Astrocytes and Memory: Implications for the Treatment of Memory-related Disorders
- Autores: Wang J.1, Cheng P.2, Qu Y.1, Zhu G.1
-
Afiliações:
- Key Laboratory of Xinan Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain Diseases), Anhui University of Chinese Medicine
- Key Laboratory of Xinan Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain Diseases), Anhui University of Chinese Medicine,
- Edição: Volume 22, Nº 13 (2024)
- Páginas: 2217-2239
- Seção: Neurology
- URL: https://rjpbr.com/1570-159X/article/view/644491
- DOI: https://doi.org/10.2174/1570159X22666240128102039
- ID: 644491
Citar
Texto integral
Resumo
:Memory refers to the imprint accumulated in the brain by life experiences and represents the basis for humans to engage in advanced psychological activities such as thinking and imagination. Previously, research activities focused on memory have always targeted neurons. However, in addition to neurons, astrocytes are also involved in the encoding, consolidation, and extinction of memory. In particular, astrocytes are known to affect the recruitment and function of neurons at the level of local synapses and brain networks. Moreover, the involvement of astrocytes in memory and memory-related disorders, especially in Alzheimers disease (AD) and post-traumatic stress disorder (PTSD), has been investigated extensively. In this review, we describe the unique contributions of astrocytes to synaptic plasticity and neuronal networks and discuss the role of astrocytes in different types of memory processing. In addition, we also explore the roles of astrocytes in the pathogenesis of memory-related disorders, such as AD, brain aging, PTSD and addiction, thus suggesting that targeting astrocytes may represent a potential strategy to treat memory-related neurological diseases. In conclusion, this review emphasizes that thinking from the perspective of astrocytes will provide new ideas for the diagnosis and therapy of memory-related neurological disorders.
Palavras-chave
Sobre autores
Juan Wang
Key Laboratory of Xinan Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain Diseases), Anhui University of Chinese Medicine
Email: info@benthamscience.net
Ping Cheng
Key Laboratory of Xinan Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain Diseases), Anhui University of Chinese Medicine,
Email: info@benthamscience.net
Yan Qu
Key Laboratory of Xinan Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain Diseases), Anhui University of Chinese Medicine
Email: info@benthamscience.net
Guoqi Zhu
Key Laboratory of Xinan Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain Diseases), Anhui University of Chinese Medicine
Autor responsável pela correspondência
Email: info@benthamscience.net
Bibliografia
- Haim, L.B.; Rowitch, D.H. Functional diversity of astrocytes in neural circuit regulation. Nat. Rev. Neurosci., 2017, 18(1), 31-41. doi: 10.1038/nrn.2016.159 PMID: 27904142
- Chung, W.S.; Allen, N.J.; Eroglu, C. Astrocytes control synapse formation, function, and elimination. Cold Spring Harb. Perspect. Biol., 2015, 7(9), a020370. doi: 10.1101/cshperspect.a020370 PMID: 25663667
- Araque, A.; Parpura, V.; Sanzgiri, R.P.; Haydon, P.G. Tripartite synapses: Glia, the unacknowledged partner. Trends Neurosci., 1999, 22(5), 208-215. doi: 10.1016/S0166-2236(98)01349-6 PMID: 10322493
- Khakh, B.S.; Deneen, B. The emerging nature of astrocyte diversity. Annu. Rev. Neurosci., 2019, 42(1), 187-207. doi: 10.1146/annurev-neuro-070918-050443 PMID: 31283899
- Verkhratsky, A.; Nedergaard, M. Physiology of astroglia. Physiol. Rev., 2018, 98(1), 239-389. doi: 10.1152/physrev.00042.2016 PMID: 29351512
- Akther, S.; Hirase, H. Assessment of astrocytes as a mediator of memory and learning in rodents. Glia, 2022, 70(8), 1484-1505. doi: 10.1002/glia.24099 PMID: 34582594
- Khaspekov, L.G.; Frumkina, L.E. Molecular mechanisms of astrocyte involvement in synaptogenesis and brain synaptic plasticity. Biochemistry, 2023, 88(4), 502-514. doi: 10.1134/S0006297923040065 PMID: 37080936
- Dienel, G.A.; Schousboe, A.; McKenna, M.C.; Rothman, D.L. A tribute to Leif Hertz: The historical context of his pioneering studies of the roles of astrocytes in brain energy metabolism, neurotransmission, cognitive functions, and pharmacology identifies important, unresolved topics for future studies. J. Neurochem., 2023, 15812. doi: 10.1111/jnc.15812 PMID: 36928655
- Chen, Y.H.; Jin, S.Y.; Yang, J.M.; Gao, T.M. The memory orchestra: Contribution of astrocytes. Neurosci. Bull., 2023, 39(3), 409-424. doi: 10.1007/s12264-023-01024-x PMID: 36738435
- Endo, F.; Kasai, A.; Soto, J.S.; Yu, X.; Qu, Z.; Hashimoto, H.; Gradinaru, V.; Kawaguchi, R.; Khakh, B.S. Molecular basis of astrocyte diversity and morphology across the CNS in health and disease. Science, 2022, 378(6619), eadc9020. doi: 10.1126/science.adc9020 PMID: 36378959
- Arranz, A.M.; De Strooper, B. The role of astroglia in Alzheimers disease: Pathophysiology and clinical implications. Lancet Neurol., 2019, 18(4), 406-414. doi: 10.1016/S1474-4422(18)30490-3 PMID: 30795987
- Jones, M.E.; Lebonville, C.L.; Paniccia, J.E.; Balentine, M.E.; Reissner, K.J.; Lysle, D.T. Hippocampal interleukin-1 mediates stress-enhanced fear learning: A potential role for astrocyte-derived interleukin-1β. Brain Behav. Immun., 2018, 67, 355-363. doi: 10.1016/j.bbi.2017.09.016 PMID: 28963000
- Yang, J.; Chen, J.; Liu, Y.; Chen, K.H.; Baraban, J.M.; Qiu, Z. Ventral tegmental area astrocytes modulate cocaine reward by tonically releasing GABA. Neuron, 2023, 111(7), 1104-1117.e6. doi: 10.1016/j.neuron.2022.12.033 PMID: 36681074
- Lee, S.H.; Mak, A.; Verheijen, M.H.G. Comparative assessment of the effects of DREADDs and endogenously expressed GPCRs in hippocampal astrocytes on synaptic activity and memory. Front. Cell. Neurosci., 2023, 17, 1159756. doi: 10.3389/fncel.2023.1159756 PMID: 37051110
- Goshen, I. The optogenetic revolution in memory research. Trends Neurosci., 2014, 37(9), 511-522. doi: 10.1016/j.tins.2014.06.002 PMID: 25022518
- Yu, X.; Nagai, J.; Khakh, B.S. Improved tools to study astrocytes. Nat. Rev. Neurosci., 2020, 21(3), 121-138. doi: 10.1038/s41583-020-0264-8 PMID: 32042146
- Savtchenko, L.P.; Bard, L.; Jensen, T.P.; Reynolds, J.P.; Kraev, I.; Medvedev, N.; Stewart, M.G.; Henneberger, C.; Rusakov, D.A. Disentangling astroglial physiology with a realistic cell model in silico. Nat. Commun., 2018, 9(1), 3554. doi: 10.1038/s41467-018-05896-w PMID: 30177844
- Verkhratsky, A.; Reyes, R.C.; Parpura, V. TRP channels coordinate ion signalling in astroglia. Rev. Physiol. Biochem. Pharmacol., 2014, 166, 1-22. PMID: 23784619
- Semyanov, A.; Henneberger, C.; Agarwal, A. Making sense of astrocytic calcium signals - from acquisition to interpretation. Nat. Rev. Neurosci., 2020, 21(10), 551-564. doi: 10.1038/s41583-020-0361-8 PMID: 32873937
- Agarwal, A.; Wu, P.H.; Hughes, E.G.; Fukaya, M.; Tischfield, M.A.; Langseth, A.J.; Wirtz, D.; Bergles, D.E. Transient opening of the mitochondrial permeability transition pore induces microdomain calcium transients in astrocyte processes. Neuron, 2017, 93(3), 587-605.e7. doi: 10.1016/j.neuron.2016.12.034 PMID: 28132831
- Bojarskaite, L.; Bjørnstad, D.M.; Pettersen, K.H.; Cunen, C.; Hermansen, G.H.; Åbjørsbråten, K.S.; Chambers, A.R.; Sprengel, R.; Vervaeke, K.; Tang, W.; Enger, R.; Nagelhus, E.A. Astrocytic Ca2+ signaling is reduced during sleep and is involved in the regulation of slow wave sleep. Nat. Commun., 2020, 11(1), 3240. doi: 10.1038/s41467-020-17062-2 PMID: 32632168
- Wu, Y.W.; Gordleeva, S.; Tang, X.; Shih, P.Y.; Dembitskaya, Y.; Semyanov, A. Morphological profile determines the frequency of spontaneous calcium events in astrocytic processes. Glia, 2019, 67(2), 246-262. doi: 10.1002/glia.23537 PMID: 30565755
- Denizot, A.; Arizono, M.; Nägerl, U.V.; Soula, H.; Berry, H. Simulation of calcium signaling in fine astrocytic processes: Effect of spatial properties on spontaneous activity. PLOS Comput. Biol., 2019, 15(8), e1006795. doi: 10.1371/journal.pcbi.1006795 PMID: 31425510
- Lines, J.; Martin, E.D.; Kofuji, P.; Aguilar, J.; Araque, A. Astrocytes modulate sensory-evoked neuronal network activity. Nat. Commun., 2020, 11(1), 3689. doi: 10.1038/s41467-020-17536-3 PMID: 32704144
- Boddum, K.; Jensen, T.P.; Magloire, V.; Kristiansen, U.; Rusakov, D.A.; Pavlov, I.; Walker, M.C. Astrocytic GABA transporter activity modulates excitatory neurotransmission. Nat. Commun., 2016, 7(1), 13572. doi: 10.1038/ncomms13572 PMID: 27886179
- Kofuji, P.; Araque, A. G-protein-coupled receptors in astrocyte-neuron communication. Neuroscience, 2021, 456, 71-84. doi: 10.1016/j.neuroscience.2020.03.025 PMID: 32224231
- Bazargani, N.; Attwell, D. Astrocyte calcium signaling: The third wave. Nat. Neurosci., 2016, 19(2), 182-189. doi: 10.1038/nn.4201 PMID: 26814587
- Volterra, A.; Liaudet, N.; Savtchouk, I. Astrocyte Ca2+ signalling: An unexpected complexity. Nat. Rev. Neurosci., 2014, 15(5), 327-335. doi: 10.1038/nrn3725 PMID: 24739787
- Srinivasan, R.; Huang, B.S.; Venugopal, S.; Johnston, A.D.; Chai, H.; Zeng, H.; Golshani, P.; Khakh, B.S. Ca2+ signaling in astrocytes from Ip3r2−/− mice in brain slices and during startle responses in vivo. Nat. Neurosci., 2015, 18(5), 708-717. doi: 10.1038/nn.4001 PMID: 25894291
- Semyanov, A. Spatiotemporal pattern of calcium activity in astrocytic network. Cell Calcium, 2019, 78, 15-25. doi: 10.1016/j.ceca.2018.12.007 PMID: 30579813
- Arizono, M.; Inavalli, V.V.G.K.; Panatier, A.; Pfeiffer, T.; Angibaud, J.; Levet, F.; Ter Veer, M.J.T.; Stobart, J.; Bellocchio, L.; Mikoshiba, K.; Marsicano, G.; Weber, B.; Oliet, S.H.R.; Nägerl, U.V. Structural basis of astrocytic Ca2+ signals at tripartite synapses. Nat. Commun., 2020, 11(1), 1906. doi: 10.1038/s41467-020-15648-4 PMID: 32312988
- Georgiou, L.; Echeverría, A.; Georgiou, A.; Kuhn, B. Ca 2+ activity maps of astrocytes tagged by axoastrocytic AAV transfer. Sci. Adv., 2022, 8(6), eabe5371. doi: 10.1126/sciadv.abe5371 PMID: 35138891
- Stobart, J.L.; Ferrari, K.D.; Barrett, M.J.P.; Glück, C.; Stobart, M.J.; Zuend, M.; Weber, B. Cortical circuit activity evokes rapid astrocyte calcium signals on a similar timescale to neurons. Neuron, 2018, 98(4), 726-735.e4. doi: 10.1016/j.neuron.2018.03.050 PMID: 29706581
- Wang, Y.; DelRosso, N.V.; Vaidyanathan, T.V.; Cahill, M.K.; Reitman, M.E.; Pittolo, S.; Mi, X.; Yu, G.; Poskanzer, K.E. Accurate quantification of astrocyte and neurotransmitter fluorescence dynamics for single-cell and population-level physiology. Nat. Neurosci., 2019, 22(11), 1936-1944. doi: 10.1038/s41593-019-0492-2 PMID: 31570865
- Zhu, G.; Liu, Y.; Wang, Y.; Bi, X.; Baudry, M. Different patterns of electrical activity lead to long-term potentiation by activating different intracellular pathways. J. Neurosci., 2015, 35(2), 621-633. doi: 10.1523/JNEUROSCI.2193-14.2015 PMID: 25589756
- Zhu, G.; Briz, V.; Seinfeld, J.; Liu, Y.; Bi, X.; Baudry, M. Calpain-1 deletion impairs mGluR-dependent LTD and fear memory extinction. Sci. Rep., 2017, 7(1), 42788. doi: 10.1038/srep42788 PMID: 28202907
- Frankland, P.W.; Bontempi, B. The organization of recent and remote memories. Nat. Rev. Neurosci., 2005, 6(2), 119-130. doi: 10.1038/nrn1607 PMID: 15685217
- Magee, J.C.; Grienberger, C. Synaptic plasticity forms and functions. Annu. Rev. Neurosci., 2020, 43(1), 95-117. doi: 10.1146/annurev-neuro-090919-022842 PMID: 32075520
- Allen, N.J.; Lyons, D.A. Glia as architects of central nervous system formation and function. Science, 2018, 362(6411), 181-185. doi: 10.1126/science.aat0473 PMID: 30309945
- Bliss, T.V.P.; Lømo, T. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J. Physiol., 1973, 232(2), 331-356. doi: 10.1113/jphysiol.1973.sp010273 PMID: 4727084
- Malenka, R.C.; Bear, M.F. LTP and LTD: An embarrassment of riches. Neuron, 2004, 44(1), 5-21. doi: 10.1016/j.neuron.2004.09.012 PMID: 15450156
- Nguyen, P.V.; Abel, T.; Kandel, E.R. Requirement of a critical period of transcription for induction of a late phase of LTP. Science, 1994, 265(5175), 1104-1107. doi: 10.1126/science.8066450 PMID: 8066450
- Sherwood, M.W.; Arizono, M.; Hisatsune, C.; Bannai, H.; Ebisui, E.; Sherwood, J.L.; Panatier, A.; Oliet, S.H.R.; Mikoshiba, K. Astrocytic IP3Rs: Contribution to Ca2+ signalling and hippocampal LTP. Glia, 2017, 65(3), 502-513. doi: 10.1002/glia.23107 PMID: 28063222
- Navarrete, M.; Perea, G.; de Sevilla, D.F.; Gómez-Gonzalo, M.; Núñez, A.; Martín, E.D.; Araque, A. Astrocytes mediate in vivo cholinergic-induced synaptic plasticity. PLoS Biol., 2012, 10(2), e1001259. doi: 10.1371/journal.pbio.1001259 PMID: 22347811
- Liu, J.H.; Zhang, M.; Wang, Q.; Wu, D.Y.; Jie, W.; Hu, N.Y.; Lan, J.Z.; Zeng, K.; Li, S.J.; Li, X.W.; Yang, J.M.; Gao, T.M. Distinct roles of astroglia and neurons in synaptic plasticity and memory. Mol. Psychiatry, 2022, 27(2), 873-885. doi: 10.1038/s41380-021-01332-6 PMID: 34642458
- Requie, L.M.; Gómez-Gonzalo, M.; Speggiorin, M.; Managò, F.; Melone, M.; Congiu, M.; Chiavegato, A.; Lia, A.; Zonta, M.; Losi, G.; Henriques, V.J.; Pugliese, A.; Pacinelli, G.; Marsicano, G.; Papaleo, F.; Muntoni, A.L.; Conti, F.; Carmignoto, G. Astrocytes mediate long-lasting synaptic regulation of ventral tegmental area dopamine neurons. Nat. Neurosci., 2022, 25(12), 1639-1650. doi: 10.1038/s41593-022-01193-4 PMID: 36396976
- Henneberger, C.; Papouin, T.; Oliet, S.H.R.; Rusakov, D.A. Long-term potentiation depends on release of d-serine from astrocytes. Nature, 2010, 463(7278), 232-236. doi: 10.1038/nature08673 PMID: 20075918
- Mothet, J.P.; Parent, A.T.; Wolosker, H.; Brady, R.O., Jr; Linden, D.J.; Ferris, C.D.; Rogawski, M.A.; Snyder, S.H. D -Serine is an endogenous ligand for the glycine site of the N -methyl- D -aspartate receptor. Proc. Natl. Acad. Sci., 2000, 97(9), 4926-4931. doi: 10.1073/pnas.97.9.4926 PMID: 10781100
- Coyle, J.T.; Balu, D.; Wolosker, H. d-serine, the shape-shifting NMDA receptor co-agonist. Neurochem. Res., 2020, 45(6), 1344-1353. doi: 10.1007/s11064-020-03014-1 PMID: 32189130
- Wolosker, H.; Balu, D.T.; Coyle, J.T. The rise and fall of the d -serine-mediated gliotransmission hypothesis. Trends Neurosci., 2016, 39(11), 712-721. doi: 10.1016/j.tins.2016.09.007 PMID: 27742076
- Papouin, T.; Dunphy, J.M.; Tolman, M.; Dineley, K.T.; Haydon, P.G. Septal cholinergic neuromodulation tunes the astrocyte-dependent gating of hippocampal NMDA receptors to wakefulness. Neuron, 2017, 94(4), 840-854.e7. doi: 10.1016/j.neuron.2017.04.021 PMID: 28479102
- Koh, W.; Park, M.; Chun, Y.E.; Lee, J.; Shim, H.S.; Park, M.G.; Kim, S.; Sa, M.; Joo, J.; Kang, H.; Oh, S.J.; Woo, J.; Chun, H.; Lee, S.E.; Hong, J.; Feng, J.; Li, Y.; Ryu, H.; Cho, J.; Lee, C.J. Astrocytes render memory flexible by releasing D-serine and regulating NMDA receptor tone in the hippocampus. Biol. Psychiatry, 2022, 91(8), 740-752. doi: 10.1016/j.biopsych.2021.10.012 PMID: 34952697
- Huang, A.Y.S.; Woo, J.; Sardar, D.; Lozzi, B.; Bosquez Huerta, N.A.; Lin, C.C.J.; Felice, D.; Jain, A.; Paulucci-Holthauzen, A.; Deneen, B. Region-specific transcriptional control of astrocyte function oversees local circuit activities. Neuron, 2020, 106(6), 992-1008.e9. doi: 10.1016/j.neuron.2020.03.025 PMID: 32320644
- Suzuki, A.; Stern, S.A.; Bozdagi, O.; Huntley, G.W.; Walker, R.H.; Magistretti, P.J.; Alberini, C.M. Astrocyte-neuron lactate transport is required for long-term memory formation. Cell, 2011, 144(5), 810-823. doi: 10.1016/j.cell.2011.02.018 PMID: 21376239
- González-Gutiérrez, A.; Ibacache, A.; Esparza, A.; Barros, L.F.; Sierralta, J. Neuronal lactate levels depend on glia‐derived lactate during high brain activity in Drosophila. Glia, 2020, 68(6), 1213-1227. doi: 10.1002/glia.23772 PMID: 31876077
- Vezzoli, E.; Calì, C.; De Roo, M.; Ponzoni, L.; Sogne, E.; Gagnon, N.; Francolini, M.; Braida, D.; Sala, M.; Muller, D.; Falqui, A.; Magistretti, P.J. Ultrastructural evidence for a role of astrocytes and glycogen-derived lactate in learning-dependent synaptic stabilization. Cereb. Cortex, 2020, 30(4), 2114-2127. doi: 10.1093/cercor/bhz226 PMID: 31807747
- Descalzi, G.; Gao, V.; Steinman, M.Q.; Suzuki, A.; Alberini, C.M. Lactate from astrocytes fuels learning-induced mRNA translation in excitatory and inhibitory neurons. Commun. Biol., 2019, 2(1), 247. doi: 10.1038/s42003-019-0495-2 PMID: 31286064
- Herkenham, M.; Lynn, A.B.; Little, M.D.; Johnson, M.R.; Melvin, L.S.; de Costa, B.R.; Rice, K.C. Cannabinoid receptor localization in brain. Proc. Natl. Acad. Sci., 1990, 87(5), 1932-1936. doi: 10.1073/pnas.87.5.1932 PMID: 2308954
- Navarrete, M.; Araque, A. Endocannabinoids potentiate synaptic transmission through stimulation of astrocytes. Neuron, 2010, 68(1), 113-126. doi: 10.1016/j.neuron.2010.08.043 PMID: 20920795
- Robin, L.M.; Oliveira da Cruz, J.F.; Langlais, V.C.; Martin-Fernandez, M.; Metna-Laurent, M.; Busquets-Garcia, A.; Bellocchio, L.; Soria-Gomez, E.; Papouin, T.; Varilh, M.; Sherwood, M.W.; Belluomo, I.; Balcells, G.; Matias, I.; Bosier, B.; Drago, F.; Van Eeckhaut, A.; Smolders, I.; Georges, F.; Araque, A.; Panatier, A.; Oliet, S.H.R.; Marsicano, G. Astroglial CB1 receptors determine synaptic d-serine availability to enable recognition memory. Neuron, 2018, 98(5), 935-944.e5. doi: 10.1016/j.neuron.2018.04.034 PMID: 29779943
- Zhou, Z.; Okamoto, K.; Onodera, J.; Hiragi, T.; Andoh, M.; Ikawa, M.; Tanaka, K.F.; Ikegaya, Y.; Koyama, R. Astrocytic cAMP modulates memory via synaptic plasticity. Proc. Natl. Acad. Sci., 2021, 118(3), e2016584118. doi: 10.1073/pnas.2016584118 PMID: 33452135
- Chi, S.; Cui, Y.; Wang, H.; Jiang, J.; Zhang, T.; Sun, S.; Zhou, Z.; Zhong, Y.; Xiao, B. Astrocytic Piezo1-mediated mechanotransduction determines adult neurogenesis and cognitive functions. Neuron, 2022, 110(18), 2984-2999.e8. doi: 10.1016/j.neuron.2022.07.010 PMID: 35963237
- Henneberger, C.; Bard, L.; Panatier, A.; Reynolds, J.P.; Kopach, O.; Medvedev, N.I.; Minge, D.; Herde, M.K.; Anders, S.; Kraev, I.; Heller, J.P.; Rama, S.; Zheng, K.; Jensen, T.P.; Sanchez-Romero, I.; Jackson, C.J.; Janovjak, H.; Ottersen, O.P.; Nagelhus, E.A.; Oliet, S.H.R.; Stewart, M.G.; Nägerl, U.V.; Rusakov, D.A. LTP induction boosts glutamate spillover by driving withdrawal of perisynaptic astroglia. Neuron, 2020, 108(5), 919-936.e11. doi: 10.1016/j.neuron.2020.08.030 PMID: 32976770
- Vignoli, B.; Sansevero, G.; Sasi, M.; Rimondini, R.; Blum, R.; Bonaldo, V.; Biasini, E.; Santi, S.; Berardi, N.; Lu, B.; Canossa, M. Astrocytic microdomains from mouse cortex gain molecular control over long-term information storage and memory retention. Commun. Biol., 2021, 4(1), 1152. doi: 10.1038/s42003-021-02678-x PMID: 34611268
- Dudek, S.M.; Bear, M.F. Homosynaptic long-term depression in area CA1 of hippocampus and effects of N-methyl-D-aspartate receptor blockade. Proc. Natl. Acad. Sci., 1992, 89(10), 4363-4367. doi: 10.1073/pnas.89.10.4363 PMID: 1350090
- Han, J.; Kesner, P.; Metna-Laurent, M.; Duan, T.; Xu, L.; Georges, F.; Koehl, M.; Abrous, D.N.; Mendizabal-Zubiaga, J.; Grandes, P.; Liu, Q.; Bai, G.; Wang, W.; Xiong, L.; Ren, W.; Marsicano, G.; Zhang, X. Acute cannabinoids impair working memory through astroglial CB1 receptor modulation of hippocampal LTD. Cell, 2012, 148(5), 1039-1050. doi: 10.1016/j.cell.2012.01.037 PMID: 22385967
- Navarrete, M.; Araque, A. Endocannabinoids mediate neuron-astrocyte communication. Neuron, 2008, 57(6), 883-893. doi: 10.1016/j.neuron.2008.01.029 PMID: 18367089
- Pinto-Duarte, A.; Roberts, A.J.; Ouyang, K.; Sejnowski, T.J. Impairments in remote memory caused by the lack of Type 2 IP 3 receptors. Glia, 2019, 67(10), 1976-1989. doi: 10.1002/glia.23679 PMID: 31348567
- Navarrete, M.; Cuartero, M.I.; Palenzuela, R.; Draffin, J.E.; Konomi, A.; Serra, I.; Colié, S.; Castaño-Castaño, S.; Hasan, M.T.; Nebreda, Á.R.; Esteban, J.A. Astrocytic p38α MAPK drives NMDA receptor-dependent long-term depression and modulates long-term memory. Nat. Commun., 2019, 10(1), 2968. doi: 10.1038/s41467-019-10830-9 PMID: 31273206
- Soto, M.; Cai, W.; Konishi, M.; Kahn, C.R. Insulin signaling in the hippocampus and amygdala regulates metabolism and neurobehavior. Proc. Natl. Acad. Sci., 2019, 116(13), 6379-6384. doi: 10.1073/pnas.1817391116 PMID: 30765523
- Noriega-Prieto, J.A.; Maglio, L.E.; Zegarra-Valdivia, J.A.; Pignatelli, J.; Fernandez, A.M.; Martinez-Rachadell, L.; Fernandes, J.; Núñez, Á.; Araque, A.; Torres-Alemán, I.; Fernández de Sevilla, D. Astrocytic IGF-IRs induce adenosine-mediated inhibitory downregulation and improve sensory discrimination. J. Neurosci., 2021, 41(22), 4768-4781. doi: 10.1523/JNEUROSCI.0005-21.2021 PMID: 33911021
- Brzosko, Z.; Mierau, S.B.; Paulsen, O. Neuromodulation of spike-timing-dependent plasticity: Past, present, and future. Neuron, 2019, 103(4), 563-581. doi: 10.1016/j.neuron.2019.05.041 PMID: 31437453
- Falcón-Moya, R.; Pérez-Rodríguez, M.; Prius-Mengual, J.; Andrade-Talavera, Y.; Arroyo-García, L.E.; Pérez-Artés, R.; Mateos-Aparicio, P.; Guerra-Gomes, S.; Oliveira, J.F.; Flores, G.; Rodríguez-Moreno, A. Astrocyte-mediated switch in spike timing-dependent plasticity during hippocampal development. Nat. Commun., 2020, 11(1), 4388. doi: 10.1038/s41467-020-18024-4 PMID: 32873805
- Martínez-Gallego, I.; Pérez-Rodríguez, M.; Coatl-Cuaya, H.; Flores, G.; Rodríguez-Moreno, A. Adenosine and astrocytes determine the developmental dynamics of spike timing-dependent plasticity in the somatosensory cortex. J. Neurosci., 2022, 42(31), 6038-6052. doi: 10.1523/JNEUROSCI.0115-22.2022 PMID: 35768208
- Min, R.; Nevian, T. Astrocyte signaling controls spike timing-dependent depression at neocortical synapses. Nat. Neurosci., 2012, 15(5), 746-753. doi: 10.1038/nn.3075 PMID: 22446881
- Jones, E.V.; Bouvier, D.S. Astrocyte-secreted matricellular proteins in CNS remodelling during development and disease. Neural Plast., 2014, 2014, 1-12. doi: 10.1155/2014/321209 PMID: 24551460
- Risher, W.C.; Kim, N.; Koh, S.; Choi, J.E.; Mitev, P.; Spence, E.F.; Pilaz, L.J.; Wang, D.; Feng, G.; Silver, D.L.; Soderling, S.H.; Yin, H.H.; Eroglu, C. Thrombospondin receptor α2δ-1 promotes synaptogenesis and spinogenesis via postsynaptic Rac1. J. Cell Biol., 2018, 217(10), 3747-3765. doi: 10.1083/jcb.201802057 PMID: 30054448
- Takano, T.; Wallace, J.T.; Baldwin, K.T.; Purkey, A.M.; Uezu, A.; Courtland, J.L.; Soderblom, E.J.; Shimogori, T.; Maness, P.F.; Eroglu, C.; Soderling, S.H. Chemico-genetic discovery of astrocytic control of inhibition in vivo. Nature, 2020, 588(7837), 296-302. doi: 10.1038/s41586-020-2926-0 PMID: 33177716
- Chung, W.S.; Clarke, L.E.; Wang, G.X.; Stafford, B.K.; Sher, A.; Chakraborty, C.; Joung, J.; Foo, L.C.; Thompson, A.; Chen, C.; Smith, S.J.; Barres, B.A. Astrocytes mediate synapse elimination through MEGF10 and MERTK pathways. Nature, 2013, 504(7480), 394-400. doi: 10.1038/nature12776 PMID: 24270812
- Lee, J.H.; Kim, J.; Noh, S.; Lee, H.; Lee, S.Y.; Mun, J.Y.; Park, H.; Chung, W.S. Astrocytes phagocytose adult hippocampal synapses for circuit homeostasis. Nature, 2021, 590(7847), 612-617. doi: 10.1038/s41586-020-03060-3 PMID: 33361813
- Vainchtein, I.D.; Chin, G.; Cho, F.S.; Kelley, K.W.; Miller, J.G.; Chien, E.C.; Liddelow, S.A.; Nguyen, P.T.; Nakao-Inoue, H.; Dorman, L.C.; Akil, O.; Joshita, S.; Barres, B.A.; Paz, J.T.; Molofsky, A.B.; Molofsky, A.V. Astrocyte-derived interleukin-33 promotes microglial synapse engulfment and neural circuit development. Science, 2018, 359(6381), 1269-1273. doi: 10.1126/science.aal3589 PMID: 29420261
- Wang, Y.; Fu, W.Y.; Cheung, K.; Hung, K.W.; Chen, C.; Geng, H.; Yung, W.H.; Qu, J.Y.; Fu, A.K.Y.; Ip, N.Y. Astrocyte-secreted IL-33 mediates homeostatic synaptic plasticity in the adult hippocampus. Proc. Natl. Acad. Sci., 2021, 118(1), e2020810118. doi: 10.1073/pnas.2020810118 PMID: 33443211
- Koeppen, J.; Nguyen, A.Q.; Nikolakopoulou, A.M.; Garcia, M.; Hanna, S.; Woodruff, S.; Figueroa, Z.; Obenaus, A.; Ethell, I.M. Functional consequences of synapse remodeling following astrocyte-specific regulation of ephrin-B1 in the adult hippocampus. J. Neurosci., 2018, 38(25), 5710-5726. doi: 10.1523/JNEUROSCI.3618-17.2018 PMID: 29793972
- Tan, Z.; Liu, Y.; Xi, W.; Lou, H.; Zhu, L.; Guo, Z.; Mei, L.; Duan, S. Glia-derived ATP inversely regulates excitability of pyramidal and CCK-positive neurons. Nat. Commun., 2017, 8(1), 13772. doi: 10.1038/ncomms13772 PMID: 28128211
- Poskanzer, K.E.; Yuste, R. Astrocytes regulate cortical state switching in vivo. Proc. Natl. Acad. Sci., 2016, 113(19), E2675-E2684. doi: 10.1073/pnas.1520759113 PMID: 27122314
- Ji, D.; Wilson, M.A. Coordinated memory replay in the visual cortex and hippocampus during sleep. Nat. Neurosci., 2007, 10(1), 100-107. doi: 10.1038/nn1825 PMID: 17173043
- Lee, H.S.; Ghetti, A.; Pinto-Duarte, A.; Wang, X.; Dziewczapolski, G.; Galimi, F.; Huitron-Resendiz, S.; Piña-Crespo, J.C.; Roberts, A.J.; Verma, I.M.; Sejnowski, T.J.; Heinemann, S.F. Astrocytes contribute to gamma oscillations and recognition memory. Proc. Natl. Acad. Sci., 2014, 111(32), E3343-E3352. doi: 10.1073/pnas.1410893111 PMID: 25071179
- Brockett, A.T.; Kane, G.A.; Monari, P.K.; Briones, B.A.; Vigneron, P.A.; Barber, G.A.; Bermudez, A.; Dieffenbach, U.; Kloth, A.D.; Buschman, T.J.; Gould, E. Evidence supporting a role for astrocytes in the regulation of cognitive flexibility and neuronal oscillations through the Ca2+ binding protein S100β. PLoS One, 2018, 13(4), e0195726. doi: 10.1371/journal.pone.0195726 PMID: 29664924
- Sardinha, V.M.; Guerra-Gomes, S.; Caetano, I.; Tavares, G.; Martins, M.; Reis, J.S.; Correia, J.S.; Teixeira-Castro, A.; Pinto, L.; Sousa, N.; Oliveira, J.F. Astrocytic signaling supports hippocampalprefrontal theta synchronization and cognitive function. Glia, 2017, 65(12), 1944-1960. doi: 10.1002/glia.23205 PMID: 28885722
- Mederos, S.; Sánchez-Puelles, C.; Esparza, J.; Valero, M.; Ponomarenko, A.; Perea, G. GABAergic signaling to astrocytes in the prefrontal cortex sustains goal-directed behaviors. Nat. Neurosci., 2021, 24(1), 82-92. doi: 10.1038/s41593-020-00752-x PMID: 33288910
- Luo, L. Architectures of neuronal circuits. Science, 2021, 373(6559), eabg7285. doi: 10.1126/science.abg7285 PMID: 34516844
- Martin-Fernandez, M.; Jamison, S.; Robin, L.M.; Zhao, Z.; Martin, E.D.; Aguilar, J.; Benneyworth, M.A.; Marsicano, G.; Araque, A. Synapse-specific astrocyte gating of amygdala-related behavior. Nat. Neurosci., 2017, 20(11), 1540-1548. doi: 10.1038/nn.4649 PMID: 28945222
- Serra, I.; Esparza, J.; Delgado, L.; Martín-Monteagudo, C.; Puigròs, M.; Podlesniy, P.; Trullás, R.; Navarrete, M. Ca2+-modulated photoactivatable imaging reveals neuron-astrocyte glutamatergic circuitries within the nucleus accumbens. Nat. Commun., 2022, 13(1), 5272. doi: 10.1038/s41467-022-33020-6 PMID: 36071061
- Burgess, N.; Maguire, E.A.; OKeefe, J. The human hippocampus and spatial and episodic memory. Neuron, 2002, 35(4), 625-641. doi: 10.1016/S0896-6273(02)00830-9 PMID: 12194864
- Jourdain, P.; Bergersen, L.H.; Bhaukaurally, K.; Bezzi, P.; Santello, M.; Domercq, M.; Matute, C.; Tonello, F.; Gundersen, V.; Volterra, A. Glutamate exocytosis from astrocytes controls synaptic strength. Nat. Neurosci., 2007, 10(3), 331-339. doi: 10.1038/nn1849 PMID: 17310248
- Savtchouk, I.; Di Castro, M.A.; Ali, R.; Stubbe, H.; Luján, R.; Volterra, A. Circuit-specific control of the medial entorhinal inputs to the dentate gyrus by atypical presynaptic NMDARs activated by astrocytes. Proc. Natl. Acad. Sci., 2019, 116(27), 13602-13610. doi: 10.1073/pnas.1816013116 PMID: 31152131
- Zhao, J.; Sun, J.; Zheng, Y.; Zheng, Y.; Shao, Y.; Li, Y.; Fei, F.; Xu, C.; Liu, X.; Wang, S.; Ruan, Y.; Liu, J.; Duan, S.; Chen, Z.; Wang, Y. Activated astrocytes attenuate neocortical seizures in rodent models through driving Na+-K+-ATPase. Nat. Commun., 2022, 13(1), 7136. doi: 10.1038/s41467-022-34662-2 PMID: 36414629
- Kol, A.; Adamsky, A.; Groysman, M.; Kreisel, T.; London, M.; Goshen, I. Astrocytes contribute to remote memory formation by modulating hippocampal-cortical communication during learning. Nat. Neurosci., 2020, 23(10), 1229-1239. doi: 10.1038/s41593-020-0679-6 PMID: 32747787
- Hasan, M.; Kanna, M.S.; Jun, W.; Ramkrishnan, A.S.; Iqbal, Z.; Lee, Y.; Li, Y. Schema‐like learning and memory consolidation acting through myelination. FASEB J., 2019, 33(11), 11758-11775. doi: 10.1096/fj.201900910R PMID: 31366238
- Liu, S.; Wong, H.Y.; Xie, L.; Iqbal, Z.; Lei, Z.; Fu, Z.; Lam, Y.Y.; Ramkrishnan, A.S.; Li, Y. Astrocytes in CA1 modulate schema establishment in the hippocampal-cortical neuron network. BMC Biol., 2022, 20(1), 250. doi: 10.1186/s12915-022-01445-6 PMID: 36352395
- Lei, Z.; Xie, L.; Li, C.H.; Lam, Y.Y.; Ramkrishnan, A.S.; Fu, Z.; Zeng, X.; Liu, S.; Iqbal, Z.; Li, Y. Chemogenetic activation of astrocytes in the basolateral amygdala contributes to fear memory formation by modulating the amygdala-prefrontal cortex communication. Int. J. Mol. Sci., 2022, 23(11), 6092. doi: 10.3390/ijms23116092 PMID: 35682767
- Doron, A.; Rubin, A.; Benmelech-Chovav, A.; Benaim, N.; Carmi, T.; Refaeli, R.; Novick, N.; Kreisel, T.; Ziv, Y.; Goshen, I. Hippocampal astrocytes encode reward location. Nature, 2022, 609(7928), 772-778. doi: 10.1038/s41586-022-05146-6 PMID: 36045289
- Curreli, S.; Bonato, J.; Romanzi, S.; Panzeri, S.; Fellin, T. Complementary encoding of spatial information in hippocampal astrocytes. PLoS Biol., 2022, 20(3), e3001530. doi: 10.1371/journal.pbio.3001530 PMID: 35239646
- Bellmund, J.L.S.; Gärdenfors, P.; Moser, E.I.; Doeller, C.F. Navigating cognition: Spatial codes for human thinking. Science, 2018, 362(6415), eaat6766. doi: 10.1126/science.aat6766 PMID: 30409861
- Hartley, T.; Lever, C.; Burgess, N.; OKeefe, J. Space in the brain: How the hippocampal formation supports spatial cognition. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2014, 369(1635), 20120510. doi: 10.1098/rstb.2012.0510 PMID: 24366125
- Nagai, J.; Bellafard, A.; Qu, Z.; Yu, X.; Ollivier, M.; Gangwani, M.R.; Diaz-Castro, B.; Coppola, G.; Schumacher, S.M.; Golshani, P.; Gradinaru, V.; Khakh, B.S. Specific and behaviorally consequential astrocyte Gq GPCR signaling attenuation in vivo with iβARK. Neuron, 2021, 109(14), 2256-2274.e9. doi: 10.1016/j.neuron.2021.05.023 PMID: 34139149
- Pannasch, U.; Vargová, L.; Reingruber, J.; Ezan, P.; Holcman, D.; Giaume, C.; Syková, E.; Rouach, N. Astroglial networks scale synaptic activity and plasticity. Proc. Natl. Acad. Sci., 2011, 108(20), 8467-8472. doi: 10.1073/pnas.1016650108 PMID: 21536893
- Hösli, L.; Binini, N.; Ferrari, K.D.; Thieren, L.; Looser, Z.J.; Zuend, M.; Zanker, H.S.; Berry, S.; Holub, M.; Möbius, W.; Ruhwedel, T.; Nave, K.A.; Giaume, C.; Weber, B.; Saab, A.S. Decoupling astrocytes in adult mice impairs synaptic plasticity and spatial learning. Cell Rep., 2022, 38(10), 110484. doi: 10.1016/j.celrep.2022.110484 PMID: 35263595
- Tao, X.D.; Liu, Z.R.; Zhang, Y.Q.; Zhang, X.H. Connexin43 hemichannels contribute to working memory and excitatory synaptic transmission of pyramidal neurons in the prefrontal cortex of rats. Life Sci., 2021, 286, 120049. doi: 10.1016/j.lfs.2021.120049 PMID: 34662549
- Herzine, A.; Sekkat, G.; Kaminski, S.; Calcagno, G.; Boschi-Muller, S.; Safi, H.; Corbier, C.; Siest, S.; Claudepierre, T.; Yen, F.T. Lipolysis-stimulated lipoprotein receptor acts as sensor to regulate apoe release in astrocytes. Int. J. Mol. Sci., 2022, 23(15), 8630. doi: 10.3390/ijms23158630 PMID: 35955777
- El Hajj, A.; Herzine, A.; Calcagno, G.; Désor, F.; Djelti, F.; Bombail, V.; Denis, I.; Oster, T.; Malaplate, C.; Vigier, M.; Kaminski, S.; Pauron, L.; Corbier, C.; Yen, F.T.; Lanhers, M.C.; Claudepierre, T. Targeted suppression of lipoprotein receptor LSR in astrocytes leads to olfactory and memory deficits in mice. Int. J. Mol. Sci., 2022, 23(4), 2049. doi: 10.3390/ijms23042049 PMID: 35216163
- Baier, M.P.; Nagaraja, R.Y.; Yarbrough, H.P.; Owen, D.B.; Masingale, A.M.; Ranjit, R.; Stiles, M.A.; Murphy, A.; Agbaga, M.P.; Ahmad, M.; Sherry, D.M.; Kinter, M.T.; Van Remmen, H.; Logan, S. Selective ablation of Sod2 in astrocytes induces sex-specific effects on cognitive function, d-serine availability, and astrogliosis. J. Neurosci., 2022, 42(31), 5992-6006. doi: 10.1523/JNEUROSCI.2543-21.2022 PMID: 35760531
- Curie, A.; Sacco, S.; Bussy, G.; de Saint Martin, A.; Boddaert, N.; Chanraud, S.; Meresse, I.; Chelly, J.; Zilbovicius, M.; des Portes, V. Impairment of cerebello-thalamo-frontal pathway in Rab-GDI mutated patients with pure mental deficiency. Eur. J. Med. Genet., 2009, 52(1), 6-13. doi: 10.1016/j.ejmg.2008.09.003 PMID: 18992375
- Stenmark, H. Rab GTPases as coordinators of vesicle traffic. Nat. Rev. Mol. Cell Biol., 2009, 10(8), 513-525. doi: 10.1038/nrm2728 PMID: 19603039
- DAdamo, P.; Horvat, A.; Gurgone, A.; Mignogna, M.L.; Bianchi, V.; Masetti, M.; Ripamonti, M.; Taverna, S.; Velebit, J.; Malnar, M.; Muhič, M.; Fink, K.; Bachi, A.; Restuccia, U.; Belloli, S.; Moresco, R.M.; Mercalli, A.; Piemonti, L.; Potokar, M.; Bobnar, S.T.; Kreft, M.; Chowdhury, H.H.; Stenovec, M.; Vardjan, N.; Zorec, R. Inhibiting glycolysis rescues memory impairment in an intellectual disability Gdi1-null mouse. Metabolism, 2021, 116, 154463. doi: 10.1016/j.metabol.2020.154463 PMID: 33309713
- Adamsky, A.; Kol, A.; Kreisel, T.; Doron, A.; Ozeri-Engelhard, N.; Melcer, T.; Refaeli, R.; Horn, H.; Regev, L.; Groysman, M.; London, M.; Goshen, I. Astrocytic activation generates de novo neuronal potentiation and memory enhancement. Cell, 2018, 174(1), 59-71.e14. doi: 10.1016/j.cell.2018.05.002 PMID: 29804835
- Li, Y.; Li, L.; Wu, J.; Zhu, Z.; Feng, X.; Qin, L.; Zhu, Y.; Sun, L.; Liu, Y.; Qiu, Z.; Duan, S.; Yu, Y.Q. Activation of astrocytes in hippocampus decreases fear memory through adenosine A1 receptors. eLife, 2020, 9, e57155. doi: 10.7554/eLife.57155 PMID: 32869747
- Fan, X.C.; Ma, C.N.; Song, J.C.; Liao, Z.H.; Huang, N.; Liu, X.; Ma, L. Rac1 signaling in amygdala astrocytes regulates fear memory acquisition and retrieval. Neurosci. Bull., 2021, 37(7), 947-958. doi: 10.1007/s12264-021-00677-w PMID: 33909243
- Li, W.P.; Su, X.H.; Hu, N.Y.; Hu, J.; Li, X.W.; Yang, J.M.; Gao, T.M. Astrocytes mediate cholinergic regulation of adult hippocampal neurogenesis and memory through M1 muscarinic receptor. Biol. Psychiatry, 2022, 92(12), 984-998. doi: 10.1016/j.biopsych.2022.04.019 PMID: 35787318
- Badia-Soteras, A.; Heistek, T.S.; Kater, M.S.J.; Mak, A.; Negrean, A.; van den Oever, M.C.; Mansvelder, H.D.; Khakh, B.S.; Min, R.; Smit, A.B.; Verheijen, M.H.G. Retraction of astrocyte leaflets from the synapse enhances fear memory. Biol. Psychiatry, 2023, 94(3), 226-238. doi: 10.1016/j.biopsych.2022.10.013 PMID: 36702661
- Zhang, K.; Förster, R.; He, W.; Liao, X.; Li, J.; Yang, C.; Qin, H.; Wang, M.; Ding, R.; Li, R.; Jian, T.; Wang, Y.; Zhang, J.; Yang, Z.; Jin, W.; Zhang, Y.; Qin, S.; Lu, Y.; Chen, T.; Stobart, J.; Weber, B.; Adelsberger, H.; Konnerth, A.; Chen, X. Fear learning induces α7-nicotinic acetylcholine receptor-mediated astrocytic responsiveness that is required for memory persistence. Nat. Neurosci., 2021, 24(12), 1686-1698. doi: 10.1038/s41593-021-00949-8 PMID: 34782794
- Tertil, M.; Skupio, U.; Barut, J.; Dubovyk, V.; Wawrzczak-Bargiela, A.; Soltys, Z.; Golda, S.; Kudla, L.; Wiktorowska, L.; Szklarczyk, K.; Korostynski, M.; Przewlocki, R.; Slezak, M. Glucocorticoid receptor signaling in astrocytes is required for aversive memory formation. Transl. Psychiatry, 2018, 8(1), 255. doi: 10.1038/s41398-018-0300-x PMID: 30487639
- Iqbal, Z.; Liu, S.; Lei, Z.; Ramkrishnan, A.S.; Akter, M.; Li, Y. Astrocyte L-Lactate signaling in the acc regulates visceral pain aversive memory in rats. Cells, 2022, 12(1), 26. doi: 10.3390/cells12010026 PMID: 36611820
- Iqbal, Z.; Lei, Z.; Ramkrishnan, A.S.; Liu, S.; Hasan, M.; Akter, M.; Lam, Y.Y.; Li, Y. Adrenergic signalling to astrocytes in anterior cingulate cortex contributes to pain-related aversive memory in rats. Commun. Biol., 2023, 6(1), 10. doi: 10.1038/s42003-022-04405-6 PMID: 36604595
- Cheung, G.; Bataveljic, D.; Visser, J.; Kumar, N.; Moulard, J.; Dallérac, G.; Mozheiko, D.; Rollenhagen, A.; Ezan, P.; Mongin, C.; Chever, O.; Bemelmans, A.P.; Lübke, J.; Leray, I.; Rouach, N. Physiological synaptic activity and recognition memory require astroglial glutamine. Nat. Commun., 2022, 13(1), 753. doi: 10.1038/s41467-022-28331-7 PMID: 35136061
- Ray, S.; Valekunja, U.K.; Stangherlin, A.; Howell, S.A.; Snijders, A.P.; Damodaran, G.; Reddy, A.B. Circadian rhythms in the absence of the clock gene Bmal1. Science, 2020, 367(6479), 800-806. doi: 10.1126/science.aaw7365 PMID: 32054765
- Barca-Mayo, O.; Pons-Espinal, M.; Follert, P.; Armirotti, A.; Berdondini, L.; De Pietri Tonelli, D. Astrocyte deletion of Bmal1 alters daily locomotor activity and cognitive functions via GABA signalling. Nat. Commun., 2017, 8(1), 14336. doi: 10.1038/ncomms14336 PMID: 28186121
- Sofroniew, M.V. Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci., 2009, 32(12), 638-647. doi: 10.1016/j.tins.2009.08.002 PMID: 19782411
- Bellaver, B.; Souza, D.G.; Souza, D.O.; Quincozes-Santos, A. Hippocampal astrocyte cultures from adult and aged rats reproduce changes in glial functionality observed in the aging brain. Mol. Neurobiol., 2017, 54(4), 2969-2985. doi: 10.1007/s12035-016-9880-8 PMID: 27026184
- Murphy-Royal, C.; Gordon, G.R.; Bains, J.S. Stress‐induced structural and functional modifications of astrocytesFurther implicating glia in the central response to stress. Glia, 2019, 67(10), 1806-1820. doi: 10.1002/glia.23610 PMID: 30889320
- Tynan, R.J.; Beynon, S.B.; Hinwood, M.; Johnson, S.J.; Nilsson, M.; Woods, J.J.; Walker, F.R. Chronic stress-induced disruption of the astrocyte network is driven by structural atrophy and not loss of astrocytes. Acta Neuropathol., 2013, 126(1), 75-91. doi: 10.1007/s00401-013-1102-0 PMID: 23512378
- Jo, S.; Yarishkin, O.; Hwang, Y.J.; Chun, Y.E.; Park, M.; Woo, D.H.; Bae, J.Y.; Kim, T.; Lee, J.; Chun, H.; Park, H.J.; Lee, D.Y.; Hong, J.; Kim, H.Y.; Oh, S.J.; Park, S.J.; Lee, H.; Yoon, B.E.; Kim, Y.; Jeong, Y.; Shim, I.; Bae, Y.C.; Cho, J.; Kowall, N.W.; Ryu, H.; Hwang, E.; Kim, D.; Lee, C.J. GABA from reactive astrocytes impairs memory in mouse models of Alzheimers disease. Nat. Med., 2014, 20(8), 886-896. doi: 10.1038/nm.3639 PMID: 24973918
- Chun, H.; Im, H.; Kang, Y.J.; Kim, Y.; Shin, J.H.; Won, W.; Lim, J.; Ju, Y.; Park, Y.M.; Kim, S.; Lee, S.E.; Lee, J.; Woo, J.; Hwang, Y.; Cho, H.; Jo, S.; Park, J.H.; Kim, D.; Kim, D.Y.; Seo, J.S.; Gwag, B.J.; Kim, Y.S.; Park, K.D.; Kaang, B.K.; Cho, H.; Ryu, H.; Lee, C.J. Severe reactive astrocytes precipitate pathological hallmarks of Alzheimers disease via H2O2− production. Nat. Neurosci., 2020, 23(12), 1555-1566. doi: 10.1038/s41593-020-00735-y PMID: 33199896
- Pereira, J.B.; Janelidze, S.; Smith, R.; Mattsson-Carlgren, N.; Palmqvist, S.; Teunissen, C.E.; Zetterberg, H.; Stomrud, E.; Ashton, N.J.; Blennow, K.; Hansson, O. Plasma GFAP is an early marker of amyloid-β but not tau pathology in Alzheimers disease. Brain, 2021, 144(11), 3505-3516. doi: 10.1093/brain/awab223 PMID: 34259835
- Bettcher, B.M.; Olson, K.E.; Carlson, N.E.; McConnell, B.V.; Boyd, T.; Adame, V.; Solano, D.A.; Anton, P.; Markham, N.; Thaker, A.A.; Jensen, A.M.; Dallmann, E.N.; Potter, H.; Coughlan, C. Astrogliosis and episodic memory in late life: Higher GFAP is related to worse memory and white matter microstructure in healthy aging and Alzheimers disease. Neurobiol. Aging, 2021, 103, 68-77. doi: 10.1016/j.neurobiolaging.2021.02.012 PMID: 33845398
- Iliff, J.J.; Wang, M.; Liao, Y.; Plogg, B.A.; Peng, W.; Gundersen, G.A.; Benveniste, H.; Vates, G.E.; Deane, R.; Goldman, S.A.; Nagelhus, E.A.; Nedergaard, M. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci. Transl. Med., 2012, 4(147), 147ra111. doi: 10.1126/scitranslmed.3003748 PMID: 22896675
- Xu, Z.; Xiao, N.; Chen, Y.; Huang, H.; Marshall, C.; Gao, J.; Cai, Z.; Wu, T.; Hu, G.; Xiao, M. Deletion of aquaporin-4 in APP/PS1 mice exacerbates brain Aβ accumulation and memory deficits. Mol. Neurodegener., 2015, 10(1), 58. doi: 10.1186/s13024-015-0056-1 PMID: 26526066
- Du, Z.; Song, Y.; Chen, X.; Zhang, W.; Zhang, G.; Li, H.; Chang, L.; Wu, Y. Knockdown of astrocytic Grin2a aggravates β‐amyloid‐induced memory and cognitive deficits through regulating nerve growth factor. Aging Cell, 2021, 20(8), e13437. doi: 10.1111/acel.13437 PMID: 34291567
- Ju, Y.H.; Bhalla, M.; Hyeon, S.J.; Oh, J.E.; Yoo, S.; Chae, U.; Kwon, J.; Koh, W.; Lim, J.; Park, Y.M.; Lee, J.; Cho, I.J.; Lee, H.; Ryu, H.; Lee, C.J. Astrocytic urea cycle detoxifies Aβ-derived ammonia while impairing memory in Alzheimers disease. Cell Metab., 2022, 34(8), 1104-1120.e8. doi: 10.1016/j.cmet.2022.05.011 PMID: 35738259
- Richetin, K.; Steullet, P.; Pachoud, M.; Perbet, R.; Parietti, E.; Maheswaran, M.; Eddarkaoui, S.; Bégard, S.; Pythoud, C.; Rey, M.; Caillierez, R.; Q Do, K.; Halliez, S.; Bezzi, P.; Buée, L.; Leuba, G.; Colin, M.; Toni, N.; Déglon, N. Tau accumulation in astrocytes of the dentate gyrus induces neuronal dysfunction and memory deficits in Alzheimers disease. Nat. Neurosci., 2020, 23(12), 1567-1579. doi: 10.1038/s41593-020-00728-x PMID: 33169029
- Holtzman, D.M.; Herz, J.; Bu, G. Apolipoprotein E and apolipoprotein E receptors: Normal biology and roles in Alzheimer disease. Cold Spring Harb. Perspect. Med., 2012, 2(3), a006312. doi: 10.1101/cshperspect.a006312 PMID: 22393530
- Pitas, R.E.; Boyles, J.K.; Lee, S.H.; Foss, D.; Mahley, R.W. Astrocytes synthesize apolipoprotein E and metabolize apolipoprotein E-containing lipoproteins. Biochim. Biophys. Acta. Lipids Lipid Metab., 1987, 917(1), 148-161. doi: 10.1016/0005-2760(87)90295-5 PMID: 3539206
- Montagne, A.; Nation, D.A.; Sagare, A.P.; Barisano, G.; Sweeney, M.D.; Chakhoyan, A.; Pachicano, M.; Joe, E.; Nelson, A.R.; DOrazio, L.M.; Buennagel, D.P.; Harrington, M.G.; Benzinger, T.L.S.; Fagan, A.M.; Ringman, J.M.; Schneider, L.S.; Morris, J.C.; Reiman, E.M.; Caselli, R.J.; Chui, H.C.; Tcw, J.; Chen, Y.; Pa, J.; Conti, P.S.; Law, M.; Toga, A.W.; Zlokovic, B.V. APOE4 leads to bloodbrain barrier dysfunction predicting cognitive decline. Nature, 2020, 581(7806), 71-76. doi: 10.1038/s41586-020-2247-3 PMID: 32376954
- Sienski, G.; Narayan, P.; Bonner, J.M.; Kory, N.; Boland, S.; Arczewska, A.A.; Ralvenius, W.T.; Akay, L.; Lockshin, E.; He, L.; Milo, B.; Graziosi, A.; Baru, V.; Lewis, C.A.; Kellis, M.; Sabatini, D.M.; Tsai, L.H.; Lindquist, S. APOE4 disrupts intracellular lipid homeostasis in human iPSC-derived glia. Sci. Transl. Med., 2021, 13(583), eaaz4564. doi: 10.1126/scitranslmed.aaz4564 PMID: 33658354
- Saroja, S.R.; Gorbachev, K.; Julia, T.C.W.; Goate, A.M.; Pereira, A.C. Astrocyte-secreted glypican-4 drives APOE4-dependent tau hyperphosphorylation. Proc. Natl. Acad. Sci., 2022, 119(34), e2108870119. doi: 10.1073/pnas.2108870119 PMID: 35969759
- Tcw, J.; Qian, L.; Pipalia, N.H.; Chao, M.J.; Liang, S.A.; Shi, Y.; Jain, B.R.; Bertelsen, S.E.; Kapoor, M.; Marcora, E.; Sikora, E.; Andrews, E.J.; Martini, A.C.; Karch, C.M.; Head, E.; Holtzman, D.M.; Zhang, B.; Wang, M.; Maxfield, F.R.; Poon, W.W.; Goate, A.M. Cholesterol and matrisome pathways dysregulated in astrocytes and microglia. Cell, 2022, 185(13), 2213-2233.e25. doi: 10.1016/j.cell.2022.05.017 PMID: 35750033
- Wang, C.; Xiong, M.; Gratuze, M.; Bao, X.; Shi, Y.; Andhey, P.S.; Manis, M.; Schroeder, C.; Yin, Z.; Madore, C.; Butovsky, O.; Artyomov, M.; Ulrich, J.D.; Holtzman, D.M. Selective removal of astrocytic APOE4 strongly protects against tau-mediated neurodegeneration and decreases synaptic phagocytosis by microglia. Neuron, 2021, 109(10), 1657-1674. doi: 10.1016/j.neuron.2021.03.024
- Le Douce, J.; Maugard, M.; Veran, J.; Matos, M.; Jégo, P.; Vigneron, P.A.; Faivre, E.; Toussay, X.; Vandenberghe, M.; Balbastre, Y.; Piquet, J.; Guiot, E.; Tran, N.T.; Taverna, M.; Marinesco, S.; Koyanagi, A.; Furuya, S.; Gaudin-Guérif, M.; Goutal, S.; Ghettas, A.; Pruvost, A.; Bemelmans, A.P.; Gaillard, M.C.; Cambon, K.; Stimmer, L.; Sazdovitch, V.; Duyckaerts, C.; Knott, G.; Hérard, A.S.; Delzescaux, T.; Hantraye, P.; Brouillet, E.; Cauli, B.; Oliet, S.H.R.; Panatier, A.; Bonvento, G. Impairment of glycolysis-derived l-serine production in astrocytes contributes to cognitive deficits in alzheimers disease. Cell Metab., 2020, 31(3), 503-517.e8. doi: 10.1016/j.cmet.2020.02.004 PMID: 32130882
- Bosson, A.; Paumier, A.; Boisseau, S.; Jacquier-Sarlin, M.; Buisson, A.; Albrieux, M. TRPA1 channels promote astrocytic Ca2+ hyperactivity and synaptic dysfunction mediated by oligomeric forms of amyloid-β peptide. Mol. Neurodegener., 2017, 12(1), 53. doi: 10.1186/s13024-017-0194-8 PMID: 28683776
- Paumier, A.; Boisseau, S.; Jacquier-Sarlin, M.; Pernet-Gallay, K.; Buisson, A.; Albrieux, M. Astrocyteneuron interplay is critical for Alzheimers disease pathogenesis and is rescued by TRPA1 channel blockade. Brain, 2022, 145(1), 388-405. doi: 10.1093/brain/awab281 PMID: 34302466
- Lia, A.; Sansevero, G.; Chiavegato, A.; Sbrissa, M.; Pendin, D.; Mariotti, L.; Pozzan, T.; Berardi, N.; Carmignoto, G.; Fasolato, C.; Zonta, M. Rescue of astrocyte activity by the calcium sensor STIM1 restores long-term synaptic plasticity in female mice modelling Alzheimers disease. Nat. Commun., 2023, 14(1), 1590. doi: 10.1038/s41467-023-37240-2 PMID: 36949142
- Reichenbach, N.; Delekate, A.; Breithausen, B.; Keppler, K.; Poll, S.; Schulte, T.; Peter, J.; Plescher, M.; Hansen, J.N.; Blank, N.; Keller, A.; Fuhrmann, M.; Henneberger, C.; Halle, A.; Petzold, G.C. P2Y1 receptor blockade normalizes network dysfunction and cognition in an Alzheimers disease model. J. Exp. Med., 2018, 215(6), 1649-1663. doi: 10.1084/jem.20171487 PMID: 29724785
- Raha, S.; Ghosh, A.; Dutta, D.; Patel, D.R.; Pahan, K. Activation of PPARα enhances astroglial uptake and degradation of β-amyloid. Sci. Signal., 2021, 14(706), eabg4747. doi: 10.1126/scisignal.abg4747 PMID: 34699252
- McAlpine, C.S.; Park, J.; Griciuc, A.; Kim, E.; Choi, S.H.; Iwamoto, Y.; Kiss, M.G.; Christie, K.A.; Vinegoni, C.; Poller, W.C.; Mindur, J.E.; Chan, C.T.; He, S.; Janssen, H.; Wong, L.P.; Downey, J.; Singh, S.; Anzai, A.; Kahles, F.; Jorfi, M.; Feruglio, P.F.; Sadreyev, R.I.; Weissleder, R.; Kleinstiver, B.P.; Nahrendorf, M.; Tanzi, R.E.; Swirski, F.K. Astrocytic interleukin-3 programs microglia and limits Alzheimers disease. Nature, 2021, 595(7869), 701-706. doi: 10.1038/s41586-021-03734-6 PMID: 34262178
- Jiwaji, Z.; Tiwari, S.S.; Avilés-Reyes, R.X.; Hooley, M.; Hampton, D.; Torvell, M.; Johnson, D.A.; McQueen, J.; Baxter, P.; Sabari-Sankar, K.; Qiu, J.; He, X.; Fowler, J.; Febery, J.; Gregory, J.; Rose, J.; Tulloch, J.; Loan, J.; Story, D.; McDade, K.; Smith, A.M.; Greer, P.; Ball, M.; Kind, P.C.; Matthews, P.M.; Smith, C.; Dando, O.; Spires-Jones, T.L.; Johnson, J.A.; Chandran, S.; Hardingham, G.E. Reactive astrocytes acquire neuroprotective as well as deleterious signatures in response to Tau and Aß pathology. Nat. Commun., 2022, 13(1), 135. doi: 10.1038/s41467-021-27702-w PMID: 35013236
- Popov, A.; Brazhe, A.; Denisov, P.; Sutyagina, O.; Li, L.; Lazareva, N.; Verkhratsky, A.; Semyanov, A. Astrocyte dystrophy in ageing brain parallels impaired synaptic plasticity. Aging Cell, 2021, 20(3), e13334. doi: 10.1111/acel.13334 PMID: 33675569
- Verkhratsky, A.; Augusto-Oliveira, M.; Pivoriūnas, A.; Popov, A.; Brazhe, A.; Semyanov, A. Astroglial asthenia and loss of function, rather than reactivity, contribute to the ageing of the brain. Pflugers Arch., 2021, 473(5), 753-774. doi: 10.1007/s00424-020-02465-3 PMID: 32979108
- Ding, F.; Liang, S.; Li, R.; Yang, Z.; He, Y.; Yang, S.; Duan, Q.; Zhang, J.; Lyu, J.; Zhou, Z.; Huang, M.; Wang, H.; Li, J.; Yang, C.; Wang, Y.; Gong, M.; Chen, S.; Jia, H.; Chen, X.; Liao, X.; Fu, L.; Zhang, K. Astrocytes exhibit diverse Ca2+ changes at subcellular domains during brain aging. Front. Aging Neurosci., 2022, 14, 1029533. doi: 10.3389/fnagi.2022.1029533 PMID: 36389078
- Soreq, L.; Rose, J.; Soreq, E.; Hardy, J.; Trabzuni, D.; Cookson, M.R.; Smith, C.; Ryten, M.; Patani, R.; Ule, J. Major shifts in glial regional identity are a transcriptional hallmark of human brain aging. Cell Rep., 2017, 18(2), 557-570. doi: 10.1016/j.celrep.2016.12.011 PMID: 28076797
- Clarke, L.E.; Liddelow, S.A.; Chakraborty, C.; Münch, A.E.; Heiman, M.; Barres, B.A. Normal aging induces A1-like astrocyte reactivity. Proc. Natl. Acad. Sci., 2018, 115(8), E1896-E1905. doi: 10.1073/pnas.1800165115 PMID: 29437957
- Allen, W.E.; Blosser, T.R.; Sullivan, Z.A.; Dulac, C.; Zhuang, X. Molecular and spatial signatures of mouse brain aging at single-cell resolution. Cell, 2023, 186(1), 194-208.e18. doi: 10.1016/j.cell.2022.12.010 PMID: 36580914
- Preininger, M.K.; Kaufer, D. Blood-brain barrier dysfunction and astrocyte senescence as reciprocal drivers of neuropathology in aging. Int. J. Mol. Sci., 2022, 23(11), 6217. doi: 10.3390/ijms23116217 PMID: 35682895
- Cohen, J.; Torres, C. Astrocyte senescence: Evidence and significance. Aging Cell, 2019, 18(3), e12937. doi: 10.1111/acel.12937 PMID: 30815970
- Boisvert, M.M.; Erikson, G.A.; Shokhirev, M.N.; Allen, N.J. The aging astrocyte transcriptome from multiple regions of the mouse brain. Cell Rep., 2018, 22(1), 269-285. doi: 10.1016/j.celrep.2017.12.039 PMID: 29298427
- Orre, M.; Kamphuis, W.; Osborn, L.M.; Melief, J.; Kooijman, L.; Huitinga, I.; Klooster, J.; Bossers, K.; Hol, E.M. Acute isolation and transcriptome characterization of cortical astrocytes and microglia from young and aged mice. Neurobiol. Aging, 2014, 35(1), 1-14. doi: 10.1016/j.neurobiolaging.2013.07.008 PMID: 23954174
- Boender, A.J.; Bontempi, L.; Nava, L.; Pelloux, Y.; Tonini, R. Striatal astrocytes shape behavioral flexibility via regulation of the glutamate transporter EAAT2. Biol. Psychiatry, 2021, 89(11), 1045-1057. doi: 10.1016/j.biopsych.2020.11.015 PMID: 33516457
- Sharma, A.; Kazim, S.F.; Larson, C.S.; Ramakrishnan, A.; Gray, J.D.; McEwen, B.S.; Rosenberg, P.A.; Shen, L.; Pereira, A.C. Divergent roles of astrocytic versus neuronal EAAT2 deficiency on cognition and overlap with aging and Alzheimers molecular signatures. Proc. Natl. Acad. Sci., 2019, 116(43), 21800-21811. doi: 10.1073/pnas.1903566116 PMID: 31591195
- Yang, Z.; Gong, M.; Jian, T.; Li, J.; Yang, C.; Ma, Q.; Deng, P.; Wang, Y.; Huang, M.; Wang, H.; Yang, S.; Chen, X.; Yu, Z.; Wang, M.; Chen, C.; Zhang, K. Engrafted glial progenitor cells yield long-term integration and sensory improvement in aged mice. Stem Cell Res. Ther., 2022, 13(1), 285. doi: 10.1186/s13287-022-02959-0 PMID: 35765112
- Xu, X.; Shen, X.; Wang, J.; Feng, W.; Wang, M.; Miao, X.; Wu, Q.; Wu, L.; Wang, X.; Ma, Y.; Wu, S.; Bao, X.; Wang, W.; Wang, Y.; Huang, Z. YAP prevents premature senescence of astrocytes and cognitive decline of Alzheimers disease through regulating CDK6 signaling. Aging Cell, 2021, 20(9), e13465. doi: 10.1111/acel.13465 PMID: 34415667
- Raihan, O.; Brishti, A.; Molla, M.R.; Li, W.; Zhang, Q.; Xu, P.; Khan, M.I.; Zhang, J.; Liu, Q. The age-dependent elevation of miR-335-3p leads to reduced cholesterol and impaired memory in brain. Neuroscience, 2018, 390, 160-173. doi: 10.1016/j.neuroscience.2018.08.003 PMID: 30125687
- Patel, B.N.; Dunn, R.J.; Jeong, S.Y.; Zhu, Q.; Julien, J.P.; David, S. Ceruloplasmin regulates iron levels in the CNS and prevents free radical injury. J. Neurosci., 2002, 22(15), 6578-6586. doi: 10.1523/JNEUROSCI.22-15-06578.2002 PMID: 12151537
- Li, Z.D.; Li, H.; Kang, S.; Cui, Y.G.; Zheng, H.; Wang, P.; Han, K.; Yu, P.; Chang, Y.Z. The divergent effects of astrocyte ceruloplasmin on learning and memory function in young and old mice. Cell Death Dis., 2022, 13(11), 1006. doi: 10.1038/s41419-022-05459-4 PMID: 36443285
- Han, F.; Xiao, B.; Wen, L. Loss of glial cells of the hippocampus in a rat model of post-traumatic stress disorder. Neurochem. Res., 2015, 40(5), 942-951. doi: 10.1007/s11064-015-1549-6 PMID: 25749890
- Imbe, H.; Kimura, A.; Donishi, T.; Kaneoke, Y. Chronic restraint stress decreases glial fibrillary acidic protein and glutamate transporter in the periaqueductal gray matter. Neuroscience, 2012, 223, 209-218. doi: 10.1016/j.neuroscience.2012.08.007 PMID: 22890077
- Saur, L.; Baptista, P.P.A.; Bagatini, P.B.; Neves, L.T.; de Oliveira, R.M.; Vaz, S.P.; Ferreira, K.; Machado, S.A.; Mestriner, R.G.; Xavier, L.L. Experimental post-traumatic stress disorder decreases astrocyte density and changes astrocytic polarity in the CA1 hippocampus of male rats. Neurochem. Res., 2016, 41(4), 892-904. doi: 10.1007/s11064-015-1770-3 PMID: 26577396
- Wang, J.; Gao, F.; Cui, S.; Yang, S.; Gao, F.; Wang, X.; Zhu, G. Utility of 7,8-dihydroxyflavone in preventing astrocytic and synaptic deficits in the hippocampus elicited by PTSD. Pharmacol. Res., 2022, 176, 106079. doi: 10.1016/j.phrs.2022.106079 PMID: 35026406
- Kitayama, N.; Vaccarino, V.; Kutner, M.; Weiss, P.; Bremner, J.D. Magnetic resonance imaging (MRI) measurement of hippocampal volume in posttraumatic stress disorder: A meta-analysis. J. Affect. Disord., 2005, 88(1), 79-86. doi: 10.1016/j.jad.2005.05.014 PMID: 16033700
- Gilbertson, M.W.; Shenton, M.E.; Ciszewski, A.; Kasai, K.; Lasko, N.B.; Orr, S.P.; Pitman, R.K. Smaller hippocampal volume predicts pathologic vulnerability to psychological trauma. Nat. Neurosci., 2002, 5(11), 1242-1247. doi: 10.1038/nn958 PMID: 12379862
- Perez-Urrutia, N.; Mendoza, C.; Alvarez-Ricartes, N.; Oliveros-Matus, P.; Echeverria, F.; Grizzell, J.A.; Barreto, G.E.; Iarkov, A.; Echeverria, V. Intranasal cotinine improves memory, and reduces depressive-like behavior, and GFAP + cells loss induced by restraint stress in mice. Exp. Neurol., 2017, 295, 211-221. doi: 10.1016/j.expneurol.2017.06.016 PMID: 28625590
- Wingo, T.S.; Gerasimov, E.S.; Liu, Y.; Duong, D.M.; Vattathil, S.M.; Lori, A.; Gockley, J.; Breen, M.S.; Maihofer, A.X.; Nievergelt, C.M.; Koenen, K.C.; Levey, D.F.; Gelernter, J.; Stein, M.B.; Ressler, K.J.; Bennett, D.A.; Levey, A.I.; Seyfried, N.T.; Wingo, A.P. Integrating human brain proteomes with genome-wide association data implicates novel proteins in post-traumatic stress disorder. Mol. Psychiatry, 2022, 27(7), 3075-3084. doi: 10.1038/s41380-022-01544-4 PMID: 35449297
- Gao, F.; Wang, J.; Yang, S.; Ji, M.; Zhu, G. Fear extinction induced by activation of PKA ameliorates anxiety-like behavior in PTSD mice. Neuropharmacology, 2023, 222, 109306. doi: 10.1016/j.neuropharm.2022.109306 PMID: 36341808
- Ji, M.; Zhang, Z.; Gao, F.; Yang, S.; Wang, J.; Wang, X.; Zhu, G. Curculigoside rescues hippocampal synaptic deficits elicited by PTSD through activating CAMP‐PKA signaling. Phytother. Res., 2023, 37(2), 759-773. doi: 10.1002/ptr.7658 PMID: 36200803
- Yang, S.; Qu, Y.; Wang, J.; Gao, F.; Ji, M.; Xie, P.; Zhu, A.; Tan, B.; Wang, X.; Zhu, G. Anshen Dingzhi prescription in the treatment of PTSD in mice: Investigation of the underlying mechanism from the perspective of hippocampal synaptic function. Phytomedicine, 2022, 101, 154139. doi: 10.1016/j.phymed.2022.154139 PMID: 35523115
- Oliveros-Matus, P.; Perez-Urrutia, N.; Alvarez-Ricartes, N.; Echeverria, F.; Barreto, G.E.; Elliott, J.; Iarkov, A.; Echeverria, V. Cotinine enhances fear extinction and astrocyte survival by mechanisms involving the nicotinic acetylcholine receptors signaling. Front. Pharmacol., 2020, 11, 303. doi: 10.3389/fphar.2020.00303 PMID: 32300297
- Ohno, Y. Astrocytic Kir4.1 potassium channels as a novel therapeutic target for epilepsy and mood disorders. Neural Regen. Res., 2018, 13(4), 651-652. doi: 10.4103/1673-5374.230355 PMID: 29722316
- Tong, X.; Ao, Y.; Faas, G.C.; Nwaobi, S.E.; Xu, J.; Haustein, M.D.; Anderson, M.A.; Mody, I.; Olsen, M.L.; Sofroniew, M.V.; Khakh, B.S. Astrocyte Kir4.1 ion channel deficits contribute to neuronal dysfunction in Huntingtons disease model mice. Nat. Neurosci., 2014, 17(5), 694-703. doi: 10.1038/nn.3691 PMID: 24686787
- Zhang, Z.; Song, Z.; Shen, F.; Xie, P.; Wang, J.; Zhu, A.; Zhu, G. Ginsenoside Rg1 prevents PTSD-like behaviors in mice through promoting synaptic proteins, reducing kir4.1 and TNF-α in the hippocampus. Mol. Neurobiol., 2021, 58(4), 1550-1563. doi: 10.1007/s12035-020-02213-9 PMID: 33215390
- Zhao, M.; Li, D.; Shimazu, K.; Zhou, Y.X.; Lu, B.; Deng, C.X. Fibroblast growth factor receptor-1 is required for long-term potentiation, memory consolidation, and neurogenesis. Biol. Psychiatry, 2007, 62(5), 381-390. doi: 10.1016/j.biopsych.2006.10.019 PMID: 17239352
- Xia, L.; Zhai, M.; Wang, L.; Miao, D.; Zhu, X.; Wang, W. FGF2 blocks PTSD symptoms via an astrocyte-based mechanism. Behav. Brain Res., 2013, 256, 472-480. doi: 10.1016/j.bbr.2013.08.048 PMID: 24013012
- Feng, D.; Guo, B.; Liu, G.; Wang, B.; Wang, W.; Gao, G.; Qin, H.; Wu, S. FGF2 alleviates PTSD symptoms in rats by restoring GLAST function in astrocytes via the JAK/STAT pathway. Eur. Neuropsychopharmacol., 2015, 25(8), 1287-1299. doi: 10.1016/j.euroneuro.2015.04.020 PMID: 25979764
- Wang, J.; Holt, L.M.; Huang, H.H.; Sesack, S.R.; Nestler, E.J.; Dong, Y. Astrocytes in cocaine addiction and beyond. Mol. Psychiatry, 2022, 27(1), 652-668. doi: 10.1038/s41380-021-01080-7 PMID: 33837268
- Ma, R.; Kutchy, N.A.; Hu, G. Astrocyte-derived extracellular vesicle-mediated activation of primary ciliary signaling contributes to the development of morphine tolerance. Biol. Psychiatry, 2021, 90(8), 575-585. doi: 10.1016/j.biopsych.2021.06.009 PMID: 34417054
- Canedo, T.; Portugal, C.C.; Socodato, R.; Almeida, T.O.; Terceiro, A.F.; Bravo, J.; Silva, A.I.; Magalhães, J.D.; Guerra-Gomes, S.; Oliveira, J.F.; Sousa, N.; Magalhães, A.; Relvas, J.B.; Summavielle, T. Astrocyte-derived TNF and glutamate critically modulate microglia activation by methamphetamine. Neuropsychopharmacology, 2021, 46(13), 2358-2370. doi: 10.1038/s41386-021-01139-7 PMID: 34400780
- Jouroukhin, Y.; Zhu, X.; Shevelkin, A.V.; Hasegawa, Y.; Abazyan, B.; Saito, A.; Pevsner, J.; Kamiya, A.; Pletnikov, M.V. Adolescent Δ9-tetrahydrocannabinol exposure and astrocyte-specific genetic vulnerability converge on nuclear factor-κBcyclooxygenase-2 signaling to impair memory in adulthood. Biol. Psychiatry, 2019, 85(11), 891-903. doi: 10.1016/j.biopsych.2018.07.024 PMID: 30219209
- Shelkar, G.P.; Gandhi, P.J.; Liu, J.; Dravid, S.M. Cocaine preference and neuroadaptations are maintained by astrocytic NMDA receptors in the nucleus accumbens. Sci. Adv., 2022, 8(29), eabo6574. doi: 10.1126/sciadv.abo6574 PMID: 35867797
- Boury-Jamot, B.; Carrard, A.; Martin, J.L.; Halfon, O.; Magistretti, P.J.; Boutrel, B. Disrupting astrocyteneuron lactate transfer persistently reduces conditioned responses to cocaine. Mol. Psychiatry, 2016, 21(8), 1070-1076. doi: 10.1038/mp.2015.157 PMID: 26503760
- Shi, P.; Li, Z.; He, T.; Li, N.; Xu, X.; Yu, P.; Lu, X.; Nie, J.; Liu, D.; Cai, Q.; Guan, Y.; Ge, F.; Wang, J.; Guan, X. Astrocyte‐selective STAT3 knockdown rescues methamphetamine withdrawal‐disrupted spatial memory in mice via restoring the astrocytic capacity of glutamate clearance in DCA1. Glia, 2021, 69(10), 2404-2418. doi: 10.1002/glia.24046 PMID: 34110044
- Molofsky, A.V.; Kelley, K.W.; Tsai, H.H.; Redmond, S.A.; Chang, S.M.; Madireddy, L.; Chan, J.R.; Baranzini, S.E.; Ullian, E.M.; Rowitch, D.H. Astrocyte-encoded positional cues maintain sensorimotor circuit integrity. Nature, 2014, 509(7499), 189-194. doi: 10.1038/nature13161 PMID: 24776795
- Blanco-Suarez, E.; Liu, T.F.; Kopelevich, A.; Allen, N.J. Astrocyte-secreted chordin-like 1 drives synapse maturation and limits plasticity by increasing synaptic glua2 ampa receptors. Neuron, 2018, 100(5), 1116-1132.e13. doi: 10.1016/j.neuron.2018.09.043 PMID: 30344043
- Nazari, S.; Amiri, M.; Faez, K.; Van Hulle, M.M. Information transmitted from bioinspired neuronastrocyte network improves cortical spiking networks pattern recognition performance. IEEE Trans. Neural Netw. Learn. Syst., 2020, 31(2), 464-474. doi: 10.1109/TNNLS.2019.2905003 PMID: 30990195
- De Pittà, M.; Brunel, N. Multiple forms of working memory emerge from synapseastrocyte interactions in a neuronglia network model. Proc. Natl. Acad. Sci., 2022, 119(43), e2207912119. doi: 10.1073/pnas.2207912119 PMID: 36256810
- Becker, S.; Nold, A.; Tchumatchenko, T. Modulation of working memory duration by synaptic and astrocytic mechanisms. PLOS Comput. Biol., 2022, 18(10), e1010543. doi: 10.1371/journal.pcbi.1010543 PMID: 36191056
- Verdera, H.C.; Kuranda, K.; Mingozzi, F. AAV vector immunogenicity in humans: A long journey to successful gene transfer. Mol. Ther., 2020, 28(3), 723-746. doi: 10.1016/j.ymthe.2019.12.010 PMID: 31972133
- Wang, Q.; Li, W.; Lei, W.; Chen, G.; Xiang, Z.; Xu, L.; Liu, M. Lineage tracing of direct astrocyte-to-neuron conversion in the mouse cortex. Neural Regen. Res., 2021, 16(4), 750-756. doi: 10.4103/1673-5374.295925 PMID: 33063738
- Zhang, Y.; Li, B.; Cananzi, S.; Han, C.; Wang, L.L.; Zou, Y.; Fu, Y.X.; Hon, G.C.; Zhang, C.L. A single factor elicits multilineage reprogramming of astrocytes in the adult mouse striatum. Proc. Natl. Acad. Sci., 2022, 119(11), e2107339119. doi: 10.1073/pnas.2107339119 PMID: 35254903
- Guo, Z.; Zhang, L.; Wu, Z.; Chen, Y.; Wang, F.; Chen, G. In vivo direct reprogramming of reactive glial cells into functional neurons after brain injury and in an Alzheimers disease model. Cell Stem Cell, 2014, 14(2), 188-202. doi: 10.1016/j.stem.2013.12.001 PMID: 24360883
Arquivos suplementares
