Sex-Dependent Synergism of an Edible THC: CBD Formulation in Reducing Anxiety and Depressive-like Symptoms Following Chronic Stress


Citar

Texto integral

Resumo

:Cannabis has shown therapeutic potential in mood and anxiety-related pathologies. However, the two primary constituents of cannabis, cannabidiol (CBD) and Δ-9-tetrahydrocannabinol (THC) produce distinct effects on molecular pathways in neural circuits associated with affective disorders. Moreover, it has been proposed that the combination of THC: and CBD may have unique synergistic properties. In the present study, the effects of a 1:100 THC: CBD ratio edible formulation were tested in behavioural, neuronal and molecular assays for anxiety and depressive-like endophenotypes. Adult male and female Sprague-Dawley rats were stressed for 14 days. Then, for three weeks, open field, elevated plus maze, light/dark box, social interaction, sucrose preference, and the forced swim test were performed 90 minutes after acute consumption of CBD (30 mg/kg), THC (0.3 mg/kg), or 1:100 combination of THC:CBD. After behavioural tests, in vivo, neuronal electrophysiological analyses were performed in the ventral tegmental area and prefrontal cortex (PFC). Furthermore, western-blot experiments examined the expression of biomarkers associated with mood and anxiety disorders, including protein kinase B (Akt), glycogen synthase kinase-3 (GSK-3), BDNF, mTOR, D1, and D2 receptor in nucleus accumbens (NAc) and PFC.Edible THC:CBD produces significant anxiolytic and antidepressant effects only in stressed male rats. In most cases, the combination of THC and CBD had stronger effects than either phytochemical alone. These synergistic effects are associated with alterations in Akt/GSK3 and D2-R expression in NAc and BDNF expression in PFC. Furthermore, THC:CBD reverses chronic stress-induced alterations in PFC neuronal activity. These findings demonstrate a novel synergistic potential for THC:CBD edible formulations in stress-related pathologies.

Sobre autores

Enzo Pérez-Valenzuela

Addiction Research Group, Schulich School of Medicine & Dentistry, University of Western Ontario

Email: info@benthamscience.net

Roger Hudson

Addiction Research Group, Schulich School of Medicine & Dentistry, University of Western Ontario

Email: info@benthamscience.net

Taygun Uzuneser

Addiction Research Group, Schulich School of Medicine & Dentistry, University of Western Ontario

Email: info@benthamscience.net

Marta De Felice

Addiction Research Group, Schulich School of Medicine & Dentistry, University of Western Ontario

Email: info@benthamscience.net

Hanna Szkudlarek

Addiction Research Group, Schulich School of Medicine & Dentistry, University of Western Ontario

Email: info@benthamscience.net

Walter Rushlow

Addiction Research Group, Schulich School of Medicine & Dentistry, University of Western Ontario

Email: info@benthamscience.net

Steven Laviolette

Addiction Research Group, Schulich School of Medicine & Dentistry, University of Western Ontario

Autor responsável pela correspondência
Email: info@benthamscience.net

Bibliografia

  1. Gorfinkel, L.R.; Stohl, M.; Hasin, D. Association of depression with past-month cannabis use among US adults aged 20 to 59 years, 2005 to 2016. JAMA Netw. Open, 2020, 3(8), e2013802-e2013802. doi: 10.1001/jamanetworkopen.2020.13802 PMID: 32809032
  2. Pacek, L.R.; Weinberger, A.H.; Zhu, J.; Goodwin, R.D. Rapid increase in the prevalence of cannabis use among people with depression in the United States, 2005–17: The role of differentially changing risk perceptions. Addiction, 2020, 115(5), 935-943. doi: 10.1111/add.14883 PMID: 31797462
  3. Lowe, D.J.E.; Sasiadek, J.D.; Coles, A.S.; George, T.P. Cannabis and mental illness: A review. Eur. Arch. Psychiatry Clin. Neurosci., 2019, 269(1), 107-120. doi: 10.1007/s00406-018-0970-7 PMID: 30564886
  4. Bahorik, A.L.; Satre, D.D.; Kline-Simon, A.H.; Weisner, C.M.; Campbell, C.I. Alcohol, cannabis, and opioid use disorders, and disease burden in an integrated health care system. J. Addict. Med., 2017, 11(1), 3-9. doi: 10.1097/ADM.0000000000000260 PMID: 27610582
  5. Moitra, E.; Anderson, B.J.; Stein, M.D. Reductions in cannabis use are associated with mood improvement in female emerging adults. Depress. Anxiety, 2016, 33(4), 332-338. doi: 10.1002/da.22460 PMID: 26636547
  6. O’Sullivan, S.E.; Stevenson, C.W.; Laviolette, S.R. Could cannabidiol be a treatment for coronavirus disease-19-related anxiety disorders? Cannabis Cannabinoid Res., 2021, 6(1), 7-18. doi: 10.1089/can.2020.0102 PMID: 33614948
  7. Wright, M.; Di Ciano, P.; Brands, B. Use of Cannabidiol for the Treatment of Anxiety: A Short Synthesis of Pre-Clinical and Clinical Evidence. Cannabis Cannabinoid Res., 2020, 5(3), 191-196. doi: 10.1089/can.2019.0052 PMID: 32923656
  8. Micale, V.; Tabiova, K.; Kucerova, J.; Drago, F. Role of the endocannabinoid system in depression: From preclinical to clinical evidence. In: Cannabinoid Modulation of Emotion, Memory, and Motivation; Springer: New York, 2015; pp. 97-129.
  9. El-Alfy, A.T.; Ivey, K.; Robinson, K.; Ahmed, S.; Radwan, M.; Slade, D.; Khan, I.; ElSohly, M.; Ross, S. Antidepressant-like effect of Δ9-tetrahydrocannabinol and other cannabinoids isolated from Cannabis sativa L. Pharmacol. Biochem. Behav., 2010, 95(4), 434-442. doi: 10.1016/j.pbb.2010.03.004 PMID: 20332000
  10. Réus, G.Z.; Stringari, R.B.; Ribeiro, K.F.; Luft, T.; Abelaira, H.M.; Fries, G.R.; Aguiar, B.W.; Kapczinski, F.; Hallak, J.E.; Zuardi, A.W.; Crippa, J.A.; Quevedo, J. Administration of cannabidiol and imipramine induces antidepressant-like effects in the forced swimming test and increases brain-derived neurotrophic factor levels in the rat amygdala. Acta Neuropsychiatr., 2011, 23(5), 241-248. doi: 10.1111/j.1601-5215.2011.00579.x PMID: 25379896
  11. Schiavon, A.P.; Bonato, J.M.; Milani, H.; Guimarães, F.S.; Weffort de Oliveira, R.M. Influence of single and repeated cannabidiol administration on emotional behavior and markers of cell proliferation and neurogenesis in non-stressed mice. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2016, 64, 27-34. doi: 10.1016/j.pnpbp.2015.06.017 PMID: 26187374
  12. Zanelati, T.V.; Biojone, C.; Moreira, F.A.; Guimarães, F.S.; Joca, S.R.L. Antidepressant-like effects of cannabidiol in mice: possible involvement of 5-HT1A receptors. Br. J. Pharmacol., 2010, 159(1), 122-128. doi: 10.1111/j.1476-5381.2009.00521.x PMID: 20002102
  13. Sales, A.J.; Fogaça, M.V.; Sartim, A.G.; Pereira, V.S.; Wegener, G.; Guimarães, F.S.; Joca, S.R.L. Cannabidiol induces rapid and sustained antidepressant-like effects through increased BDNF signaling and synaptogenesis in the prefrontal cortex. Mol. Neurobiol., 2019, 56(2), 1070-1081. doi: 10.1007/s12035-018-1143-4 PMID: 29869197
  14. Sales, A.J.; Crestani, C.C.; Guimarães, F.S.; Joca, S.R.L. Antidepressant-like effect induced by Cannabidiol is dependent on brain serotonin levels. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2018, 86, 255-261. doi: 10.1016/j.pnpbp.2018.06.002 PMID: 29885468
  15. Hen-Shoval, D.; Amar, S.; Shbiro, L.; Smoum, R.; Haj, C.G.; Mechoulam, R.; Zalsman, G.; Weller, A.; Shoval, G. Acute oral cannabidiolic acid methyl ester reduces depression-like behavior in two genetic animal models of depression. Behav. Brain Res., 2018, 351, 1-3. doi: 10.1016/j.bbr.2018.05.027 PMID: 29860002
  16. Liu, J.; Burnham, M. The effects of CBD and THC in animal models of depression and anxiety. Clin. Neurophysiol., 2019, 130(8), e118-e119. doi: 10.1016/j.clinph.2019.03.023
  17. Bambico, F.R.; Hattan, P.R.; Garant, J.P.; Gobbi, G. Effect of delta-9-tetrahydrocannabinol on behavioral despair and on pre- and postsynaptic serotonergic transmission. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2012, 38(1), 88-96. doi: 10.1016/j.pnpbp.2012.02.006 PMID: 22386778
  18. Blessing, E.M.; Steenkamp, M.M.; Manzanares, J.; Marmar, C.R. Cannabidiol as a potential treatment for anxiety disorders. Neurotherapeutics, 2015, 12(4), 825-836. doi: 10.1007/s13311-015-0387-1 PMID: 26341731
  19. Sharpe, L.; Sinclair, J.; Kramer, A.; de Manincor, M.; Sarris, J. Cannabis, a cause for anxiety? A critical appraisal of the anxiogenic and anxiolytic properties. J. Transl. Med., 2020, 18(1), 374. doi: 10.1186/s12967-020-02518-2 PMID: 33008420
  20. Rubino, T.; Sala, M.; Viganò, D.; Braida, D.; Castiglioni, C.; Limonta, V.; Guidali, C.; Realini, N.; Parolaro, D. Cellular mechanisms underlying the anxiolytic effect of low doses of peripheral Δ9-tetrahydrocannabinol in rats. Neuropsychopharmacology, 2007, 32(9), 2036-2045. doi: 10.1038/sj.npp.1301330 PMID: 17287821
  21. Braida, D.; Limonta, V.; Malabarba, L.; Zani, A.; Sala, M. 5-HT1A receptors are involved in the anxiolytic effect of Δ9-tetrahydrocannabinol and AM 404, the anandamide transport inhibitor, in sprague-dawley rats. Eur. J. Pharmacol., 2007, 555(2-3), 156-163. doi: 10.1016/j.ejphar.2006.10.038 PMID: 17116299
  22. Schramm-Sapyta, N.L.; Cha, Y.M.; Chaudhry, S.; Wilson, W.A.; Swartzwelder, H.S.; Kuhn, C.M. Differential anxiogenic, aversive, and locomotor effects of THC in adolescent and adult rats. Psychopharmacology (Berl.), 2007, 191(4), 867-877. doi: 10.1007/s00213-006-0676-9 PMID: 17211649
  23. Brown, G.W.; Harris, T. Social origins of depression: A reply. Psychol. Med., 1978, 8(4), 577-588. doi: 10.1017/S0033291700018791 PMID: 724871
  24. Kessler, R.C. The effects of stressful life events on depression. Annu. Rev. Psychol., 1997, 48(1), 191-214. doi: 10.1146/annurev.psych.48.1.191 PMID: 9046559
  25. Kendler, K.S.; Karkowski, L.M.; Prescott, C.A. Causal relationship between stressful life events and the onset of major depression. Am. J. Psychiatry, 1999, 156(6), 837-841. doi: 10.1176/ajp.156.6.837 PMID: 10360120
  26. Berenbaum, H.; Connelly, J. The effect of stress on hedonic capacity. J. Abnorm. Psychol., 1993, 102(3), 474-481. doi: 10.1037/0021-843X.102.3.474 PMID: 8408960
  27. Stanton, C.H.; Holmes, A.J.; Chang, S.W.C.; Joormann, J. From stress to anhedonia: Molecular processes through functional Circuits. Trends Neurosci., 2019, 42(1), 23-42. doi: 10.1016/j.tins.2018.09.008 PMID: 30327143
  28. Willner, P. The chronic mild stress (CMS) model of depression: History, evaluation and usage. Neurobiol. Stress, 2017, 6, 78-93. doi: 10.1016/j.ynstr.2016.08.002 PMID: 28229111
  29. Calhoon, G.G.; Tye, K.M. Resolving the neural circuits of anxiety. Nat. Neurosci., 2015, 18(10), 1394-1404. doi: 10.1038/nn.4101 PMID: 26404714
  30. Daviu, N.; Bruchas, M.R.; Moghaddam, B.; Sandi, C.; Beyeler, A. Neurobiological links between stress and anxiety. Neurobiol. Stress, 2019, 11, 100191. doi: 10.1016/j.ynstr.2019.100191 PMID: 31467945
  31. Hill, M.N.; Hellemans, K.G.C.; Verma, P.; Gorzalka, B.B.; Weinberg, J. Neurobiology of chronic mild stress: Parallels to major depression. Neurosci. Biobehav. Rev., 2012, 36(9), 2085-2117. doi: 10.1016/j.neubiorev.2012.07.001 PMID: 22776763
  32. Licznerski, P.; Duman, R.S. Remodeling of axo-spinous synapses in the pathophysiology and treatment of depression. Neuroscience, 2013, 251, 33-50. doi: 10.1016/j.neuroscience.2012.09.057 PMID: 23036622
  33. Guo, F.; Zhang, Q.; Zhang, B.; Fu, Z.; Wu, B.; Huang, C.; Li, Y. Burst-firing patterns in the prefrontal cortex underlying the neuronal mechanisms of depression probed by antidepressants. Eur. J. Neurosci., 2014, 40(10), 3538-3547. doi: 10.1111/ejn.12725 PMID: 25209309
  34. Chang, C.; Grace, A.A. Amygdala-ventral pallidum pathway decreases dopamine activity after chronic mild stress in rats. Biol. Psychiatry, 2014, 76(3), 223-230. doi: 10.1016/j.biopsych.2013.09.020 PMID: 24209776
  35. Abd El-Fattah, A.A.; Fahim, A.T.; Sadik, N.A.H.; Ali, B.M. Resveratrol and dimethyl fumarate ameliorate depression-like behaviour in a rat model of chronic unpredictable mild stress. Brain Res., 2018, 1701, 227-236. doi: 10.1016/j.brainres.2018.09.027 PMID: 30244113
  36. Banasr, M.; Lepack, A.; Fee, C.; Duric, V.; Maldonado-Aviles, J.; DiLeone, R.; Sibille, E.; Duman, R.S.; Sanacora, G. Characterization of GABAergic marker expression in the chronic unpredictable stress model of depression. Chronic Stress (Thousand Oaks), 2017, 1. doi: 10.1177/2470547017720459 PMID: 28835932
  37. Crofton, E.J.; Nenov, M.N.; Zhang, Y.; Scala, F.; Page, S.A.; McCue, D.L.; Li, D.; Hommel, J.D.; Laezza, F.; Green, T.A. Glycogen synthase kinase 3 beta alters anxiety-, depression-, and addiction-related behaviors and neuronal activity in the nucleus accumbens shell. Neuropharmacology, 2017, 117, 49-60. doi: 10.1016/j.neuropharm.2017.01.020 PMID: 28126496
  38. Liu, X.L.; Luo, L.; Mu, R.H.; Liu, B.B.; Geng, D.; Liu, Q.; Yi, L.T. Fluoxetine regulates mTOR signalling in a region-dependent manner in depression-like mice. Sci. Rep., 2015, 5(1), 16024. doi: 10.1038/srep16024 PMID: 26522512
  39. Matrov, D.; Vonk, A.; Herm, L.; Rinken, A.; Harro, J. Activating effects of chronic variable stress in rats with different exploratory activity: Association with dopamine d(1) receptor function in nucleus accumbens. Neuropsychobiology, 2011, 64(2), 110-122. doi: 10.1159/000325224 PMID: 21701229
  40. Xu, L.Z.; Xu, D.F.; Han, Y.; Liu, L.J.; Sun, C.Y.; Deng, J.H.; Zhang, R.X.; Yuan, M.; Zhang, S.Z.; Li, Z.M.; Xu, Y.; Li, J.S.; Xie, S.H.; Li, S.X.; Zhang, H.Y.; Lu, L. BDNF-GSK-3β-β-catenin pathway in the mPFC is involved in antidepressant-like effects of Morinda officinalis oligosaccharides in rats. Int. J. Neuropsychopharmacol., 2017, 20(1), 83-93. PMID: 27729466
  41. Kokras, N.; Dalla, C. Preclinical sex differences in depression and antidepressant response: Implications for clinical research. J. Neurosci. Res., 2017, 95(1-2), 731-736. doi: 10.1002/jnr.23861 PMID: 27870451
  42. Caldarone, B.J.; Karthigeyan, K.; Harrist, A.; Hunsberger, J.G.; Wittmack, E.; King, S.L.; Jatlow, P.; Picciotto, M.R. Sex differences in response to oral amitriptyline in three animal models of depression in C57BL/6J mice. Psychopharmacology (Berl.), 2003, 170(1), 94-101. doi: 10.1007/s00213-003-1518-7 PMID: 12879206
  43. Allen, P.J.; D’Anci, K.E.; Kanarek, R.B.; Renshaw, P.F. Sex-specific antidepressant effects of dietary creatine with and without sub-acute fluoxetine in rats. Pharmacol. Biochem. Behav., 2012, 101(4), 588-601. doi: 10.1016/j.pbb.2012.03.005 PMID: 22429992
  44. Fernández-Guasti, A.; Olivares-Nazario, M.; Reyes, R.; Martínez-Mota, L. Sex and age differences in the antidepressant-like effect of fluoxetine in the forced swim test. Pharmacol. Biochem. Behav., 2017, 152, 81-89. doi: 10.1016/j.pbb.2016.01.011 PMID: 26807812
  45. Günther, L.; Rothe, J.; Rex, A.; Voigt, J.P.; Millan, M.J.; Fink, H.; Bert, B. 5-HT1A-receptor over-expressing mice: Genotype and sex dependent responses to antidepressants in the forced swim-test. Neuropharmacology, 2011, 61(3), 433-441. doi: 10.1016/j.neuropharm.2011.03.004 PMID: 21419787
  46. Cooper, Z.D.; Craft, R.M. Sex-dependent effects of cannabis and cannabinoids: A translational perspective. Neuropsychopharmacol., 2017, 43, 34-51.
  47. Silote, G.P.; Gatto, M.C.; Eskelund, A.; Guimarães, F.S.; Wegener, G.; Joca, S.R.L. Strain-, sex-, and time-dependent antidepressant-like effects of cannabidiol. Pharmaceuticals (Basel), 2021, 14(12), 1269. doi: 10.3390/ph14121269 PMID: 34959670
  48. Riaz, M.S.; Bohlen, M.O.; Gunter, B.W.; Henry, Q.; Stockmeier, C.A.; Paul, I.A. Attenuation of social interaction-associated ultrasonic vocalizations and spatial working memory performance in rats exposed to chronic unpredictable stress. Physiol. Behav., 2015, 152(Pt A), 128-134. doi: 10.1016/j.physbeh.2015.09.005 PMID: 26367455
  49. Bondi, C.O.; Rodriguez, G.; Gould, G.G.; Frazer, A.; Morilak, D.A. Chronic unpredictable stress induces a cognitive deficit and anxiety-like behavior in rats that is prevented by chronic antidepressant drug treatment. Neuropsychopharmacol., 2007, 33, 320-331.
  50. Pandey, D.K.; Pati, D.; Joshi, A. Chronic unpredictable stress: Possible animal model of comorbid depression. Int J Preclin Pharm Res., 2010, 1, 54-63.
  51. Shbiro, L.; Hen-Shoval, D.; Hazut, N.; Rapps, K.; Dar, S.; Zalsman, G.; Mechoulam, R.; Weller, A.; Shoval, G. Effects of cannabidiol in males and females in two different rat models of depression. Physiol. Behav., 2019, 201, 59-63. doi: 10.1016/j.physbeh.2018.12.019 PMID: 30571957
  52. Varvel, S.A.; Wiley, J.L.; Yang, R.; Bridgen, D.T.; Long, K.; Lichtman, A.H.; Martin, B.R. Interactions between THC and cannabidiol in mouse models of cannabinoid activity. Psychopharmacology (Berl.), 2006, 186(2), 226-234. doi: 10.1007/s00213-006-0356-9 PMID: 16572263
  53. Gatica, R.I.; Pérez-Valenzuela, E.; Sierra-Mercado, D.; Fuentealba, J.A. The expression of amphetamine sensitization is dissociable from anxiety and aversive memory: Effect of an acute injection of amphetamine. Neurosci. Lett., 2017, 638, 21-26. doi: 10.1016/j.neulet.2016.12.009 PMID: 27939979
  54. Renard, J.; Rosen, L.G.; Loureiro, M.; De Oliveira, C.; Schmid, S.; Rushlow, W.J.; Laviolette, S.R. Adolescent cannabinoid exposure induces a persistent sub-cortical hyper-dopaminergic state and associated molecular adaptations in the prefrontal cortex. Cereb. Cortex, 2017, 27(2), 1297-1310. PMID: 26733534
  55. De Felice, M.; Renard, J.; Hudson, R.; Szkudlarek, H.J.; Pereira, B.J.; Schmid, S.; Rushlow, W.J.; Laviolette, S.R. L-theanine prevents long-term affective and cognitive side effects of adolescent Δ-9-tetrahydrocannabinol exposure and blocks associated molecular and neuronal abnormalities in the mesocorticolimbic circuitry. J. Neurosci., 2021, 41(4), 739-750. doi: 10.1523/JNEUROSCI.1050-20.2020 PMID: 33268546
  56. Hudson, R.; Green, M.; Wright, D.J.; Renard, J.; Jobson, C.E.L.; Jung, T.; Rushlow, W.; Laviolette, S.R. Adolescent nicotine induces depressive and anxiogenic effects through ERK 1-2 and Akt-GSK-3 pathways and neuronal dysregulation in the nucleus accumbens. Addict. Biol., 2021, 26(2), e12891. doi: 10.1111/adb.12891 PMID: 32135573
  57. Armario, A. The forced swim test: Historical, conceptual and methodological considerations and its relationship with individual behavioral traits. Neurosci. Biobehav. Rev., 2021, 128, 74-86. doi: 10.1016/j.neubiorev.2021.06.014 PMID: 34118295
  58. Gomes, F.V.; Guimarães, F.S.; Grace, A.A. Effects of pubertal cannabinoid administration on attentional set-shifting and dopaminergic hyper-responsivity in a developmental disruption model of schizophrenia. Int. J. Neuropsychopharmacol., 2014, 18(2), 1-10. PMID: 25522381
  59. Pérez-Valenzuela, E.J.; Andrés Coke, M.E.; Grace, A.A.; Fuentealba, E.J.A. Adolescent exposure to WIN 55212-2 render the nigrostriatal dopaminergic pathway activated during adulthood. Int. J. Neuropsychopharmacol., 2020, 23(9), 626-637. doi: 10.1093/ijnp/pyaa053 PMID: 32710782
  60. Grace, A.A.; Bunney, B.S. The control of firing pattern in nigral dopamine neurons: Single spike firing. J. Neurosci., 1984, 4(11), 2866-2876. doi: 10.1523/JNEUROSCI.04-11-02866.1984 PMID: 6150070
  61. Ungless, M.A.; Grace, A.A. Are you or aren’t you? Challenges associated with physiologically identifying dopamine neurons. Trends Neurosci., 2012, 35(7), 422-430. doi: 10.1016/j.tins.2012.02.003 PMID: 22459161
  62. Hudson, R.; Renard, J.; Norris, C.; Rushlow, W.J.; Laviolette, S.R. Cannabidiol counteracts the psychotropic side-effects of Δ-9-tetrahydrocannabinol in the ventral hippocampus through bidirectional control of ERK1-2 phosphorylation. J. Neurosci., 2019, 39(44), 8762-8777. doi: 10.1523/JNEUROSCI.0708-19.2019 PMID: 31570536
  63. Renard, J.; Norris, C.; Rushlow, W.; Laviolette, S.R. Neuronal and molecular effects of cannabidiol on the mesolimbic dopamine system: Implications for novel schizophrenia treatments. Neurosci. Biobehav. Rev., 2017, 75, 157-165. doi: 10.1016/j.neubiorev.2017.02.006 PMID: 28185872
  64. Rock, E.M.; Limebeer, C.L.; Petrie, G.N.; Williams, L.A.; Mechoulam, R.; Parker, L.A. Effect of prior foot shock stress and Δ9-tetrahydrocannabinol, cannabidiolic acid, and cannabidiol on anxiety-like responding in the light-dark emergence test in rats. Psychopharmacology (Berl.), 2017, 234(14), 2207-2217. doi: 10.1007/s00213-017-4626-5 PMID: 28424834
  65. Di Bartolomeo, M.; Stark, T.; Maurel, O.M.; Iannotti, F.A.; Kuchar, M.; Ruda-Kucerova, J. Crosstalk between the transcriptional regulation of dopamine D2 and cannabinoid CB1 receptors in perinatal Δ9-tetrahydrocannabinol occurs in schizophrenia: Analyses in patients and in animal model of the disease. Pharmacol. Res., 2020, 164.
  66. Stark, T.; Ruda-Kucerova, J.; Iannotti, F.A.; D’Addario, C.; Di Marco, R.; Pekarik, V.; Drazanova, E.; Piscitelli, F.; Bari, M.; Babinska, Z.; Giurdanella, G.; Di Bartolomeo, M.; Salomone, S.; Sulcova, A.; Maccarrone, M.; Wotjak, C.T.; Starcuk, Z., Jr; Drago, F.; Mechoulam, R.; Di Marzo, V.; Micale, V. Peripubertal cannabidiol treatment rescues behavioral and neurochemical abnormalities in the MAM model of schizophrenia. Neuropharmacology, 2019, 146, 212-221. doi: 10.1016/j.neuropharm.2018.11.035 PMID: 30496751
  67. Stark, T.; Di Martino, S.; Drago, F.; Wotjak, C.T.; Micale, V. Phytocannabinoids and schizophrenia: Focus on adolescence as a critical window of enhanced vulnerability and opportunity for treatment. Pharmacol. Res., 2021, 174, 105938. doi: 10.1016/j.phrs.2021.105938 PMID: 34655773
  68. Stark, T.; Di Bartolomeo, M.; Di Marco, R.; Drazanova, E.; Platania, C.B.M.; Iannotti, F.A.; Ruda-Kucerova, J.; D’Addario, C.; Kratka, L.; Pekarik, V.; Piscitelli, F.; Babinska, Z.; Fedotova, J.; Giurdanella, G.; Salomone, S.; Sulcova, A.; Bucolo, C.; Wotjak, C.T.; Starcuk, Z., Jr; Drago, F.; Mechoulam, R.; Di Marzo, V.; Micale, V. Altered dopamine D3 receptor gene expression in MAM model of schizophrenia is reversed by peripubertal cannabidiol treatment. Biochem. Pharmacol., 2020, 177, 114004. doi: 10.1016/j.bcp.2020.114004 PMID: 32360362
  69. Salviato, B.Z.; Raymundi, A.M.; Rodrigues da Silva, T.; Salemme, B.W.; Batista, S.J.M.; Araújo, F.S.; Guimarães, F.S.; Bertoglio, L.J.; Stern, C.A. Female but not male rats show biphasic effects of low doses of Δ9-tetrahydrocannabinol on anxiety: Can cannabidiol interfere with these effects? Neuropharmacology, 2021, 196, 108684. doi: 10.1016/j.neuropharm.2021.108684 PMID: 34181978
  70. Ledesma-Corvi, S.; Hernández-Hernández, E.; García-Fuster, M.J. Exploring pharmacological options for adolescent depression: A preclinical evaluation with a sex perspective. Transl. Psychiatry, 2022, 12(1), 220. doi: 10.1038/s41398-022-01994-y PMID: 35650182
  71. Matheson, J.; Bourgault, Z.; Le Foll, B. Sex differences in the neuropsychiatric effects and pharmacokinetics of cannabidiol: A scoping review. Biomolecules, 2022, 12(10), 1462. doi: 10.3390/biom12101462 PMID: 36291671
  72. Wiley, J.L.; Burston, J.J. Sex differences in Δ9-tetrahydrocanna-binol metabolism and in vivo pharmacology following acute and repeated dosing in adolescent rats. Neurosci. Lett., 2014, 576, 51-55. doi: 10.1016/j.neulet.2014.05.057 PMID: 24909619
  73. Bradshaw, H.B.; Rimmerman, N.; Krey, J.F.; Walker, J.M. Sex and hormonal cycle differences in rat brain levels of pain-related cannabimimetic lipid mediators. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2006, 291(2), R349-R358. doi: 10.1152/ajpregu.00933.2005 PMID: 16556899
  74. Riebe, C.J.N.; Hill, M.N.; Lee, T.T.Y.; Hillard, C.J.; Gorzalka, B.B. Estrogenic regulation of limbic cannabinoid receptor binding. Psychoneuroendocrinology, 2010, 35(8), 1265-1269. doi: 10.1016/j.psyneuen.2010.02.008 PMID: 20207489
  75. Zhang, L.; Ma, W.; Barker, J.L.; Rubinow, D.R. Sex differences in expression of serotonin receptors (subtypes 1A and 2A) in rat brain: A possible role of testosterone. Neuroscience, 1999, 94(1), 251-259. doi: 10.1016/S0306-4522(99)00234-1 PMID: 10613515
  76. Fattore, L.; Fratta, W. How important are sex differences in cannabinoid action? Br. J. Pharmacol., 2010, 160(3), 544-548. doi: 10.1111/j.1476-5381.2010.00776.x PMID: 20590564
  77. Taffe, M.A.; Creehan, K.M.; Vandewater, S.A. Cannabidiol fails to reverse hypothermia or locomotor suppression induced by Δ9-tetrahydrocannabinol in Sprague-Dawley rats. Br. J. Pharmacol., 2015, 172(7), 1783-1791. doi: 10.1111/bph.13024 PMID: 25425111
  78. McMahon, L.R. Enhanced discriminative stimulus effects of Δ9-THC in the presence of cannabidiol and 8-OH-DPAT in rhesus monkeys. Drug Alcohol Depend., 2016, 165, 87-93. doi: 10.1016/j.drugalcdep.2016.05.016 PMID: 27289270
  79. Klein, C.; Karanges, E.; Spiro, A.; Wong, A.; Spencer, J.; Huynh, T.; Gunasekaran, N.; Karl, T.; Long, L.E.; Huang, X.F.; Liu, K.; Arnold, J.C.; McGregor, I.S. Cannabidiol potentiates Δ9-tetra-hydrocannabinol (THC) behavioural effects and alters THC pharmacokinetics during acute and chronic treatment in adolescent rats. Psychopharmacology (Berl.), 2011, 218(2), 443-457. doi: 10.1007/s00213-011-2342-0 PMID: 21667074
  80. Bornheim, L.M.; Kim, K.Y.; Li, J.; Perotti, B.Y.T.; Benet, L.Z. Effect of cannabidiol pretreatment on the kinetics of tetrahydrocannabinol metabolites in mouse brain. Drug Metab. Dispos., 1995, 23(8), 825-831. PMID: 7493549
  81. Bessa, J.M.; Ferreira, D.; Melo, I.; Marques, F.; Cerqueira, J.J.; Palha, J.A.; Almeida, O F X.; Sousa, N. The mood-improving actions of antidepressants do not depend on neurogenesis but are associated with neuronal remodeling. Mol. Psychiatry, 2009, 14(8), 764-773, 739. doi: 10.1038/mp.2008.119 PMID: 18982002
  82. Caldecott-Hazard, S.; Mazziotta, J.; Phelps, M. Cerebral correlates of depressed behavior in rats, visualized using 14C-2-deoxyglucose autoradiography. J. Neurosci., 1988, 8(6), 1951-1961. doi: 10.1523/JNEUROSCI.08-06-01951.1988 PMID: 3385484
  83. Lee, Y.A.; Goto, Y. Chronic stress modulation of prefrontal cortical NMDA receptor expression disrupts limbic structure-prefrontal cortex interaction. Eur. J. Neurosci., 2011, 34(3), 426-436. doi: 10.1111/j.1460-9568.2011.07750.x PMID: 21692885
  84. Covington, H.E., III; Lobo, M.K.; Maze, I.; Vialou, V.; Hyman, J.M.; Zaman, S.; LaPlant, Q.; Mouzon, E.; Ghose, S.; Tamminga, C.A.; Neve, R.L.; Deisseroth, K.; Nestler, E.J. Antidepressant effect of optogenetic stimulation of the medial prefrontal cortex. J. Neurosci., 2010, 30(48), 16082-16090. doi: 10.1523/JNEUROSCI.1731-10.2010 PMID: 21123555
  85. Hare, B.D.; Shinohara, R.; Liu, R.J.; Pothula, S.; DiLeone, R.J.; Duman, R.S. Optogenetic stimulation of medial prefrontal cortex Drd1 neurons produces rapid and long-lasting antidepressant effects. Nat. Commun., 2019, 10(1), 223. doi: 10.1038/s41467-018-08168-9 PMID: 30644390
  86. Pistis, M.; Ferraro, L.; Pira, L.; Flore, G.; Tanganelli, S.; Gessa, G.L.; Devoto, P. Δ9-Tetrahydrocannabinol decreases extracellular GABA and increases extracellular glutamate and dopamine levels in the rat prefrontal cortex: An in vivo microdialysis study. Brain Res., 2002, 948(1-2), 155-158. doi: 10.1016/S0006-8993(02)03055-X PMID: 12383968
  87. Renard, J.; Szkudlarek, H.J.; Kramar, C.P.; Jobson, C.E.L.; Moura, K.; Rushlow, W.J.; Laviolette, S.R. Adolescent THC exposure causes enduring prefrontal cortical disruption of GABAergic inhibition and dysregulation of sub-cortical dopamine function. Sci. Rep., 2017, 7(1), 11420. doi: 10.1038/s41598-017-11645-8 PMID: 28900286
  88. Linge, R.; Jiménez-Sánchez, L.; Campa, L.; Pilar-Cuéllar, F.; Vidal, R.; Pazos, A.; Adell, A.; Díaz, Á. Cannabidiol induces rapid-acting antidepressant-like effects and enhances cortical 5-HT/glutamate neurotransmission: Role of 5-HT1A receptors. Neuropharmacology, 2016, 103, 16-26. doi: 10.1016/j.neuropharm.2015.12.017 PMID: 26711860
  89. Tye, K.M.; Mirzabekov, J.J.; Warden, M.R.; Ferenczi, E.A.; Tsai, H.C.; Finkelstein, J.; Kim, S.Y.; Adhikari, A.; Thompson, K.R.; Andalman, A.S.; Gunaydin, L.A.; Witten, I.B.; Deisseroth, K. Dopamine neurons modulate neural encoding and expression of depression-related behaviour. Nature, 2013, 493(7433), 537-541. doi: 10.1038/nature11740 PMID: 23235822
  90. Covey, D.P.; Mateo, Y.; Sulzer, D.; Cheer, J.F.; Lovinger, D.M. Endocannabinoid modulation of dopamine neurotransmission. Neuropharmacology, 2017, 124, 52-61. doi: 10.1016/j.neuropharm.2017.04.033 PMID: 28450060
  91. Fitoussi, A.; Zunder, J.; Tan, H.; Laviolette, S.R. Delta-9-tetrahydrocannabinol potentiates fear memory salience through functional modulation of mesolimbic dopaminergic activity states. Eur. J. Neurosci., 2018, 47(11), 1385-1400. doi: 10.1111/ejn.13951 PMID: 29776015
  92. Sperlágh, B.; Windisch, K.; Andó, R.D.; Sylvester Vizi, E. Neurochemical evidence that stimulation of CB1 cannabinoid receptors on GABAergic nerve terminals activates the dopaminergic reward system by increasing dopamine release in the rat nucleus accumbens. Neurochem. Int., 2009, 54(7), 452-457. doi: 10.1016/j.neuint.2009.01.017 PMID: 19428788
  93. Renard, J.; Loureiro, M.; Rosen, L.G.; Zunder, J.; de Oliveira, C.; Schmid, S.; Rushlow, W.J.; Laviolette, S.R. Cannabidiol counteracts amphetamine-induced neuronal and behavioral sensitization of the mesolimbic dopamine pathway through a novel mTOR/p70S6 kinase signaling pathway. J. Neurosci., 2016, 36(18), 5160-5169. doi: 10.1523/JNEUROSCI.3387-15.2016 PMID: 27147666
  94. Norris, C.; Loureiro, M.; Kramar, C.; Zunder, J.; Renard, J.; Rushlow, W.; Laviolette, S.R. Cannabidiol modulates fear memory formation through interactions with serotonergic transmission in the mesolimbic system. Neuropsychopharmacology, 2016, 41(12), 2839-2850. doi: 10.1038/npp.2016.93 PMID: 27296152
  95. Lu, Q.; Mouri, A.; Yang, Y.; Kunisawa, K.; Teshigawara, T.; Hirakawa, M.; Mori, Y.; Yamamoto, Y.; Libo, Z.; Nabeshima, T.; Saito, K. Chronic unpredictable mild stress-induced behavioral changes are coupled with dopaminergic hyperfunction and serotonergic hypofunction in mouse models of depression. Behav. Brain Res., 2019, 372, 112053. doi: 10.1016/j.bbr.2019.112053 PMID: 31288060
  96. Karege, F.; Perroud, N.; Burkhardt, S.; Schwald, M.; Ballmann, E.; La Harpe, R.; Malafosse, A. Alteration in kinase activity but not in protein levels of protein kinase B and glycogen synthase kinase-3β in ventral prefrontal cortex of depressed suicide victims. Biol. Psychiatry, 2007, 61(2), 240-245. doi: 10.1016/j.biopsych.2006.04.036 PMID: 16876135
  97. Ren, X.; Rizavi, H.S.; Khan, M.A.; Dwivedi, Y.; Pandey, G.N. Altered Wnt signalling in the teenage suicide brain: Focus on glycogen synthase kinase-3β and β-catenin. Int. J. Neuropsychopharmacol., 2013, 16(5), 945-955. doi: 10.1017/S1461145712001010 PMID: 23110823
  98. Hudson, R.; Norris, C.; Szkudlarek, H.J.; Khan, D.; Schmid, S.; Rushlow, W.J.; Laviolette, S.R. Anxiety and cognitive-related effects of Δ 9-tetrahydrocannabinol (THC) are differentially mediated through distinct GSK-3 vs. Akt-mTOR pathways in the nucleus accumbens of male rats. Psychopharmacology (Berl.), 2022, 239(2), 509-524. doi: 10.1007/s00213-021-06029-w PMID: 34860284
  99. Dwivedi, Y.; Rizavi, H.S.; Conley, R.R.; Roberts, R.C.; Tamminga, C.A.; Pandey, G.N. Altered gene expression of brain-derived neurotrophic factor and receptor tyrosine kinase B in postmortem brain of suicide subjects. Arch. Gen. Psychiatry, 2003, 60(8), 804-815. doi: 10.1001/archpsyc.60.8.804 PMID: 12912764
  100. Duman, R.S.; Monteggia, L.M. A neurotrophic model for stress-related mood disorders. Biol. Psychiatry, 2006, 59(12), 1116-1127. doi: 10.1016/j.biopsych.2006.02.013 PMID: 16631126
  101. Duman, R.S.; Deyama, S.; Fogaça, M.V. Role of BDNF in the pathophysiology and treatment of depression: Activity-dependent effects distinguish rapid-acting antidepressants. Eur. J. Neurosci., 2021, 53(1), 126-139. doi: 10.1111/ejn.14630 PMID: 31811669
  102. Castrén, E.; Kojima, M. Brain-derived neurotrophic factor in mood disorders and antidepressant treatments. Neurobiol. Dis., 2017, 97(Pt B), 119-126. doi: 10.1016/j.nbd.2016.07.010 PMID: 27425886
  103. Blázquez, C.; Chiarlone, A.; Bellocchio, L.; Resel, E.; Pruunsild, P.; García-Rincón, D.; Sendtner, M.; Timmusk, T.; Lutz, B.; Galve-Roperh, I.; Guzmán, M. The CB1 cannabinoid receptor signals striatal neuroprotection via a PI3K/Akt/mTORC1/BDNF pathway. Cell Death Differ., 2015, 22(10), 1618-1629. doi: 10.1038/cdd.2015.11 PMID: 25698444
  104. Derkinderen, P.; Valjent, E.; Toutant, M.; Corvol, J.C.; Enslen, H.; Ledent, C.; Trzaskos, J.; Caboche, J.; Girault, J.A. Regulation of extracellular signal-regulated kinase by cannabinoids in hippocampus. J. Neurosci., 2003, 23(6), 2371-2382. doi: 10.1523/JNEUROSCI.23-06-02371.2003 PMID: 12657697
  105. Fishbein, M.; Gov, S.; Assaf, F.; Gafni, M.; Keren, O.; Sarne, Y. Long-term behavioral and biochemical effects of an ultra-low dose of Δ9-tetrahydrocannabinol (THC): neuroprotection and ERK signaling. Exp. Brain Res., 2012, 221(4), 437-448. doi: 10.1007/s00221-012-3186-5 PMID: 22821081
  106. Berton, O; McClung, CA; DiLeone, RJ; Krishnan, V; Renthal, W; Russo, SJ Essential role of BDNF in the mesolimbic dopamine pathway in social defeat stress. Science (80-), 2006, 311, 864-868. doi: 10.1126/science.1120972
  107. Eisch, A.J.; Bolaños, C.A.; de Wit, J.; Simonak, R.D.; Pudiak, C.M.; Barrot, M.; Verhaagen, J.; Nestler, E.J. Brain-derived neurotrophic factor in the ventral midbrain-nucleus accumbens pathway: A role in depression. Biol. Psychiatry, 2003, 54(10), 994-1005. doi: 10.1016/j.biopsych.2003.08.003 PMID: 14625141
  108. Wei, J.; Yuen, E.Y.; Liu, W.; Li, X.; Zhong, P.; Karatsoreos, I.N.; McEwen, B.S.; Yan, Z. Estrogen protects against the detrimental effects of repeated stress on glutamatergic transmission and cognition. Mol. Psychiatry, 2014, 19(5), 588-598. doi: 10.1038/mp.2013.83 PMID: 23835908
  109. Bowman, R.E.; Bowman, R.E. Stress-induced changes in spatial memory are sexually differentiated and vary across the lifespan. J. Neuroendocrinol., 2005, 17(8), 526-535. doi: 10.1111/j.1365-2826.2005.01335.x PMID: 16011489
  110. Barr, J.L.; Unterwald, E.M. Glycogen synthase kinase-3 signaling in cellular and behavioral responses to psychostimulant drugs. Biochim. Biophys. Acta Mol. Cell Res., 2020, 1867(9), 118746. doi: 10.1016/j.bbamcr.2020.118746 PMID: 32454064
  111. Martin, J.L.; Finsterwald, C. Cooperation between BDNF and glutamate in the regulation of synaptic transmission and neuronal development. Commun. Integr. Biol., 2011, 4(1), 14-16. doi: 10.4161/cib.13761 PMID: 21509169
  112. Grisouard, J.; Medunjanin, S.; Hermani, A.; Shukla, A.; Mayer, D. Glycogen synthase kinase-3 protects estrogen receptor α from proteasomal degradation and is required for full transcriptional activity of the receptor. Mol. Endocrinol., 2007, 21(10), 2427-2439. doi: 10.1210/me.2007-0129 PMID: 17609434
  113. Scharfman, H.E.; MacLusky, N.J. Estrogen and brain-derived neurotrophic factor (BDNF) in hippocampus: Complexity of steroid hormone-growth factor interactions in the adult CNS. Front. Neuroendocrinol., 2006, 27(4), 415-435. doi: 10.1016/j.yfrne.2006.09.004 PMID: 17055560
  114. Szkudlarek, H.J.; Desai, S.J.; Renard, J.; Pereira, B.; Norris, C.; Jobson, C.E.L.; Rajakumar, N.; Allman, B.L.; Laviolette, S.R. Δ-9-Tetrahydrocannabinol and Cannabidiol produce dissociable effects on prefrontal cortical executive function and regulation of affective behaviors. Neuropsychopharmacology, 2019, 44(4), 817-825. doi: 10.1038/s41386-018-0282-7 PMID: 30538288
  115. Rossi, D.V.; Dai, Y.; Thomas, P.; Carrasco, G.A.; DonCarlos, L.L.; Muma, N.A.; Li, Q. Estradiol-induced desensitization of 5-HT1A receptor signaling in the paraventricular nucleus of the hypothalamus is independent of estrogen receptor-beta. Psychoneuroendocrinology, 2010, 35(7), 1023-1033. doi: 10.1016/j.psyneuen.2010.01.003 PMID: 20138435
  116. Takei, N.; Inamura, N.; Kawamura, M.; Namba, H.; Hara, K.; Yonezawa, K.; Nawa, H. Brain-derived neurotrophic factor induces mammalian target of rapamycin-dependent local activation of translation machinery and protein synthesis in neuronal dendrites. J. Neurosci., 2004, 24(44), 9760-9769. doi: 10.1523/JNEUROSCI.1427-04.2004 PMID: 15525761
  117. Papp, M.; Klimek, V.; Willner, P. Parallel changes in dopamine D2 receptor binding in limbic forebrain associated with chronic mild stress-induced anhedonia and its reversal by imipramine. Psychopharmacology (Berl.), 1994, 115(4), 441-446. doi: 10.1007/BF02245566 PMID: 7871087
  118. Mizoguchi, K.; Yuzurihara, M.; Ishige, A.; Sasaki, H.; Chui, D.H.; Tabira, T. Chronic stress induces impairment of spatial working memory because of prefrontal dopaminergic dysfunction. J. Neurosci., 2000, 20(4), 1568-1574. doi: 10.1523/JNEUROSCI.20-04-01568.2000 PMID: 10662846
  119. Dziedzicka-Wasylewska, M.; Willner, P.; Papp, M. Changes in dopamine receptor mRNA expression following chronic mild stress and chronic antidepressant treatment. Behav. Pharmacol., 1997, 8(6), 607-618. doi: 10.1097/00008877-199711000-00017 PMID: 9832973
  120. Lucas, L.R.; Celen, Z.; Tamashiro, K.L.K.; Blanchard, R.J.; Blanchard, D.C.; Markham, C.; Sakai, R.R.; McEwen, B.S. Repeated exposure to social stress has long-term effects on indirect markers of dopaminergic activity in brain regions associated with motivated behavior. Neuroscience, 2004, 124(2), 449-457. doi: 10.1016/j.neuroscience.2003.12.009 PMID: 14980394
  121. Scheggi, S.; Leggio, B.; Masi, F.; Grappi, S.; Gambarana, C.; Nanni, G.; Rauggi, R.; De Montis, M.G. Selective modifications in the nucleus accumbens of dopamine synaptic transmission in rats exposed to chronic stress. J. Neurochem., 2002, 83(4), 895-903. doi: 10.1046/j.1471-4159.2002.01193.x PMID: 12421362
  122. Gambarana, C.; Masi, F.; Tagliamonte, A.; Scheggi, S.; Ghiglieri, O.; Graziella De Montis, M. A chronic stress that impairs reactivity in rats also decreases dopaminergic transmission in the nucleus accumbens: A microdialysis study. J. Neurochem., 1999, 72(5), 2039-2046. doi: 10.1046/j.1471-4159.1999.0722039.x PMID: 10217282
  123. Mangiavacchi, S.; Masi, F.; Scheggi, S.; Leggio, B.; De Montis, M.G.; Gambarana, C. Long-term behavioral and neurochemical effects of chronic stress exposure in rats. J. Neurochem., 2001, 79(6), 1113-1121. doi: 10.1046/j.1471-4159.2001.00665.x PMID: 11752052

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Bentham Science Publishers, 2024