A Comprehensive Review on the Significance of Cysteine in Various Metabolic Disorders; Particularly CVD, Diabetes, Renal Dysfunction, and Ischemic Stroke


Цитировать

Полный текст

Аннотация

:Metabolic disorders have long been a challenge for medical professionals and are a leading cause of mortality in adults. Diabetes, cardiovascular disorders (CVD), renal dysfunction, and ischemic stroke are the most prevalent ailments contributing to a high mortality rate worldwide. Reactive oxygen species are one of the leading factors that act as a fundamental root cause of metabolic syndrome. All of these disorders have their respective treatments, which, to some degree, sabotage the pathological worsening of the disease and an inevitable death. However, they pose a perilous health hazard to humankind. Cysteine, a functional amino acid shows promise for the prevention and treatment of metabolic disorders, such as CVD, Diabetes mellitus, renal dysfunction, and ischemic stroke. In this review, we explored whether cysteine can eradicate reactive oxygen species and subsequently prevent and treat these diseases.

Об авторах

Namra Aziz

, PSIT-Pranveer Singh Institute of Technology (Pharmacy)

Email: info@benthamscience.net

Pranay Wal

, PSIT-Pranveer Singh Institute of Technology (Pharmacy)

Email: info@benthamscience.net

Rishika Sinha

, PSIT-Pranveer Singh Institute of Technology (Pharmacy)

Email: info@benthamscience.net

Prashant Shirode

K.K. Wagh Education Society's, K.K. Wagh College of Pharmacy

Email: info@benthamscience.net

GunoSindhu Chakraborthy

Parul Institute of Pharmacy and Research, Parul University

Email: info@benthamscience.net

Mukesh Sharma

School of Pharmacy, Devi Ahilya Vishwavidalaya

Email: info@benthamscience.net

Pankaj Kumar

Department of Pharmacology, Adesh Institute of Pharmacy and Biomedical Sciences, Adesh 6 University

Автор, ответственный за переписку.
Email: info@benthamscience.net

Список литературы

  1. Acharyya, A.; Shahjahan, M.D.; Mesbah, F.; Dey, S.; Ali, L. Association of metabolic syndrome with chronic obstructive pulmonary disease in an Indian population. Lung, 2016, 33(4), 385-390. doi: 10.4103/0970-2113.184871 PMID: 27578930
  2. Meher, T.; Sahoo, H. The epidemiological profile of metabolic syndrome in Indian population: A comparative study between men and women. Clin. Epidemiol. Glob. Health, 2020, 8(4), 1047-1052. doi: 10.1016/j.cegh.2020.03.018
  3. Huang, F.; Han, X.; Xiao, X.; Zhou, J. Covalent warheads targeting cysteine residue: The promising approach in drug development. Molecules, 2022, 27(22), 7728. doi: 10.3390/molecules27227728 PMID: 36431829
  4. Wu, G. Functional amino acids in nutrition and health. Amino Acids, 2013, 45(3), 407-11. doi: 10.1007/s00726-013-1500-6
  5. Okekunle, A.P.; Li, Y.; Liu, L.; Du, S.; Wu, X.; Chen, Y.; Li, Y.; Qi, J.; Sun, C.; Feng, R. Abnormal circulating amino acid profiles in multiple metabolic disorders. Diabetes Res. Clin. Pract., 2017, 132, 45-58. doi: 10.1016/j.diabres.2017.07.023 PMID: 28783532
  6. Muthuraman, A.; Ramesh, M.; Shaikh, S.A.; Aswinprakash, S.; Jagadeesh, D. Physiological and pathophysiological role of cysteine metabolism in human metabolic syndrome. Drug Metab. Lett., 2021, 14(3), 177-192. doi: 10.2174/1872312814666211210111820 PMID: 34895129
  7. Aliu, E.; Kanungo, S.; Arnold, G.L. Amino acid disorders. Ann. Transl. Med., 2018, 6(24), 471. doi: 10.21037/atm.2018.12.12 PMID: 30740402
  8. Dumas, M.E.; Kinross, J.; Nicholson, J.K. Metabolic phenotyping and systems biology approaches to understanding metabolic syndrome and fatty liver disease. Gastroenterology, 2014, 146(1), 46-62. doi: 10.1053/j.gastro.2013.11.001 PMID: 24211299
  9. Vona, R.; Gambardella, L.; Cittadini, C.; Straface, E.; Pietraforte, D. Biomarkers of oxidative stress in metabolic syndrome and associated diseases. Oxid. Med. Cell. Longev., 2019, 2019, 1-19. doi: 10.1155/2019/8267234 PMID: 31191805
  10. Paul, B.D.; Sbodio, J.I.; Snyder, S.H. Cysteine metabolism in neuronal redox homeostasis. Trends Pharmacol. Sci., 2018, 39(5), 513-524. doi: 10.1016/j.tips.2018.02.007 PMID: 29530337
  11. Song, T.; Qin, W.; Lai, Z.; Li, H.; Li, D.; Wang, B.; Deng, W.; Wang, T.; Wang, L.; Huang, R. Dietary cysteine drives body fat loss via FMRFamide signaling in Drosophila and mouse. Cell Res., 2023, 33(6), 434-447. doi: 10.1038/s41422-023-00800-8 PMID: 37055592
  12. Pastore, A.; Alisi, A.; di Giovamberardino, G.; Crudele, A.; Ceccarelli, S.; Panera, N.; Dionisi-Vici, C.; Nobili, V. Plasma levels of homocysteine and cysteine increased in pediatric NAFLD and strongly correlated with severity of liver damage. Int. J. Mol. Sci., 2014, 15(11), 21202-21214. doi: 10.3390/ijms151121202 PMID: 25407526
  13. Sameem, B.; Khan, F.; Niaz, K. Nonvitamin and Nonmineral Nutritional Supplements; Elsevier: Amsterdam, 2019, pp. 53-58.
  14. Atkuri, K.R.; Mantovani, J.J.; Herzenberg, L.A.; Herzenberg, L.A. N-Acetylcysteine—a safe antidote for cysteine/glutathione deficiency. Curr. Opin. Pharmacol., 2007, 7(4), 355-359. doi: 10.1016/j.coph.2007.04.005 PMID: 17602868
  15. Bhatti, J.S.; Bhatti, G.K.; Reddy, P.H. Mitochondrial dysfunction and oxidative stress in metabolic disorders — A step towards mitochondria based therapeutic strategies. Biochim. Biophys. Acta Mol. Basis Dis., 2017, 1863(5), 1066-1077. doi: 10.1016/j.bbadis.2016.11.010 PMID: 27836629
  16. Rehman, T.; Shabbir, M.A.; Inam-Ur-Raheem, M.; Manzoor, M.F.; Ahmad, N.; Liu, Z.W.; Ahmad, M.H.; Siddeeg, A.; Abid, M.; Aadil, R.M. Cysteine and homocysteine as biomarker of various diseases. Food Sci. Nutr., 2020, 8(9), 4696-4707. doi: 10.1002/fsn3.1818 PMID: 32994931
  17. Pace, N.J.; Weerapana, E. Diverse functional roles of reactive cysteines. ACS Chem. Biol., 2013, 8(2), 283-296. doi: 10.1021/cb3005269 PMID: 23163700
  18. Carballal, S.; Banerjee, R. Overview of cysteine metabolism.Redox Chemistry and Biology of Thiols; Academic Press: Cambridge, Massachusetts, 2022, pp. 423-450.
  19. Swetha, P.; Kumar, A.S. Phosphomolybdic acid nano-aggregates immobilized nafion membrane modified electrode for selective cysteine electrocatalytic oxidation and anti-dermatophytic activity. Electrochim. Acta, 2013, 98, 54-65. doi: 10.1016/j.electacta.2013.03.023
  20. Kwon, Y. Possible beneficial effects of N-Acetylcysteine for treatment of triple-negative breast cancer. Antioxidants (Basel), 2021, 10(2), 169. doi: 10.3390/antiox10020169
  21. (a) Ezeriņa, D.; Takano, Y.; Hanaoka, K.; Urano, Y.; Dick, T.P. N-acetyl cysteine functions as a fast-acting antioxidant by triggering intracellular H2S and sulfane sulphur production. Cell Chem. Bio., 2018, 25(4), 447-59.; (b) Kader, T; Porteous, C Ribose-cysteine increases glutathione-based antioxidant status and reduces LDL in human lipoprotein (a) mice. Atherosclerosis, 2014, 237(2), 725-733. PMID: 25463112
  22. Tenório, M.C.S.; Graciliano, N.G.; Moura, F.A.; Oliveira, A.C.M.; Goulart, M.O.F. N-Acetylcysteine (NAC): Impacts on human health. Antioxidants, 2021, 10(6), 967. doi: 10.3390/antiox10060967 PMID: 34208683
  23. Safari, M.R.; Noroozi, R.; Omrani, M.D.; Taheri, M.; Ghafouri-Fard, S. Analysis of association between RAGE polymorphisms and stroke risk. Meta Gene, 2019, 22, 100612. doi: 10.1016/j.mgene.2019.100612
  24. Ferla, M. P.; Patrick, W. M. Bacterial methionine biosynthesis. Microbiology (Reading), 2014, 160(Pt 8), 11571-1584. doi: 10.1099/mic.0.077826-0
  25. Sbodio, J.I.; Snyder, S.H.; Paul, B.D. Regulators of the transsulphuration pathway. Br. J. Pharmacol., 2018. PMID: 30007014
  26. Xiao, Y.; Zhang, Y.; Wang, M.; Li, X.; Xia, M.; Ling, W. Dietary protein and plasma total homocysteine, cysteine concentrations in coronary angiographic subjects. Nutr. J., 2013, 12(1), 144. doi: 10.1186/1475-2891-12-144 PMID: 24195518
  27. Rao, N.L.; Kotian, G.B.; Shetty, J.K.; Shelley, B.P.; Dmello, M.K.; Lobo, E.C.; Shankar, S.P.; Almeida, S.D.; Shah, S.R. Receptor for advanced glycation end product, organ crosstalk, and pathomechanism targets for comprehensive molecular therapeutics in diabetic ischemic stroke. Biomolecules, 2022, 12(11), 1712. doi: 10.3390/biom12111712 PMID: 36421725
  28. Jurcau, A.; Ardelean, A.I. Oxidative stress in ischemia/reperfusion injuries following acute ischemic stroke. Biomedicines, 2022, 10(3), 574. doi: 10.3390/biomedicines10030574 PMID: 35327376
  29. Parkhitko, A.A.; Jouandin, P.; Mohr, S.E.; Perrimon, N. Methionine metabolism and methyltransferases in the regulation of aging and lifespan extension across species. Aging Cell, 2019, 18(6), e13034. doi: 10.1111/acel.13034 PMID: 31460700
  30. Khalid, M.; Petroianu, G.; Adem, A. Advanced glycation end products and diabetes mellitus: Mechanisms and perspectives. Biomolecules, 2022, 12(4), 542. doi: 10.3390/biom12040542 PMID: 35454131
  31. Mohorko, N.; Petelin, A.; Jurdana, M.; Biolo, G.; Jenko-P., Z. Elevated serum levels of cysteine and tyrosine: Early biomarkers in asymptomatic adults at increased risk of developing metabolic syndrome. Biomed. Res. Int., 2015, 2015, 418681. doi: 10.1155/2015/418681
  32. Ezeriņa, D.; Takano, Y.; Hanaoka, K.; Urano, Y.; Dick, T.P. N-acetyl cysteine functions as a fast-acting antioxidant by triggering intracellular H2S and sulfane sulphur production. Cell Chem. Biol., 2018, 25(4), 447-459.e4. doi: 10.1016/j.chembiol.2018.01.011 PMID: 29429900
  33. Dominique, D. Importance du métabolisme des protéines et des acides aminés dans la prévention et la prise en charge du syndrome métabolique. Modulation par les acides gras n -3. Cahiers de Nutr. et de Diététique, 2018, 53(5), 002. doi: 10.1016/j.cnd.2018.06.002
  34. Baez-Duarte, B.G.; Zamora-Ginez, I.; De Jésus, K.L.; Torres-Rasgado, E.; González-Mejía, M.E.; Porchia, L.; Ruiz-Vivanco, G.; Pérez-Fuentes, R. Association of the metabolic syndrome with antioxidant defense and outstanding superoxide dismutase activity in Mexican subjects. Metab. Syndr. Relat. Disord., 2016, 14(3), 154-160. doi: 10.1089/met.2015.0088 PMID: 26859464
  35. Rendra, E.; Riabov, V.; Mossel, D.M.; Sevastyanova, T.; Harmsen, M.C.; Kzhyshkowska, J. Reactive oxygen species (ROS) in macrophage activation and function in diabetes. Immunobiology, 2018. PMID: 30739804
  36. Thieme, K.; Da Silva, K.S.; Fabre, N.T.; Catanozi, S.; Monteiro, M.B.; Santos-Bezerra, D.P.; Costa-Pessoa, J.M.; Oliveira-Souza, M.; Machado, U.F.; Passarelli, M.; Correa-Giannella, M.L. N-acetyl cysteine attenuated the deleterious effects of advanced glycation end-products on the kidney of non-diabetic rats. Cell. Physiol. Biochem., 2016, 40(3-4), 608-620. doi: 10.1159/000452574 PMID: 27898405
  37. Abete, I.; Goyenechea, E.; Zulet, M.A.; Martínez, J.A. Obesity and metabolic syndrome: Potential benefit from specific nutritional components. Nutr. Metab. Cardiovasc. Dis., 2011, 21(Suppl. 2), B1-B15. doi: 10.1016/j.numecd.2011.05.001 PMID: 21764273
  38. Tobon-Velasco, C.; Cuevas, J. Receptor for AGEs (RAGE) as mediator of NF-kB pathway activation in neuroinflammation and oxidative stress. CNS Neurol. Disord. Drug Targets, 2014, 13(9), 1615-26.
  39. Mokhtari, V.; Afsharian, P.; Shahhoseini, M.; Kalantar, S.M.; Moini, A. A review on various uses of N-acetyl cysteine. Cell J., 2017, 19(1), 11-17. PMID: 28367412
  40. Krata, N.; Zagożdżon, R.; Foroncewicz, B.; Mucha, K. Oxidative stress in kidney diseases: The cause on the consequence? Exp., 2018, 66, 211-220.
  41. Hutcheson, R.; Rocic, P. The metabolic syndrome, oxidative stress, environment, and cardiovascular disease: The great exploration. J. Diab. Res., 2012, 13, 1-13. doi: 10.1155/2012/271028
  42. Wu, X.Q.; Zhang, D.D.; Wang, Y.N.; Tan, Y.Q.; Yu, X.Y.; Zhao, Y.Y. AGE/RAGE in diabetic kidney disease and ageing kidney. Free Radic. Biol. Med., 2021, 171, 260-271. doi: 10.1016/j.freeradbiomed.2021.05.025 PMID: 34019934
  43. Francisqueti, F.V.; Chiaverini, L.C.T.; Santos, K.C.; Minatel, I.O.; Ronchi, C.B.; Ferron, A.J.T.; Ferreira, A.L.A.; Corrêa, C.R. The role of oxidative stress on the pathophysiology of metabolic syndrome. Rev. Assoc. Med. Bras., 2017, 63(1), 85-91. doi: 10.1590/1806-9282.63.01.85 PMID: 28225880
  44. Zatalia, S.R.; Sanusi, H. The role of antioxidants in the pathophysiology, complications, and management of diabetes mellitus. Acta Med. Indones., 2013, 45(2), 141-147. PMID: 23770795
  45. Piste, P. Cysteine–master antioxidant. Int. J. Pharm. Chem. Biol. Sci., 2013, 3(1), 143-149.
  46. Go, Y.M.; Jones, D.P. Cysteine/cystine redox signaling in cardiovascular disease. Free Radic. Biol. Med., 2011, 50(4), 495-509. doi: 10.1016/j.freeradbiomed.2010.11.029 PMID: 21130865
  47. Yubero-Serrano, E.M.; Pérez-Martínez, P. Advanced glycation end products and their involvement in cardiovascular disease. Angiology, 2020, 71(8), 698-700. doi: 10.1177/0003319720916301 PMID: 32242451
  48. Senoner, T.; Dichtl, W. Oxidative stress in cardiovascular diseases: Still a therapeutic target? Nutrients, 2019, 11(9), 2090. doi: 10.3390/nu11092090 PMID: 31487802
  49. Lee, H.W.; Gu, M.J.; Kim, Y.; Lee, J.Y.; Lee, S.; Choi, I.W.; Ha, S.K. Glyoxal-lysine dimer, an advanced glycation end product, induces oxidative damage and inflammatory response by interacting with RAGE. Antioxidants, 2021, 10(9), 1486. doi: 10.3390/antiox10091486 PMID: 34573117
  50. Mangge, H.; Becker, K.; Fuchs, D.; Gostner, J.M. Antioxidants, inflammation and cardiovascular disease. World J. Cardiol., 2014, 6(6), 462-477. doi: 10.4330/wjc.v6.i6.462 PMID: 24976919
  51. Sarangarajan, R.; Meera, S.; Rukkumani, R.; Sankar, P.; Anuradha, G. Antioxidants: Friend or foe? Asian Pac. J. Trop. Med., 2017, 10(12), 1111-1116. doi: 10.1016/j.apjtm.2017.10.017 PMID: 29268965
  52. Combs, Joseph The non-essential amino acid cysteine becomes essential for tumor proliferation and survival. Cancers, 2019, 11(5), 678.
  53. Tappia, P.S.; Xu, Y-J.; Rodriguez-Leyva, D.; Aroutiounova, N.; Dhalla, N.S. Cardioprotective effects of cysteine alone or in combination with taurine in diabetes. Physiol. Res., 2013, 62(2), 171-178. doi: 10.33549/physiolres.932388 PMID: 23234413
  54. Dludla, P.V.; Nkambule, B.B.; Dias, S.C.; Johnson, R. Cardioprotective potential of N-acetyl cysteine against hyperglycaemia-induced oxidative damage: A protocol for a systematic review. Syst. Rev., 2017, 6(1), 96. doi: 10.1186/s13643-017-0493-8 PMID: 28499416
  55. Masella, R.; Di Benedetto, R.; Varì, R.; Filesi, C.; Giovannini, C. Novel mechanisms of natural antioxidant compounds in biological systems: Involvement of glutathione and glutathione-related enzymes. J. Nutr. Biochem., 2005, 16(10), 577-586. doi: 10.1016/j.jnutbio.2005.05.013 PMID: 16111877
  56. Konukoglu, D; Uzun, H Endothelial dysfunction and hypertension. Adv Exp Med Biol, 2017, 956, 511-540.
  57. Rodrigo, R.; Fernandez-Gajardo, R.; Gutierrez, R. Oxidative stress and pathophysiology of ischemic stroke: Novel therapeutic opportunities. CNS Neurol Disord Drug Targets, 2013, 12(5), 689-714.
  58. Kasperczyk, S.; Dobrakowski, M.; Kasperczyk, A.; Romuk, E.; Rykaczewska-Czerwińska, M.; Pawlas, N.; Birkner, E. Effect of N -acetylcysteine administration on homocysteine level, oxidative damage to proteins, and levels of iron (Fe) and Fe-related proteins in lead-exposed workers. Toxicol. Ind. Health, 2016, 32(9), 1607-1618. doi: 10.1177/0748233715571152 PMID: 25731901
  59. Nakamura, M.; Sadoshima, J. Mechanisms of physiological and pathological cardiac hypertrophy. Nat. Rev. Cardiol., 2018, 15(7), 387-407. doi: 10.1038/s41569-018-0007-y PMID: 29674714
  60. Higashi, Y.; Maruhashi, T.; Noma, K.; Kihara, Y. Oxidative stress and endothelial dysfunction: Clinical evidence and therapeutic implications. Trends Cardiovasc. Med., 2014, 24(4), 165-169. doi: 10.1016/j.tcm.2013.12.001 PMID: 24373981
  61. Öztürk, Z. Diabetes, oxidative stress and endothelial dysfunction. Bezmialem Sci., 2019, 7(1), 52-57. doi: 10.14235/bas.galenos.2017.2145
  62. Mahmoudinezhad, M; Ghavami, Z; Jamilian, P; Zarezadeh, M; Ostadrahimi, A. The effect of N-acetylcysteine supplementation on endothelial function: A systematic review Clin. Nutr. Open Sci., 2023, 52, 136-150.
  63. Su, J.B. Vascular endothelial dysfunction and pharmacological treatment. World J. Cardiol., 2015, 7(11), 719-741. doi: 10.4330/wjc.v7.i11.719 PMID: 26635921
  64. Kattoor, A.J.; Pothineni, N.V.K.; Palagiri, D.; Mehta, J.L. Oxidative stress in atherosclerosis. Curr. Atheroscler. Rep., 2017, 19(11), 42. doi: 10.1007/s11883-017-0678-6 PMID: 28921056
  65. Zhang, S; Hong, F; Ma, C; Yang, S Hepatic lipid metabolism disorder and atherosclerosis. Endocr. Metab. Immune Disord. Drug Targets, 2022, 22(6), 590-600. doi: 10.2174/1871530322666211220110810
  66. Khosravi, M.; Poursaleh, A.; Ghasempour, G.; Farhad, S.; Najafi, M. The effects of oxidative stress on the development of atherosclerosis. Biol. Chem., 2019, 400(6), 711-732. doi: 10.1515/hsz-2018-0397 PMID: 30864421
  67. Cui, Y.; Zhu, Q.; Hao, H.; Flaker, G.C.; Liu, Z. N-acetylcysteine and atherosclerosis: Promises and challenges. Antioxidants, 2023, 12(12), 2073. doi: 10.3390/antiox12122073 PMID: 38136193
  68. Ganguly, P.; Alam, S.F. Role of homocysteine in the development of cardiovascular disease. Nutr. J., 2015, 14(1), 6. doi: 10.1186/1475-2891-14-6 PMID: 25577237
  69. Shah, A.K.; Bhullar, S.K.; Elimban, V.; Dhalla, N.S. Oxidative stress as a mechanism for functional alterations in cardiac hypertrophy and heart failure. Antioxidants, 2021, 10(6), 931. doi: 10.3390/antiox10060931 PMID: 34201261
  70. Mushtaq, S.; Ali, T.; Javed, Q.; Tabassum, S.; Murtaza, I. N-acetyl cysteine inhibits endothelin-1-induced ROS dependent cardiac hypertrophy through superoxide dismutase regulation. Cell J., 2015, 17(2), 355-360. PMID: 26199914
  71. Al Hariri, M.; Zibara, K.; Farhat, W.; Hashem, Y.; Soudani, N.; Al Ibrahim, F.; Hamade, E.; Zeidan, A.; Husari, A.; Kobeissy, F. Cigarette smoking-induced cardiac hypertrophy, vascular inflammation and injury are attenuated by antioxidant supplementation in an animal model. Front. Pharmacol., 2016, 7, 397. doi: 10.3389/fphar.2016.00397 PMID: 27881962
  72. Kemp, C.D.; Conte, J.V. The pathophysiology of heart failure. Cardiovasc. Pathol., 2012, 21(5), 365-371. doi: 10.1016/j.carpath.2011.11.007 PMID: 22227365
  73. Van der Pol, A.; Van Gilst, W.H.; Voors, A.A.; Van der Meer, P. Treating oxidative stress in heart failure: Past, present and future. Eur. J. Heart Fail., 2019, 21(4), 425-435. doi: 10.1002/ejhf.1320 PMID: 30338885
  74. Costa, C.R.M.; Seara, F.A.C.; Peixoto, M.S.; Ramos, I.P.; Barbosa, R.A.Q.; Carvalho, A.B.; Fortunato, R.S.; Silveira, A.L.B.; Olivares, E.L. Progression of heart failure is attenuated by antioxidant therapy with N-acetylcysteine in myocardial infarcted female rats. Mol. Biol. Rep., 2020, 47(11), 8645-8656. doi: 10.1007/s11033-020-05907-4 PMID: 33048324
  75. Phipps, M.S.; Cronin, C.A. Management of acute ischemic stroke. BMJ, 2020, 368, l6983. doi: 10.1136/bmj.l6983 PMID: 32054610
  76. Jadavji, N.M.; Mosnier, H.; Kelly, E.; Lawrence, K.; Cruickshank, S.; Stacey, S.; McCall, A.; Dhatt, S.; Arning, E.; Bottiglieri, T.; Smith, P.D. One-carbon metabolism supplementation improves outcome after stroke in aged male MTHFR-deficient mice. Neurobiol. Dis., 2019, 132, 104613. doi: 10.1016/j.nbd.2019.104613 PMID: 31525435
  77. Shahripour, B.R.; Harrigan, M.R.; Alexandrov, A.V. Nacetylcysteine (NAC) in neurological disorders: Mechanisms of action and therapeutic opportunities. Brain Behav., 2014, 4(2), 108-122. doi: 10.1002/brb3.208 PMID: 24683506
  78. Stanzione, R.; Cotugno, M.; Bianchi, F.; Marchitti, S.; Forte, M.; Volpe, M.; Rubattu, S. Pathogenesis of ischemic stroke: Role of epigenetic mechanisms. Genes (Basel), 2020, 11(1), 89. doi: 10.3390/genes11010089 PMID: 31941075
  79. Olmez, I.; Ozyurt, H. Reactive oxygen species and ischemic cerebrovascular disease. Neurochem Int., 2012, 60(2), 208-12. doi: 10.1016/j.neuint.2011.11.009
  80. Chen, H.; He, Y.; Chen, S.; Qi, S.; Shen, J. Therapeutic targets of oxidative/nitrosative stress and neuroinflammation in ischemic stroke: Applications for natural product efficacy with omics and systemic biology. Pharmacol. Res., 2020, 158, 104877. doi: 10.1016/j.phrs.2020.104877 PMID: 32407958
  81. Ma, W.Q.; Qu, Q.R.; Zhao, Y.; Liu, N.F. Association of RAGE gene Gly82Ser polymorphism with coronary artery disease and ischemic stroke. Medicine (Baltimore), 2016, 95(49), e5593. doi: 10.1097/MD.0000000000005593 PMID: 27930580
  82. Sapkota, A.; Park, S.J.; Choi, J.W. Receptor for advanced glycation end products is involved in LPA5-mediated brain damage after a transient ischemic stroke. Life (Basel), 2021, 11(2), 80. doi: 10.3390/life11020080 PMID: 33499230
  83. Cojocaru, I.M.; Cojocaru, M.; Sapira, V.; Ionescu, A. Evaluation of oxidative stress in patients with acute ischemic stroke. Rom. J. Intern. Med., 2013, 51(2), 97-106. PMID: 24294813
  84. Liu, Y.; Min, J.W.; Feng, S.; Subedi, K.; Qiao, F.; Mammenga, E.; Callegari, E.; Wang, H. Therapeutic role of a cysteine precursor, OTC, in ischemic stroke is mediated by improved proteostasis in mice. Transl. Stroke Res., 2020, 11(1), 147-160. doi: 10.1007/s12975-019-00707-w PMID: 31049841
  85. Hankey, G.J. Potential new risk factors for ischemic stroke: What is their potential? Stroke, 2006, 37(8), 2181-2188. doi: 10.1161/01.STR.0000229883.72010.e4 PMID: 16809576
  86. Tuo, Q.; Zhang, S.; Lei, P. Mechanisms of neuronal cell death in ischemic stroke and their therapeutic implications. Med. Res. Rev., 2022, 42(1), 259-305. PMID: 33957000
  87. Davis, S.M.; Pennypacker, K.R. Targeting antioxidant enzyme expression as a therapeutic strategy for ischemic stroke. Neurochem. Int., 2017, 107, 23-32. doi: 10.1016/j.neuint.2016.12.007 PMID: 28043837
  88. Üstün, Y.; Engin-Üstün, Y.; Öztürk, Ö.; Alanbay, I.; Yaman, H. Ischemia-modified albumin as an oxidative stress marker in preeclampsia. J. Matern. Fetal Neonatal Med., 2011, 24(3), 418-421. doi: 10.3109/14767058.2010.497879 PMID: 20617896
  89. Hong, D.K.; Kho, A.R.; Lee, S.H.; Jeong, J.H.; Kang, B.S.; Kang, D.H.; Park, M.K.; Park, K.H.; Lim, M.S.; Choi, B.Y.; Suh, S.W. Transient Receptor Potential Melastatin 2 (TRPM2) inhibition by antioxidant, N-Acetyl-l-Cysteine, reduces global cerebral ischemia-induced neuronal death. Int. J. Mol. Sci., 2020, 21(17), 6026. doi: 10.3390/ijms21176026 PMID: 32825703
  90. Deepthi, B.; Sowjanya, K.; Lidiya, B.; Bhargavi, R.S.; Babu, P.S. A modern review of diabetes mellitus: An annihilatory metabolic disorder. J. In Silico In Vitro Pharmacol, 2017, 3(1)
  91. Skapek, S.X.; Ferrari, A.; Gupta, A.A.; Lupo, P.J.; Butler, E.; Shipley, J.; Barr, F.G.; Hawkins, D.S.; Viswanathan, V. Rhabdomyosarcoma. Nat. Rev. Dis. Primers, 2019, 5(1), 1-8. doi: 10.1038/s41572-018-0051-2 PMID: 30617281
  92. Baluchnejadmojarad, T.; Kiasalari, Z.; Afshin-Majd, S.; Ghasemi, Z.; Roghani, M. S-allyl cysteine ameliorates cognitive deficits in streptozotocin-diabetic rats via suppression of oxidative stress, inflammation, and acetylcholinesterase. Eur. J. Pharmacol., 2017, 794, 69-76. doi: 10.1016/j.ejphar.2016.11.033 PMID: 27887948
  93. Hameed, I.; Masoodi, S.R.; Mir, S.A.; Nabi, M.; Ghazanfar, K.; Ganai, B.A. Type 2 diabetes mellitus: From a metabolic disorder to an inflammatory condition. World J. Diabetes, 2015, 6(4), 598-612. doi: 10.4239/wjd.v6.i4.598 PMID: 25987957
  94. Rani, V.; Deep, G. Oxidative stress and metabolic disorders: Pathogenesis and therapeutic strategies. Life Sci., 2016, 2016, S0024320516300522.
  95. Singh, R.; Devi, S.; Gollen, R. Role of free radical in atherosclerosis, diabetes and dyslipidaemia: Larger-than-life. Diabetes Metab. Res. Rev., 2015, 31(2), 113-126. doi: 10.1002/dmrr.2558 PMID: 24845883
  96. Karunakaran, U.; Park, K.G. A systematic review of oxidative stress and safety of antioxidants in diabetes: Focus on islets and their defense. Diabetes Metab. J., 2013, 37(2), 106-112. doi: 10.4093/dmj.2013.37.2.106 PMID: 23641350
  97. Manna, P.; Das, J.; Sil, P.C. Role of sulfur containing amino acids as an adjuvant therapy in the prevention of diabetes and its associated complications. Curr. Diabetes Rev., 2013, 9(3), 237-248. doi: 10.2174/1573399811309030005 PMID: 23547683
  98. Markova, I. The effect of lipotoxicity on renal dysfunction in a nonobese rat model of metabolic syndrome: A urinary proteomic approach J. Diabetes Res., 2019, 2019, 8712979.
  99. Kondakçı, G.; Aydın, A.F.; Doğru-Abbasoğlu, S.; Uysal, M. The effect of N-acetylcysteine supplementation on serum homocysteine levels and hepatic and renal oxidative stress in homocysteine thiolactone-treated rats. Arch. Physiol. Biochem., 2017, 123(2), 128-133. doi: 10.1080/13813455.2016.1273365 PMID: 28100069
  100. Kalantar-Zadeh, K.; Jafar, T.H.; Nitsch, D.; Neuen, B.L.; Perkovic, V. Chronic kidney disease. Lancet, 2021, 398(10302), 786-802. doi: 10.1016/S0140-6736(21)00519-5 PMID: 34175022
  101. Sandireddy, R.; Yerra, V.G.; Areti, A.; Komirishetty, P.; Kumar, A. Neuroinflammation and oxidative stress in diabetic neuropathy: Futuristic strategies based on these targets. Int. J. Endocrinol., 2014, 2014, 1-10. doi: 10.1155/2014/674987 PMID: 24883061
  102. Schwalfenberg, G.K. N-acetylcysteine: A review of clinical usefulness (an old drug with new tricks). J. Nutr. Metab., 2021, 2021, 1-13. doi: 10.1155/2021/9949453 PMID: 34221501
  103. Oyenihi, AB; Ayeleso, AO; Mukwevho, E; Masola, B Antioxidant strategies in the management of diabetic neuropathy. Biomed. Res. Int., 2015, 2015, 515042. doi: 10.1155/2015/515042
  104. Stitt, A.W.; Curtis, T.M.; Chen, M.; Medina, R.J.; McKay, G.J.; Jenkins, A.; Gardiner, T.A.; Lyons, T.J.; Hammes, H.P.; Simó, R.; Lois, N. The progress in understanding and treatment of diabetic retinopathy. Prog. Retin. Eye Res., 2016, 51, 156-186. doi: 10.1016/j.preteyeres.2015.08.001 PMID: 26297071
  105. Calderon, G.D.; Juarez, O.H.; Hernandez, G.E.; Punzo, S.M.; De la Cruz, Z.D. Oxidative stress and diabetic retinopathy: Development and treatment. Eye (Lond.), 2017, 31(8), 1122-1130. doi: 10.1038/eye.2017.64 PMID: 28452994
  106. Kowluru, R.A.; Mishra, M. Oxidative stress, mitochondrial damage and diabetic retinopathy. Biochim. Biophys. Acta Mol. Basis Dis., 2015, 1852(11), 2474-2483. doi: 10.1016/j.bbadis.2015.08.001
  107. Zhu, Y.; Zhang, X.L.; Zhu, B.F.; Ding, Y.N. Effect of antioxidant N-acetylcysteine on diabetic retinopathy and expression of VEGF and ICAM-1 from retinal blood vessels of diabetic rats. Mol. Biol. Rep., 2012, 39(4), 3727-3735. doi: 10.1007/s11033-011-1148-9 PMID: 21952821
  108. Sagoo, MK; Gnudi, L Diabetic nephropathy: An overview. Methods Mol. Biol., 2020, 2067(4), 3-7. doi: 10.1007/978-1-4939-9841-8_1
  109. Sagoo, M.K.; Gnudi, L. Diabetic nephropathy: Is there a role for oxidative stress? Free Radic. Biol. Med., 2018, 116, 50-63. doi: 10.1016/j.freeradbiomed.2017.12.040 PMID: 29305106
  110. Nogueira, G.B.; Punaro, G.R.; Oliveira, C.S.; Maciel, F.R.; Fernandes, T.O.; Lima, D.Y.; Rodrigues, A.M.; Mouro, M.G.; Araujo, S.R.R.; Higa, E.M.S. N-acetylcysteine protects against diabetic nephropathy through control of oxidative and nitrosative stress by recovery of nitric oxide in rats. Nitric Oxide, 2018, 78, 22-31. doi: 10.1016/j.niox.2018.05.003 PMID: 29778909
  111. Muzurović, E; Kraljević, I; Solak, M; Dragnić, S; Mikhailidis, DP Homocysteine and diabetes: Role in macrovascular and microvascular complications. J. Diabetes Complications, 2021, 35(3), 107834. doi: 10.1016/j.jdiacomp.2020.107834
  112. Small, D.M.; Coombes, J.S.; Bennett, N.; Johnson, D.W.; Gobe, G.C. Oxidative stress, anti-oxidant therapies and chronic kidney disease. Nephrology (Carlton), 2012, 17(4), 311-321. doi: 10.1111/j.1440-1797.2012.01572.x PMID: 22288610
  113. Elbini Dhouib, I.; Jallouli, M.; Annabi, A.; Gharbi, N.; Elfazaa, S.; Lasram, M.M. A minireview on N -acetylcysteine: An old drug with new approaches. Life Sci., 2016, 151, 359-363. doi: 10.1016/j.lfs.2016.03.003 PMID: 26946308
  114. Micucci, C.; Valli, D.; Matacchione, G.; Catalano, A. Current perspectives between metabolic syndrome and cancer. Oncotarget, 2016, 7(25), 38959-38972. doi: 10.18632/oncotarget.8341 PMID: 27029038
  115. Zhitkovich, A. N -Acetylcysteine: Antioxidant, aldehyde scavenger, and more. Chem. Res. Toxicol., 2019, 32(7), 1318-1319. doi: 10.1021/acs.chemrestox.9b00152 PMID: 31046246
  116. Esposito, K.; Capuano, A.; Giugliano, D. Metabolic syndrome and cancer: Holistic or reductionist? Endocrine, 2014, 45(3), 362-364. doi: 10.1007/s12020-013-0056-2 PMID: 24065310
  117. Ammirati, A.L. Chronic kidney disease. Rev. Assoc. Med. Bras., 2020, 66(66)(Suppl. 1), s03-s09. doi: 10.1590/1806-9282.66.s1.3 PMID: 31939529
  118. Daenen, K.; Andries, A.; Mekahli, D.; Van Schepdael, A.; Jouret, F.; Bammens, B. Oxidative stress in chronic kidney disease. Pediatr. Nephrol., 2019, 34(6), 975-991. doi: 10.1007/s00467-018-4005-4 PMID: 30105414
  119. Ling, X.C.; Kuo, K.L. Oxidative stress in chronic kidney disease. Renal Replacement Ther., 2018, 4(1), 53. doi: 10.1186/s41100-018-0195-2
  120. Ghorbani, A.; Shahbazian, H.; Shayanpour, S. Evaluation of administration of oral N-acetylcysteine to reduce oxidative stress in chronic hemodialysis patients: A double-blind, randomized, controlled clinical trial. Saudi J. Kidney Dis. Transpl., 2016, 27(1), 88-93. doi: 10.4103/1319-2442.174084 PMID: 26787572
  121. Gerogianni, SK; Babatsikou, FP Psychological aspects in chronic renal failure. Health Sci. J., 2014, 8(2), 205-214.
  122. Jakovljevic, B.; Gasic, B.; Kovacevic, P.; Rajkovaca, Z.; Kovacevic, T. Homocystein as a risk factor for developing complications in chronic renal failure. Mater. Sociomed., 2015, 27(2), 95-98. doi: 10.5455/msm.2015.27.95-98 PMID: 26005384
  123. Ostrakhovitch, E.A.; Tabibzadeh, S. Homocysteine in chronic kidney disease. Adv. Clin. Chem., 2015, 72, 77-106. doi: 10.1016/bs.acc.2015.07.002 PMID: 26471081
  124. Wang, Q.; Mazur, A.; Guerrero, F.; Lambrechts, K.; Buzzacott, P.; Belhomme, M.; Theron, M. Antioxidants, endothelial dysfunction, and DCS: In vitro and in vivo study. J. Appl. Physiol., 2015, 119(12), 1355-1362. doi: 10.1152/japplphysiol.00167.2015 PMID: 26472863
  125. Fang, X; Liu, L; Zhou, S; Zhu, M; Wang, B N-acetylcysteine inhibits atherosclerosis by correcting glutathione-dependent methylglyoxal elimination and dicarbonyl/oxidative stress in the aorta of diabetic mice. Mol. Med. Rep., 2021, 23(3), 201.
  126. Tossios, P.; Bloch, W.; Huebner, A.; Raji, M.R.; Dodos, F.; Klass, O.; Suedkamp, M.; Kasper, S.M.; Hellmich, M.; Mehlhorn, U. N-acetylcysteine prevents reactive oxygen species–mediated myocardial stress in patients undergoing cardiac surgery: Results of a randomized, double-blind, placebo-controlled clinical trial. J. Thorac. Cardiovasc. Surg., 2003, 126(5), 1513-1520. doi: 10.1016/S0022-5223(03)00968-1 PMID: 14666027
  127. Khanna, A.K.; Xu, J.; Mehra, M.R. Antioxidant N-acetyl cysteine reverses cigarette smoke-induced myocardial infarction by inhibiting inflammation and oxidative stress in a rat model. Lab. Invest., 2012, 92(2), 224-235. doi: 10.1038/labinvest.2011.146 PMID: 21968809
  128. Sekhon, B.; Sekhon, C.; Khan, M.; Patel, S.J.; Singh, I.; Singh, A.K. N-Acetyl cysteine protects against injury in a rat model of focal cerebral ischemia. Brain Res., 2003, 971(1), 1-8. doi: 10.1016/S0006-8993(03)02244-3 PMID: 12691831
  129. Turkmen, S.; Cekic Gonenc, O.; Karaca, Y.; Mentese, A.; Demir, S.; Beyhun, E.; Sahin, A.; Gunduz, A.; Yulug, E.; Turedi, S. The effect of ethyl pyruvate and N-acetylcysteine on ischemia-reperfusion injury in an experimental model of ischemic stroke. Am. J. Emerg. Med., 2016, 34(9), 1804-1807. doi: 10.1016/j.ajem.2016.06.003 PMID: 27324856
  130. Ribeiro, G.; Roehrs, M.; Bairros, A.; Moro, A.; Charão, M.; Araújo, F.; Valentini, J.; Arbo, M.; Brucker, N.; Moresco, R.; Leal, M.; Morsch, V.; Garcia, S.C. N -acetylcysteine on oxidative damage in diabetic rats. Drug Chem. Toxicol., 2011, 34(4), 467-474. doi: 10.3109/01480545.2011.564179 PMID: 21770721
  131. Kamboj, S.S.; Vasishta, R.K.; Sandhir, R. N -acetylcysteine inhibits hyperglycemia-induced oxidative stress and apoptosis markers in diabetic neuropathy. J. Neurochem., 2010, 112(1), 77-91. doi: 10.1111/j.1471-4159.2009.06435.x PMID: 19840221
  132. Heloisa, M.; Shimizu, M.; Coimbra, T.M.; De Araujo, M.; Menezes, L.F.; Seguro, A.C. N-acetylcysteine attenuates the progression of chronic renal failure. Kidney Int., 2005, 68(5), 2208-2217. doi: 10.1111/j.1523-1755.2005.00677.x PMID: 16221220
  133. Luo, J.; Tsuji, T.; Yasuda, H.; Sun, Y.; Fujigaki, Y.; Hishida, A. The molecular mechanisms of the attenuation of cisplatin-induced acute renal failure by N-acetylcysteine in rats. Nephrol. Dial. Transplant., 2008, 23(7), 2198-2205. doi: 10.1093/ndt/gfn090 PMID: 18385389
  134. Sabetghadam, M.; Mazdeh, M.; Abolfathi, P.; Mohammadi, Y.; Mehrpooya, M. Evidence for a beneficial effect of oral N-acetylcysteine on functional outcomes and inflammatory biomarkers in patients with acute ischemic stroke. Neuropsychiatr. Dis. Treat., 2020, 16, 1265-1278. doi: 10.2147/NDT.S241497 PMID: 32547030
  135. Coyle, L.C.; Rodriguez, A.; Jeschke, R.E.; Simon-Lee, A.; Abbott, K.C.; Taylor, A.J. Acetylcysteine In Diabetes (AID): A randomized study of acetylcysteine for the prevention of contrast nephropathy in diabetics. Am. Heart J., 2006, 151(5), 1032.e9-1032.e12. doi: 10.1016/j.ahj.2006.02.002 PMID: 16644332
  136. Sisillo, E.; Ceriani, R.; Bortone, F.; Juliano, G.; Salvi, L.; Veglia, F.; Fiorentini, C.; Marenzi, G. N-acetylcysteine for prevention of acute renal failure in patients with chronic renal insufficiency undergoing cardiac surgery: A prospective, randomized, clinical trial. Crit. Care Med., 2008, 36(1), 81-86. doi: 10.1097/01.CCM.0000295305.22281.1D PMID: 18090169
  137. Liao, C.Y.; Chung, C.H.; Wu, C.C.; Lin, F.H.; Tsao, C.H.; Wang, C.C.; Chien, W.C. Protective effect of N -acetylcysteine on progression to end-stage renal disease: Necessity for prospective clinical trial. Eur. J. Intern. Med., 2017, 44, 67-73. doi: 10.1016/j.ejim.2017.06.011 PMID: 28633804
  138. Talasaz, A.H.; Khalili, H.; Fahimi, F.; Jenab, Y.; Broumand, M.A.; Salarifar, M.; Darabi, F. Effects of N-acetylcysteine on the cardiac remodeling biomarkers and major adverse events following acute myocardial infarction: A randomized clinical trial. Am. J. Cardiovasc. Drugs, 2014, 14(1), 51-61. doi: 10.1007/s40256-013-0048-x PMID: 24105017
  139. Pereira, J.E.G.; El Dib, R.; Braz, L.G.; Escudero, J.; Hayes, J.; Johnston, B.C. N-acetylcysteine use among patients undergoing cardiac surgery: A systematic review and meta-analysis of randomized trials. PLoS One, 2019, 14(5), e0213862. doi: 10.1371/journal.pone.0213862 PMID: 31071081
  140. Hamed, T.; Ibrahim, M.; Salem, H. Possible ameliorating effect of N-acetyl Cysteine on Type II Diabetic Nephropathy: Clinical trial. AIJPMS, 2023, 3(2), 61-69. doi: 10.21608/aijpms.2023.155638.1159

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Bentham Science Publishers, 2024