma cells. Biochemistry, 2000, 39(23), 6951-6959. doi: 10.1021/bi000169p PMID: 10841777
  11. Sun, X.; Chen, W.D.; Wang, Y.D. β-Amyloid: The key peptide in the pathogenesis of Alzheimer’s disease. Front. Pharmacol., 2015, 6, 221. doi: 10.3389/fphar.2015.00221 PMID: 26483691
  12. Panza, F.; Solfrizzi, V.; Seripa, D.; Imbimbo, B.P.; Lozupone, M.; Santamato, A.; Zecca, C.; Barulli, M.R.; Bellomo, A.; Pilotto, A.; Daniele, A.; Greco, A.; Logroscino, G. Tau-centric targets and drugs in clinical development for the treatment of alzheimer’s disease. BioMed Res. Int., 2016, 2016, 1-15. doi: 10.1155/2016/3245935 PMID: 27429978
  13. Wang, L.; Benzinger, T.L.; Su, Y.; Christensen, J.; Friedrichsen, K.; Aldea, P.; McConathy, J.; Cairns, N.J.; Fagan, A.M.; Morris, J.C.; Ances, B.M. Evaluation of tau imaging in staging alzheimer disease and revealing interactions between β-amyloid and tauopathy. JAMA Neurol., 2016, 73(9), 1070-1077. doi: 10.1001/jamaneurol.2016.2078 PMID: 27454922
  14. Götz, J.; Chen, F.; van Dorpe, J.; Nitsch, R.M. Formation of neurofibrillary tangles in P301l tau transgenic mice induced by Abeta 42 fibrils. Science, 2001, 293(5534), 1491-1495. doi: 10.1126/science.1062097 PMID: 11520988
  15. Jaworski, J.; Sheng, M. The growing role of mTOR in neuronal development and plasticity. Mol. Neurobiol., 2006, 34(3), 205-220. doi: 10.1385/MN:34:3:205 PMID: 17308353
  16. Ma, T.; Hoeffer, C.A.; Capetillo-Zarate, E.; Yu, F.; Wong, H.; Lin, M.T.; Tampellini, D.; Klann, E.; Blitzer, R.D.; Gouras, G.K. Dysregulation of the mTOR pathway mediates impairment of synaptic plasticity in a mouse model of Alzheimer’s disease. PLoS One, 2010, 5(9), e12845. doi: 10.1371/journal.pone.0012845 PMID: 20862226
  17. Kinney, J.W.; Bemiller, S.M.; Murtishaw, A.S.; Leisgang, A.M.; Salazar, A.M.; Lamb, B.T. Inflammation as a central mechanism in Alzheimer’s disease. Alzheimers Dement., 2018, 4(1), 575-590. doi: 10.1016/j.trci.2018.06.014 PMID: 30406177
  18. Xu, L.Z.; Li, B.Q.; Li, F.Y.; Li, Y.; Qin, W.; Zhao, Y.; Jia, J.P. NMDA receptor GluN2B subunit is involved in excitotoxicity mediated by death-associated protein kinase 1 in alzheimer’s disease. J. Alzheimers Dis., 2023, 91(2), 877-893. doi: 10.3233/JAD-220747 PMID: 36502323
  19. Wang, L.; Shui, X.; Zhang, M.; Mei, Y.; Xia, Y.; Lan, G.; Hu, L.; Gan, C.L.; Tian, Y.; Li, R.; Gu, X.; Zhang, T.; Chen, D.; Lee, T.H. MiR-191-5p attenuates tau phosphorylation, aβ generation, and neuronal cell death by regulating death-associated protein kinase 1. ACS Chem. Neurosci., 2022, 13(24), 3554-3566. doi: 10.1021/acschemneuro.2c00423 PMID: 36454178
  20. Xu, L.; Li, B.; Jia, J. DAPK1: A novel pathology and treatment target for alzheimer’s disease. Mol. Neurobiol., 2019, 56(4), 2838-2844. doi: 10.1007/s12035-018-1242-2 PMID: 30062675
  21. Li, R.; Zhi, S.; Lan, G.; Chen, X.; Zheng, X.; Hu, L.; Wang, L.; Zhang, T.; Lee, T.H.; Rao, S.; Chen, D. Ablation of death-associated protein kinase 1 changes the transcriptomic profile and alters neural-related pathways in the brain. Int. J. Mol. Sci., 2023, 24(7), 6542. doi: 10.3390/ijms24076542 PMID: 37047515
  22. Guan, P.P.; Ding, W.Y.; Wang, P. Molecular mechanism of acetylsalicylic acid in improving learning and memory impairment in APP/PS1 transgenic mice by inhibiting the abnormal cell cycle re-entry of neurons. Front. Mol. Neurosci., 2022, 15, 1006216. doi: 10.3389/fnmol.2022.1006216 PMID: 36263378
  23. Song, B.; Davis, K.; Liu, X.S.; Lee, H.; Smith, M.; Liu, X. Inhibition of polo-like kinase 1 reduces beta-amyloid-induced neuronal cell death in Alzheimer’s disease. Aging , 2011, 3(9), 846-851. doi: 10.18632/aging.100382 PMID: 21931181
  24. Park, J.Y.; Darvas, M.; Ladiges, W. Targeting IGF1R signaling for brain aging and Alzheimer’s disease. Aging Pathobiol. Ther., 2022, 4(4), 129-131. doi: 10.31491/APT.2022.12.103 PMID: 36776414
  25. Hamasaki, H.; Honda, H.; Suzuki, S.O.; Hokama, M.; Kiyohara, Y.; Nakabeppu, Y.; Iwaki, T. Down‐regulation of MET in hippocampal neurons of Alzheimer’s disease brains. Neuropathology, 2014, 34(3), 284-290. doi: 10.1111/neup.12095 PMID: 24444253
  26. Wang, L.; Chiang, H.C.; Wu, W.; Liang, B.; Xie, Z.; Yao, X.; Ma, W.; Du, S.; Zhong, Y. Epidermal growth factor receptor is a preferred target for treating Amyloid-β-induced memory loss. Proc. Natl. Acad. Sci. , 2012, 109(41), 16743-16748. doi: 10.1073/pnas.1208011109 PMID: 23019586
  27. Lin, W.Y.; Wu, B.T.; Lee, C.C.; Sheu, J.J.; Liu, S.H.; Wang, W.F.; Tsai, C.H.; Liu, H.P.; Tsai, F.J. Association analysis of dopaminergic gene variants (Comt, Drd4 And Dat1) with Alzheimer s disease. J. Biol. Regul. Homeost. Agents, 2012, 26(3), 401-410. PMID: 23034259
  28. Lannfelt, L.; Möller, C.; Basun, H.; Osswald, G.; Sehlin, D.; Satlin, A.; Logovinsky, V.; Gellerfors, P. Perspectives on future Alzheimer therapies: amyloid-β protofibrils - a new target for immunotherapy with BAN2401 in Alzheimer’s disease. Alzheimers Res. Ther., 2014, 6(2), 16. doi: 10.1186/alzrt246 PMID: 25031633
  29. Boutajangout, A.; Sigurdsson, E.M.; Krishnamurthy, P.K. Tau as a therapeutic target for Alzheimer’s disease. Curr. Alzheimer Res., 2011, 8(6), 666-677. doi: 10.2174/156720511796717195 PMID: 21679154
  30. Pimplikar, S.W. Neuroinflammation in Alzheimer’s disease: From pathogenesis to a therapeutic target. J. Clin. Immunol., 2014, 34(S1), 64-69. doi: 10.1007/s10875-014-0032-5 PMID: 24711006
  31. Jiang, T.; Sun, Q.; Chen, S. Oxidative stress: A major pathogenesis and potential therapeutic target of antioxidative agents in Parkinson’s disease and Alzheimer’s disease. Prog. Neurobiol., 2016, 147, 1-19. doi: 10.1016/j.pneurobio.2016.07.005 PMID: 27769868
  32. Neve, R.L.; McPhie, D.L. The cell cycle as a therapeutic target for Alzheimer’s disease. Pharmacol. Ther., 2006, 111(1), 99-113. doi: 10.1016/j.pharmthera.2005.09.005 PMID: 16274748
  33. Kem, W.R. The brain α7 nicotinic receptor may be an important therapeutic target for the treatment of Alzheimer’s disease: Studies with DMXBA (GTS-21). Behav. Brain Res., 2000, 113(1-2), 169-181. doi: 10.1016/S0166-4328(00)00211-4 PMID: 10942043
  34. Yiannopoulou, K.G.; Papageorgiou, S.G. Current and future treatments in Alzheimer Disease: An update. J. Cent. Nerv. Syst. Dis., 2020, 12. doi: 10.1177/1179573520907397 PMID: 32165850
  35. Tan, C.C.; Yu, J.T.; Wang, H.F.; Tan, M.S.; Meng, X.F.; Wang, C.; Jiang, T.; Zhu, X.C.; Tan, L. Efficacy and safety of donepezil, galantamine, rivastigmine, and memantine for the treatment of Alzheimer’s disease: A systematic review and meta-analysis. J. Alzheimers Dis., 2014, 41(2), 615-631. doi: 10.3233/JAD-132690 PMID: 24662102
  36. Chen, J.; Bian, X.; Li, Y.; Xiao, X.; Yin, Y.; Du, X.; Wang, C.; Li, L.; Bai, Y.; Liu, X. Moderate hypothermia induces protection against hypoxia/reoxygenation injury by enhancing SUMOylation in cardiomyocytes. Mol. Med. Rep., 2020, 22(4), 2617-2626. doi: 10.3892/mmr.2020.11374 PMID: 32945433
  37. Siemers, E.R.; Sundell, K.L.; Carlson, C.; Case, M.; Sethuraman, G.; Liu-Seifert, H.; Dowsett, S.A.; Pontecorvo, M.J.; Dean, R.A.; Demattos, R. Phase 3 solanezumab trials: Secondary outcomes in mild Alzheimer’s disease patients. Alzheimers Dement., 2016, 12(2), 110-120. doi: 10.1016/j.jalz.2015.06.1893 PMID: 26238576
  38. Cummings, J.L.; Cohen, S.; van Dyck, C.H.; Brody, M.; Curtis, C.; Cho, W.; Ward, M.; Friesenhahn, M.; Rabe, C.; Brunstein, F.; Quartino, A.; Honigberg, L.A.; Fuji, R.N.; Clayton, D.; Mortensen, D.; Ho, C.; Paul, R. ABBY: A phase 2 randomized trial of crenezumab in mild to moderate Alzheimer disease. Neurology, 2018, 90(21), e1889-e1897. doi: 10.1212/WNL.0000000000005550 PMID: 29695589
  39. Kontsekova, E.; Zilka, N.; Kovacech, B.; Skrabana, R.; Novak, M. Identification of structural determinants on tau protein essential for its pathological function: Novel therapeutic target for tau immunotherapy in Alzheimer’s disease. Alzheimers Res. Ther., 2014, 6(4), 45. doi: 10.1186/alzrt277 PMID: 25478018
  40. Wischik, C.M.; Edwards, P.C.; Lai, R.Y.; Roth, M.; Harrington, C.R. Selective inhibition of Alzheimer disease-like tau aggregation by phenothiazines. Proc. Natl. Acad. Sci. , 1996, 93(20), 11213-11218. doi: 10.1073/pnas.93.20.11213 PMID: 8855335
  41. Calabrese, V.; Cornelius, C.; Dinkova-Kostova, A.T.; Calabrese, E.J.; Mattson, M.P. Cellular stress responses, the hormesis paradigm, and vitagenes: novel targets for therapeutic intervention in neurodegenerative disorders. Antioxid. Redox Signal., 2010, 13(11), 1763-1811. doi: 10.1089/ars.2009.3074 PMID: 20446769
  42. Calabrese, V.; Cornelius, C.; Cuzzocrea, S.; Iavicoli, I.; Rizzarelli, E.; Calabrese, E.J. Hormesis, cellular stress response and vitagenes as critical determinants in aging and longevity. Mol. Aspects Med., 2011, 32(4-6), 279-304. doi: 10.1016/j.mam.2011.10.007 PMID: 22020114
  43. Szekely, C.A.; Zandi, P.P. Non-steroidal anti-inflammatory drugs and Alzheimer’s disease: The epidemiological evidence. CNS Neurol. Disord. Drug Targets, 2010, 9(2), 132-139. doi: 10.2174/187152710791012026 PMID: 20205647
  44. Matsuoka, Y.; Jouroukhin, Y.; Gray, A.J.; Ma, L.; Hirata-Fukae, C.; Li, H.F.; Feng, L.; Lecanu, L.; Walker, B.R.; Planel, E.; Arancio, O.; Gozes, I.; Aisen, P.S. A neuronal microtubule-interacting agent, NAPVSIPQ, reduces tau pathology and enhances cognitive function in a mouse model of Alzheimer’s disease. J. Pharmacol. Exp. Ther., 2008, 325(1), 146-153. doi: 10.1124/jpet.107.130526 PMID: 18199809
  45. Butterfield, D.A.; Boyd-Kimball, D. Oxidative stress, amyloid-β peptide, and altered key molecular pathways in the pathogenesis and progression of alzheimer’s disease. J. Alzheimers Dis., 2018, 62(3), 1345-1367. doi: 10.3233/JAD-170543 PMID: 29562527
  46. Abate, G.; Vezzoli, M.; Sandri, M.; Rungratanawanich, W.; Memo, M.; Uberti, D. Mitochondria and cellular redox state on the route from ageing to Alzheimer’s disease. Mech. Ageing Dev., 2020, 192, 111385. doi: 10.1016/j.mad.2020.111385 PMID: 33129798
  47. Álvarez-Berbel, I.; Espargaró, A.; Viayna, A.; Caballero, A.B.; Busquets, M.A.; Gámez, P.; Luque, F.J.; Sabaté, R. Three to tango: Inhibitory effect of quercetin and apigenin on acetylcholinesterase, amyloid-β aggregation and acetylcholinesterase-amyloid interaction. Pharmaceutics, 2022, 14(11), 2342. doi: 10.3390/pharmaceutics14112342 PMID: 36365159
  48. Youdim, K.A.; Joseph, J.A. A possible emerging role of phytochemicals in improving age-related neurological dysfunctions: A multiplicity of effects. Free Radic. Biol. Med., 2001, 30(6), 583-594. doi: 10.1016/S0891-5849(00)00510-4 PMID: 11295356
  49. Piccialli, I.; Tedeschi, V.; Caputo, L.; D’Errico, S.; Ciccone, R.; De Feo, V.; Secondo, A.; Pannaccione, A. Exploring the therapeutic potential of phytochemicals in alzheimer’s disease: Focus on polyphenols and monoterpenes. Front. Pharmacol., 2022, 13, 876614. doi: 10.3389/fphar.2022.876614 PMID: 35600880
  50. Hertog, M.G.L.; Hollman, P.C.H.; van de Putte, B. Content of potentially anticarcinogenic flavonoids of tea infusions, wines, and fruit juices. J. Agric. Food Chem., 1993, 41(8), 1242-1246. doi: 10.1021/jf00032a015
  51. Hertog, M.G. Flavonols and flavones in foods and their relation with cancer and coronary heart disease risk; Wageningen University and Research, 1994.
  52. Dajas, F. Life or death: Neuroprotective and anticancer effects of quercetin. J. Ethnopharmacol., 2012, 143(2), 383-396. doi: 10.1016/j.jep.2012.07.005 PMID: 22820241
  53. Zhang, M.; Swarts, S.G.; Yin, L.; Liu, C.; Tian, Y.; Cao, Y.; Swarts, M.; Yang, S.; Zhang, S.B.; Zhang, K.; Ju, S.; Olek, D.J., Jr; Schwartz, L.; Keng, P.C.; Howell, R.; Zhang, L.; Okunieff, P. Antioxidant properties of quercetin. Adv. Exp. Med. Biol., 2011, 701, 283-289. doi: 10.1007/978-1-4419-7756-4_38 PMID: 21445799
  54. Wu, W.; Li, R.; Li, X.; He, J.; Jiang, S.; Liu, S.; Yang, J. Quercetin as an antiviral agent inhibits influenza a virus (IAV) entry. Viruses, 2015, 8(1), 6. doi: 10.3390/v8010006 PMID: 26712783
  55. Yi, L.; Li, Z.; Yuan, K.; Qu, X.; Chen, J.; Wang, G.; Zhang, H.; Luo, H.; Zhu, L.; Jiang, P.; Chen, L.; Shen, Y.; Luo, M.; Zuo, G.; Hu, J.; Duan, D.; Nie, Y.; Shi, X.; Wang, W.; Han, Y.; Li, T.; Liu, Y.; Ding, M.; Deng, H.; Xu, X. Small molecules blocking the entry of severe acute respiratory syndrome coronavirus into host cells. J. Virol., 2004, 78(20), 11334-11339. doi: 10.1128/JVI.78.20.11334-11339.2004 PMID: 15452254
  56. Colunga Biancatelli, R.M.L.; Berrill, M.; Catravas, J.D.; Marik, P.E. Quercetin and vitamin C: An experimental, synergistic therapy for the prevention and treatment of SARS-CoV-2 related disease (COVID-19). Front. Immunol., 2020, 11, 1451. doi: 10.3389/fimmu.2020.01451 PMID: 32636851
  57. Vessal, M.; Hemmati, M.; Vasei, M. Antidiabetic effects of quercetin in streptozocin-induced diabetic rats. Comp. Biochem. Physiol. C Toxicol. Pharmacol., 2003, 135(3), 357-364. doi: 10.1016/S1532-0456(03)00140-6 PMID: 12927910
  58. Bruning, A. Inhibition of mTOR signaling by quercetin in cancer treatment and prevention. Anticancer. Agents Med. Chem., 2013, 13(7), 1025-1031. doi: 10.2174/18715206113139990114 PMID: 23272907
  59. Yang, H.; Song, Y.; Liang, Y.; Li, R. Quercetin treatment improves renal function and protects the kidney in a rat model of adenine-induced chronic kidney disease. Med. Sci. Monit., 2018, 24, 4760-4766. doi: 10.12659/MSM.909259 PMID: 29987270
  60. Patel, R.V.; Mistry, B.M.; Shinde, S.K.; Syed, R.; Singh, V.; Shin, H.S. Therapeutic potential of quercetin as a cardiovascular agent. Eur. J. Med. Chem., 2018, 155, 889-904. doi: 10.1016/j.ejmech.2018.06.053 PMID: 29966915
  61. Haleagrahara, N.; Miranda-Hernandez, S.; Alim, M.A.; Hayes, L.; Bird, G.; Ketheesan, N. Therapeutic effect of quercetin in collagen-induced arthritis. Biomed. Pharmacother., 2017, 90, 38-46. doi: 10.1016/j.biopha.2017.03.026 PMID: 28342364
  62. Ansari, M.A.; Abdul, H.M.; Joshi, G.; Opii, W.O.; Butterfield, D.A. Protective effect of quercetin in primary neurons against Aβ(1-42): Relevance to Alzheimer’s disease. J. Nutr. Biochem., 2009, 20(4), 269-275. doi: 10.1016/j.jnutbio.2008.03.002 PMID: 18602817
  63. Nakagawa, T.; Itoh, M.; Ohta, K.; Hayashi, Y.; Hayakawa, M.; Yamada, Y.; Akanabe, H.; Chikaishi, T.; Nakagawa, K.; Itoh, Y.; Muro, T.; Yanagida, D.; Nakabayashi, R.; Mori, T.; Saito, K.; Ohzawa, K.; Suzuki, C.; Li, S.; Ueda, M.; Wang, M.X.; Nishida, E.; Islam, S. Tana; Kobori, M.; Inuzuka, T. Improvement of memory recall by quercetin in rodent contextual fear conditioning and human early-stage Alzheimer’s disease patients. Neuroreport, 2016, 27(9), 671-676. doi: 10.1097/WNR.0000000000000594 PMID: 27145228
  64. Sabogal-Guáqueta, A.M.; Muñoz-Manco, J.I.; Ramírez-Pineda, J.R.; Lamprea-Rodriguez, M.; Osorio, E.; Cardona-Gómez, G.P. The flavonoid quercetin ameliorates Alzheimer’s disease pathology and protects cognitive and emotional function in aged triple transgenic Alzheimer’s disease model mice. Neuropharmacology, 2015, 93, 134-145. doi: 10.1016/j.neuropharm.2015.01.027 PMID: 25666032
  65. Kang, C.H.; Choi, Y.H.; Moon, S.K.; Kim, W.J.; Kim, G.Y. Quercetin inhibits lipopolysaccharide-induced nitric oxide production in BV2 microglial cells by suppressing the NF-κB pathway and activating the Nrf2-dependent HO-1 pathway. Int. Immunopharmacol., 2013, 17(3), 808-813. doi: 10.1016/j.intimp.2013.09.009 PMID: 24076371
  66. Li, Y.; Zhou, S.; Li, J.; Sun, Y.; Hasimu, H.; Liu, R.; Zhang, T. Quercetin protects human brain microvascular endothelial cells from fibrillar β-amyloid1-40-induced toxicity. Acta Pharm. Sin. B, 2015, 5(1), 47-54. doi: 10.1016/j.apsb.2014.12.003 PMID: 26579424
  67. Imai, K.; Nakanishi, I.; Ohkubo, K.; Ohba, Y.; Arai, T.; Mizuno, M.; Fukuzumi, S.; Matsumoto, K.; Fukuhara, K. Synthesis of methylated quercetin analogs for enhancement of radical-scavenging activity. RSC Advances, 2017, 7(29), 17968-17979. doi: 10.1039/C7RA02329D
  68. Qi, P.; Li, J.; Gao, S.; Yuan, Y.; Sun, Y.; Liu, N.; Li, Y.; Wang, G.; Chen, L.; Shi, J. Network pharmacology-based and experimental identification of the effects of quercetin on Alzheimer’s Disease. Front. Aging Neurosci., 2020, 12, 589588. doi: 10.3389/fnagi.2020.589588 PMID: 33192484
  69. Olayinka, J.; Eduviere, A.; Adeoluwa, O.; Fafure, A.; Adebanjo, A.; Ozolua, R. Quercetin mitigates memory deficits in scopolamine mice model via protection against neuroinflammation and neurodegeneration. Life Sci., 2022, 292, 120326. doi: 10.1016/j.lfs.2022.120326 PMID: 35031260
  70. Bukhari, S.N.A. Dietary polyphenols as therapeutic intervention for Alzheimer’s Disease: A mechanistic insight. Antioxidants, 2022, 11(3), 554. doi: 10.3390/antiox11030554 PMID: 35326204
  71. Zizkova, P.; Stefek, M.; Rackova, L.; Prnova, M.; Horakova, L. Novel quercetin derivatives: From redox properties to promising treatment of oxidative stress related diseases. Chem. Biol. Interact., 2017, 265, 36-46. doi: 10.1016/j.cbi.2017.01.019 PMID: 28137512
  72. Shah-abadi, M.E.; Ariaei, A.; Moradi, F.; Rustamzadeh, A.; Tanha, R.R.; Sadigh, N.; Marzban, M.; Heydari, M.; Ferdousie, V.T. In silico interactions of natural and synthetic compounds with key proteins involved in Alzheimer’s disease: Prospects for designing new therapeutics compound. Neurotox. Res., 2023, 41(5), 408-430. doi: 10.1007/s12640-023-00648-1 PMID: 37086338
  73. Wahid, M.; Saqib, F.; Qamar, M.; Ziora, Z.M. Antispasmodic activity of the ethanol extract of Citrullus lanatus seeds: Justifying ethnomedicinal use in Pakistan to treat asthma and diarrhea. J. Ethnopharmacol., 2022, 295, 115314. doi: 10.1016/j.jep.2022.115314 PMID: 35490899
  74. Ngo, F.Y.; Wang, W.; Chen, Q.; Zhao, J.; Chen, H.; Gao, J.M.; Rong, J. Network pharmacology analysis and molecular characterization of the herbal medicine formulation Qi-Fu-Yin for the inhibition of the neuroinflammatory biomarker iNOS in microglial BV-2 cells: Implication for the treatment of alzheimer’s disease. Oxid. Med. Cell. Longev., 2020, 2020, 1-15. doi: 10.1155/2020/5780703 PMID: 32952851
  75. Lin, A.; Wang, R.T.; Ahn, S.; Park, C.C.; Smith, D.J. A genome-wide map of human genetic interactions inferred from radiation hybrid genotypes. Genome Res., 2010, 20(8), 1122-1132. doi: 10.1101/gr.104216.109 PMID: 20508145
  76. Johnson, J.M.; Castle, J.; Garrett-Engele, P.; Kan, Z.; Loerch, P.M.; Armour, C.D.; Santos, R.; Schadt, E.E.; Stoughton, R.; Shoemaker, D.D. Genome-wide survey of human alternative pre-mRNA splicing with exon junction microarrays. Science, 2003, 302(5653), 2141-2144. doi: 10.1126/science.1090100 PMID: 14684825
  77. Rosenwald, A.; Alizadeh, A.A.; Widhopf, G.; Simon, R.; Davis, R.E.; Yu, X.; Yang, L.; Pickeral, O.K.; Rassenti, L.Z.; Powell, J.; Botstein, D.; Byrd, J.C.; Grever, M.R.; Cheson, B.D.; Chiorazzi, N.; Wilson, W.H.; Kipps, T.J.; Brown, P.O.; Staudt, L.M. Relation of gene expression phenotype to immunoglobulin mutation genotype in B cell chronic lymphocytic leukemia. J. Exp. Med., 2001, 194(11), 1639-1648. doi: 10.1084/jem.194.11.1639 PMID: 11733578
  78. Alizadeh, A.A.; Eisen, M.B.; Davis, R.E.; Ma, C.; Lossos, I.S.; Rosenwald, A.; Boldrick, J.C.; Sabet, H.; Tran, T.; Yu, X.; Powell, J.I.; Yang, L.; Marti, G.E.; Moore, T.; Hudson, J., Jr; Lu, L.; Lewis, D.B.; Tibshirani, R.; Sherlock, G.; Chan, W.C.; Greiner, T.C.; Weisenburger, D.D.; Armitage, J.O.; Warnke, R.; Levy, R.; Wilson, W.; Grever, M.R.; Byrd, J.C.; Botstein, D.; Brown, P.O.; Staudt, L.M. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature, 2000, 403(6769), 503-511. doi: 10.1038/35000501 PMID: 10676951
  79. Luo, D.; Fan, N.; Zhang, X.; Ngo, F.Y.; Zhao, J.; Zhao, W.; Huang, M.; Li, D.; Wang, Y.; Rong, J. Covalent inhibition of endoplasmic reticulum chaperone GRP78 disconnects the transduction of ER stress signals to inflammation and lipid accumulation in diet-induced obese mice. eLife, 2022, 11, e72182. doi: 10.7554/eLife.72182 PMID: 35138251
  80. Singh, P.; Ravanan, P.; Talwar, P. Death associated protein kinase 1 (DAPK1): A regulator of apoptosis and autophagy. Front. Mol. Neurosci., 2016, 9, 46. doi: 10.3389/fnmol.2016.00046 PMID: 27445685
  81. Hainsworth, A.H.; Allsopp, R.C.; Jim, A.; Potter, J.F.; Lowe, J.; Talbot, C.J.; Prettyman, R.J. Death-associated protein kinase (DAPK1) in cerebral cortex of late-onset Alzheimer’s disease patients and aged controls. Neuropathol. Appl. Neurobiol., 2010, 36(1), 17-24. doi: 10.1111/j.1365-2990.2009.01035.x PMID: 19627511
  82. Kim, B.M.; You, M.H.; Chen, C.H.; Suh, J.; Tanzi, R.E.; Ho Lee, T. Inhibition of death-associated protein kinase 1 attenuates the phosphorylation and amyloidogenic processing of amyloid precursor protein. Hum. Mol. Genet., 2016, 25(12), ddw114. doi: 10.1093/hmg/ddw114 PMID: 27094130
  83. Kim, B.M.; You, M-H.; Chen, C-H.; Lee, S.; Hong, Y.; Hong, Y.; Kimchi, A.; Zhou, X.Z.; Lee, T.H. Death-associated protein kinase 1 has a critical role in aberrant tau protein regulation and function. Cell Death Dis., 2014, 5(5), e1237. doi: 10.1038/cddis.2014.216 PMID: 24853415
  84. Zhang, H.; Wei, W.; Zhao, M.; Ma, L.; Jiang, X.; Pei, H.; Cao, Y.; Li, H. Interaction between Aβ and Tau in the Pathogenesis of Alzheimer’s Disease. Int. J. Biol. Sci., 2021, 17(9), 2181-2192. doi: 10.7150/ijbs.57078 PMID: 34239348
  85. Kim, N.; Chen, D.; Zhou, X.Z.; Lee, T.H. Death-associated protein kinase 1 phosphorylation in neuronal cell death and neurodegenerative disease. Int. J. Mol. Sci., 2019, 20(13), 3131. doi: 10.3390/ijms20133131 PMID: 31248062
  86. Shu, S.; Zhu, H.; Tang, N.; Chen, W.; Li, X.; Li, H.; Pei, L.; Liu, D.; Mu, Y.; Tian, Q.; Zhu, L.Q.; Lu, Y. Selective degeneration of entorhinal-ca1 synapses in Alzheimer’s disease via activation of DAPK1. J. Neurosci., 2016, 36(42), 10843-10852. doi: 10.1523/JNEUROSCI.2258-16.2016 PMID: 27798139
  87. Chen, D.; Mei, Y.; Kim, N.; Lan, G.; Gan, C.L.; Fan, F.; Zhang, T.; Xia, Y.; Wang, L.; Lin, C.; Ke, F.; Zhou, X.Z.; Lu, K.P.; Lee, T.H. Melatonin directly binds and inhibits death‐associated protein kinase 1 function in Alzheimer’s disease. J. Pineal Res., 2020, 69(2), e12665. doi: 10.1111/jpi.12665 PMID: 32358852
  88. Cai, X.; Fang, Z.; Dou, J.; Yu, A.; Zhai, G. Bioavailability of quercetin: Problems and promises. Curr. Med. Chem., 2013, 20(20), 2572-2582. doi: 10.2174/09298673113209990120 PMID: 23514412
  89. Massi, A.; Bortolini, O.; Ragno, D.; Bernardi, T.; Sacchetti, G.; Tacchini, M.; De Risi, C. Research progress in the modification of quercetin leading to anticancer agents. Molecules, 2017, 22(8), 1270. doi: 10.3390/molecules22081270 PMID: 28758919
  90. Babaei, P.; Kouhestani, S.; Jafari, A. Kaempferol attenuates cognitive deficit via regulating oxidative stress and neuroinflammation in an ovariectomized rat model of sporadic dementia. Neural Regen. Res., 2018, 13(10), 1827-1832. doi: 10.4103/1673-5374.238714 PMID: 30136699
  91. Mohammadi, N.; Asle-Rousta, M.; Rahnema, M.; Amini, R. Morin attenuates memory deficits in a rat model of Alzheimer’s disease by ameliorating oxidative stress and neuroinflammation. Eur. J. Pharmacol., 2021, 910, 174506. doi: 10.1016/j.ejphar.2021.174506 PMID: 34534533
  92. Koch, P.; Brunschweiger, A.; Namasivayam, V.; Ullrich, S.; Maruca, A.; Lazzaretto, B.; Küppers, P.; Hinz, S.; Hockemeyer, J.; Wiese, M.; Heer, J.; Alcaro, S.; Kiec-Kononowicz, K.; Müller, C.E. Probing substituents in the 1- and 3-position: Tetrahydropyrazino-annelated water-soluble xanthine derivatives as multi-target drugs with potent adenosine receptor antagonistic activity. Front Chem., 2018, 6, 206. doi: 10.3389/fchem.2018.00206 PMID: 29998095
  93. Egan, W.J.; Merz, K.M., Jr; Baldwin, J.J. Prediction of drug absorption using multivariate statistics. J. Med. Chem., 2000, 43(21), 3867-3877. doi: 10.1021/jm000292e PMID: 11052792
  94. Delaney, J.S. ESOL: Estimating aqueous solubility directly from molecular structure. J. Chem. Inf. Comput. Sci., 2004, 44(3), 1000-1005. doi: 10.1021/ci034243x PMID: 15154768
  95. Ali, J.; Camilleri, P.; Brown, M.B.; Hutt, A.J.; Kirton, S.B. Revisiting the general solubility equation: In silico prediction of aqueous solubility incorporating the effect of topographical polar surface area. J. Chem. Inf. Model., 2012, 52(2), 420-428. doi: 10.1021/ci200387c PMID: 22196228
  96. Sturgeon, J.B.; Laird, B.B. Symplectic algorithm for constant-pressure molecular dynamics using a Nosé-Poincaré thermostat. J. Chem. Phys., 2000, 112(8), 3474-3482. doi: 10.1063/1.480502
  97. Khelfaoui, H.; Harkati, D.; Saleh, B.A. Molecular docking, molecular dynamics simulations and reactivity, studies on approved drugs library targeting ACE2 and SARS-CoV-2 binding with ACE2. J. Biomol. Struct. Dyn., 2021, 39(18), 7246-7262. doi: 10.1080/07391102.2020.1803967 PMID: 32752951
  98. Moya-Alvarado, G.; Gershoni-Emek, N.; Perlson, E.; Bronfman, F.C. Neurodegeneration and Alzheimer’s disease (AD). What can proteomics tell us about the Alzheimer’s brain? Mol. Cell. Proteomics, 2016, 15(2), 409-425. doi: 10.1074/mcp.R115.053330 PMID: 26657538
  99. van der Flier, W.M.; de Vugt, M.E.; Smets, E.M.A.; Blom, M.; Teunissen, C.E. Towards a future where Alzheimer’s disease pathology is stopped before the onset of dementia. Nature. Aging, 2023, 3(5), 494-505. doi: 10.1038/s43587-023-00404-2 PMID: 37202515
  100. Passeri, E.; Elkhoury, K.; Morsink, M.; Broersen, K.; Linder, M.; Tamayol, A.; Malaplate, C.; Yen, F.T.; Arab-Tehrany, E. Alzheimer’s Disease: Treatment strategies and their limitations. Int. J. Mol. Sci., 2022, 23(22), 13954. doi: 10.3390/ijms232213954 PMID: 36430432
  101. You, M.H.; Kim, B.M.; Chen, C.H.; Begley, M.J.; Cantley, L.C.; Lee, T.H. Death-associated protein kinase 1 phosphorylates NDRG2 and induces neuronal cell death. Cell Death Differ., 2017, 24(2), 238-250. doi: 10.1038/cdd.2016.114 PMID: 28141794
  102. Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J. Nat. Prod., 2020, 83(3), 770-803. doi: 10.1021/acs.jnatprod.9b01285 PMID: 32162523
  103. Atanasov, A.G.; Zotchev, S.B.; Dirsch, V.M.; Supuran, C.T. Natural products in drug discovery: Advances and opportunities. Nat. Rev. Drug Discov., 2021, 20(3), 200-216. doi: 10.1038/s41573-020-00114-z PMID: 33510482
  104. Kim, J.H.; Lee, J.; Lee, S.; Cho, E.J. Quercetin and quercetin-3-β-d-glucoside improve cognitive and memory function in Alzheimer’s disease mouse. Appl. Biol. Chem., 2016, 59(5), 721-728. doi: 10.1007/s13765-016-0217-0

补充文件

附件文件
动作
1. JATS XML

版权所有 © Bentham Science Publishers, 2024