Emerging Neuroprotective Strategies: Unraveling the Potential of HDAC Inhibitors in Traumatic Brain Injury Management
- Authors: Ye L.1, Li W.1, Tang X.1, Xu T.1, Wang G.2
-
Affiliations:
- Department of Neurophysiology and Neuropharmacology, Institute of Special Environmental Medicine and Co-Innovation Center of Neuroregeneration, Nantong University
- Nantong University, Department of Neurophysiology and Neuropharmacology, Institute of Special Environmental Medicine and Co-Innovation Center of Neuroregeneration,
- Issue: Vol 22, No 14 (2024)
- Pages: 2298-2313
- Section: Neurology
- URL: https://rjpbr.com/1570-159X/article/view/644532
- DOI: https://doi.org/10.2174/1570159X22666240128002056
- ID: 644532
Cite item
Full Text
Abstract
:Traumatic brain injury (TBI) is a significant global health problem, leading to high rates of mortality and disability. It occurs when an external force damages the brain, causing immediate harm and triggering further pathological processes that exacerbate the condition. Despite its widespread impact, the underlying mechanisms of TBI remain poorly understood, and there are no specific pharmacological treatments available. This creates an urgent need for new, effective neuroprotective drugs and strategies tailored to the diverse needs of TBI patients. In the realm of gene expression regulation, chromatin acetylation plays a pivotal role. This process is controlled by two classes of enzymes: histone acetyltransferase (HAT) and histone deacetylase (HDAC). These enzymes modify lysine residues on histone proteins, thereby determining the acetylation status of chromatin. HDACs, in particular, are involved in the epigenetic regulation of gene expression in TBI. Recent research has highlighted the potential of HDAC inhibitors (HDACIs) as promising neuroprotective agents. These compounds have shown encouraging results in animal models of various neurodegenerative diseases. HDACIs offer multiple avenues for TBI management: they mitigate the neuroinflammatory response, alleviate oxidative stress, inhibit neuronal apoptosis, and promote neurogenesis and axonal regeneration. Additionally, they reduce glial activation, which is associated with TBI-induced neuroinflammation. This review aims to provide a comprehensive overview of the roles and mechanisms of HDACs in TBI and to evaluate the therapeutic potential of HDACIs. By summarizing current knowledge and emphasizing the neuroregenerative capabilities of HDACIs, this review seeks to advance TBI management and contribute to the development of targeted treatments.
About the authors
Lisha Ye
Department of Neurophysiology and Neuropharmacology, Institute of Special Environmental Medicine and Co-Innovation Center of Neuroregeneration, Nantong University
Email: info@benthamscience.net
Wenfeng Li
Department of Neurophysiology and Neuropharmacology, Institute of Special Environmental Medicine and Co-Innovation Center of Neuroregeneration, Nantong University
Email: info@benthamscience.net
Xiaoyan Tang
Department of Neurophysiology and Neuropharmacology, Institute of Special Environmental Medicine and Co-Innovation Center of Neuroregeneration, Nantong University
Email: info@benthamscience.net
Ting Xu
Department of Neurophysiology and Neuropharmacology, Institute of Special Environmental Medicine and Co-Innovation Center of Neuroregeneration, Nantong University
Email: info@benthamscience.net
Guohua Wang
Nantong University, Department of Neurophysiology and Neuropharmacology, Institute of Special Environmental Medicine and Co-Innovation Center of Neuroregeneration,
Author for correspondence.
Email: info@benthamscience.net
References
- Dewan, M.C.; Rattani, A.; Gupta, S.; Baticulon, R.E.; Hung, Y.C.; Punchak, M.; Agrawal, A.; Adeleye, A.O.; Shrime, M.G.; Rubiano, A.M.; Rosenfeld, J.V.; Park, K.B. Estimating the global incidence of traumatic brain injury. J. Neurosurg., 2019, 130(4), 1080-1097. doi: 10.3171/2017.10.JNS17352 PMID: 29701556
- Badhiwala, J.H.; Wilson, J.R.; Fehlings, M.G. Global burden of traumatic brain and spinal cord injury. Lancet Neurol., 2019, 18(1), 24-25. doi: 10.1016/S1474-4422(18)30444-7 PMID: 30497967
- Schneider, A.L.C.; Selvin, E.; Latour, L.; Turtzo, L.C.; Coresh, J.; Mosley, T.; Ling, G.; Gottesman, R.F. Head injury and 25‐year risk of dementia. Alzheimers Dement., 2021, 17(9), 1432-1441. doi: 10.1002/alz.12315 PMID: 33687142
- Kaur, P.; Sharma, S. Recent advances in pathophysiology of traumatic brain injury. Curr. Neuropharmacol., 2018, 16(8), 1224-1238. doi: 10.2174/1570159X15666170613083606 PMID: 28606040
- McGuire, J.L.; Ngwenya, L.B.; McCullumsmith, R.E. Neurotransmitter changes after traumatic brain injury: An update for new treatment strategies. Mol. Psychiatry, 2019, 24(7), 995-1012. doi: 10.1038/s41380-018-0239-6 PMID: 30214042
- Akamatsu, Y.; Hanafy, K.A. Cell death and recovery in traumatic brain injury. Neurotherapeutics, 2020, 17(2), 446-456. doi: 10.1007/s13311-020-00840-7 PMID: 32056100
- Kalra, S.; Malik, R.; Singh, G.; Bhatia, S.; Al-Harrasi, A.; Mohan, S.; Albratty, M.; Albarrati, A.; Tambuwala, M.M. Pathogenesis and management of traumatic brain injury (TBI): Role of neuroinflammation and anti-inflammatory drugs. Inflammopharmacology, 2022, 30(4), 1153-1166. doi: 10.1007/s10787-022-01017-8 PMID: 35802283
- Park, S.Y.; Kim, J.S. A short guide to histone deacetylases including recent progress on class II enzymes. Exp. Mol. Med., 2020, 52(2), 204-212. doi: 10.1038/s12276-020-0382-4 PMID: 32071378
- Demyanenko, S.; Sharifulina, S. The role of post-translational acetylation and deacetylation of signaling proteins and transcription factors after cerebral ischemia: facts and hypotheses. Int. J. Mol. Sci., 2021, 22(15), 7947. doi: 10.3390/ijms22157947 PMID: 34360712
- Irfan, J.; Febrianto, M.R.; Sharma, A.; Rose, T.; Mahmudzade, Y.; Di Giovanni, S.; Nagy, I.; Torres-Perez, J.V. DNA Methylation and Non-Coding RNAs during tissue-injury associated pain. Int. J. Mol. Sci., 2022, 23(2), 752. doi: 10.3390/ijms23020752 PMID: 35054943
- Dolinar, A.; Ravnik-Glavač, M.; Glavač, D. Epigenetic mechanisms in amyotrophic lateral sclerosis: A short review. Mech. Ageing Dev., 2018, 174, 103-110. doi: 10.1016/j.mad.2018.03.005 PMID: 29545202
- Kabir, F.; Atkinson, R.; Cook, A.L.; Phipps, A.J.; King, A.E. The role of altered protein acetylation in neurodegenerative disease. Front. Aging Neurosci., 2023, 14, 1025473. doi: 10.3389/fnagi.2022.1025473 PMID: 36688174
- Chatterjee, S.; Cassel, R.; Schneider-Anthony, A.; Merienne, K.; Cosquer, B.; Tzeplaeff, L.; Halder Sinha, S.; Kumar, M.; Chaturbedy, P.; Eswaramoorthy, M.; Le Gras, S.; Keime, C.; Bousiges, O.; Dutar, P.; Petsophonsakul, P.; Rampon, C.; Cassel, J.C.; Buée, L.; Blum, D.; Kundu, T.K.; Boutillier, A.L. Reinstating plasticity and memory in a tauopathy mouse model with an acetyltransferase activator. EMBO Mol. Med., 2018, 10(11), e8587. doi: 10.15252/emmm.201708587 PMID: 30275019
- Rodrigues, D.A.; Pinheiro, P.S.M.; Sagrillo, F.S.; Bolognesi, M.L.; Fraga, C.A.M. Histone deacetylases as targets for the treatment of neurodegenerative disorders: Challenges and future opportunities. Med. Res. Rev., 2020, 40(6), 2177-2211. doi: 10.1002/med.21701 PMID: 32588916
- Ziemka-Nalecz, M.; Jaworska, J.; Sypecka, J.; Zalewska, T. Histone deacetylase inhibitors: A therapeutic key in neurological disorders? J. Neuropathol. Exp. Neurol., 2018, 77(10), 855-870. doi: 10.1093/jnen/nly073 PMID: 30165682
- Matheson, R.; Chida, K.; Lu, H.; Clendaniel, V.; Fisher, M.; Thomas, A.; Lo, E.H.; Selim, M.; Shehadah, A. Neuroprotective effects of selective inhibition of histone deacetylase 3 in experimental stroke. Transl. Stroke Res., 2020, 11(5), 1052-1063. doi: 10.1007/s12975-020-00783-3 PMID: 32016769
- Sun, L.; Telles, E.; Karl, M.; Cheng, F.; Luetteke, N.; Sotomayor, E.M.; Miller, R.H.; Seto, E. Loss of HDAC11 ameliorates clinical symptoms in a multiple sclerosis mouse model. Life Sci. Alliance, 2018, 1(5), e201800039. doi: 10.26508/lsa.201800039 PMID: 30456376
- Nakatsuka, D.; Izumi, T.; Tsukamoto, T.; Oyama, M.; Nishitomi, K.; Deguchi, Y.; Niidome, K.; Yamakawa, H.; Ito, H.; Ogawa, K. Histone Deacetylase 2 knockdown ameliorates morphological abnormalities of dendritic branches and spines to improve synaptic plasticity in an APP/PS1 Transgenic Mouse Model. Front. Mol. Neurosci., 2021, 14, 782375. doi: 10.3389/fnmol.2021.782375 PMID: 34899185
- Macabuag, N.; Esmieu, W.; Breccia, P.; Jarvis, R.; Blackaby, W.; Lazari, O.; Urbonas, L.; Eznarriaga, M.; Williams, R.; Strijbosch, A.; Van de Bospoort, R.; Matthews, K.; Clissold, C.; Ladduwahetty, T.; Vater, H.; Heaphy, P.; Stafford, D.G.; Wang, H.J.; Mangette, J.E.; McAllister, G.; Beaumont, V.; Vogt, T.F.; Wilkinson, H.A.; Doherty, E.M.; Dominguez, C. Developing HDAC4-Selective protein degraders to investigate the role of hdac4 in huntingtons disease pathology. J. Med. Chem., 2022, 65(18), 12445-12459. doi: 10.1021/acs.jmedchem.2c01149 PMID: 36098485
- Lu, J.; Frerich, J.M.; Turtzo, L.C.; Li, S.; Chiang, J.; Yang, C.; Wang, X.; Zhang, C.; Wu, C.; Sun, Z.; Niu, G.; Zhuang, Z.; Brady, R.O.; Chen, X. Histone deacetylase inhibitors are neuroprotective and preserve NGF-mediated cell survival following traumatic brain injury. Proc. Natl. Acad. Sci. USA, 2013, 110(26), 10747-10752. doi: 10.1073/pnas.1308950110 PMID: 23754423
- Liang, D.Y.; Sahbaie, P.; Sun, Y.; Irvine, K.A.; Shi, X.; Meidahl, A.; Liu, P.; Guo, T.Z.; Yeomans, D.C.; Clark, J.D. TBI-induced nociceptive sensitization is regulated by histone acetylation. IBRO Rep., 2017, 2, 14-23. doi: 10.1016/j.ibror.2016.12.001 PMID: 30135929
- Lu, J.; Frerich, J.M.; Turtzo, L.C.; Li, S.; Chiang, J.; Yang, C.; Wang, X.; Zhang, C.; Wu, C.; Sun, Z.; Niu, G.; Zhuang, Z.; Brady, R.O.; Chen, X. Histone deacetylase inhibitors are neuroprotective and preserve NGF-mediated cell survival following traumatic brain injury. Proc. Natl. Acad. Sci. , 2013, 110(26), 10747-10752. doi: 10.1073/pnas.1308950110 PMID: 23754423
- Sorby-Adams, A.; Marcoionni, A.; Dempsey, E.; Woenig, J.; Turner, R. The role of neurogenic inflammation in blood-brain barrier disruption and development of cerebral oedema following acute central nervous system (CNS) injury. Int. J. Mol. Sci., 2017, 18(8), 1788. doi: 10.3390/ijms18081788 PMID: 28817088
- Hanscom, M.; Loane, D.J.; Shea-Donohue, T. Brain-gut axis dysfunction in the pathogenesis of traumatic brain injury. J. Clin. Invest., 2021, 131(12), e143777. doi: 10.1172/JCI143777 PMID: 34128471
- Salehi, A.; Zhang, J.H.; Obenaus, A. Response of the cerebral vasculature following traumatic brain injury. J. Cereb. Blood Flow Metab., 2017, 37(7), 2320-2339. doi: 10.1177/0271678X17701460 PMID: 28378621
- Nikolian, V.C.; Dekker, S.E.; Bambakidis, T.; Higgins, G.A.; Dennahy, I.S.; Georgoff, P.E.; Williams, A.M.; Andjelkovic, A.V.; Alam, H.B. Improvement of blood-brain barrier integrity in traumatic brain injury and hemorrhagic shock following treatment with valproic acid and fresh frozen plasma. Crit. Care Med., 2018, 46(1), e59-e66. doi: 10.1097/CCM.0000000000002800 PMID: 29095204
- Winkler, E.A.; Minter, D.; Yue, J.K.; Manley, G.T. Cerebral edema in traumatic brain injury. Neurosurg. Clin. N. Am., 2016, 27(4), 473-488. doi: 10.1016/j.nec.2016.05.008 PMID: 27637397
- Vella, M.A.; Crandall, M.L.; Patel, M.B. Acute management of traumatic brain injury. Surg. Clin. North Am., 2017, 97(5), 1015-1030. doi: 10.1016/j.suc.2017.06.003 PMID: 28958355
- Shi, M.; Chen, F.; Chen, Z.; Yang, W.; Yue, S.; Zhang, J.; Chen, X. Sigma-1 Receptor: A potential therapeutic target for traumatic brain injury. Front. Cell. Neurosci., 2021, 15, 685201. doi: 10.3389/fncel.2021.685201 PMID: 34658788
- Sande, A.; West, C. Traumatic brain injury: A review of pathophysiology and management. J. Vet. Emerg. Crit. Care (San Antonio), 2010, 20(2), 177-190. doi: 10.1111/j.1476-4431.2010.00527.x PMID: 20487246
- Desai, M.; Jain, A. Neuroprotection in traumatic brain injury. J. Neurosurg. Sci., 2018, 62(5), 563-573. doi: 10.23736/S0390-5616.18.04476-4 PMID: 29790724
- Saha, P.; Gupta, R.; Sen, T.; Sen, N. Histone deacetylase 4 downregulation elicits post-traumatic psychiatric disorders through impairment of neurogenesis. J. Neurotrauma, 2019, 36(23), 3284-3296. doi: 10.1089/neu.2019.6373 PMID: 31169064
- Biesterveld, B.E.; Pumiglia, L.; Iancu, A.; Shamshad, A.A.; Remmer, H.A.; Siddiqui, A.Z.; OConnell, R.L.; Wakam, G.K.; Kemp, M.T.; Williams, A.M.; Pai, M.P.; Alam, H.B. Valproic acid treatment rescues injured tissues after traumatic brain injury. J. Trauma Acute Care Surg., 2020, 89(6), 1156-1165. doi: 10.1097/TA.0000000000002918 PMID: 32890344
- Sada, N.; Fujita, Y.; Mizuta, N.; Ueno, M.; Furukawa, T.; Yamashita, T. Inhibition of HDAC increases BDNF expression and promotes neuronal rewiring and functional recovery after brain injury. Cell Death Dis., 2020, 11(8), 655. doi: 10.1038/s41419-020-02897-w PMID: 32811822
- Pumiglia, L.; Williams, A.M.; Kemp, M.T.; Wakam, G.K.; Alam, H.B.; Biesterveld, B.E. Brain proteomic changes by histone deacetylase inhibition after traumatic brain injury. Trauma Surg. Acute Care Open, 2021, 6(1), e000682. doi: 10.1136/tsaco-2021-000682 PMID: 33880414
- Kim, H.J.; Rowe, M.; Ren, M.; Hong, J.S.; Chen, P.S.; Chuang, D.M. Histone deacetylase inhibitors exhibit anti-inflammatory and neuroprotective effects in a rat permanent ischemic model of stroke: multiple mechanisms of action. J. Pharmacol. Exp. Ther., 2007, 321(3), 892-901. doi: 10.1124/jpet.107.120188 PMID: 17371805
- Zhao, Y.; Mu, H.; Huang, Y.; Li, S.; Wang, Y.; Stetler, R.A.; Bennett, M.V.L.; Dixon, C.E.; Chen, J.; Shi, Y. Microglia-specific deletion of histone deacetylase 3 promotes inflammation resolution, white matter integrity, and functional recovery in a mouse model of traumatic brain injury. J. Neuroinflammation, 2022, 19(1), 201. doi: 10.1186/s12974-022-02563-2 PMID: 35933343
- Chen, X.; Wang, H.; Zhou, M.; Li, X.; Fang, Z.; Gao, H.; Li, Y.; Hu, W. Valproic acid attenuates traumatic brain injury-induced inflammation in vivo: Involvement of autophagy and the Nrf2/ARE Signaling Pathway. Front. Mol. Neurosci., 2018, 11, 117. doi: 10.3389/fnmol.2018.00117 PMID: 29719500
- Bowman, G.D.; Poirier, M.G. Post-translational modifications of histones that influence nucleosome dynamics. Chem. Rev., 2015, 115(6), 2274-2295. doi: 10.1021/cr500350x PMID: 25424540
- Bannister, A.J.; Kouzarides, T. Regulation of chromatin by histone modifications. Cell Res., 2011, 21(3), 381-395. doi: 10.1038/cr.2011.22 PMID: 21321607
- Luger, K.; Dechassa, M.L.; Tremethick, D.J. New insights into nucleosome and chromatin structure: an ordered state or a disordered affair? Nat. Rev. Mol. Cell Biol., 2012, 13(7), 436-447. doi: 10.1038/nrm3382 PMID: 22722606
- Fyodorov, D.V.; Zhou, B.R.; Skoultchi, A.I.; Bai, Y. Emerging roles of linker histones in regulating chromatin structure and function. Nat. Rev. Mol. Cell Biol., 2018, 19(3), 192-206. doi: 10.1038/nrm.2017.94 PMID: 29018282
- Nunez-Vazquez, R.; Desvoyes, B.; Gutierrez, C. Histone variants and modifications during abiotic stress response. Front. Plant Sci., 2022, 13, 984702. doi: 10.3389/fpls.2022.984702 PMID: 36589114
- Zovkic, I.B.; Paulukaitis, B.S.; Day, J.J.; Etikala, D.M.; Sweatt, J.D. Histone H2A.Z subunit exchange controls consolidation of recent and remote memory. Nature, 2014, 515(7528), 582-586. doi: 10.1038/nature13707 PMID: 25219850
- Allis, C.D.; Jenuwein, T. The molecular hallmarks of epigenetic control. Nat. Rev. Genet., 2016, 17(8), 487-500. doi: 10.1038/nrg.2016.59 PMID: 27346641
- Shen, Y.; Wei, W.; Zhou, D.X. Histone acetylation enzymes coordinate metabolism and gene expression. Trends Plant Sci., 2015, 20(10), 614-621. doi: 10.1016/j.tplants.2015.07.005 PMID: 26440431
- Dang, F.; Wei, W. Targeting the acetylation signaling pathway in cancer therapy. Semin. Cancer Biol., 2022, 85, 209-218. doi: 10.1016/j.semcancer.2021.03.001 PMID: 33705871
- Ramaiah, M.J.; Tangutur, A.D.; Manyam, R.R. Epigenetic modulation and understanding of HDAC inhibitors in cancer therapy. Life Sci., 2021, 277, 119504. doi: 10.1016/j.lfs.2021.119504 PMID: 33872660
- Chen, R.; Zhang, M.; Zhou, Y.; Guo, W.; Yi, M.; Zhang, Z.; Ding, Y.; Wang, Y. The application of histone deacetylases inhibitors in glioblastoma. J. Exp. Clin. Cancer Res., 2020, 39(1), 138. doi: 10.1186/s13046-020-01643-6 PMID: 32682428
- Ding, P.; Ma, Z.; Liu, D.; Pan, M.; Li, H.; Feng, Y.; Zhang, Y.; Shao, C.; Jiang, M.; Lu, D.; Han, J.; Wang, J.; Yan, X. Lysine Acetylation/Deacetylation modification of immune-related molecules in cancer immunotherapy. Front. Immunol., 2022, 13, 865975. doi: 10.3389/fimmu.2022.865975 PMID: 35585975
- Filippakopoulos, P.; Knapp, S. Targeting bromodomains: Epigenetic readers of lysine acetylation. Nat. Rev. Drug Discov., 2014, 13(5), 337-356. doi: 10.1038/nrd4286 PMID: 24751816
- Xue, J.; Wu, G.; Ejaz, U.; Akhtar, F.; Wan, X.; Zhu, Y.; Geng, A.; Chen, Y.; He, S. A novel histone deacetylase inhibitor LT-548-133-1 induces apoptosis by inhibiting HDAC and interfering with microtubule assembly in MCF-7 cells. Invest. New Drugs, 2021, 39(5), 1222-1231. doi: 10.1007/s10637-021-01102-9 PMID: 33788074
- Wang, P.; Wang, Z.; Liu, J. Correction to: Role of HDACs in normal and malignant hematopoiesis. Mol. Cancer, 2020, 19(1), 55. doi: 10.1186/s12943-020-01182-w PMID: 32164749
- Bahl, S.; Seto, E. Regulation of histone deacetylase activities and functions by phosphorylation and its physiological relevance. Cell. Mol. Life Sci., 2021, 78(2), 427-445. doi: 10.1007/s00018-020-03599-4 PMID: 32683534
- Dewanjee, S.; Vallamkondu, J.; Kalra, R.S.; Chakraborty, P.; Gangopadhyay, M.; Sahu, R.; Medala, V.; John, A.; Reddy, P.H.; De Feo, V.; Kandimalla, R. The Emerging Role of HDACs: Pathology and therapeutic targets in diabetes mellitus. Cells, 2021, 10(6), 1340. doi: 10.3390/cells10061340 PMID: 34071497
- Kelly, R.D.W.; Cowley, S.M. The physiological roles of histone deacetylase (HDAC) 1 and 2: Complex co-stars with multiple leading parts. Biochem. Soc. Trans., 2013, 41(3), 741-749. doi: 10.1042/BST20130010 PMID: 23697933
- Ferguson, B.S.; McKinsey, T.A. Non-sirtuin histone deacetylases in the control of cardiac aging. J. Mol. Cell. Cardiol., 2015, 83, 14-20. doi: 10.1016/j.yjmcc.2015.03.010 PMID: 25791169
- Wang, Y.; Abrol, R.; Mak, J.Y.W.; Das Gupta, K.; Ramnath, D.; Karunakaran, D.; Fairlie, D.P.; Sweet, M.J. Histone deacetylase 7: A signalling hub controlling development, inflammation, metabolism and disease. FEBS J., 2022. doi: 10.1111/febs.16437 PMID: 35303381
- Jiao, F.; Gong, Z. The beneficial roles of SIRT1 in neuroinflammation-related diseases. Oxid. Med. Cell. Longev., 2020, 2020, 1-19. doi: 10.1155/2020/6782872 PMID: 33014276
- Kee, H.J.; Kim, I.; Jeong, M.H. Zinc-dependent histone deacetylases: Potential therapeutic targets for arterial hypertension. Biochem. Pharmacol., 2022, 202, 115111. doi: 10.1016/j.bcp.2022.115111 PMID: 35640713
- Nayak, R.; Rosh, I.; Kustanovich, I.; Stern, S. Mood stabilizers in psychiatric disorders and mechanisms learnt from in vitro model systems. Int. J. Mol. Sci., 2021, 22(17), 9315. doi: 10.3390/ijms22179315 PMID: 34502224
- Tasneem, S.; Alam, M.M.; Amir, M.; Akhter, M.; Parvez, S.; Verma, G.; Nainwal, L.M.; Equbal, A.; Anwer, T.; Shaquiquzzaman, M. Heterocyclic Moieties as HDAC Inhibitors: Role in cancer therapeutics. Mini Rev. Med. Chem., 2022, 22(12), 1648-1706. doi: 10.2174/1389557519666211221144013 PMID: 34939540
- Singh, A.; Bishayee, A.; Pandey, A. Targeting histone deacetylases with natural and synthetic agents: An emerging anticancer strategy. Nutrients, 2018, 10(6), 731. doi: 10.3390/nu10060731 PMID: 29882797
- Eckschlager, T.; Plch, J.; Stiborova, M.; Hrabeta, J. Histone deacetylase inhibitors as anticancer drugs. Int. J. Mol. Sci., 2017, 18(7), 1414. doi: 10.3390/ijms18071414 PMID: 28671573
- He, J.; Chu, Y.; Li, J.; Meng, Q.; Liu, Y.; Jin, J.; Wang, Y.; Wang, J.; Huang, B.; Shi, L.; Shi, X.; Tian, J.; Zhufeng, Y.; Feng, R.; Xiao, W.; Gan, Y.; Guo, J.; Shao, C.; Su, Y.; Hu, F.; Sun, X.; Yu, J.; Kang, Y.; Li, Z. Intestinal butyrate-metabolizing species contribute to autoantibody production and bone erosion in rheumatoid arthritis. . Sci. Adv., , 2022, 8(6), eabm1511. doi: 10.1126/sciadv.abm1511
- Mazzocchi, M.; Goulding, S.R.; Morales-Prieto, N.; Foley, T.; Collins, L.M.; Sullivan, A.M.; OKeeffe, G.W. Peripheral administration of the Class-IIa HDAC inhibitor MC1568 partially protects against nigrostriatal neurodegeneration in the striatal 6-OHDA rat model of Parkinsons disease. Brain Behav. Immun., 2022, 102, 151-160. doi: 10.1016/j.bbi.2022.02.025 PMID: 35217173
- Brookes, R.L.; Crichton, S.; Wolfe, C.D.A.; Yi, Q.; Li, L.; Hankey, G.J.; Rothwell, P.M.; Markus, H.S. Sodium valproate, a histone deacetylase inhibitor, Is associated with reduced stroke risk after previous ischemic stroke or transient ischemic attack. Stroke, 2018, 49(1), 54-61. doi: 10.1161/STROKEAHA.117.016674 PMID: 29247141
- Gupta, R.; Ambasta, R.K.; Kumar, P. Histone deacetylase in neuropathology. Adv. Clin. Chem., 2021, 104, 151-231. doi: 10.1016/bs.acc.2020.09.004 PMID: 34462055
- Kumar, S.; Attrish, D.; Srivastava, A.; Banerjee, J.; Tripathi, M.; Chandra, P.S.; Dixit, A.B. Non-histone substrates of histone deacetylases as potential therapeutic targets in epilepsy. Expert Opin. Ther. Targets, 2021, 25(1), 75-85. doi: 10.1080/14728222.2021.1860016 PMID: 33275850
- Wang, G.; Jiang, X.; Pu, H.; Zhang, W.; An, C.; Hu, X.; Liou, A.K.F.; Leak, R.K.; Gao, Y.; Chen, J. Scriptaid, a novel histone deacetylase inhibitor, protects against traumatic brain injury via modulation of PTEN and AKT pathway: scriptaid protects against TBI via AKT. Neurotherapeutics, 2013, 10(1), 124-142. doi: 10.1007/s13311-012-0157-2 PMID: 23132328
- Wang, G.; Shi, Y.; Jiang, X.; Leak, R.K.; Hu, X.; Wu, Y.; Pu, H.; Li, W.W.; Tang, B.; Wang, Y.; Gao, Y.; Zheng, P.; Bennett, M.V.L.; Chen, J. HDAC inhibition prevents white matter injury by modulating microglia/macrophage polarization through the GSK3β/PTEN/Akt axis. Proc. Natl. Acad. Sci. USA, 2015, 112(9), 2853-2858. doi: 10.1073/pnas.1501441112 PMID: 25691750
- Meng, Q.; Yang, G.; Yang, Y.; Ding, F.; Hu, F. Protective effects of histone deacetylase inhibition by Scriptaid on brain injury in neonatal rat models of cerebral ischemia and hypoxia. Int. J. Clin. Exp. Pathol., 2020, 13(2), 179-191. PMID: 32211098
- Chang, P.; Williams, A.M.; Bhatti, U.F.; Biesterveld, B.E.; Liu, B.; Nikolian, V.C.; Dennahy, I.S.; Lee, J.; Li, Y.; Alam, H.B. Valproic acid and neural apoptosis, inflammation, and degeneration 30 days after traumatic brain injury, hemorrhagic shock, and polytrauma in a swine model. J. Am. Coll. Surg., 2019, 228(3), 265-275. doi: 10.1016/j.jamcollsurg.2018.12.026 PMID: 30639301
- Bambakidis, T.; Dekker, S.E.; Sillesen, M.; Liu, B.; Johnson, C.N.; Jin, G.; de Vries, H.E.; Li, Y.; Alam, H.B. Resuscitation with valproic acid alters inflammatory genes in a porcine model of combined traumatic brain injury and hemorrhagic shock. J. Neurotrauma, 2016, 33(16), 1514-1521. doi: 10.1089/neu.2015.4163 PMID: 26905959
- Wakam, G.K.; Biesterveld, B.E.; Pai, M.P.; Kemp, M.T.; OConnell, R.L.; Williams, A.M.; Srinivasan, A.; Chtraklin, K.; Siddiqui, A.Z.; Bhatti, U.F.; Vercruysse, C.A.; Alam, H.B. Administration of valproic acid in clinically approved dose improves neurologic recovery and decreases brain lesion size in swine subjected to hemorrhagic shock and traumatic brain injury. J. Trauma Acute Care Surg., 2021, 90(2), 346-352. doi: 10.1097/TA.0000000000003036 PMID: 33230090
- Dash, P.K.; Orsi, S.A.; Zhang, M.; Grill, R.J.; Pati, S.; Zhao, J.; Moore, A.N. Valproate administered after traumatic brain injury provides neuroprotection and improves cognitive function in rats. PLoS One, 2010, 5(6), e11383. doi: 10.1371/journal.pone.0011383 PMID: 20614021
- Bhatti, U.F.; Karnovsky, A.; Dennahy, I.S.; Kachman, M.; Williams, A.M.; Nikolian, V.C.; Biesterveld, B.E.; Siddiqui, A.; OConnell, R.L.; Liu, B.; Li, Y.; Alam, H.B. Pharmacologic modulation of brain metabolism by valproic acid can induce a neuroprotective environment. J. Trauma Acute Care Surg., 2021, 90(3), 507-514. doi: 10.1097/TA.0000000000003026 PMID: 33196629
- Jepsen, C.H.; deMoya, M.A.; Perner, A.; Sillesen, M.; Ostrowski, S.R.; Alam, H.B.; Johansson, P.I. Effect of valproic acid and injury on lesion size and endothelial glycocalyx shedding in a rodent model of isolated traumatic brain injury. J. Trauma Acute Care Surg., 2014, 77(2), 292-297. doi: 10.1097/TA.0000000000000333 PMID: 25058256
- Dekker, S.E.; Bambakidis, T.; Sillesen, M.; Liu, B.; Johnson, C.N.; Jin, G.; Li, Y.; Alam, H.B. Effect of pharmacologic resuscitation on the brain gene expression profiles in a swine model of traumatic brain injury and hemorrhage. J. Trauma Acute Care Surg., 2014, 77(6), 906-912. doi: 10.1097/TA.0000000000000345 PMID: 25051383
- Dekker, S.E.; Biesterveld, B.E.; Bambakidis, T.; Williams, A.M.; Tagett, R.; Johnson, C.N.; Sillesen, M.; Liu, B.; Li, Y.; Alam, H.B. modulation of brain transcriptome by combined histone deacetylase inhibition and plasma treatment following traumatic brain injury and hemorrhagic shock. Shock, 2021, 55(1), 110-120. doi: 10.1097/SHK.0000000000001605 PMID: 32925172
- Weykamp, M.; Nikolian, V.C.; Dennahy, I.S.; Higgins, G.A.; Georgoff, P.E.; Remmer, H.; Ghandour, M.H.; Alam, H.B. Rapid valproic acid-induced modulation of the traumatic proteome in a porcine model of traumatic brain injury and hemorrhagic shock. J. Surg. Res., 2018, 228, 84-92. doi: 10.1016/j.jss.2018.02.046 PMID: 29907235
- Shein, N.A.; Grigoriadis, N.; Alexandrovich, A.G.; Simeonidou, C.; Lourbopoulos, A.; Polyzoidou, E.; Trembovler, V.; Mascagni, P.; Dinarello, C.A.; Shohami, E. Histone deacetylase inhibitor ITF2357 is neuroprotective, improves functional recovery, and induces glial apoptosis following experimental traumatic brain injury. FASEB J., 2009, 23(12), 4266-4275. doi: 10.1096/fj.09-134700 PMID: 19723705
- Sagarkar, S.; Balasubramanian, N.; Mishra, S.; Choudhary, A.G.; Kokare, D.M.; Sakharkar, A.J. Repeated mild traumatic brain injury causes persistent changes in histone deacetylase function in hippocampus: Implications in learning and memory deficits in rats. Brain Res., 2019, 1711, 183-192. doi: 10.1016/j.brainres.2019.01.022 PMID: 30664848
- Li, T.; Zhang, Y.; Han, D.; Hua, R.; Guo, B.; Hu, S.; Yan, X.; Xu, T. Involvement of IL-17 in secondary brain injury after a traumatic brain injury in rats. Neuromol. Med., 2017, 19(4), 541-554. doi: 10.1007/s12017-017-8468-4 PMID: 28916896
- Xu, J.; Shi, J.; Zhang, J.; Zhang, Y. Vorinostat: a histone deacetylases (HDAC) inhibitor ameliorates traumatic brain injury by inducing iNOS/Nrf2/ARE pathway. Folia Neuropathol., 2018, 56(3), 179-186. doi: 10.5114/fn.2018.78697 PMID: 30509039
- Balasubramanian, N.; Sagarkar, S.; Jadhav, M.; Shahi, N.; Sirmaur, R.; Sakharkar, A.J. Role for histone deacetylation in traumatic brain injury-induced deficits in neuropeptide y in arcuate nucleus: Possible implications in feeding behavior. Neuroendocrinology, 2021, 111(12), 1187-1200. doi: 10.1159/000513638 PMID: 33291119
- Dash, P.K.; Orsi, S.A.; Moore, A.N. Histone deactylase inhibition combined with behavioral therapy enhances learning and memory following traumatic brain injury. Neuroscience, 2009, 163(1), 1-8. doi: 10.1016/j.neuroscience.2009.06.028 PMID: 19531374
- Nikolian, V.C.; Dennahy, I.S.; Weykamp, M.; Williams, A.M.; Bhatti, U.F.; Eidy, H.; Ghandour, M.H.; Chtraklin, K.; Li, Y.; Alam, H.B. Isoform 6selective histone deacetylase inhibition reduces lesion size and brain swelling following traumatic brain injury and hemorrhagic shock. J. Trauma Acute Care Surg., 2019, 86(2), 232-239. doi: 10.1097/TA.0000000000002119 PMID: 30399139
- Zhang, B.; West, E.J.; Van, K.C.; Gurkoff, G.G.; Zhou, J.; Zhang, X.M.; Kozikowski, A.P.; Lyeth, B.G. HDAC inhibitor increases histone H3 acetylation and reduces microglia inflammatory response following traumatic brain injury in rats. Brain Res., 2008, 1226, 181-191. doi: 10.1016/j.brainres.2008.05.085 PMID: 18582446
- Dekker, S.E.; Sillesen, M.; Bambakidis, T.; Andjelkovic, A.V.; Jin, G.; Liu, B.; Boer, C.; Johansson, P.I.; Linzel, D.; Halaweish, I.; Alam, H.B. Treatment with a histone deacetylase inhibitor, valproic acid, is associated with increased platelet activation in a large animal model of traumatic brain injury and hemorrhagic shock. J. Surg. Res., 2014, 190(1), 312-318. doi: 10.1016/j.jss.2014.02.049 PMID: 24694719
- Yu, F.; Wang, Z.; Tanaka, M.; Chiu, C.T.; Leeds, P.; Zhang, Y.; Chuang, D.M. Posttrauma cotreatment with lithium and valproate: reduction of lesion volume, attenuation of blood-brain barrier disruption, and improvement in motor coordination in mice with traumatic brain injury. J. Neurosurg., 2013, 119(3), 766-773. doi: 10.3171/2013.6.JNS13135 PMID: 23848820
- Wang, W.; Tan, T.; Cao, Q.; Zhang, F.; Rein, B.; Duan, W.M.; Yan, Z. Histone deacetylase inhibition restores behavioral and synaptic function in a mouse model of 16p11.2 Deletion. Int. J. Neuropsychopharmacol., 2022, 25(10), 877-889. doi: 10.1093/ijnp/pyac048 PMID: 35907244
- Kusaczuk, M.; Krętowski, R.; Stypułkowska, A.; Cechowska-Pasko, M. Molecular and cellular effects of a novel hydroxamate-based HDAC inhibitor belinostat in glioblastoma cell lines: a preliminary report. Invest. New Drugs, 2016, 34(5), 552-564. doi: 10.1007/s10637-016-0372-5 PMID: 27468826
- Rodríguez-Gómez, J.A.; Kavanagh, E.; Engskog-Vlachos, P.; Engskog, M.K.R.; Herrera, A.J.; Espinosa-Oliva, A.M.; Joseph, B.; Hajji, N.; Venero, J.L.; Burguillos, M.A. Microglia: Agents of the CNS Pro-inflammatory response. Cells, 2020, 9(7), 1717. doi: 10.3390/cells9071717 PMID: 32709045
- Yadav, A.; Huang, T.C.; Chen, S.H.; Ramasamy, T.S.; Hsueh, Y.Y.; Lin, S.P.; Lu, F.I.; Liu, Y.H.; Wu, C.C. Sodium phenylbutyrate inhibits Schwann cell inflammation via HDAC and NFκB to promote axonal regeneration and remyelination. J. Neuroinflammation, 2021, 18(1), 238. doi: 10.1186/s12974-021-02273-1 PMID: 34656124
- Cho, W.; Hong, S.H.; Choe, J. IL-4 and HDAC Inhibitors Suppress Cyclooxygenase-2 expression in human follicular dendritic cells. Immune Netw., 2013, 13(2), 75-79. doi: 10.4110/in.2013.13.2.75 PMID: 23700398
- Yang, H.; Ni, W.; Wei, P.; Li, S.; Gao, X.; Su, J.; Jiang, H.; Lei, Y.; Zhou, L.; Gu, Y. HDAC inhibition reduces white matter injury after intracerebral hemorrhage. J. Cereb. Blood Flow Metab., 2021, 41(5), 958-974. doi: 10.1177/0271678X20942613 PMID: 32703113
- Patnala, R.; Arumugam, T.V.; Gupta, N.; Dheen, S.T. HDAC inhibitor sodium butyrate-mediated epigenetic regulation enhances neuroprotective function of microglia during ischemic stroke. Mol. Neurobiol., 2017, 54(8), 6391-6411. doi: 10.1007/s12035-016-0149-z PMID: 27722928
- Czapski, G.A.; Strosznajder, J.B. Glutamate and GABA in microglia-neuron cross-talk in alzheimers disease. Int. J. Mol. Sci., 2021, 22(21), 11677. doi: 10.3390/ijms222111677 PMID: 34769106
- Nathalie, M.; Polineni, S.P.; Chin, C.N.; Fawcett, D.; Clervius, H.; Maria, Q.S.L.; Legnay, F.; Rego, L.; Mahavadi, A.K.; Jermakowicz, W.J.; Sw-T, L.; Yokobori, S.; Gajavelli, S. Targeting microglial polarization to improve TBI outcomes. CNS Neurol. Disord. Drug Targets, 2021, 20(3), 216-227. doi: 10.2174/1871527319666200918145903 PMID: 32951588
- Shein, N.A.; Shohami, E. Histone deacetylase inhibitors as therapeutic agents for acute central nervous system injuries. Mol. Med., 2011, 17(5-6), 448-456. doi: 10.2119/molmed.2011.00038 PMID: 21274503
- Glauben, R.; Siegmund, B. Inhibition of histone deacetylases in inflammatory bowel diseases. Mol. Med., 2011, 17(5-6), 426-433. doi: 10.2119/molmed.2011.00069 PMID: 21365125
- Dietz, K.C.; Casaccia, P. HDAC inhibitors and neurodegeneration: At the edge between protection and damage. Pharmacol. Res., 2010, 62(1), 11-17. doi: 10.1016/j.phrs.2010.01.011 PMID: 20123018
- Gupta, R.; Ambasta, R.K.; Kumar, P. Pharmacological intervention of histone deacetylase enzymes in the neurodegenerative disorders. Life Sci., 2020, 243, 117278. doi: 10.1016/j.lfs.2020.117278 PMID: 31926248
- Chen, J.; Zhang, J.; Shaik, N.F.; Yi, B.; Wei, X.; Yang, X.F.; Naik, U.P.; Summer, R.; Yan, G.; Xu, X.; Sun, J. The histone deacetylase inhibitor tubacin mitigates endothelial dysfunction by up-regulating the expression of endothelial nitric oxide synthase. J. Biol. Chem., 2019, 294(51), 19565-19576. doi: 10.1074/jbc.RA119.011317 PMID: 31719145
- Shen, Y.; Yang, R.; Zhao, J.; Chen, M.; Chen, S.; Ji, B.; Chen, H.; Liu, D.; Li, L.; Du, G. The histone deacetylase inhibitor belinostat ameliorates experimental autoimmune encephalomyelitis in mice by inhibiting TLR2/MyD88 and HDAC3/NF-κB p65-mediated neuroinflammation. Pharmacol. Res., 2022, 176, 105969. doi: 10.1016/j.phrs.2021.105969 PMID: 34758400
- Royce, S.G.; Dang, W.; Yuan, G.; Tran, J.; El-Osta, A.; Karagiannis, T.C.; Tang, M.L.K. Effects of the histone deacetylase inhibitor, trichostatin A, in a chronic allergic airways disease model in mice. Arch. Immunol. Ther. Exp. (Warsz.), 2012, 60(4), 295-306. doi: 10.1007/s00005-012-0180-3 PMID: 22684086
- Dinarello, C.A. Anti-inflammatory agents: Present and future. Cell, 2010, 140(6), 935-950. doi: 10.1016/j.cell.2010.02.043 PMID: 20303881
- Khatri, N.; Thakur, M.; Pareek, V.; Kumar, S.; Sharma, S.; Datusalia, A.K. Oxidative stress: Major threat in traumatic brain injury. CNS Neurol. Disord. Drug Targets, 2018, 17(9), 689-695. doi: 10.2174/1871527317666180627120501 PMID: 29952272
- Calabrese, V.; Cornelius, C.; Dinkova-Kostova, A.T.; Calabrese, E.J.; Mattson, M.P. Cellular stress responses, the hormesis paradigm, and vitagenes: Novel targets for therapeutic intervention in neurodegenerative disorders. Antioxid. Redox Signal., 2010, 13(11), 1763-1811. doi: 10.1089/ars.2009.3074 PMID: 20446769
- Calabrese, V.; Cornelius, C.; Dinkova-Kostova, A.T.; Calabrese, E.J. Vitagenes, cellular stress response, and acetylcarnitine: Relevance to hormesis. Biofactors, 2009, 35(2), 146-160. doi: 10.1002/biof.22 PMID: 19449442
- Calabrese, V.; Mancuso, C.; Calvani, M.; Rizzarelli, E.; Butterfield, D.A.; Giuffrida Stella, A.M. Nitric oxide in the central nervous system: Neuroprotection versus neurotoxicity. Nat. Rev. Neurosci., 2007, 8(10), 766-775. doi: 10.1038/nrn2214 PMID: 17882254
- Renis, M.; Calabrese, V.; Russo, A.; Calderone, A.; Barcellona, M.L.; Rizza, V. Nuclear DNA strand breaks during ethanol-induced oxidative stress in rat brain. FEBS Lett., 1996, 390(2), 153-156. doi: 10.1016/0014-5793(96)00647-3 PMID: 8706848
- Misztak, P.; Sowa-Kućma, M.; Szewczyk, B.; Nowak, G. Vorinostat (SAHA) may exert its antidepressant-like effects through the modulation of oxidative stress pathways. Neurotox. Res., 2021, 39(2), 170-181. doi: 10.1007/s12640-020-00317-7 PMID: 33400178
- Valvassori, S.S.; Dal-Pont, G.C.; Steckert, A.V.; Varela, R.B.; Lopes-Borges, J.; Mariot, E.; Resende, W.R.; Arent, C.O.; Carvalho, A.F.; Quevedo, J. Sodium butyrate has an antimanic effect and protects the brain against oxidative stress in an animal model of mania induced by ouabain. Psychiatry Res., 2016, 235, 154-159. doi: 10.1016/j.psychres.2015.11.017 PMID: 26654753
- Varoglu, A.O.; Yildirim, A.; Aygul, R.; Gundogdu, O.L.; Sahin, Y.N. Effects of valproate, carbamazepine, and levetiracetam on the antioxidant and oxidant systems in epileptic patients and their clinical importance. Clin. Neuropharmacol., 2010, 33(3), 155-157. doi: 10.1097/WNF.0b013e3181d1e133 PMID: 20502135
- Fu, J.; Shao, C.J.; Chen, F.R.; Ng, H.K.; Chen, Z.P. Autophagy induced by valproic acid is associated with oxidative stress in glioma cell lines. Neuro-oncol., 2010, 12(4), 328-340. doi: 10.1093/neuonc/nop005 PMID: 20308311
- Fourcade, S.; Ruiz, M.; Guilera, C.; Hahnen, E.; Brichta, L.; Naudi, A.; Portero-Otín, M.; Dacremont, G.; Cartier, N.; Wanders, R.; Kemp, S.; Mandel, J.L.; Wirth, B.; Pamplona, R.; Aubourg, P.; Pujol, A. Valproic acid induces antioxidant effects in X-linked adrenoleukodystrophy. Hum. Mol. Genet., 2010, 19(10), 2005-2014. doi: 10.1093/hmg/ddq082 PMID: 20179078
- Iranpak, F.; Saberzadeh, J.; Vessal, M.; Takhshid, M.A. Sodium valproate ameliorates aluminum-induced oxidative stress and apoptosis of PC12 cells. Iran. J. Basic Med. Sci., 2019, 22(11), 1353-1358. doi: 10.22038/ijbms.2019.36930.8804 PMID: 32128102
- Sun, X.; Sun, Y.; Lin, S.; Xu, Y.; Zhao, D. Histone deacetylase inhibitor valproic acid attenuates high glucose induced endoplasmic reticulum stress and apoptosis in NRK 52E cells. Mol. Med. Rep., 2020, 22(5), 4041-4047. doi: 10.3892/mmr.2020.11496 PMID: 32901855
- Wu, M.S.; Li, X.J.; Liu, C.Y.; Xu, Q.; Huang, J.Q.; Gu, S.; Chen, J.X. Effects of histone modification in major depressive disorder. Curr. Neuropharmacol., 2022, 20(7), 1261-1277. doi: 10.2174/1570159X19666210922150043 PMID: 34551699
- Faraco, G.; Pancani, T.; Formentini, L.; Mascagni, P.; Fossati, G.; Leoni, F.; Moroni, F.; Chiarugi, A. Pharmacological inhibition of histone deacetylases by suberoylanilide hydroxamic acid specifically alters gene expression and reduces ischemic injury in the mouse brain. Mol. Pharmacol., 2006, 70(6), 1876-1884. doi: 10.1124/mol.106.027912 PMID: 16946032
- Lee, H.A.; Lee, E.; Do, G.Y.; Moon, E.K.; Quan, F.S.; Kim, I. Histone deacetylase inhibitor MGCD0103 protects the pancreas from streptozotocin-induced oxidative stress and β-cell death. Biomed. Pharmacother., 2019, 109, 921-929. doi: 10.1016/j.biopha.2018.10.163 PMID: 30551546
- Langley, B.; Gensert, J.; Beal, M.; Ratan, R. Remodeling chromatin and stress resistance in the central nervous system: histone deacetylase inhibitors as novel and broadly effective neuroprotective agents. Curr. Drug Targets CNS Neurol. Disord., 2005, 4(1), 41-50. doi: 10.2174/1568007053005091 PMID: 15723612
- Ferrante, R.J.; Kubilus, J.K.; Lee, J.; Ryu, H.; Beesen, A.; Zucker, B.; Smith, K.; Kowall, N.W.; Ratan, R.R.; Luthi-Carter, R.; Hersch, S.M. Histone deacetylase inhibition by sodium butyrate chemotherapy ameliorates the neurodegenerative phenotype in Huntingtons disease mice. J. Neurosci., 2003, 23(28), 9418-9427. doi: 10.1523/JNEUROSCI.23-28-09418.2003 PMID: 14561870
- Graham, N.S.N.; Sharp, D.J. Understanding neurodegeneration after traumatic brain injury: From mechanisms to clinical trials in dementia. J. Neurol. Neurosurg. Psychiatry, 2019, 90(11), 1221-1233. doi: 10.1136/jnnp-2017-317557 PMID: 31542723
- Toshkezi, G.; Kyle, M.; Longo, S.L.; Chin, L.S.; Zhao, L.R. Brain repair by hematopoietic growth factors in the subacute phase of traumatic brain injury. J. Neurosurg., 2018, 129(5), 1286-1294. doi: 10.3171/2017.7.JNS17878 PMID: 29372883
- Kitahara, M.; Inoue, T.; Mani, H.; Takamatsu, Y.; Ikegami, R.; Tohyama, H.; Maejima, H. Exercise and pharmacological inhibition of histone deacetylase improves cognitive function accompanied by an increase of gene expressions crucial for neuronal plasticity in the hippocampus. Neurosci. Lett., 2021, 749, 135749. doi: 10.1016/j.neulet.2021.135749 PMID: 33610667
- Pawelec, P.; Sypecka, J.; Zalewska, T.; Ziemka-Nalecz, M. Analysis of Givinostat/ITF2357 treatment in a rat model of neonatal hypoxic-ischemic brain damage. Int. J. Mol. Sci., 2022, 23(15), 8287. doi: 10.3390/ijms23158287 PMID: 35955430
- Francelle, L.; Outeiro, T.F.; Rappold, G.A. Inhibition of HDAC6 activity protects dopaminergic neurons from alpha-synuclein toxicity. Sci. Rep., 2020, 10(1), 6064. doi: 10.1038/s41598-020-62678-5 PMID: 32269243
- Gao, W.M.; Chadha, M.S.; Kline, A.E.; Clark, R.S.B.; Kochanek, P.M.; Dixon, C.E.; Jenkins, L.W. Immunohistochemical analysis of histone H3 acetylation and methylationEvidence for altered epigenetic signaling following traumatic brain injury in immature rats. Brain Res., 2006, 1070(1), 31-34. doi: 10.1016/j.brainres.2005.11.038 PMID: 16406269
- Guan, J.S.; Haggarty, S.J.; Giacometti, E.; Dannenberg, J.H.; Joseph, N.; Gao, J.; Nieland, T.J.F.; Zhou, Y.; Wang, X.; Mazitschek, R.; Bradner, J.E.; DePinho, R.A.; Jaenisch, R.; Tsai, L.H. HDAC2 negatively regulates memory formation and synaptic plasticity. Nature, 2009, 459(7243), 55-60. doi: 10.1038/nature07925 PMID: 19424149
- Prior, R.; Van Helleputte, L.; Klingl, Y.E.; Van Den Bosch, L. HDAC6 as a potential therapeutic target for peripheral nerve disorders. Expert Opin. Ther. Targets, 2018, 22(12), 993-1007. doi: 10.1080/14728222.2018.1541235 PMID: 30360671
- Calliari, A.; Bobba, N.; Escande, C.; Chini, E.N. Resveratrol delays Wallerian degeneration in a NAD+ and DBC1 dependent manner. Exp. Neurol., 2014, 251, 91-100. doi: 10.1016/j.expneurol.2013.11.013 PMID: 24252177
- Zhan, X.; Cox, C.; Ander, B.P.; Liu, D.; Stamova, B.; Jin, L.W.; Jickling, G.C.; Sharp, F.R. Inflammation combined with ischemia produces myelin injury and plaque-like aggregates of myelin, amyloid-β and AβPP in adult rat brain. J. Alzheimers Dis., 2015, 46(2), 507-523. doi: 10.3233/JAD-143072 PMID: 25790832
- Xu, Z.; Lv, X.A.; Dai, Q.; Ge, Y.Q.; Xu, J. Acute upregulation of neuronal mitochondrial type-1 cannabinoid receptor and its role in metabolic defects and neuronal apoptosis after TBI. Mol. Brain, 2016, 9(1), 75. doi: 10.1186/s13041-016-0257-8 PMID: 27485212
- Buyandelger, B.; Bar, E.E.; Hung, K.S.; Chen, R.M.; Chiang, Y.H.; Liou, J.P.; Huang, H.M.; Wang, J.Y. Histone deacetylase inhibitor MPT0B291 suppresses glioma growth in vitro and in vivo partially through acetylation of p53. Int. J. Biol. Sci., 2020, 16(16), 3184-3199. doi: 10.7150/ijbs.45505 PMID: 33162824
- Uo, T.; Veenstra, T.D.; Morrison, R.S. Histone deacetylase inhibitors prevent p53-dependent and p53-independent Bax-mediated neuronal apoptosis through two distinct mechanisms. J. Neurosci., 2009, 29(9), 2824-2832. doi: 10.1523/JNEUROSCI.6186-08.2009 PMID: 19261878
- Cope, E.C.; Gould, E. Adult neurogenesis, glia, and the extracellular matrix. Cell Stem Cell, 2019, 24(5), 690-705. doi: 10.1016/j.stem.2019.03.023 PMID: 31051133
- Nieto-Estevez, V.; Changarathil, G.; Adeyeye, A.O.; Coppin, M.O.; Kassim, R.S.; Zhu, J.; Hsieh, J. HDAC1 regulates neuronal differentiation. Front. Mol. Neurosci., 2022, 14, 815808. doi: 10.3389/fnmol.2021.815808 PMID: 35095417
- Yoo, D.Y.; Kim, D.W.; Kim, M.J.; Choi, J.H.; Jung, H.Y.; Nam, S.M.; Kim, J.W.; Yoon, Y.S.; Choi, S.Y.; Hwang, I.K. Sodium butyrate, a histone deacetylase Inhibitor, ameliorates SIRT2-induced memory impairment, reduction of cell proliferation, and neuroblast differentiation in the dentate gyrus. Neurol. Res., 2015, 37(1), 69-76. doi: 10.1179/1743132814Y.0000000416 PMID: 24963697
- Uittenbogaard, M.; Brantner, C.A.; Chiaramello, A. Epigenetic modifiers promote mitochondrial biogenesis and oxidative metabolism leading to enhanced differentiation of neuroprogenitor cells. Cell Death Dis., 2018, 9(3), 360. doi: 10.1038/s41419-018-0396-1 PMID: 29500414
- Moon, B.S.; Lu, W.; Park, H.J. Valproic acid promotes the neuronal differentiation of spiral ganglion neural stem cells with robust axonal growth. Biochem. Biophys. Res. Commun., 2018, 503(4), 2728-2735. doi: 10.1016/j.bbrc.2018.08.032 PMID: 30119886
- Wu, C.H.; Tsai, Y.C.; Tsai, T.H.; Kuo, K.L.; Su, Y.F.; Chang, C.H.; Lin, C.L. Valproic acid reduces vasospasm through modulation of Akt phosphorylation and attenuates neuronal apoptosis in subarachnoid hemorrhage rats. Int. J. Mol. Sci., 2021, 22(11), 5975. doi: 10.3390/ijms22115975 PMID: 34205883
- Yu, I.T.; Park, J.Y.; Kim, S.H.; Lee, J.; Kim, Y.S.; Son, H. Valproic acid promotes neuronal differentiation by induction of proneural factors in association with H4 acetylation. Neuropharmacology, 2009, 56(2), 473-480. doi: 10.1016/j.neuropharm.2008.09.019 PMID: 19007798
- Rao, T.; Wu, F.; Xing, D.; Peng, Z.; Ren, D.; Feng, W.; Chen, Y.; Zhao, Z.; Wang, H.; Wang, J.; Kan, W.; Zhang, Q. Effects of valproic Acid on axonal regeneration and recovery of motor function after peripheral nerve injury in the rat. Arch. Bone Jt. Surg., 2014, 2(1), 17-24. PMID: 25207308
- Rozenbaum, M.; Rajman, M.; Rishal, I.; Koppel, I.; Koley, S.; Medzihradszky, K.F.; Oses-Prieto, J.A.; Kawaguchi, R.; Amieux, P.S.; Burlingame, A.L.; Coppola, G.; Fainzilber, M. Translatome regulation in neuronal injury and axon regrowth. eNeuro, 2018, 5(2), ENEURO.0276, 17.2018. doi: 10.1523/ENEURO.0276-17.2018 PMID: 29756027
- Petrova, V.; Eva, R. The virtuous cycle of axon growth: Axonal transport of growth-promoting machinery as an intrinsic determinant of axon regeneration. Dev. Neurobiol., 2018, 78(10), 898-925. doi: 10.1002/dneu.22608 PMID: 29989351
- Mahgoub, M.; Monteggia, L.M. A role for histone deacetylases in the cellular and behavioral mechanisms underlying learning and memory. Learn. Mem., 2014, 21(10), 564-568. doi: 10.1101/lm.036012.114 PMID: 25227251
- Fischer, A.; Sananbenesi, F.; Wang, X.; Dobbin, M.; Tsai, L.H. Recovery of learning and memory is associated with chromatin remodelling. Nature, 2007, 447(7141), 178-182. doi: 10.1038/nature05772 PMID: 17468743
- Gaub, P.; Tedeschi, A.; Puttagunta, R.; Nguyen, T.; Schmandke, A.; Di Giovanni, S. HDAC inhibition promotes neuronal outgrowth and counteracts growth cone collapse through CBP/p300 and P/CAF-dependent p53 acetylation. Cell Death Differ., 2010, 17(9), 1392-1408. doi: 10.1038/cdd.2009.216 PMID: 20094059
- Johnson, E.C.B.; Dammer, E.B.; Duong, D.M.; Ping, L.; Zhou, M.; Yin, L.; Higginbotham, L.A.; Guajardo, A.; White, B.; Troncoso, J.C.; Thambisetty, M.; Montine, T.J.; Lee, E.B.; Trojanowski, J.Q.; Beach, T.G.; Reiman, E.M.; Haroutunian, V.; Wang, M.; Schadt, E.; Zhang, B.; Dickson, D.W.; Ertekin-Taner, N.; Golde, T.E.; Petyuk, V.A.; De Jager, P.L.; Bennett, D.A.; Wingo, T.S.; Rangaraju, S.; Hajjar, I.; Shulman, J.M.; Lah, J.J.; Levey, A.I.; Seyfried, N.T. Large-scale proteomic analysis of Alzheimers disease brain and cerebrospinal fluid reveals early changes in energy metabolism associated with microglia and astrocyte activation. Nat. Med., 2020, 26(5), 769-780. doi: 10.1038/s41591-020-0815-6 PMID: 32284590
- Shanaki-Bavarsad, M.; Almolda, B.; González, B.; Castellano, B. Astrocyte-targeted overproduction of IL-10 reduces neurodegeneration after TBI. Exp. Neurobiol., 2022, 31(3), 173-195. doi: 10.5607/en21035 PMID: 35786640
- Liu, Z.; Chopp, M. Astrocytes, therapeutic targets for neuroprotection and neurorestoration in ischemic stroke. Prog. Neurobiol., 2016, 144, 103-120. doi: 10.1016/j.pneurobio.2015.09.008 PMID: 26455456
- Wang, J.; Hou, Y.; Zhang, L.; Liu, M.; Zhao, J.; Zhang, Z.; Ma, Y.; Hou, W. Estrogen attenuates traumatic brain injury by inhibiting the activation of microglia and astrocyte-mediated neuroinflammatory responses. Mol. Neurobiol., 2021, 58(3), 1052-1061. doi: 10.1007/s12035-020-02171-2 PMID: 33085047
- Borgonetti, V.; Meacci, E.; Pierucci, F.; Romanelli, M.N.; Galeotti, N. Dual HDAC/BRD4 inhibitors relieves neuropathic pain by attenuating inflammatory response in microglia after spared nerve injury. Neurotherapeutics, 2022, 19(5), 1634-1648. doi: 10.1007/s13311-022-01243-6 PMID: 35501470
- Prozorovski, T.; Schulze-Topphoff, U.; Glumm, R.; Baumgart, J.; Schröter, F.; Ninnemann, O.; Siegert, E.; Bendix, I.; Brüstle, O.; Nitsch, R.; Zipp, F.; Aktas, O. Sirt1 contributes critically to the redox-dependent fate of neural progenitors. Nat. Cell Biol., 2008, 10(4), 385-394. doi: 10.1038/ncb1700 PMID: 18344989
- Zhang, Y.; Du, Z.; Zhuang, Z.; Wang, Y.; Wang, F.; Liu, S.; Wang, H.; Feng, H.; Li, H.; Wang, L.; Zhang, X.; Hao, A. E804 induces growth arrest, differentiation and apoptosis of glioblastoma cells by blocking Stat3 signaling. J. Neurooncol., 2015, 125(2), 265-275. doi: 10.1007/s11060-015-1917-8 PMID: 26386687
- Michinaga, S.; Koyama, Y. Pathophysiological responses and roles of astrocytes in traumatic brain injury. Int. J. Mol. Sci., 2021, 22(12), 6418. doi: 10.3390/ijms22126418 PMID: 34203960
- Li, X.; Su, X.; Liu, R.; Pan, Y.; Fang, J.; Cao, L.; Feng, C.; Shang, Q.; Chen, Y.; Shao, C.; Shi, Y. HDAC inhibition potentiates anti-tumor activity of macrophages and enhances anti-PD-L1-mediated tumor suppression. Oncogene, 2021, 40(10), 1836-1850. doi: 10.1038/s41388-020-01636-x PMID: 33564072
- Dong, Z.; Yang, Y.; Liu, S.; Lu, J.; Huang, B.; Zhang, Y. HDAC inhibitor PAC-320 induces G2/M cell cycle arrest and apoptosis in human prostate cancer. Oncotarget, 2018, 9(1), 512-523. doi: 10.18632/oncotarget.23070 PMID: 29416632
- Dashwood, R.; Ho, E. Dietary histone deacetylase inhibitors: From cells to mice to man. Semin. Cancer Biol., 2007, 17(5), 363-369. doi: 10.1016/j.semcancer.2007.04.001 PMID: 17555985
- Jaworska, J.; Zalewska, T.; Sypecka, J.; Ziemka-Nalecz, M. Effect of the HDAC inhibitor, sodium butyrate, on neurogenesis in a rat model of neonatal hypoxiaischemia: Potential mechanism of action. Mol. Neurobiol., 2019, 56(9), 6341-6370. doi: 10.1007/s12035-019-1518-1 PMID: 30767185
- Tung, B.; Ma, D.; Wang, S.; Oyinlade, O.; Laterra, J.; Ying, M.; Lv, S.Q.; Wei, S.; Xia, S. Krüppel-like factor 9 and histone deacetylase inhibitors synergistically induce cell death in glioblastoma stem-like cells. BMC Cancer, 2018, 18(1), 1025. doi: 10.1186/s12885-018-4874-8 PMID: 30348136
Supplementary files
