Metabolic Reprogramming in Gliocyte Post-cerebral Ischemia/ Reperfusion: From Pathophysiology to Therapeutic Potential
- Авторы: Gong L.1, Liang J.1, Xie L.1, Zhang Z.2, Mei Z.1, Zhang W.3
-
Учреждения:
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine
- Department of Neurosurgery, First Affiliated Hospita, Hunan University of Traditional Chinese Medicine
- School of Pharmacy, Hunan University of Chinese Medicine
- Выпуск: Том 22, № 10 (2024)
- Страницы: 1672-1696
- Раздел: Neurology
- URL: https://rjpbr.com/1570-159X/article/view/644313
- DOI: https://doi.org/10.2174/1570159X22666240131121032
- ID: 644313
Цитировать
Полный текст
Аннотация
Ischemic stroke is a leading cause of disability and death worldwide. However, the clinical efficacy of recanalization therapy as a preferred option is significantly hindered by reperfusion injury. The transformation between different phenotypes of gliocytes is closely associated with cerebral ischemia/ reperfusion injury (CI/RI). Moreover, gliocyte polarization induces metabolic reprogramming, which refers to the shift in gliocyte phenotype and the overall transformation of the metabolic network to compensate for energy demand and building block requirements during CI/RI caused by hypoxia, energy deficiency, and oxidative stress. Within microglia, the pro-inflammatory phenotype exhibits upregulated glycolysis, pentose phosphate pathway, fatty acid synthesis, and glutamine synthesis, whereas the anti-inflammatory phenotype demonstrates enhanced mitochondrial oxidative phosphorylation and fatty acid oxidation. Reactive astrocytes display increased glycolysis but impaired glycogenolysis and reduced glutamate uptake after CI/RI. There is mounting evidence suggesting that manipulation of energy metabolism homeostasis can induce microglial cells and astrocytes to switch from neurotoxic to neuroprotective phenotypes. A comprehensive understanding of underlying mechanisms and manipulation strategies targeting metabolic pathways could potentially enable gliocytes to be reprogrammed toward beneficial functions while opening new therapeutic avenues for CI/RI treatment. This review provides an overview of current insights into metabolic reprogramming mechanisms in microglia and astrocytes within the pathophysiological context of CI/RI, along with potential pharmacological targets. Herein, we emphasize the potential of metabolic reprogramming of gliocytes as a therapeutic target for CI/RI and aim to offer a novel perspective in the treatment of CI/RI.
Об авторах
Lipeng Gong
Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine
Email: info@benthamscience.net
Junjie Liang
Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine
Email: info@benthamscience.net
Letian Xie
Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine
Email: info@benthamscience.net
Zhanwei Zhang
Department of Neurosurgery, First Affiliated Hospita, Hunan University of Traditional Chinese Medicine
Автор, ответственный за переписку.
Email: info@benthamscience.net
Zhigang Mei
Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine
Автор, ответственный за переписку.
Email: info@benthamscience.net
Wenli Zhang
School of Pharmacy, Hunan University of Chinese Medicine
Автор, ответственный за переписку.
Email: info@benthamscience.net
Список литературы
- Katan, M.; Luft, A. Global burden of stroke. Semin. Neurol., 2018, 38(2), 208-211. doi: 10.1055/s-0038-1649503 PMID: 29791947
- Lin, L.; Wang, X.; Yu, Z. Ischemia-reperfusion injury in the brain: Mechanisms and potential therapeutic strategies. Biochem. Pharmacol., 2016, 5(4), 213. doi: 10.4172/2167-0501.1000213 PMID: 29888120
- Rabinstein, A.A. Update on treatment of acute ischemic stroke. Continuum (Minneap. Minn.), 2020, 26(2), 268-286. doi: 10.1212/CON.0000000000000840 PMID: 32224752
- Powers, W.J.; Rabinstein, A.A.; Ackerson, T.; Adeoye, O.M.; Bambakidis, N.C.; Becker, K.; Biller, J.; Brown, M.; Demaerschalk, B.M.; Hoh, B.; Jauch, E.C.; Kidwell, C.S.; Leslie-Mazwi, T.M.; Ovbiagele, B.; Scott, P.A.; Sheth, K.N.; Southerland, A.M.; Summers, D.V.; Tirschwell, D.L. Guidelines for the early management of patients with acute ischemic stroke: 2019 update to the 2018 guidelines for the early management of acute ischemic stroke: A guideline for healthcare professionals from the american heart association/american stroke association. Stroke, 2019, 50(12), e344-e418. doi: 10.1161/STR.0000000000000211 PMID: 31662037
- Jurcau, A.; Ardelean, I.A. Molecular pathophysiological mechanisms of ischemia/reperfusion injuries after recanalization therapy for acute ischemic stroke. J. Integr. Neurosci., 2021, 20(3), 727-744. doi: 10.31083/j.jin2003078 PMID: 34645107
- Luo, X.L.; Liu, S.Y.; Wang, L.J.; Zhang, Q.Y.; Xu, P.; Pan, L.L.; Hu, J.F. A tetramethoxychalcone from Chloranthus henryi suppresses lipopolysaccharide-induced inflammatory responses in BV2 microglia. Eur. J. Pharmacol., 2016, 774, 135-143. doi: 10.1016/j.ejphar.2016.02.013 PMID: 26852953
- Skirving, D.J.; Dan, N.G. A 20-year review of percutaneous balloon compression of the trigeminal ganglion. J. Neurosurg., 2001, 94(6), 913-917. doi: 10.3171/jns.2001.94.6.0913 PMID: 11409519
- Sieweke, M.H.; Allen, J.E. Beyond stem cells: Self-renewal of differentiated macrophages. Science, 2013, 342(6161), 1242974. doi: 10.1126/science.1242974 PMID: 24264994
- Liddelow, S.A.; Guttenplan, K.A.; Clarke, L.E.; Bennett, F.C.; Bohlen, C.J.; Schirmer, L.; Bennett, M.L.; Münch, A.E.; Chung, W.S.; Peterson, T.C.; Wilton, D.K.; Frouin, A.; Napier, B.A.; Panicker, N.; Kumar, M.; Buckwalter, M.S.; Rowitch, D.H.; Dawson, V.L.; Dawson, T.M.; Stevens, B.; Barres, B.A. Neurotoxic reactive astrocytes are induced by activated microglia. Nature, 2017, 541(7638), 481-487. doi: 10.1038/nature21029 PMID: 28099414
- Xu, S.; Lu, J.; Shao, A.; Zhang, J.H.; Zhang, J. Glial cells: Role of the immune response in ischemic stroke. Front. Immunol., 2020, 11, 294. doi: 10.3389/fimmu.2020.00294 PMID: 32174916
- Cheng, X.; Yang, Y.L.; Li, W.H.; Liu, M.; Zhang, S.S.; Wang, Y.H.; Du, G.H. Dynamic alterations of brain injury, functional recovery, and metabolites profile after cerebral ischemia/reperfusion in rats contributes to potential biomarkers. J. Mol. Neurosci., 2020, 70(5), 667-676. doi: 10.1007/s12031-019-01474-x PMID: 31907865
- Shen, L.; Gan, Q.; Yang, Y.; Reis, C.; Zhang, Z.; Xu, S.; Zhang, T.; Sun, C. Mitophagy in cerebral ischemia and ischemia/reperfusion injury. Front. Aging Neurosci., 2021, 13, 687246. doi: 10.3389/fnagi.2021.687246 PMID: 34168551
- Lauro, C.; Limatola, C. Metabolic reprograming of microglia in the regulation of the innate inflammatory response. Front. Immunol., 2020, 11, 493. doi: 10.3389/fimmu.2020.00493 PMID: 32265936
- Sofroniew, M.V. Astrocyte reactivity: Subtypes, states, and functions in cns innate immunity. Trends Immunol., 2020, 41(9), 758-770. doi: 10.1016/j.it.2020.07.004 PMID: 32819810
- Ghosh, S.; Castillo, E.; Frias, E.S.; Swanson, R.A. Bioenergetic regulation of microglia. Glia, 2018, 66(6), 1200-1212. doi: 10.1002/glia.23271 PMID: 29219210
- Hu, X.; Li, P.; Guo, Y.; Wang, H.; Leak, R.K.; Chen, S.; Gao, Y.; Chen, J. Microglia/macrophage polarization dynamics reveal novel mechanism of injury expansion after focal cerebral ischemia. Stroke, 2012, 43(11), 3063-3070. doi: 10.1161/STROKEAHA.112.659656 PMID: 22933588
- Mogensen, T.H. Pathogen recognition and inflammatory signaling in innate immune defenses. Clin. Microbiol. Rev., 2009, 22(2), 240-273. doi: 10.1128/CMR.00046-08 PMID: 19366914
- Falkowska, A.; Gutowska, I.; Goschorska, M.; Nowacki, P.; Chlubek, D.; Baranowska-Bosiacka, I. Energy metabolism of the brain, including the cooperation between astrocytes and neurons, especially in the context of glycogen metabolism. Int. J. Mol. Sci., 2015, 16(11), 25959-25981. doi: 10.3390/ijms161125939 PMID: 26528968
- Borbor, M.; Yin, D.; Brockmeier, U.; Wang, C.; Doeckel, M.; Pillath-Eilers, M.; Kaltwasser, B.; Hermann, D.M.; Dzyubenko, E. Neurotoxicity of ischemic astrocytes involves STAT3 ‐mediated metabolic switching and depends on glycogen usage. Glia, 2023, 71(6), 1553-1569. doi: 10.1002/glia.24357 PMID: 36810803
- Cai, Y.; Guo, H.; Fan, Z.; Zhang, X.; Wu, D.; Tang, W.; Gu, T.; Wang, S.; Yin, A.; Tao, L.; Ji, X.; Dong, H.; Li, Y.; Xiong, L. Glycogenolysis is crucial for astrocytic glycogen accumulation and brain damage after reperfusion in ischemic stroke. iScience, 2020, 23(5), 101136. doi: 10.1016/j.isci.2020.101136 PMID: 32446205
- Yang, S.; Qin, C.; Hu, Z.W.; Zhou, L.Q.; Yu, H.H.; Chen, M.; Bosco, D.B.; Wang, W.; Wu, L.J.; Tian, D.S. Microglia reprogram metabolic profiles for phenotype and function changes in central nervous system. Neurobiol. Dis., 2021, 152, 105290. doi: 10.1016/j.nbd.2021.105290 PMID: 33556540
- Pearce, E.L.; Pearce, E.J. Metabolic pathways in immune cell activation and quiescence. Immunity, 2013, 38(4), 633-643. doi: 10.1016/j.immuni.2013.04.005 PMID: 23601682
- Lynch, M.A. Can the emerging field of immunometabolism provide insights into neuroinflammation? Prog. Neurobiol., 2020, 184, 101719. doi: 10.1016/j.pneurobio.2019.101719 PMID: 31704314
- Bruce, K.D.; Gorkhali, S.; Given, K.; Coates, A.M.; Boyle, K.E.; Macklin, W.B.; Eckel, R.H. Lipoprotein lipase is a feature of alternatively-activated microglia and may facilitate lipid uptake in the cns during demyelination. Front. Mol. Neurosci., 2018, 11, 57. doi: 10.3389/fnmol.2018.00057 PMID: 29599706
- Peruzzotti-Jametti, L.; Pluchino, S. Targeting mitochondrial metabolism in neuroinflammation: Towards a therapy for progressive multiple sclerosis. Trends Mol. Med., 2018, 24(10), 838-855. doi: 10.1016/j.molmed.2018.07.007 PMID: 30100517
- Wang, L.; Pavlou, S.; Du, X.; Bhuckory, M.; Xu, H.; Chen, M. Glucose transporter 1 critically controls microglial activation through facilitating glycolysis. Mol. Neurodegener., 2019, 14(1), 2. doi: 10.1186/s13024-019-0305-9 PMID: 30634998
- Zhang, Y.; Chen, K.; Sloan, S.A.; Bennett, M.L.; Scholze, A.R.; OKeeffe, S.; Phatnani, H.P.; Guarnieri, P.; Caneda, C.; Ruderisch, N.; Deng, S.; Liddelow, S.A.; Zhang, C.; Daneman, R.; Maniatis, T.; Barres, B.A.; Wu, J.Q. An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J. Neurosci., 2014, 34(36), 11929-11947. doi: 10.1523/JNEUROSCI.1860-14.2014 PMID: 25186741
- Kelly, B.; ONeill, L.A.J. Metabolic reprogramming in macrophages and dendritic cells in innate immunity. Cell Res., 2015, 25(7), 771-784. doi: 10.1038/cr.2015.68 PMID: 26045163
- Van den Bossche, J.; Baardman, J.; Otto, N.A.; van der Velden, S.; Neele, A.E.; van den Berg, S.M.; Luque-Martin, R.; Chen, H.J.; Boshuizen, M.C.S.; Ahmed, M.; Hoeksema, M.A.; de Vos, A.F.; de Winther, M.P.J. Mitochondrial dysfunction prevents repolarization of inflammatory macrophages. Cell Rep., 2016, 17(3), 684-696. doi: 10.1016/j.celrep.2016.09.008 PMID: 27732846
- Mills, E.L.; Kelly, B.; Logan, A.; Costa, A.S.H.; Varma, M.; Bryant, C.E.; Tourlomousis, P.; Däbritz, J.H.M.; Gottlieb, E.; Latorre, I.; Corr, S.C.; McManus, G.; Ryan, D.; Jacobs, H.T.; Szibor, M.; Xavier, R.J.; Braun, T.; Frezza, C.; Murphy, M.P.; ONeill, L.A. Succinate dehydrogenase supports metabolic repurposing of mitochondria to drive inflammatory macrophages. Cell, 2016, 167(2), 457-470.e13. doi: 10.1016/j.cell.2016.08.064 PMID: 27667687
- Klimaszewska-Łata, J.; Gul-Hinc, S.; Bielarczyk, H.; Ronowska, A.; Zyśk, M.; Grużewska, K.; Pawełczyk, T.; Szutowicz, A. Differential effects of lipopolysaccharide on energy metabolism in murine microglial N9 and cholinergic SN 56 neuronal cells. J. Neurochem., 2015, 133(2), 284-297. doi: 10.1111/jnc.12979 PMID: 25345568
- Bolanos, J.; García-Nogales, P.; Almeida, A. Provoking neuroprotection by peroxynitrite. Curr. Pharm. Des., 2004, 10(8), 867-877. doi: 10.2174/1381612043452910 PMID: 15032690
- West, A.P.; Brodsky, I.E.; Rahner, C.; Woo, D.K.; Erdjument-Bromage, H.; Tempst, P.; Walsh, M.C.; Choi, Y.; Shadel, G.S.; Ghosh, S. TLR signalling augments macrophage bactericidal activity through mitochondrial ROS. Nature, 2011, 472(7344), 476-480. doi: 10.1038/nature09973 PMID: 21525932
- Zhang, Z-B.; Feng, X.; Li, M.; Tan, L-L.; Jiang, X-L.; Xu, L-X.; Li, G.; Feng, C-X.; Ding, X.; Sun, B.; Qin, Z-H. TP53-induced glycolysis and apoptosis regulator alleviates hypoxia/ischemia-induced microglial pyroptosis and ischemic brain damage. Neural Regen. Res., 2021, 16(6), 1037-1043. doi: 10.4103/1673-5374.300453 PMID: 33269748
- Hu, Y.; Mai, W.; Chen, L.; Cao, K.; Zhang, B.; Zhang, Z.; Liu, Y.; Lou, H.; Duan, S.; Gao, Z. mTOR‐mediated metabolic reprogramming shapes distinct microglia functions in response to lipopolysaccharide and ATP. Glia, 2020, 68(5), 1031-1045. doi: 10.1002/glia.23760 PMID: 31793691
- He, C.; Zhou, C.; Kennedy, B.K. The yeast replicative aging model. Biochim. Biophys. Acta Mol. Basis Dis., 2018, 1864(9), 2690-2696. doi: 10.1016/j.bbadis.2018.02.023 PMID: 29524633
- Hardie, D.G. AMP-activated/SNF1 protein kinases: Conserved guardians of cellular energy. Nat. Rev. Mol. Cell Biol., 2007, 8(10), 774-785. doi: 10.1038/nrm2249 PMID: 17712357
- Baik, S.H.; Kang, S.; Lee, W.; Choi, H.; Chung, S.; Kim, J.I.; Mook-Jung, I. A breakdown in metabolic reprogramming causes microglia dysfunction in alzheimers disease. Cell Metab., 2019, 30(3), 493-507.e6. doi: 10.1016/j.cmet.2019.06.005 PMID: 31257151
- Cheng, S.C.; Quintin, J.; Cramer, R.A.; Shepardson, K.M.; Saeed, S.; Kumar, V.; Giamarellos-Bourboulis, E.J.; Martens, J.H.A.; Rao, N.A.; Aghajanirefah, A.; Manjeri, G.R.; Li, Y.; Ifrim, D.C.; Arts, R.J.W.; van der Veer, B.M.J.W.; Deen, P.M.T.; Logie, C.; ONeill, L.A.; Willems, P.; van de Veerdonk, F.L.; van der Meer, J.W.M.; Ng, A.; Joosten, L.A.B.; Wijmenga, C.; Stunnenberg, H.G.; Xavier, R.J.; Netea, M.G. mTOR- and HIF-1αmediated aerobic glycolysis as metabolic basis for trained immunity. Science, 2014, 345(6204), 1250684. doi: 10.1126/science.1250684 PMID: 25258083
- Denko, N.C. Hypoxia, HIF1 and glucose metabolism in the solid tumour. Nat. Rev. Cancer, 2008, 8(9), 705-713. doi: 10.1038/nrc2468 PMID: 19143055
- Gimeno-Bayón, J.; López-López, A.; Rodríguez, M.J.; Mahy, N. Glucose pathways adaptation supports acquisition of activated microglia phenotype. J. Neurosci. Res., 2014, 92(6), 723-731. doi: 10.1002/jnr.23356 PMID: 24510633
- Yalcin, A.; Clem, B.F.; Imbert-Fernandez, Y.; Ozcan, S.C.; Peker, S.; ONeal, J.; Klarer, A.C.; Clem, A.L.; Telang, S.; Chesney, J. 6-Phosphofructo-2-kinase (PFKFB3) promotes cell cycle progression and suppresses apoptosis via Cdk1-mediated phosphorylation of p27. Cell Death Dis., 2014, 5(7), e1337. doi: 10.1038/cddis.2014.292 PMID: 25032860
- Ros, S.; Schulze, A. Balancing glycolytic flux: the role of 6-phosphofructo-2-kinase/fructose 2,6-bisphosphatases in cancer metabolism. Cancer Metab., 2013, 1(1), 8. doi: 10.1186/2049-3002-1-8 PMID: 24280138
- Holland, R.; McIntosh, A.L.; Finucane, O.M.; Mela, V.; Rubio-Araiz, A.; Timmons, G.; McCarthy, S.A.; Gunko, Y.K.; Lynch, M.A. Inflammatory microglia are glycolytic and iron retentive and typify the microglia in APP/PS1 mice. Brain Behav. Immun., 2018, 68, 183-196. doi: 10.1016/j.bbi.2017.10.017 PMID: 29061364
- Rubio-Araiz, A.; Finucane, O.M.; Keogh, S.; Lynch, M.A. Anti-TLR2 antibody triggers oxidative phosphorylation in microglia and increases phagocytosis of β-amyloid. J. Neuroinflammation, 2018, 15(1), 247. doi: 10.1186/s12974-018-1281-7 PMID: 30170611
- McIntosh, A.; Mela, V.; Harty, C.; Minogue, A.M.; Costello, D.A.; Kerskens, C.; Lynch, M.A. Iron accumulation in microglia triggers a cascade of events that leads to altered metabolism and compromised function in APP/PS1 mice. Brain Pathol., 2019, 29(5), 606-621. doi: 10.1111/bpa.12704 PMID: 30661261
- Finucane, O.M.; Sugrue, J.; Rubio-Araiz, A.; Guillot-Sestier, M.V.; Lynch, M.A. The NLRP3 inflammasome modulates glycolysis by increasing PFKFB3 in an IL-1β-dependent manner in macrophages. Sci. Rep., 2019, 9(1), 4034. doi: 10.1038/s41598-019-40619-1 PMID: 30858427
- Nair, S.; Sobotka, K.S.; Joshi, P.; Gressens, P.; Fleiss, B.; Thornton, C.; Mallard, C.; Hagberg, H. Lipopolysaccharide‐induced alteration of mitochondrial morphology induces a metabolic shift in microglia modulating the inflammatory response in vitro and in vivo. Glia, 2019, 67(6), 1047-1061. doi: 10.1002/glia.23587 PMID: 30637805
- Qiao, H.; He, X.; Zhang, Q.; Yuan, H.; Wang, D.; Li, L.; Hui, Y.; Wu, Z.; Li, W.; Zhang, N. Alpha-synuclein induces microglial migration via PKM2-dependent glycolysis. Int. J. Biol. Macromol., 2019, 129, 601-607. doi: 10.1016/j.ijbiomac.2019.02.029 PMID: 30738168
- Jha, A.K.; Huang, S.C.C.; Sergushichev, A.; Lampropoulou, V.; Ivanova, Y.; Loginicheva, E.; Chmielewski, K.; Stewart, K.M.; Ashall, J.; Everts, B.; Pearce, E.J.; Driggers, E.M.; Artyomov, M.N. Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization. Immunity, 2015, 42(3), 419-430. doi: 10.1016/j.immuni.2015.02.005 PMID: 25786174
- Mehla, K.; Singh, P.K. Metabolic regulation of macrophage polarization in cancer. Trends Cancer, 2019, 5(12), 822-834. doi: 10.1016/j.trecan.2019.10.007 PMID: 31813459
- Bernier, L.P.; York, E.M.; Kamyabi, A.; Choi, H.B.; Weilinger, N.L.; MacVicar, B.A. Microglial metabolic flexibility supports immune surveillance of the brain parenchyma. Nat. Commun., 2020, 11(1), 1559. doi: 10.1038/s41467-020-15267-z PMID: 32214088
- Kaushik, D.K.; Yong, V.W. Metabolic needs of brain‐infiltrating leukocytes and microglia in multiple sclerosis. J. Neurochem., 2021, 158(1), 14-24. doi: 10.1111/jnc.15206 PMID: 33025576
- Sun, H.N.; Kim, S.U.; Lee, M.S.; Kim, S.K.; Kim, J.M.; Yim, M.; Yu, D.Y.; Lee, D.S. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-dependent activation of phosphoinositide 3-kinase and p38 mitogen-activated protein kinase signal pathways is required for lipopolysaccharide-induced microglial phagocytosis. Biol. Pharm. Bull., 2008, 31(9), 1711-1715. doi: 10.1248/bpb.31.1711 PMID: 18758064
- Zhai, L.; Ruan, S.; Wang, J.; Guan, Q.; Zha, L. NADPH oxidase 4 regulate the glycolytic metabolic reprogramming of microglial cells to promote M1 polarization. J. Biochem. Mol. Toxicol., 2023, 37(5), e23318. doi: 10.1002/jbt.23318 PMID: 36762617
- Tu, D.; Gao, Y.; Yang, R.; Guan, T.; Hong, J.S.; Gao, H.M. The pentose phosphate pathway regulates chronic neuroinflammation and dopaminergic neurodegeneration. J. Neuroinflammation, 2019, 16(1), 255. doi: 10.1186/s12974-019-1659-1 PMID: 31805953
- Mela, V.; Mota, B.C.; Milner, M.; McGinley, A.; Mills, K.H.G.; Kelly, Á.M.; Lynch, M.A. Exercise-induced re-programming of age-related metabolic changes in microglia is accompanied by a reduction in senescent cells. Brain Behav. Immun., 2020, 87, 413-428. doi: 10.1016/j.bbi.2020.01.012 PMID: 31978523
- Orihuela, R.; McPherson, C.A.; Harry, G.J. Microglial M1/M2 polarization and metabolic states. Br. J. Pharmacol., 2016, 173(4), 649-665. doi: 10.1111/bph.13139 PMID: 25800044
- Haschemi, A.; Kosma, P.; Gille, L.; Evans, C.R.; Burant, C.F.; Starkl, P.; Knapp, B.; Haas, R.; Schmid, J.A.; Jandl, C.; Amir, S.; Lubec, G.; Park, J.; Esterbauer, H.; Bilban, M.; Brizuela, L.; Pospisilik, J.A.; Otterbein, L.E.; Wagner, O. The sedoheptulose kinase CARKL directs macrophage polarization through control of glucose metabolism. Cell Metab., 2012, 15(6), 813-826. doi: 10.1016/j.cmet.2012.04.023 PMID: 22682222
- Chausse, B.; Lewen, A.; Poschet, G.; Kann, O. Selective inhibition of mitochondrial respiratory complexes controls the transition of microglia into a neurotoxic phenotype in situ. Brain Behav. Immun., 2020, 88, 802-814. doi: 10.1016/j.bbi.2020.05.052 PMID: 32446944
- Mills, E.L.; Ryan, D.G.; Prag, H.A.; Dikovskaya, D.; Menon, D.; Zaslona, Z.; Jedrychowski, M.P.; Costa, A.S.H.; Higgins, M.; Hams, E.; Szpyt, J.; Runtsch, M.C.; King, M.S.; McGouran, J.F.; Fischer, R.; Kessler, B.M.; McGettrick, A.F.; Hughes, M.M.; Carroll, R.G.; Booty, L.M.; Knatko, E.V.; Meakin, P.J.; Ashford, M.L.J.; Modis, L.K.; Brunori, G.; Sévin, D.C.; Fallon, P.G.; Caldwell, S.T.; Kunji, E.R.S.; Chouchani, E.T.; Frezza, C.; Dinkova-Kostova, A.T.; Hartley, R.C.; Murphy, M.P.; ONeill, L.A. Itaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAP1. Nature, 2018, 556(7699), 113-117. doi: 10.1038/nature25986 PMID: 29590092
- Cordes, T.; Wallace, M.; Michelucci, A.; Divakaruni, A.S.; Sapcariu, S.C.; Sousa, C.; Koseki, H.; Cabrales, P.; Murphy, A.N.; Hiller, K.; Metallo, C.M. Immunoresponsive gene 1 and itaconate inhibit succinate dehydrogenase to modulate intracellular succinate levels. J. Biol. Chem., 2016, 291(27), 14274-14284. doi: 10.1074/jbc.M115.685792 PMID: 27189937
- Kuo, P.C.; Weng, W.T.; Scofield, B.A.; Paraiso, H.C.; Brown, D.A.; Wang, P.Y.; Yu, I.C.; Yen, J.H. Dimethyl itaconate, an itaconate derivative, exhibits immunomodulatory effects on neuroinflammation in experimental autoimmune encephalomyelitis. J. Neuroinflammation, 2020, 17(1), 138. doi: 10.1186/s12974-020-01768-7 PMID: 32349768
- Kuo, P.C.; Weng, W.T.; Scofield, B.A.; Furnas, D.; Paraiso, H.C.; Yu, I.C.; Yen, J.H. Immunoresponsive gene 1 modulates the severity of brain injury in cerebral ischaemia. Brain Commun., 2021, 3(3), fcab187. doi: 10.1093/braincomms/fcab187 PMID: 34557667
- Bao, M.W.; Cai, Z.; Zhang, X.J.; Li, L.; Liu, X.; Wan, N.; Hu, G.; Wan, F.; Zhang, R.; Zhu, X.; Xia, H.; Li, H. Dickkopf-3 protects against cardiac dysfunction and ventricular remodelling following myocardial infarction. Basic Res. Cardiol., 2015, 110(3), 25. doi: 10.1007/s00395-015-0481-x PMID: 25840773
- Caffo, M.; Fusco, R.; Siracusa, R.; Caruso, G.; Barresi, V.; Di Paola, R.; Cuzzocrea, S.; Germanò, A.F.; Cardali, S.M. Molecular investigation of DKK3 in cerebral ischemic/reperfusion injury. Biomedicines, 2023, 11(3), 815. doi: 10.3390/biomedicines11030815 PMID: 36979794
- Xu, Y.; Nowrangi, D.; Liang, H.; Wang, T.; Yu, L.; Lu, T.; Lu, Z.; Zhang, J.H.; Luo, B.; Tang, J. DKK3 attenuates JNK and AP-1 induced inflammation via Kremen-1 and DVL-1 in mice following intracerebral hemorrhage. J. Neuroinflammation, 2020, 17(1), 130. doi: 10.1186/s12974-020-01794-5 PMID: 32331523
- Zhang, L.Q.; Gao, S.J.; Sun, J.; Li, D.Y.; Wu, J.Y.; Song, F.H.; Liu, D.Q.; Zhou, Y.Q.; Mei, W. DKK3 ameliorates neuropathic pain via inhibiting ASK-1/JNK/p-38-mediated microglia polarization and neuroinflammation. J. Neuroinflammation, 2022, 19(1), 129. doi: 10.1186/s12974-022-02495-x PMID: 35658977
- Geng, J.; Zhang, Y.; Li, S.; Li, S.; Wang, J.; Wang, H.; Aa, J.; Wang, G. Metabolomic profiling reveals that reprogramming of cerebral glucose metabolism is involved in ischemic preconditioning-induced neuroprotection in a rodent model of ischemic stroke. J. Proteome Res., 2019, 18(1), 57-68. PMID: 30362349
- Ito, M.; Aswendt, M.; Lee, A.G.; Ishizaka, S.; Cao, Z.; Wang, E.H.; Levy, S.L.; Smerin, D.L.; McNab, J.A.; Zeineh, M.; Leuze, C.; Goubran, M.; Cheng, M.Y.; Steinberg, G.K. RNA-sequencing analysis revealed a distinct motor cortex transcriptome in spontaneously recovered mice after stroke. Stroke, 2018, 49(9), 2191-2199. doi: 10.1161/STROKEAHA.118.021508 PMID: 30354987
- Li, Y.; Lu, B.; Sheng, L.; Zhu, Z.; Sun, H.; Zhou, Y.; Yang, Y.; Xue, D.; Chen, W.; Tian, X.; Du, Y.; Yan, M.; Zhu, W.; Xing, F.; Li, K.; Lin, S.; Qiu, P.; Su, X.; Huang, Y.; Yan, G.; Yin, W. Hexokinase 2‐dependent hyperglycolysis driving microglial activation contributes to ischemic brain injury. J. Neurochem., 2018, 144(2), 186-200. doi: 10.1111/jnc.14267 PMID: 29205357
- Ma, W.; Wu, Q.; Wang, S.; Wang, H.; Ye, J.; Sun, H.; Feng, Z.; He, W.; Chu, S.; Zhang, Z.; Chen, N. A breakdown of metabolic reprogramming in microglia induced by CKLF1 exacerbates immune tolerance in ischemic stroke. J. Neuroinflammation, 2023, 20(1), 97. doi: 10.1186/s12974-023-02779-w PMID: 37098609
- Michelakis, E.D.; Webster, L.; Mackey, J.R. Dichloroacetate (DCA) as a potential metabolic-targeting therapy for cancer. Br. J. Cancer, 2008, 99(7), 989-994. doi: 10.1038/sj.bjc.6604554 PMID: 18766181
- Hong, D.K.; Kho, A.R.; Choi, B.Y.; Lee, S.H.; Jeong, J.H.; Lee, S.H.; Park, K.H.; Park, J.B.; Suh, S.W. Combined treatment with dichloroacetic acid and pyruvate reduces hippocampal neuronal death after transient cerebral ischemia. Front. Neurol., 2018, 9, 137. doi: 10.3389/fneur.2018.00137 PMID: 29593636
- Cheng, J.; Zhang, R.; Xu, Z.; Ke, Y.; Sun, R.; Yang, H.; Zhang, X.; Zhen, X.; Zheng, L.T. Early glycolytic reprogramming controls microglial inflammatory activation. J. Neuroinflammation, 2021, 18(1), 129. doi: 10.1186/s12974-021-02187-y PMID: 34107997
- Guo, C.; Ludvik, A.E.; Arlotto, M.E.; Hayes, M.G.; Armstrong, L.L.; Scholtens, D.M.; Brown, C.D.; Newgard, C.B.; Becker, T.C.; Layden, B.T.; Lowe, W.L.; Reddy, T.E. Coordinated regulatory variation associated with gestational hyperglycaemia regulates expression of the novel hexokinase HKDC1. Nat. Commun., 2015, 6(1), 6069. doi: 10.1038/ncomms7069 PMID: 25648650
- Lauro, C.; Catalano, M.; Trettel, F.; Limatola, C. Fractalkine in the nervous system: neuroprotective or neurotoxic molecule? Ann. N. Y. Acad. Sci., 2015, 1351(1), 141-148. doi: 10.1111/nyas.12805 PMID: 26084002
- Lauro, C.; Chece, G.; Monaco, L.; Antonangeli, F.; Peruzzi, G.; Rinaldo, S.; Paone, A.; Cutruzzolà, F.; Limatola, C. Fractalkine modulates microglia metabolism in brain ischemia. Front. Cell. Neurosci., 2019, 13, 414. doi: 10.3389/fncel.2019.00414 PMID: 31607865
- Cipriani, R.; Villa, P.; Chece, G.; Lauro, C.; Paladini, A.; Micotti, E.; Perego, C.; De Simoni, M.G.; Fredholm, B.B.; Eusebi, F.; Limatola, C. CX3CL1 is neuroprotective in permanent focal cerebral ischemia in rodents. J. Neurosci., 2011, 31(45), 16327-16335. doi: 10.1523/JNEUROSCI.3611-11.2011 PMID: 22072684
- Shen, H.; Pei, H.; Zhai, L.; Guan, Q.; Wang, G. Salvianolic acid C improves cerebral ischemia reperfusion injury through suppressing microglial cell M1 polarization and promoting cerebral angiogenesis. Int. Immunopharmacol., 2022, 110, 109021. doi: 10.1016/j.intimp.2022.109021 PMID: 35810493
- Song, S.; Yu, L.; Hasan, M.N.; Paruchuri, S.S.; Mullett, S.J.; Sullivan, M.L.G.; Fiesler, V.M.; Young, C.B.; Stolz, D.B.; Wendell, S.G.; Sun, D. Elevated microglial oxidative phosphorylation and phagocytosis stimulate post-stroke brain remodeling and cognitive function recovery in mice. Commun. Biol., 2022, 5(1), 35. doi: 10.1038/s42003-021-02984-4 PMID: 35017668
- Jin, W.N.; Shi, S.X.Y.; Li, Z.; Li, M.; Wood, K.; Gonzales, R.J.; Liu, Q. Depletion of microglia exacerbates postischemic inflammation and brain injury. J. Cereb. Blood Flow Metab., 2017, 37(6), 2224-2236. doi: 10.1177/0271678X17694185 PMID: 28273719
- Gomes, A.S.; Ramos, H.; Soares, J.; Saraiva, L. p53 and glucose metabolism: An orchestra to be directed in cancer therapy. Pharmacol. Res., 2018, 131, 75-86. doi: 10.1016/j.phrs.2018.03.015 PMID: 29580896
- Bensaad, K.; Tsuruta, A.; Selak, M.A.; Vidal, M.N.C.; Nakano, K.; Bartrons, R.; Gottlieb, E.; Vousden, K.H. TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell, 2006, 126(1), 107-120. doi: 10.1016/j.cell.2006.05.036 PMID: 16839880
- Li, Q.Q.; Li, J.Y.; Zhou, M.; Qin, Z.H.; Sheng, R. Targeting neuroinflammation to treat cerebral ischemia - The role of TIGAR/NADPH axis. Neurochem. Int., 2021, 148, 105081. doi: 10.1016/j.neuint.2021.105081 PMID: 34082063
- Herrero-Mendez, A.; Almeida, A.; Fernández, E.; Maestre, C.; Moncada, S.; Bolaños, J.P. The bioenergetic and antioxidant status of neurons is controlled by continuous degradation of a key glycolytic enzyme by APC/CCdh1. Nat. Cell Biol., 2009, 11(6), 747-752. doi: 10.1038/ncb1881 PMID: 19448625
- Green, D.R.; Chipuk, J.E. p53 and Metabolism: Inside the TIGAR. Cell, 2006, 126(1), 30-32. doi: 10.1016/j.cell.2006.06.032 PMID: 16839873
- Patra, K.C.; Hay, N. The pentose phosphate pathway and cancer. Trends Biochem. Sci., 2014, 39(8), 347-354. doi: 10.1016/j.tibs.2014.06.005 PMID: 25037503
- Li, M.; Zhou, Z.P.; Sun, M.; Cao, L.; Chen, J.; Qin, Y.Y.; Gu, J.H.; Han, F.; Sheng, R.; Wu, J.C.; Ding, Y.; Qin, Z.H. Reduced nicotinamide adenine dinucleotide phosphate, a pentose phosphate pathway product, might be a novel drug candidate for ischemic stroke. Stroke, 2016, 47(1), 187-195. doi: 10.1161/STROKEAHA.115.009687 PMID: 26564104
- Li, M.; Sun, M.; Cao, L.; Gu, J.; Ge, J.; Chen, J.; Han, R.; Qin, Y.Y.; Zhou, Z.P.; Ding, Y.; Qin, Z.H. A TIGAR-regulated metabolic pathway is critical for protection of brain ischemia. J. Neurosci., 2014, 34(22), 7458-7471. doi: 10.1523/JNEUROSCI.4655-13.2014 PMID: 24872551
- Cao, L.; Zhang, D.; Chen, J.; Qin, Y.Y.; Sheng, R.; Feng, X.; Chen, Z.; Ding, Y.; Li, M.; Qin, Z.H. G6PD plays a neuroprotective role in brain ischemia through promoting pentose phosphate pathway. Free Radic. Biol. Med., 2017, 112, 433-444. doi: 10.1016/j.freeradbiomed.2017.08.011 PMID: 28823591
- Hu, J.; Baydyuk, M.; Huang, J.K. Impact of amino acids on microglial activation and CNS remyelination. Curr. Opin. Pharmacol., 2022, 66, 102287. doi: 10.1016/j.coph.2022.102287 PMID: 36067684
- Tannahill, G.M.; Curtis, A.M.; Adamik, J.; Palsson-McDermott, E.M.; McGettrick, A.F.; Goel, G.; Frezza, C.; Bernard, N.J.; Kelly, B.; Foley, N.H.; Zheng, L.; Gardet, A.; Tong, Z.; Jany, S.S.; Corr, S.C.; Haneklaus, M.; Caffrey, B.E.; Pierce, K.; Walmsley, S.; Beasley, F.C.; Cummins, E.; Nizet, V.; Whyte, M.; Taylor, C.T.; Lin, H.; Masters, S.L.; Gottlieb, E.; Kelly, V.P.; Clish, C.; Auron, P.E.; Xavier, R.J.; ONeill, L.A.J. Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature, 2013, 496(7444), 238-242. doi: 10.1038/nature11986 PMID: 23535595
- Tretter, L.; Patocs, A.; Chinopoulos, C. Succinate, an intermediate in metabolism, signal transduction, ROS, hypoxia, and tumorigenesis. Biochim. Biophys. Acta Bioenerg., 2016, 1857(8), 1086-1101. doi: 10.1016/j.bbabio.2016.03.012 PMID: 26971832
- Palsson-McDermott, E.M.; ONeill, L.A.J. The Warburg effect then and now: From cancer to inflammatory diseases. BioEssays, 2013, 35(11), 965-973. doi: 10.1002/bies.201300084 PMID: 24115022
- McKenna, M.C. The glutamate‐glutamine cycle is not stoichiometric: Fates of glutamate in brain. J. Neurosci. Res., 2007, 85(15), 3347-3358. doi: 10.1002/jnr.21444 PMID: 17847118
- Tani, H.; Dulla, C.G.; Farzampour, Z.; Taylor-Weiner, A.; Huguenard, J.R.; Reimer, R.J. A local glutamate-glutamine cycle sustains synaptic excitatory transmitter release. Neuron, 2014, 81(4), 888-900. doi: 10.1016/j.neuron.2013.12.026 PMID: 24559677
- Bak, L.K.; Schousboe, A.; Waagepetersen, H.S. The glutamate/GABA‐glutamine cycle: Aspects of transport, neurotransmitter homeostasis and ammonia transfer. J. Neurochem., 2006, 98(3), 641-653. doi: 10.1111/j.1471-4159.2006.03913.x PMID: 16787421
- Durán, R.V.; Oppliger, W.; Robitaille, A.M.; Heiserich, L.; Skendaj, R.; Gottlieb, E.; Hall, M.N. Glutaminolysis activates Rag-mTORC1 signaling. Mol. Cell, 2012, 47(3), 349-358. doi: 10.1016/j.molcel.2012.05.043 PMID: 22749528
- Jewell, J.L.; Kim, Y.C.; Russell, R.C.; Yu, F.X.; Park, H.W.; Plouffe, S.W.; Tagliabracci, V.S.; Guan, K.L. Differential regulation of mTORC1 by leucine and glutamine. Science, 2015, 347(6218), 194-198. doi: 10.1126/science.1259472 PMID: 25567907
- Madry, C.; Arancibia-Cárcamo, I.L.; Kyrargyri, V.; Chan, V.T.T.; Hamilton, N.B.; Attwell, D. Effects of the ecto-ATPase apyrase on microglial ramification and surveillance reflect cell depolarization, not ATP depletion. Proc. Natl. Acad. Sci., 2018, 115(7), E1608-E1617. doi: 10.1073/pnas.1715354115 PMID: 29382767
- Vergen, J.; Hecht, C.; Zholudeva, L.V.; Marquardt, M.M.; Hallworth, R.; Nichols, M.G. Metabolic imaging using two-photon excited NADH intensity and fluorescence lifetime imaging. Microsc. Microanal., 2012, 18(4), 761-770. doi: 10.1017/S1431927612000529 PMID: 22832200
- Palmieri, E.M.; Menga, A.; Lebrun, A.; Hooper, D.C.; Butterfield, D.A.; Mazzone, M.; Castegna, A. Blockade of glutamine synthetase enhances inflammatory response in microglial cells. Antioxid. Redox Signal., 2017, 26(8), 351-363. doi: 10.1089/ars.2016.6715 PMID: 27758118
- Jayasooriya, R.G.P.T.; Molagoda, I.M.N.; Dilshara, M.G.; Choi, Y.H.; Kim, G.Y. Glutamine cooperatively upregulates lipopolysaccharide-induced nitric oxide production in BV2 microglial cells through the ERK and Nrf-2/HO-1 signaling pathway. Antioxidants, 2020, 9(6), 536. doi: 10.3390/antiox9060536 PMID: 32575515
- Calabrese, V.; Mancuso, C.; Calvani, M.; Rizzarelli, E.; Butterfield, D.A.; Giuffrida Stella, A.M. Nitric oxide in the central nervous system: neuroprotection versus neurotoxicity. Nat. Rev. Neurosci., 2007, 8(10), 766-775. doi: 10.1038/nrn2214 PMID: 17882254
- Doljić, E.; Grbatinić, I.; Kostić, V. Why is nitric oxide important for our brain? Funct. Neurol., 2015, 30(3), 159-163. PMID: 26910176
- Rao, J.S.; Kellom, M.; Kim, H.W.; Rapoport, S.I.; Reese, E.A. Neuroinflammation and synaptic loss. Neurochem. Res., 2012, 37(5), 903-910. doi: 10.1007/s11064-012-0708-2 PMID: 22311128
- Yuste, J.E.; Tarragon, E.; Campuzano, C.M.; Ros-Bernal, F. Implications of glial nitric oxide in neurodegenerative diseases. Front. Cell. Neurosci., 2015, 9, 322. doi: 10.3389/fncel.2015.00322 PMID: 26347610
- Iadecola, C.; Alexander, M. Cerebral ischemia and inflammation. Curr. Opin. Neurol., 2001, 14(1), 89-94. doi: 10.1097/00019052-200102000-00014 PMID: 11176223
- Paolocci, N.; Biondi, R.; Bettini, M.; Lee, C.I.; Berlowitz, C.O.; Rossi, R.; Xia, Y.; Ambrosio, G.; LAbbate, A.; Kass, D.A.; Zweier, J.L. Oxygen radical-mediated reduction in basal and agonist-evoked NO release in isolated rat heart. J. Mol. Cell. Cardiol., 2001, 33(4), 671-679. doi: 10.1006/jmcc.2000.1334 PMID: 11341236
- Albrecht, J.; Sidoryk-Węgrzynowicz, M.; Zielińska, M.; Aschner, M. Roles of glutamine in neurotransmission. Neuron Glia Biol., 2010, 6(4), 263-276. doi: 10.1017/S1740925X11000093 PMID: 22018046
- Jurga, A.M.; Paleczna, M.; Kuter, K.Z. Overview of general and discriminating markers of differential microglia phenotypes. Front. Cell. Neurosci., 2020, 14, 198. doi: 10.3389/fncel.2020.00198 PMID: 32848611
- Jobgen, W.S.; Fried, S.K.; Fu, W.J.; Meininger, C.J.; Wu, G. Regulatory role for the argininenitric oxide pathway in metabolism of energy substrates. J. Nutr. Biochem., 2006, 17(9), 571-588. doi: 10.1016/j.jnutbio.2005.12.001 PMID: 16524713
- Mantovani, A.; Biswas, S.K.; Galdiero, M.R.; Sica, A.; Locati, M. Macrophage plasticity and polarization in tissue repair and remodelling. J. Pathol., 2013, 229(2), 176-185. doi: 10.1002/path.4133 PMID: 23096265
- Calabrese, C.; Poppleton, H.; Kocak, M.; Hogg, T.L.; Fuller, C.; Hamner, B.; Oh, E.Y.; Gaber, M.W.; Finklestein, D.; Allen, M.; Frank, A.; Bayazitov, I.T.; Zakharenko, S.S.; Gajjar, A.; Davidoff, A.; Gilbertson, R.J. A perivascular niche for brain tumor stem cells. Cancer Cell, 2007, 11(1), 69-82. doi: 10.1016/j.ccr.2006.11.020 PMID: 17222791
- Chen, S.F.; Pan, M.X.; Tang, J.C.; Cheng, J.; Zhao, D.; Zhang, Y.; Liao, H.B.; Liu, R.; Zhuang, Y.; Zhang, Z.F.; Chen, J.; Lei, R.X.; Li, S.F.; Li, H.T.; Wang, Z.F.; Wan, Q. Arginine is neuroprotective through suppressing HIF-1α/LDHA-mediated inflammatory response after cerebral ischemia/reperfusion injury. Mol. Brain, 2020, 13(1), 63. doi: 10.1186/s13041-020-00601-9 PMID: 32321555
- Hsieh, K.F.; Shih, J.M.; Shih, Y.M.; Pai, M.H.; Yeh, S.L. Arginine administration increases circulating endothelial progenitor cells and attenuates tissue injury in a mouse model of hind limb ischemia/reperfusion. Nutrition, 2018, 55-56, 29-35. doi: 10.1016/j.nut.2018.02.019 PMID: 29960153
- Zhao, D.; Chen, J.; Zhang, Y.; Liao, H.B.; Zhang, Z.F.; Zhuang, Y.; Pan, M.X.; Tang, J.C.; Liu, R.; Lei, Y.; Wang, S.; Qin, X.P.; Feng, Y.G.; Chen, Y.; Wan, Q. Glycine confers neuroprotection through PTEN/AKT signal pathway in experimental intracerebral hemorrhage. Biochem. Biophys. Res. Commun., 2018, 501(1), 85-91. doi: 10.1016/j.bbrc.2018.04.171 PMID: 29698679
- Liu, R.; Liao, X.Y.; Pan, M.X.; Tang, J.C.; Chen, S.F.; Zhang, Y.; Lu, P.X.; Lu, L.J.; Zou, Y.Y.; Qin, X.P.; Bu, L.H.; Wan, Q. Glycine exhibits neuroprotective effects in ischemic stroke in rats through the inhibition of M1 microglial polarization via the NF-κB p65/Hif-1α signaling pathway. J. Immunol., 2019, 202(6), 1704-1714. doi: 10.4049/jimmunol.1801166 PMID: 30710045
- Chen, S.; Dong, Z.; Cheng, M.; Zhao, Y.; Wang, M.; Sai, N.; Wang, X.; Liu, H.; Huang, G.; Zhang, X. Homocysteine exaggerates microglia activation and neuroinflammation through microglia localized STAT3 overactivation following ischemic stroke. J. Neuroinflammation, 2017, 14(1), 187. doi: 10.1186/s12974-017-0963-x PMID: 28923114
- De Simone, R.; Vissicchio, F.; Mingarelli, C.; De Nuccio, C.; Visentin, S.; Ajmone-Cat, M.A.; Minghetti, L. Branched-chain amino acids influence the immune properties of microglial cells and their responsiveness to pro-inflammatory signals. Biochim. Biophys. Acta Mol. Basis Dis., 2013, 1832(5), 650-659. doi: 10.1016/j.bbadis.2013.02.001 PMID: 23402925
- Chi, O.Z.; Hunter, C.; Liu, X.; Weiss, H.R. Effects of exogenous excitatory amino acid neurotransmitters on blood-brain barrier disruption in focal cerebral ischemia. Neurochem. Res., 2009, 34(7), 1249-1254. doi: 10.1007/s11064-008-9902-7 PMID: 19127429
- Lucas, D.R.; Newhouse, J.P. The toxic effect of sodium L-glutamate on the inner layers of the retina. Arch. Ophthalmol., 1957, 58(2), 193-201. doi: 10.1001/archopht.1957.00940010205006 PMID: 13443577
- Gao, G.; Li, C.; Zhu, J.; Wang, Y.; Huang, Y.; Zhao, S.; Sheng, S.; Song, Y.; Ji, C.; Li, C.; Yang, X.; Ye, L.; Qi, X.; Zhang, Y.; Xia, X.; Zheng, J.C. Glutaminase 1 regulates neuroinflammation after cerebral ischemia through enhancing microglial activation and pro-inflammatory exosome release. Front. Immunol., 2020, 11, 161. doi: 10.3389/fimmu.2020.00161 PMID: 32117296
- White, C.J.; Lee, J.; Choi, J.; Chu, T.; Scafidi, S.; Wolfgang, M.J. Determining the bioenergetic capacity for fatty acid oxidation in the mammalian nervous system. Mol. Cell. Biol., 2020, 40(10), e00037-e20. doi: 10.1128/MCB.00037-20 PMID: 32123009
- Brown, G.C.; Neher, J.J. Microglial phagocytosis of live neurons. Nat. Rev. Neurosci., 2014, 15(4), 209-216. doi: 10.1038/nrn3710 PMID: 24646669
- Gao, Y.; Vidal-Itriago, A.; Kalsbeek, M.J.; Layritz, C.; García-Cáceres, C.; Tom, R.Z.; Eichmann, T.O.; Vaz, F.M.; Houtkooper, R.H.; van der Wel, N.; Verhoeven, A.J.; Yan, J.; Kalsbeek, A.; Eckel, R.H.; Hofmann, S.M.; Yi, C.X. Lipoprotein lipase maintains microglial innate immunity in obesity. Cell Rep., 2017, 20(13), 3034-3042. doi: 10.1016/j.celrep.2017.09.008 PMID: 28954222
- Mauerer, R.; Walczak, Y.; Langmann, T. Comprehensive mRNA profiling of lipid-related genes in microglia and macrophages using taqman arrays. Methods Mol. Biol., 2009, 580, 187-201. doi: 10.1007/978-1-60761-325-1_10 PMID: 19784600
- Mecha, M.; Feliú, A.; Carrillo-Salinas, F.J.; Rueda-Zubiaurre, A.; Ortega-Gutiérrez, S.; de Sola, R.G.; Guaza, C. Endocannabinoids drive the acquisition of an alternative phenotype in microglia. Brain Behav. Immun., 2015, 49, 233-245. doi: 10.1016/j.bbi.2015.06.002 PMID: 26086345
- Nadjar, A. Role of metabolic programming in the modulation of microglia phagocytosis by lipids. Prostaglandins Leukot. Essent. Fatty Acids, 2018, 135, 63-73. doi: 10.1016/j.plefa.2018.07.006 PMID: 30103935
- Zhou, Y.; Song, W.M.; Andhey, P.S.; Swain, A.; Levy, T.; Miller, K.R.; Poliani, P.L.; Cominelli, M.; Grover, S.; Gilfillan, S.; Cella, M.; Ulland, T.K.; Zaitsev, K.; Miyashita, A.; Ikeuchi, T.; Sainouchi, M.; Kakita, A.; Bennett, D.A.; Schneider, J.A.; Nichols, M.R.; Beausoleil, S.A.; Ulrich, J.D.; Holtzman, D.M.; Artyomov, M.N.; Colonna, M. Human and mouse single-nucleus transcriptomics reveal TREM2-dependent and TREM2-independent cellular responses in Alzheimers disease. Nat. Med., 2020, 26(1), 131-142. doi: 10.1038/s41591-019-0695-9 PMID: 31932797
- Keren-Shaul, H.; Spinrad, A.; Weiner, A.; Matcovitch-Natan, O.; Dvir-Szternfeld, R.; Ulland, T.K.; David, E.; Baruch, K.; Lara-Astaiso, D.; Toth, B.; Itzkovitz, S.; Colonna, M.; Schwartz, M.; Amit, I. A unique microglia type associated with restricting development of alzheimers disease. Cell, 2017, 169(7), 1276-1290.e17. doi: 10.1016/j.cell.2017.05.018 PMID: 28602351
- Mudò, G.; Frinchi, M.; Nuzzo, D.; Scaduto, P.; Plescia, F.; Massenti, M.F.; Di Carlo, M.; Cannizzaro, C.; Cassata, G.; Cicero, L.; Ruscica, M.; Belluardo, N.; Grimaldi, L.M. Anti-inflammatory and cognitive effects of interferon-β1a (IFNβ1a) in a rat model of Alzheimers disease. J. Neuroinflammation, 2019, 16(1), 44. doi: 10.1186/s12974-019-1417-4 PMID: 30777084
- Gill, E.L.; Raman, S.; Yost, R.A.; Garrett, T.J.; Vedam-Mai, V. L -carnitine inhibits lipopolysaccharide-induced nitric oxide production of SIM-A9 microglia cells. ACS Chem. Neurosci., 2018, 9(5), 901-905. doi: 10.1021/acschemneuro.7b00468 PMID: 29370524
- Odegaard, J.I.; Ricardo-Gonzalez, R.R.; Goforth, M.H.; Morel, C.R.; Subramanian, V.; Mukundan, L.; Eagle, A.R.; Vats, D.; Brombacher, F.; Ferrante, A.W.; Chawla, A. Macrophage-specific PPARγ controls alternative activation and improves insulin resistance. Nature, 2007, 447(7148), 1116-1120. doi: 10.1038/nature05894 PMID: 17515919
- Vats, D.; Mukundan, L.; Odegaard, J.I.; Zhang, L.; Smith, K.L.; Morel, C.R.; Greaves, D.R.; Murray, P.J.; Chawla, A.; Chawla, A. Oxidative metabolism and PGC-1β attenuate macrophage-mediated inflammation. Cell Metab., 2006, 4(1), 13-24. doi: 10.1016/j.cmet.2006.05.011 PMID: 16814729
- Infantino, V.; Convertini, P.; Cucci, L.; Panaro, M.A.; Di Noia, M.A.; Calvello, R.; Palmieri, F.; Iacobazzi, V. The mitochondrial citrate carrier: A new player in inflammation. Biochem. J., 2011, 438(3), 433-436. doi: 10.1042/BJ20111275 PMID: 21787310
- Laplante, M.; Sabatini, D.M. An emerging role of mTOR in lipid biosynthesis. Curr. Biol., 2009, 19(22), R1046-R1052. doi: 10.1016/j.cub.2009.09.058 PMID: 19948145
- Gaber, T.; Strehl, C.; Buttgereit, F. Metabolic regulation of inflammation. Nat. Rev. Rheumatol., 2017, 13(5), 267-279. doi: 10.1038/nrrheum.2017.37 PMID: 28331208
- Samokhvalov, V.; Ussher, J.R.; Fillmore, N.; Armstrong, I.K.G.; Keung, W.; Moroz, D.; Lopaschuk, D.G.; Seubert, J.; Lopaschuk, G.D. Inhibition of malonyl-CoA decarboxylase reduces the inflammatory response associated with insulin resistance. Am. J. Physiol. Endocrinol. Metab., 2012, 303(12), E1459-E1468. doi: 10.1152/ajpendo.00018.2012 PMID: 23074239
- Foster, D.W. Malonyl-CoA: The regulator of fatty acid synthesis and oxidation. J. Clin. Invest., 2012, 122(6), 1958-1959. doi: 10.1172/JCI63967 PMID: 22833869
- Wang, Z.; Liu, D.; Wang, F.; Liu, S.; Zhao, S.; Ling, E.A.; Hao, A. Saturated fatty acids activate microglia via Toll-like receptor 4/NF-κB signalling. Br. J. Nutr., 2012, 107(2), 229-241. doi: 10.1017/S0007114511002868 PMID: 21733316
- Rapoport, S.I.; Chang, M.C.J.; Spector, A.A. Delivery and turnover of plasma-derived essential PUFAs in mammalian brain. J. Lipid Res., 2001, 42(5), 678-685. doi: 10.1016/S0022-2275(20)31629-1 PMID: 11352974
- Chausse, B.; Kakimoto, P.A.; Caldeira-da-Silva, C.C.; Chaves-Filho, A.B.; Yoshinaga, M.Y.; da Silva, R.P.; Miyamoto, S.; Kowaltowski, A.J. Distinct metabolic patterns during microglial remodeling by oleate and palmitate. Biosci. Rep., 2019, 39(4), BSR20190072. doi: 10.1042/BSR20190072 PMID: 30867255
- Feng, J.; Han, J.; Pearce, S.F.A.; Silverstein, R.L.; Gotto, A.M., Jr; Hajjar, D.P.; Nicholson, A.C. Induction of CD36 expression by oxidized LDL and IL-4 by a common signaling pathway dependent on protein kinase C and PPAR-γ. J. Lipid Res., 2000, 41(5), 688-696. doi: 10.1016/S0022-2275(20)32377-4 PMID: 10787429
- Hernando, S.; Requejo, C.; Herran, E.; Ruiz-Ortega, J.A.; Morera-Herreras, T.; Lafuente, J.V.; Ugedo, L.; Gainza, E.; Pedraz, J.L.; Igartua, M.; Hernandez, R.M. Beneficial effects of n-3 polyunsaturated fatty acids administration in a partial lesion model of Parkinsons disease: The role of glia and NRf2 regulation. Neurobiol. Dis., 2019, 121, 252-262. doi: 10.1016/j.nbd.2018.10.001 PMID: 30296616
- Jump, D.B.; Clarke, S.D. Regulation of gene expression by dietary fat. Annu. Rev. Nutr., 1999, 19(1), 63-90. doi: 10.1146/annurev.nutr.19.1.63 PMID: 10448517
- Jiang, X.; Pu, H.; Hu, X.; Wei, Z.; Hong, D.; Zhang, W.; Gao, Y.; Chen, J.; Shi, Y. A post-stroke therapeutic regimen with omega-3 polyunsaturated fatty acids that promotes white matter integrity and beneficial microglial responses after cerebral ischemia. Transl. Stroke Res., 2016, 7(6), 548-561. doi: 10.1007/s12975-016-0502-6 PMID: 27714669
- Talamonti, E.; Sasso, V.; To, H.; Haslam, R.P.; Napier, J.A.; Ulfhake, B.; Pernold, K.; Asadi, A.; Hessa, T.; Jacobsson, A.; Chiurchiù, V.; Viscomi, M.T. Impairment of DHA synthesis alters the expression of neuronal plasticity markers and the brain inflammatory status in mice. FASEB J., 2020, 34(2), 2024-2040. doi: 10.1096/fj.201901890RR PMID: 31909582
- Chang, P.K.Y.; Khatchadourian, A.; McKinney, R.A.; Maysinger, D. Docosahexaenoic acid (DHA): A modulator of microglia activity and dendritic spine morphology. J. Neuroinflammation, 2015, 12(1), 34. doi: 10.1186/s12974-015-0244-5 PMID: 25889069
- Fernandez, R.F.; Kim, S.Q.; Zhao, Y.; Foguth, R.M.; Weera, M.M.; Counihan, J.L.; Nomura, D.K.; Chester, J.A.; Cannon, J.R.; Ellis, J.M. Acyl-CoA synthetase 6 enriches the neuroprotective omega-3 fatty acid DHA in the brain. Proc. Natl. Acad. Sci., 2018, 115(49), 12525-12530. doi: 10.1073/pnas.1807958115 PMID: 30401738
- Duffy, C.M.; Xu, H.; Nixon, J.P.; Bernlohr, D.A.; Butterick, T.A. Identification of a fatty acid binding protein4-UCP2 axis regulating microglial mediated neuroinflammation. Mol. Cell. Neurosci., 2017, 80, 52-57. doi: 10.1016/j.mcn.2017.02.004 PMID: 28214555
- Duffy, C.M.; Yuan, C.; Wisdorf, L.E.; Billington, C.J.; Kotz, C.M.; Nixon, J.P.; Butterick, T.A. Role of orexin A signaling in dietary palmitic acid-activated microglial cells. Neurosci. Lett., 2015, 606, 140-144. doi: 10.1016/j.neulet.2015.08.033 PMID: 26306651
- Button, E.B.; Mitchell, A.S.; Domingos, M.M.; Chung, J.H.J.; Bradley, R.M.; Hashemi, A.; Marvyn, P.M.; Patterson, A.C.; Stark, K.D.; Quadrilatero, J.; Duncan, R.E. Microglial cell activation increases saturated and decreases monounsaturated fatty acid content, but both lipid species are proinflammatory. Lipids, 2014, 49(4), 305-316. doi: 10.1007/s11745-014-3882-y PMID: 24473753
- Filipello, F.; Goldsbury, C.; You, S.F.; Locca, A.; Karch, C.M.; Piccio, L. Soluble TREM2: Innocent bystander or active player in neurological diseases? Neurobiol. Dis., 2022, 165, 105630. doi: 10.1016/j.nbd.2022.105630 PMID: 35041990
- Ulland, T.K.; Song, W.M.; Huang, S.C.C.; Ulrich, J.D.; Sergushichev, A.; Beatty, W.L.; Loboda, A.A.; Zhou, Y.; Cairns, N.J.; Kambal, A.; Loginicheva, E.; Gilfillan, S.; Cella, M.; Virgin, H.W.; Unanue, E.R.; Wang, Y.; Artyomov, M.N.; Holtzman, D.M.; Colonna, M. TREM2 maintains microglial metabolic fitness in alzheimers disease. Cell, 2017, 170(4), 649-663.e13. doi: 10.1016/j.cell.2017.07.023 PMID: 28802038
- Piers, T.M.; Cosker, K.; Mallach, A.; Johnson, G.T.; Guerreiro, R.; Hardy, J.; Pocock, J.M. A locked immunometabolic switch underlies TREM2 R47H loss of function in human iPSC‐derived microglia. FASEB J., 2020, 34(2), 2436-2450. doi: 10.1096/fj.201902447R PMID: 31907987
- Krasemann, S.; Madore, C.; Cialic, R.; Baufeld, C.; Calcagno, N.; El Fatimy, R.; Beckers, L.; OLoughlin, E.; Xu, Y.; Fanek, Z.; Greco, D.J.; Smith, S.T.; Tweet, G.; Humulock, Z.; Zrzavy, T.; Conde-Sanroman, P.; Gacias, M.; Weng, Z.; Chen, H.; Tjon, E.; Mazaheri, F.; Hartmann, K.; Madi, A.; Ulrich, J.D.; Glatzel, M.; Worthmann, A.; Heeren, J.; Budnik, B.; Lemere, C.; Ikezu, T.; Heppner, F.L.; Litvak, V.; Holtzman, D.M.; Lassmann, H.; Weiner, H.L.; Ochando, J.; Haass, C.; Butovsky, O. The TREM2-APOE pathway drives the transcriptional phenotype of dysfunctional microglia in neurodegenerative diseases. Immunity, 2017, 47(3), 566-581.e9. doi: 10.1016/j.immuni.2017.08.008 PMID: 28930663
- Dong, Y.; DMello, C.; Pinsky, W.; Lozinski, B.M.; Kaushik, D.K.; Ghorbani, S.; Moezzi, D.; Brown, D.; Melo, F.C.; Zandee, S.; Vo, T.; Prat, A.; Whitehead, S.N.; Yong, V.W. Oxidized phosphatidylcholines found in multiple sclerosis lesions mediate neurodegeneration and are neutralized by microglia. Nat. Neurosci., 2021, 24(4), 489-503. doi: 10.1038/s41593-021-00801-z PMID: 33603230
- Churchward, M.A.; Tchir, D.R.; Todd, K.G. Microglial function during glucose deprivation: Inflammatory and neuropsychiatric implications. Mol. Neurobiol., 2018, 55(2), 1477-1487. doi: 10.1007/s12035-017-0422-9 PMID: 28176274
- Liao, B.; Geng, L.; Zhang, F.; Shu, L.; Wei, L.; Yeung, P.K.K.; Lam, K.S.L.; Chung, S.K.; Chang, J.; Vanhoutte, P.M.; Xu, A.; Wang, K.; Hoo, R.L.C. Adipocyte fatty acid-binding protein exacerbates cerebral ischaemia injury by disrupting the blood-brain barrier. Eur. Heart J., 2020, 41(33), 3169-3180. doi: 10.1093/eurheartj/ehaa207 PMID: 32350521
- Loppi, S.H.; Tavera-Garcia, M.A.; Becktel, D.A.; Maiyo, B.K.; Johnson, K.E.; Nguyen, T.V.V.; Schnellmann, R.G.; Doyle, K.P. Increased fatty acid metabolism and decreased glycolysis are hallmarks of metabolic reprogramming within microglia in degenerating white matter during recovery from experimental stroke. J. Cereb. Blood Flow Metab., 2023, 43(7), 1099-1114. doi: 10.1177/0271678X231157298 PMID: 36772984
- Wang, J.; Shi, Y.; Zhang, L.; Zhang, F.; Hu, X.; Zhang, W.; Leak, R.K.; Gao, Y.; Chen, L.; Chen, J. Omega-3 polyunsaturated fatty acids enhance cerebral angiogenesis and provide long-term protection after stroke. Neurobiol. Dis., 2014, 68, 91-103. doi: 10.1016/j.nbd.2014.04.014 PMID: 24794156
- Zhang, M.; Wang, S.; Mao, L.; Leak, R.K.; Shi, Y.; Zhang, W.; Hu, X.; Sun, B.; Cao, G.; Gao, Y.; Xu, Y.; Chen, J.; Zhang, F. Omega-3 fatty acids protect the brain against ischemic injury by activating Nrf2 and upregulating heme oxygenase 1. J. Neurosci., 2014, 34(5), 1903-1915. doi: 10.1523/JNEUROSCI.4043-13.2014 PMID: 24478369
- Orr, S.K.; Trépanier, M.O.; Bazinet, R.P. n-3 Polyunsaturated fatty acids in animal models with neuroinflammation. Prostaglandins Leukot. Essent. Fatty Acids, 2013, 88(1), 97-103. doi: 10.1016/j.plefa.2012.05.008 PMID: 22770766
- Pu, H.; Jiang, X.; Hu, X.; Xia, J.; Hong, D.; Zhang, W.; Gao, Y.; Chen, J.; Shi, Y. Delayed docosahexaenoic acid treatment combined with dietary supplementation of omega-3 fatty acids promotes long-term neurovascular restoration after ischemic stroke. Transl. Stroke Res., 2016, 7(6), 521-534. doi: 10.1007/s12975-016-0498-y PMID: 27566736
- Bacarin, C.C.; Godinho, J.; de Oliveira, R.M.W.; Matsushita, M.; Gohara, A.K.; Cardozo-Filho, L.; Lima, J.C.; Previdelli, I.S.; Melo, S.R.; Ribeiro, M.H.D.M.; Milani, H. Postischemic fish oil treatment restores long-term retrograde memory and dendritic density: An analysis of the time window of efficacy. Behav. Brain Res., 2016, 311, 425-439. doi: 10.1016/j.bbr.2016.05.047 PMID: 27235715
- Correia, B.C.; Mori, M.A.; Dias, F.F.E.; Valério, R.C.; Weffort de Oliveira, R.M.; Milani, H. Fish oil provides robust and sustained memory recovery after cerebral ischemia: Influence of treatment regimen. Physiol. Behav., 2013, 119, 61-71. doi: 10.1016/j.physbeh.2013.06.001 PMID: 23770426
- Blondeau, N.; Nguemeni, C.; Debruyne, D.N.; Piens, M.; Wu, X.; Pan, H.; Hu, X.; Gandin, C.; Lipsky, R.H.; Plumier, J.C.; Marini, A.M.; Heurteaux, C. Subchronic alpha-linolenic acid treatment enhances brain plasticity and exerts an antidepressant effect: A versatile potential therapy for stroke. Neuropsychopharmacology, 2009, 34(12), 2548-2559. doi: 10.1038/npp.2009.84 PMID: 19641487
- Miao, Z.; Schultzberg, M.; Wang, X.; Zhao, Y. Role of polyunsaturated fatty acids in ischemic stroke - A perspective of specialized pro-resolving mediators. Clin. Nutr., 2021, 40(5), 2974-2987. doi: 10.1016/j.clnu.2020.12.037 PMID: 33509668
- Ren, Z.; Chen, L.; Wang, Y.; Wei, X.; Zeng, S.; Zheng, Y.; Gao, C.; Liu, H. Activation of the omega-3 fatty acid receptor GPR120 protects against focal cerebral ischemic injury by preventing inflammation and apoptosis in mice. J. Immunol., 2019, 202(3), 747-759. doi: 10.4049/jimmunol.1800637 PMID: 30598514
- Zendedel, A.; Habib, P.; Dang, J.; Lammerding, L.; Hoffmann, S.; Beyer, C.; Slowik, A. Omega-3 polyunsaturated fatty acids ameliorate neuroinflammation and mitigate ischemic stroke damage through interactions with astrocytes and microglia. J. Neuroimmunol., 2015, 278, 200-211. doi: 10.1016/j.jneuroim.2014.11.007 PMID: 25468770
- Fourrier, C.; Remus-Borel, J.; Greenhalgh, A.D.; Guichardant, M.; Bernoud-Hubac, N.; Lagarde, M.; Joffre, C.; Layé, S. Docosahexaenoic acid-containing choline phospholipid modulates LPS-induced neuroinflammation in vivo and in microglia in vitro. J. Neuroinflammation, 2017, 14(1), 170. doi: 10.1186/s12974-017-0939-x PMID: 28838312
- Zhang, W.; Wang, H.; Zhang, H.; Leak, R.K.; Shi, Y.; Hu, X.; Gao, Y.; Chen, J. Dietary supplementation with omega-3 polyunsaturated fatty acids robustly promotes neurovascular restorative dynamics and improves neurological functions after stroke. Exp. Neurol., 2015, 272, 170-180. doi: 10.1016/j.expneurol.2015.03.005 PMID: 25771800
- Giaume, C.; McCarthy, K.D. Control of gap-junctional communication in astrocytic networks. Trends Neurosci., 1996, 19(8), 319-325. doi: 10.1016/0166-2236(96)10046-1 PMID: 8843600
- Liddelow, S.A.; Barres, B.A. Reactive astrocytes: Production, function, and therapeutic potential. Immunity, 2017, 46(6), 957-967. doi: 10.1016/j.immuni.2017.06.006 PMID: 28636962
- Basic Kes, V.; Simundic, A.M.; Nikolac, N.; Topic, E.; Demarin, V. Pro-inflammatory and anti-inflammatory cytokines in acute ischemic stroke and their relation to early neurological deficit and stroke outcome. Clin. Biochem., 2008, 41(16-17), 1330-1334. doi: 10.1016/j.clinbiochem.2008.08.080 PMID: 18801351
- Zamanian, J.L.; Xu, L.; Foo, L.C.; Nouri, N.; Zhou, L.; Giffard, R.G.; Barres, B.A. Genomic analysis of reactive astrogliosis. J. Neurosci., 2012, 32(18), 6391-6410. doi: 10.1523/JNEUROSCI.6221-11.2012 PMID: 22553043
- Rakers, C.; Schleif, M.; Blank, N.; Matuková, H.; Ulas, T.; Händler, K.; Torres, S.V.; Schumacher, T.; Tai, K.; Schultze, J.L.; Jackson, W.S.; Petzold, G.C. Stroke target identification guided by astrocyte transcriptome analysis. Glia, 2019, 67(4), 619-633. doi: 10.1002/glia.23544 PMID: 30585358
- Pekny, M.; Wilhelmsson, U.; Pekna, M. The dual role of astrocyte activation and reactive gliosis. Neurosci. Lett., 2014, 565, 30-38. doi: 10.1016/j.neulet.2013.12.071 PMID: 24406153
- Filous, A.R.; Silver, J. Targeting astrocytes in CNS injury and disease: A translational research approach. Prog. Neurobiol., 2016, 144, 173-187. doi: 10.1016/j.pneurobio.2016.03.009 PMID: 27026202
- Liu, Z.; Chopp, M. Astrocytes, therapeutic targets for neuroprotection and neurorestoration in ischemic stroke. Prog. Neurobiol., 2016, 144, 103-120. doi: 10.1016/j.pneurobio.2015.09.008 PMID: 26455456
- Takahashi, S. Neuroprotective function of high glycolytic activity in astrocytes: Common roles in stroke and neurodegenerative diseases. Int. J. Mol. Sci., 2021, 22(12), 6568. doi: 10.3390/ijms22126568 PMID: 34207355
- Magistretti, P.J.; Allaman, I. Lactate in the brain: From metabolic end-product to signalling molecule. Nat. Rev. Neurosci., 2018, 19(4), 235-249. doi: 10.1038/nrn.2018.19 PMID: 29515192
- Wiesinger, H.; Hamprecht, B.; Dringen, R. Metabolic pathways for glucose in astrocytes. Glia, 1997, 21(1), 22-34. doi: 10.1002/(SICI)1098-1136(199709)21:13.0.CO;2-3 PMID: 9298844
- Pellerin, L.; Magistretti, P.J. Glutamate uptake into astrocytes stimulates aerobic glycolysis: A mechanism coupling neuronal activity to glucose utilization. Proc. Natl. Acad. Sci., 1994, 91(22), 10625-10629. doi: 10.1073/pnas.91.22.10625 PMID: 7938003
- Dienel, G.A. Lack of appropriate stoichiometry: Strong evidence against an energetically important astrocyte-neuron lactate shuttle in brain. J. Neurosci. Res., 2017, 95(11), 2103-2125. doi: 10.1002/jnr.24015 PMID: 28151548
- Brown, A.M.; Sickmann, H.M.; Fosgerau, K.; Lund, T.M.; Schousboe, A.; Waagepetersen, H.S.; Ransom, B.R. Astrocyte glycogen metabolism is required for neural activity during aglycemia or intense stimulation in mouse white matter. J. Neurosci. Res., 2005, 79(1-2), 74-80. doi: 10.1002/jnr.20335 PMID: 15578727
- Brown, A.M.; Ransom, B.R. Astrocyte glycogen and brain energy metabolism. Glia, 2007, 55(12), 1263-1271. doi: 10.1002/glia.20557 PMID: 17659525
- Schurr, A.; Payne, R.S. Lactate, not pyruvate, is neuronal aerobic glycolysis end product: An in vitro electrophysiological study. Neuroscience, 2007, 147(3), 613-619. doi: 10.1016/j.neuroscience.2007.05.002 PMID: 17560727
- Schurr, A.; Payne, R.S.; Miller, J.J.; Rigor, B.M. Brain lactate, not glucose, fuels the recovery of synaptic function from hypoxia upon reoxygenation: An in vitro study. Brain Res., 1997, 744(1), 105-111. doi: 10.1016/S0006-8993(96)01106-7 PMID: 9030418
- Marcoux, J.; McArthur, D.A.; Miller, C.; Glenn, T.C.; Villablanca, P.; Martin, N.A.; Hovda, D.A.; Alger, J.R.; Vespa, P.M. Persistent metabolic crisis as measured by elevated cerebral microdialysis lactate-pyruvate ratio predicts chronic frontal lobe brain atrophy after traumatic brain injury. Crit. Care Med., 2008, 36(10), 2871-2877. doi: 10.1097/CCM.0b013e318186a4a0 PMID: 18766106
- Guo, H.; Fan, Z.; Wang, S.; Ma, L.; Wang, J.; Yu, D.; Zhang, Z.; Wu, L.; Peng, Z.; Liu, W.; Hou, W.; Cai, Y. Astrocytic A1/A2 paradigm participates in glycogen mobilization mediated neuroprotection on reperfusion injury after ischemic stroke. J. Neuroinflammation, 2021, 18(1), 230. doi: 10.1186/s12974-021-02284-y PMID: 34645472
- Lv, Y.; Zhang, B.; Zhai, C.; Qiu, J.; Zhang, Y.; Yao, W.; Zhang, C. PFKFB3-mediated glycolysis is involved in reactive astrocyte proliferation after oxygen-glucose deprivation/reperfusion and is regulated by Cdh1. Neurochem. Int., 2015, 91, 26-33. doi: 10.1016/j.neuint.2015.10.006 PMID: 26498254
- Rossi, D.J.; Brady, J.D.; Mohr, C. Astrocyte metabolism and signaling during brain ischemia. Nat. Neurosci., 2007, 10(11), 1377-1386. doi: 10.1038/nn2004 PMID: 17965658
- Bak, L.K.; Walls, A.B.; Schousboe, A.; Waagepetersen, H.S. Astrocytic glycogen metabolism in the healthy and diseased brain. J. Biol. Chem., 2018, 293(19), 7108-7116. doi: 10.1074/jbc.R117.803239 PMID: 29572349
- Zois, C.E.; Harris, A.L. Glycogen metabolism has a key role in the cancer microenvironment and provides new targets for cancer therapy. J. Mol. Med., 2016, 94(2), 137-154. doi: 10.1007/s00109-015-1377-9 PMID: 26882899
- Ramagiri, S.; Taliyan, R. Remote limb ischemic post conditioning during early reperfusion alleviates cerebral ischemic reperfusion injury via GSK-3β/CREB/BDNF pathway. Eur. J. Pharmacol., 2017, 803, 84-93. doi: 10.1016/j.ejphar.2017.03.028 PMID: 28341347
- Pederson, B.A. Structure and regulation of glycogen synthase in the brain. Adv. Neurobiol., 2019, 23, 83-123. doi: 10.1007/978-3-030-27480-1_3 PMID: 31667806
- Xu, L.; Sun, H. Pharmacological manipulation of brain glycogenolysis as a therapeutic approach to cerebral ischemia. Mini Rev. Med. Chem., 2010, 10(12), 1188-1193. doi: 10.2174/1389557511009011188 PMID: 20716050
- Guo, H.; Zhang, Z.; Gu, T.; Yu, D.; Shi, Y.; Gao, Z.; Wang, Z.; Liu, W.; Fan, Z.; Hou, W.; Wang, H.; Cai, Y. Astrocytic glycogen mobilization participates in salvianolic acid B-mediated neuroprotection against reperfusion injury after ischemic stroke. Exp. Neurol., 2022, 349, 113966. doi: 10.1016/j.expneurol.2021.113966 PMID: 34973964
- Lo, E.H.; Dalkara, T.; Moskowitz, M.A. Mechanisms, challenges and opportunities in stroke. Nat. Rev. Neurosci., 2003, 4(5), 399-414. doi: 10.1038/nrn1106 PMID: 12728267
- Takahashi, S. Treatment of acute ischemic stroke: Tissue clock and reperfusion. Masui, 2012, 61, S11-S22. PMID: 23513514
- Takahashi, S. Astroglial protective mechanisms against ROS under brain ischemia. Rinsho Shinkeigaku, 2011, 51(11), 1032-1035. doi: 10.5692/clinicalneurol.51.1032 PMID: 22277470
- Iizumi, T.; Takahashi, S.; Mashima, K.; Minami, K.; Izawa, Y.; Abe, T.; Hishiki, T.; Suematsu, M.; Kajimura, M.; Suzuki, N. A possible role of microglia-derived nitric oxide by lipopolysaccharide in activation of astroglial pentose-phosphate pathway via the Keap1/Nrf2 system. J. Neuroinflammation, 2016, 13(1), 99. doi: 10.1186/s12974-016-0564-0 PMID: 27143001
- Tang, B.L. Neuroprotection by glucose‐6‐phosphate dehydrogenase and the pentose phosphate pathway. J. Cell. Biochem., 2019, 120(9), 14285-14295. doi: 10.1002/jcb.29004 PMID: 31127649
- Dwivedi, D.; Megha, K.; Mishra, R.; Mandal, P.K. Glutathione in brain: Overview of its conformations, functions, biochemical characteristics, quantitation and potential therapeutic role in brain disorders. Neurochem. Res., 2020, 45(7), 1461-1480. doi: 10.1007/s11064-020-03030-1 PMID: 32297027
- Takahashi, S.; Izawa, Y.; Suzuki, N. Astrogliopathy as a loss of astroglial protective function against glycoxidative stress under hyperglycemia. Rinsho Shinkeigaku, 2012, 52(1), 41-51. doi: 10.5692/clinicalneurol.52.41 PMID: 22260979
- Chen, J.; Zhang, D.M.; Feng, X.; Wang, J.; Qin, Y.Y.; Zhang, T.; Huang, Q.; Sheng, R.; Chen, Z.; Li, M.; Qin, Z.H. TIGAR inhibits ischemia/reperfusion-induced inflammatory response of astrocytes. Neuropharmacology, 2018, 131, 377-388. doi: 10.1016/j.neuropharm.2018.01.012 PMID: 29331305
- Owjfard, M.; Karimi, F.; Mallahzadeh, A.; Nabavizadeh, S.A.; Namavar, M.R.; Saadi, M.I.; Hooshmandi, E.; Salehi, M.S.; Zafarmand, S.S.; Bayat, M.; Karimlou, S.; Borhani-Haghighi, A. Mechanism of action and therapeutic potential of dimethyl fumarate in ischemic stroke. J. Neurosci. Res., 2023, 101(9), 1433-1446. doi: 10.1002/jnr.25202 PMID: 37183360
- Dodson, M.; de la Vega, M.R.; Cholanians, A.B.; Schmidlin, C.J.; Chapman, E.; Zhang, D.D. Modulating NRF2 in disease: Timing is everything. Annu. Rev. Pharmacol. Toxicol., 2019, 59(1), 555-575. doi: 10.1146/annurev-pharmtox-010818-021856 PMID: 30256716
- Scuderi, S.A.; Ardizzone, A.; Paterniti, I.; Esposito, E.; Campolo, M. Antioxidant and anti-inflammatory effect of Nrf2 inducer dimethyl fumarate in neurodegenerative diseases. Antioxidants, 2020, 9(7), 630. doi: 10.3390/antiox9070630 PMID: 32708926
- Kunze, R.; Urrutia, A.; Hoffmann, A.; Liu, H.; Helluy, X.; Pham, M.; Reischl, S.; Korff, T.; Marti, H.H. Dimethyl fumarate attenuates cerebral edema formation by protecting the bloodbrain barrier integrity. Exp. Neurol., 2015, 266, 99-111. doi: 10.1016/j.expneurol.2015.02.022 PMID: 25725349
- Lin-Holderer, J.; Li, L.; Gruneberg, D.; Marti, H.H.; Kunze, R. Fumaric acid esters promote neuronal survival upon ischemic stress through activation of the Nrf2 but not HIF-1 signaling pathway. Neuropharmacology, 2016, 105, 228-240. doi: 10.1016/j.neuropharm.2016.01.023 PMID: 26801077
- Takahashi, S. Metabolic compartmentalization between astroglia and neurons in physiological and pathophysiological conditions of the neurovascular unit. Neuropathology, 2020, 40(2), 121-137. doi: 10.1111/neup.12639 PMID: 32037635
- Sofroniew, M.V.; Vinters, H.V. Astrocytes: biology and pathology. Acta Neuropathol., 2010, 119(1), 7-35. doi: 10.1007/s00401-009-0619-8 PMID: 20012068
- Curtis, D.R.; Johnston, G.A. Amino acid transmitters in the mammalian central nervous system. Ergeb. Physiol., 1974, 69(0), 97-188. PMID: 4151806
- Lai, T.W.; Zhang, S.; Wang, Y.T. Excitotoxicity and stroke: Identifying novel targets for neuroprotection. Prog. Neurobiol., 2014, 115, 157-188. doi: 10.1016/j.pneurobio.2013.11.006 PMID: 24361499
- Anderson, C.M.; Swanson, R.A. Astrocyte glutamate transport: Review of properties, regulation, and physiological functions. Glia, 2000, 32(1), 1-14. doi: 10.1002/1098-1136(200010)32:13.0.CO;2-W PMID: 10975906
- Chisholm, N.C.; Henderson, M.L.; Selvamani, A.; Park, M.J.; Dindot, S.; Miranda, R.C.; Sohrabji, F. Histone methylation patterns in astrocytes are influenced by age following ischemia. Epigenetics, 2015, 10(2), 142-152. doi: 10.1080/15592294.2014.1001219 PMID: 25565250
- Yamada, T.; Kawahara, K.; Kosugi, T.; Tanaka, M. Nitric oxide produced during sublethal ischemia is crucial for the preconditioning-induced down-regulation of glutamate transporter GLT-1 in neuron/astrocyte co-cultures. Neurochem. Res., 2006, 31(1), 49-56. doi: 10.1007/s11064-005-9077-4 PMID: 16474996
- Sibson, N.R.; Dhankhar, A.; Mason, G.F.; Rothman, D.L.; Behar, K.L.; Shulman, R.G. Stoichiometric coupling of brain glucose metabolism and glutamatergic neuronal activity. Proc. Natl. Acad. Sci., 1998, 95(1), 316-321. doi: 10.1073/pnas.95.1.316 PMID: 9419373
- McKenna, M.C. Glutamate pays its own way in astrocytes. Front. Endocrinol., 2013, 4, 191. doi: 10.3389/fendo.2013.00191 PMID: 24379804
- Rose, C.R.; Ziemens, D.; Untiet, V.; Fahlke, C. Molecular and cellular physiology of sodium-dependent glutamate transporters. Brain Res. Bull., 2018, 136, 3-16. doi: 10.1016/j.brainresbull.2016.12.013 PMID: 28040508
- Koyama, Y.; Kimura, Y.; Hashimoto, H.; Matsuda, T.; Baba, A. L-lactate inhibits L-cystine/L-glutamate exchange transport and decreases glutathione content in rat cultured astrocytes. J. Neurosci. Res., 2000, 59(5), 685-691. doi: 10.1002/(SICI)1097-4547(20000301)59:53.0.CO;2-Z PMID: 10686597
- Shashidharan, P.; Wittenberg, I.; Plaitakis, A. Molecular cloning of human brain glutamate/aspartate transporter II. Biochim. Biophys. Acta Biomembr., 1994, 1191(2), 393-396. doi: 10.1016/0005-2736(94)90192-9 PMID: 8172925
- Storck, T.; Schulte, S.; Hofmann, K.; Stoffel, W. Structure, expression, and functional analysis of a Na(+)-dependent glutamate/aspartate transporter from rat brain. Proc. Natl. Acad. Sci., 1992, 89(22), 10955-10959. doi: 10.1073/pnas.89.22.10955 PMID: 1279699
- Pines, G.; Danbolt, N.C.; Bjørås, M.; Zhang, Y.; Bendahan, A.; Eide, L.; Koepsell, H.; Storm-Mathisen, J.; Seeberg, E.; Kanner, B.I. Cloning and expression of a rat brain L-glutamate transporter. Nature, 1992, 360(6403), 464-467. doi: 10.1038/360464a0 PMID: 1448170
- Bergles, D.E.; Jahr, C.E. Glial contribution to glutamate uptake at Schaffer collateral-commissural synapses in the hippocampus. J. Neurosci., 1998, 18(19), 7709-7716. doi: 10.1523/JNEUROSCI.18-19-07709.1998 PMID: 9742141
- Bröer, S.; Brookes, N. Transfer of glutamine between astrocytes and neurons. J. Neurochem., 2001, 77(3), 705-719. doi: 10.1046/j.1471-4159.2001.00322.x PMID: 11331400
- Bröer, A.; Albers, A.; Setiawan, I.; Edwards, R.H.; Chaudhry, F.A.; Lang, F.; Wagner, C.A.; Bröer, S. Regulation of the glutamine transporter SN1 by extracellular pH and intracellular sodium ions. J. Physiol., 2002, 539(1), 3-14. doi: 10.1113/jphysiol.2001.013303 PMID: 11850497
- McKenna, M.C.; Stridh, M.H.; McNair, L.F.; Sonnewald, U.; Waagepetersen, H.S.; Schousboe, A. Glutamate oxidation in astrocytes: Roles of glutamate dehydrogenase and aminotransferases. J. Neurosci. Res., 2016, 94(12), 1561-1571. doi: 10.1002/jnr.23908 PMID: 27629247
- McKenna, M.C.; Sonnewald, U.; Huang, X.; Stevenson, J.; Zielke, H.R. Exogenous glutamate concentration regulates the metabolic fate of glutamate in astrocytes. J. Neurochem., 1996, 66(1), 386-393. doi: 10.1046/j.1471-4159.1996.66010386.x PMID: 8522979
- Shen, Y.; He, P.; Fan, Y.; Zhang, J.; Yan, H.; Hu, W.; Ohtsu, H.; Chen, Z. Carnosine protects against permanent cerebral ischemia in histidine decarboxylase knockout mice by reducing glutamate excitotoxicity. Free Radic. Biol. Med., 2010, 48(5), 727-735. doi: 10.1016/j.freeradbiomed.2009.12.021 PMID: 20043985
- Ouyang, Y.B.; Voloboueva, L.A.; Xu, L.J.; Giffard, R.G. Selective dysfunction of hippocampal CA1 astrocytes contributes to delayed neuronal damage after transient forebrain ischemia. J. Neurosci., 2007, 27(16), 4253-4260. doi: 10.1523/JNEUROSCI.0211-07.2007 PMID: 17442809
- Chu, K.; Lee, S.T.; Sinn, D.I.; Ko, S.Y.; Kim, E.H.; Kim, J.M.; Kim, S.J.; Park, D.K.; Jung, K.H.; Song, E.C.; Lee, S.K.; Kim, M.; Roh, J.K. Pharmacological induction of ischemic tolerance by glutamate transporter-1 (EAAT2) upregulation. Stroke, 2007, 38(1), 177-182. doi: 10.1161/01.STR.0000252091.36912.65 PMID: 17122424
- Rothstein, J.D.; Patel, S.; Regan, M.R.; Haenggeli, C.; Huang, Y.H.; Bergles, D.E.; Jin, L.; Dykes Hoberg, M.; Vidensky, S.; Chung, D.S.; Toan, S.V.; Bruijn, L.I.; Su, Z.; Gupta, P.; Fisher, P.B. β-Lactam antibiotics offer neuroprotection by increasing glutamate transporter expression. Nature, 2005, 433(7021), 73-77. doi: 10.1038/nature03180 PMID: 15635412
- Lee, E.S.Y.; Sidoryk, M.; Jiang, H.; Yin, Z.; Aschner, M. Estrogen and tamoxifen reverse manganese‐induced glutamate transporter impairment in astrocytes. J. Neurochem., 2009, 110(2), 530-544. doi: 10.1111/j.1471-4159.2009.06105.x PMID: 19453300
- Zhang, Y.; Jin, Y.; Behr, M.; Feustel, P.; Morrison, J.; Kimelberg, H. Behavioral and histological neuroprotection by tamoxifen after reversible focal cerebral ischemia. Exp. Neurol., 2005, 196(1), 41-46. doi: 10.1016/j.expneurol.2005.07.002 PMID: 16054626
- Mehta, S.H.; Dhandapani, K.M.; De Sevilla, L.M.; Webb, R.C.; Mahesh, V.B.; Brann, D.W. Tamoxifen, a selective estrogen receptor modulator, reduces ischemic damage caused by middle cerebral artery occlusion in the ovariectomized female rat. Neuroendocrinology, 2003, 77(1), 44-50. doi: 10.1159/000068332 PMID: 12624540
- Ebert, D.; Haller, R.G.; Walton, M.E. Energy contribution of octanoate to intact rat brain metabolism measured by 13C nuclear magnetic resonance spectroscopy. J. Neurosci., 2003, 23(13), 5928-5935. doi: 10.1523/JNEUROSCI.23-13-05928.2003 PMID: 12843297
- Sayre, N.L.; Sifuentes, M.; Holstein, D.; Cheng, S.; Zhu, X.; Lechleiter, J.D. Stimulation of astrocyte fatty acid oxidation by thyroid hormone is protective against ischemic stroke-induced damage. J. Cereb. Blood Flow Metab., 2017, 37(2), 514-527. doi: 10.1177/0271678X16629153 PMID: 26873887
- Polyzos, A.A.; Lee, D.Y.; Datta, R.; Hauser, M.; Budworth, H.; Holt, A.; Mihalik, S.; Goldschmidt, P.; Frankel, K.; Trego, K.; Bennett, M.J.; Vockley, J.; Xu, K.; Gratton, E.; McMurray, C.T. Metabolic reprogramming in astrocytes distinguishes region-specific neuronal susceptibility in huntington mice. Cell Metab., 2019, 29(6), 1258-1273.e11. doi: 10.1016/j.cmet.2019.03.004 PMID: 30930170
- Aizawa, F.; Nishinaka, T.; Yamashita, T.; Nakamoto, K.; Koyama, Y.; Kasuya, F.; Tokuyama, S. Astrocytes release polyunsaturated fatty acids by lipopolysaccharide stimuli. Biol. Pharm. Bull., 2016, 39(7), 1100-1106. doi: 10.1248/bpb.b15-01037 PMID: 27374285
- Gupta, S.; Knight, A.G.; Gupta, S.; Keller, J.N.; Bruce-Keller, A.J. Saturated long‐chain fatty acids activate inflammatory signaling in astrocytes. J. Neurochem., 2012, 120(6), 1060-1071. doi: 10.1111/j.1471-4159.2012.07660.x PMID: 22248073
Дополнительные файлы
