A Comprehensive Review on the Significance of Cysteine in Various Metabolic Disorders; Particularly CVD, Diabetes, Renal Dysfunction, and Ischemic Stroke
- Autores: Aziz N.1, Wal P.1, Sinha R.1, Shirode P.2, Chakraborthy G.3, Sharma M.4, Kumar P.5
-
Afiliações:
- , PSIT-Pranveer Singh Institute of Technology (Pharmacy)
- K.K. Wagh Education Society's, K.K. Wagh College of Pharmacy
- Parul Institute of Pharmacy and Research, Parul University
- School of Pharmacy, Devi Ahilya Vishwavidalaya
- Department of Pharmacology, Adesh Institute of Pharmacy and Biomedical Sciences, Adesh 6 University
- Edição: Volume 25, Nº 9 (2024)
- Páginas: 682-707
- Seção: Life Sciences
- URL: https://rjpbr.com/1389-2037/article/view/645721
- DOI: https://doi.org/10.2174/0113892037287215240424090908
- ID: 645721
Citar
Texto integral
Resumo
:Metabolic disorders have long been a challenge for medical professionals and are a leading cause of mortality in adults. Diabetes, cardiovascular disorders (CVD), renal dysfunction, and ischemic stroke are the most prevalent ailments contributing to a high mortality rate worldwide. Reactive oxygen species are one of the leading factors that act as a fundamental root cause of metabolic syndrome. All of these disorders have their respective treatments, which, to some degree, sabotage the pathological worsening of the disease and an inevitable death. However, they pose a perilous health hazard to humankind. Cysteine, a functional amino acid shows promise for the prevention and treatment of metabolic disorders, such as CVD, Diabetes mellitus, renal dysfunction, and ischemic stroke. In this review, we explored whether cysteine can eradicate reactive oxygen species and subsequently prevent and treat these diseases.
Sobre autores
Namra Aziz
, PSIT-Pranveer Singh Institute of Technology (Pharmacy)
Email: info@benthamscience.net
Pranay Wal
, PSIT-Pranveer Singh Institute of Technology (Pharmacy)
Email: info@benthamscience.net
Rishika Sinha
, PSIT-Pranveer Singh Institute of Technology (Pharmacy)
Email: info@benthamscience.net
Prashant Shirode
K.K. Wagh Education Society's, K.K. Wagh College of Pharmacy
Email: info@benthamscience.net
GunoSindhu Chakraborthy
Parul Institute of Pharmacy and Research, Parul University
Email: info@benthamscience.net
Mukesh Sharma
School of Pharmacy, Devi Ahilya Vishwavidalaya
Email: info@benthamscience.net
Pankaj Kumar
Department of Pharmacology, Adesh Institute of Pharmacy and Biomedical Sciences, Adesh 6 University
Autor responsável pela correspondência
Email: info@benthamscience.net
Bibliografia
- Acharyya, A.; Shahjahan, M.D.; Mesbah, F.; Dey, S.; Ali, L. Association of metabolic syndrome with chronic obstructive pulmonary disease in an Indian population. Lung, 2016, 33(4), 385-390. doi: 10.4103/0970-2113.184871 PMID: 27578930
- Meher, T.; Sahoo, H. The epidemiological profile of metabolic syndrome in Indian population: A comparative study between men and women. Clin. Epidemiol. Glob. Health, 2020, 8(4), 1047-1052. doi: 10.1016/j.cegh.2020.03.018
- Huang, F.; Han, X.; Xiao, X.; Zhou, J. Covalent warheads targeting cysteine residue: The promising approach in drug development. Molecules, 2022, 27(22), 7728. doi: 10.3390/molecules27227728 PMID: 36431829
- Wu, G. Functional amino acids in nutrition and health. Amino Acids, 2013, 45(3), 407-11. doi: 10.1007/s00726-013-1500-6
- Okekunle, A.P.; Li, Y.; Liu, L.; Du, S.; Wu, X.; Chen, Y.; Li, Y.; Qi, J.; Sun, C.; Feng, R. Abnormal circulating amino acid profiles in multiple metabolic disorders. Diabetes Res. Clin. Pract., 2017, 132, 45-58. doi: 10.1016/j.diabres.2017.07.023 PMID: 28783532
- Muthuraman, A.; Ramesh, M.; Shaikh, S.A.; Aswinprakash, S.; Jagadeesh, D. Physiological and pathophysiological role of cysteine metabolism in human metabolic syndrome. Drug Metab. Lett., 2021, 14(3), 177-192. doi: 10.2174/1872312814666211210111820 PMID: 34895129
- Aliu, E.; Kanungo, S.; Arnold, G.L. Amino acid disorders. Ann. Transl. Med., 2018, 6(24), 471. doi: 10.21037/atm.2018.12.12 PMID: 30740402
- Dumas, M.E.; Kinross, J.; Nicholson, J.K. Metabolic phenotyping and systems biology approaches to understanding metabolic syndrome and fatty liver disease. Gastroenterology, 2014, 146(1), 46-62. doi: 10.1053/j.gastro.2013.11.001 PMID: 24211299
- Vona, R.; Gambardella, L.; Cittadini, C.; Straface, E.; Pietraforte, D. Biomarkers of oxidative stress in metabolic syndrome and associated diseases. Oxid. Med. Cell. Longev., 2019, 2019, 1-19. doi: 10.1155/2019/8267234 PMID: 31191805
- Paul, B.D.; Sbodio, J.I.; Snyder, S.H. Cysteine metabolism in neuronal redox homeostasis. Trends Pharmacol. Sci., 2018, 39(5), 513-524. doi: 10.1016/j.tips.2018.02.007 PMID: 29530337
- Song, T.; Qin, W.; Lai, Z.; Li, H.; Li, D.; Wang, B.; Deng, W.; Wang, T.; Wang, L.; Huang, R. Dietary cysteine drives body fat loss via FMRFamide signaling in Drosophila and mouse. Cell Res., 2023, 33(6), 434-447. doi: 10.1038/s41422-023-00800-8 PMID: 37055592
- Pastore, A.; Alisi, A.; di Giovamberardino, G.; Crudele, A.; Ceccarelli, S.; Panera, N.; Dionisi-Vici, C.; Nobili, V. Plasma levels of homocysteine and cysteine increased in pediatric NAFLD and strongly correlated with severity of liver damage. Int. J. Mol. Sci., 2014, 15(11), 21202-21214. doi: 10.3390/ijms151121202 PMID: 25407526
- Sameem, B.; Khan, F.; Niaz, K. Nonvitamin and Nonmineral Nutritional Supplements; Elsevier: Amsterdam, 2019, pp. 53-58.
- Atkuri, K.R.; Mantovani, J.J.; Herzenberg, L.A.; Herzenberg, L.A. N-Acetylcysteinea safe antidote for cysteine/glutathione deficiency. Curr. Opin. Pharmacol., 2007, 7(4), 355-359. doi: 10.1016/j.coph.2007.04.005 PMID: 17602868
- Bhatti, J.S.; Bhatti, G.K.; Reddy, P.H. Mitochondrial dysfunction and oxidative stress in metabolic disorders A step towards mitochondria based therapeutic strategies. Biochim. Biophys. Acta Mol. Basis Dis., 2017, 1863(5), 1066-1077. doi: 10.1016/j.bbadis.2016.11.010 PMID: 27836629
- Rehman, T.; Shabbir, M.A.; Inam-Ur-Raheem, M.; Manzoor, M.F.; Ahmad, N.; Liu, Z.W.; Ahmad, M.H.; Siddeeg, A.; Abid, M.; Aadil, R.M. Cysteine and homocysteine as biomarker of various diseases. Food Sci. Nutr., 2020, 8(9), 4696-4707. doi: 10.1002/fsn3.1818 PMID: 32994931
- Pace, N.J.; Weerapana, E. Diverse functional roles of reactive cysteines. ACS Chem. Biol., 2013, 8(2), 283-296. doi: 10.1021/cb3005269 PMID: 23163700
- Carballal, S.; Banerjee, R. Overview of cysteine metabolism.Redox Chemistry and Biology of Thiols; Academic Press: Cambridge, Massachusetts, 2022, pp. 423-450.
- Swetha, P.; Kumar, A.S. Phosphomolybdic acid nano-aggregates immobilized nafion membrane modified electrode for selective cysteine electrocatalytic oxidation and anti-dermatophytic activity. Electrochim. Acta, 2013, 98, 54-65. doi: 10.1016/j.electacta.2013.03.023
- Kwon, Y. Possible beneficial effects of N-Acetylcysteine for treatment of triple-negative breast cancer. Antioxidants (Basel), 2021, 10(2), 169. doi: 10.3390/antiox10020169
- (a) Ezeriņa, D.; Takano, Y.; Hanaoka, K.; Urano, Y.; Dick, T.P. N-acetyl cysteine functions as a fast-acting antioxidant by triggering intracellular H2S and sulfane sulphur production. Cell Chem. Bio., 2018, 25(4), 447-59.; (b) Kader, T; Porteous, C Ribose-cysteine increases glutathione-based antioxidant status and reduces LDL in human lipoprotein (a) mice. Atherosclerosis, 2014, 237(2), 725-733. PMID: 25463112
- Tenório, M.C.S.; Graciliano, N.G.; Moura, F.A.; Oliveira, A.C.M.; Goulart, M.O.F. N-Acetylcysteine (NAC): Impacts on human health. Antioxidants, 2021, 10(6), 967. doi: 10.3390/antiox10060967 PMID: 34208683
- Safari, M.R.; Noroozi, R.; Omrani, M.D.; Taheri, M.; Ghafouri-Fard, S. Analysis of association between RAGE polymorphisms and stroke risk. Meta Gene, 2019, 22, 100612. doi: 10.1016/j.mgene.2019.100612
- Ferla, M. P.; Patrick, W. M. Bacterial methionine biosynthesis. Microbiology (Reading), 2014, 160(Pt 8), 11571-1584. doi: 10.1099/mic.0.077826-0
- Sbodio, J.I.; Snyder, S.H.; Paul, B.D. Regulators of the transsulphuration pathway. Br. J. Pharmacol., 2018. PMID: 30007014
- Xiao, Y.; Zhang, Y.; Wang, M.; Li, X.; Xia, M.; Ling, W. Dietary protein and plasma total homocysteine, cysteine concentrations in coronary angiographic subjects. Nutr. J., 2013, 12(1), 144. doi: 10.1186/1475-2891-12-144 PMID: 24195518
- Rao, N.L.; Kotian, G.B.; Shetty, J.K.; Shelley, B.P.; Dmello, M.K.; Lobo, E.C.; Shankar, S.P.; Almeida, S.D.; Shah, S.R. Receptor for advanced glycation end product, organ crosstalk, and pathomechanism targets for comprehensive molecular therapeutics in diabetic ischemic stroke. Biomolecules, 2022, 12(11), 1712. doi: 10.3390/biom12111712 PMID: 36421725
- Jurcau, A.; Ardelean, A.I. Oxidative stress in ischemia/reperfusion injuries following acute ischemic stroke. Biomedicines, 2022, 10(3), 574. doi: 10.3390/biomedicines10030574 PMID: 35327376
- Parkhitko, A.A.; Jouandin, P.; Mohr, S.E.; Perrimon, N. Methionine metabolism and methyltransferases in the regulation of aging and lifespan extension across species. Aging Cell, 2019, 18(6), e13034. doi: 10.1111/acel.13034 PMID: 31460700
- Khalid, M.; Petroianu, G.; Adem, A. Advanced glycation end products and diabetes mellitus: Mechanisms and perspectives. Biomolecules, 2022, 12(4), 542. doi: 10.3390/biom12040542 PMID: 35454131
- Mohorko, N.; Petelin, A.; Jurdana, M.; Biolo, G.; Jenko-P., Z. Elevated serum levels of cysteine and tyrosine: Early biomarkers in asymptomatic adults at increased risk of developing metabolic syndrome. Biomed. Res. Int., 2015, 2015, 418681. doi: 10.1155/2015/418681
- Ezeriņa, D.; Takano, Y.; Hanaoka, K.; Urano, Y.; Dick, T.P. N-acetyl cysteine functions as a fast-acting antioxidant by triggering intracellular H2S and sulfane sulphur production. Cell Chem. Biol., 2018, 25(4), 447-459.e4. doi: 10.1016/j.chembiol.2018.01.011 PMID: 29429900
- Dominique, D. Importance du métabolisme des protéines et des acides aminés dans la prévention et la prise en charge du syndrome métabolique. Modulation par les acides gras n -3. Cahiers de Nutr. et de Diététique, 2018, 53(5), 002. doi: 10.1016/j.cnd.2018.06.002
- Baez-Duarte, B.G.; Zamora-Ginez, I.; De Jésus, K.L.; Torres-Rasgado, E.; González-Mejía, M.E.; Porchia, L.; Ruiz-Vivanco, G.; Pérez-Fuentes, R. Association of the metabolic syndrome with antioxidant defense and outstanding superoxide dismutase activity in Mexican subjects. Metab. Syndr. Relat. Disord., 2016, 14(3), 154-160. doi: 10.1089/met.2015.0088 PMID: 26859464
- Rendra, E.; Riabov, V.; Mossel, D.M.; Sevastyanova, T.; Harmsen, M.C.; Kzhyshkowska, J. Reactive oxygen species (ROS) in macrophage activation and function in diabetes. Immunobiology, 2018. PMID: 30739804
- Thieme, K.; Da Silva, K.S.; Fabre, N.T.; Catanozi, S.; Monteiro, M.B.; Santos-Bezerra, D.P.; Costa-Pessoa, J.M.; Oliveira-Souza, M.; Machado, U.F.; Passarelli, M.; Correa-Giannella, M.L. N-acetyl cysteine attenuated the deleterious effects of advanced glycation end-products on the kidney of non-diabetic rats. Cell. Physiol. Biochem., 2016, 40(3-4), 608-620. doi: 10.1159/000452574 PMID: 27898405
- Abete, I.; Goyenechea, E.; Zulet, M.A.; Martínez, J.A. Obesity and metabolic syndrome: Potential benefit from specific nutritional components. Nutr. Metab. Cardiovasc. Dis., 2011, 21(Suppl. 2), B1-B15. doi: 10.1016/j.numecd.2011.05.001 PMID: 21764273
- Tobon-Velasco, C.; Cuevas, J. Receptor for AGEs (RAGE) as mediator of NF-kB pathway activation in neuroinflammation and oxidative stress. CNS Neurol. Disord. Drug Targets, 2014, 13(9), 1615-26.
- Mokhtari, V.; Afsharian, P.; Shahhoseini, M.; Kalantar, S.M.; Moini, A. A review on various uses of N-acetyl cysteine. Cell J., 2017, 19(1), 11-17. PMID: 28367412
- Krata, N.; Zagożdżon, R.; Foroncewicz, B.; Mucha, K. Oxidative stress in kidney diseases: The cause on the consequence? Exp., 2018, 66, 211-220.
- Hutcheson, R.; Rocic, P. The metabolic syndrome, oxidative stress, environment, and cardiovascular disease: The great exploration. J. Diab. Res., 2012, 13, 1-13. doi: 10.1155/2012/271028
- Wu, X.Q.; Zhang, D.D.; Wang, Y.N.; Tan, Y.Q.; Yu, X.Y.; Zhao, Y.Y. AGE/RAGE in diabetic kidney disease and ageing kidney. Free Radic. Biol. Med., 2021, 171, 260-271. doi: 10.1016/j.freeradbiomed.2021.05.025 PMID: 34019934
- Francisqueti, F.V.; Chiaverini, L.C.T.; Santos, K.C.; Minatel, I.O.; Ronchi, C.B.; Ferron, A.J.T.; Ferreira, A.L.A.; Corrêa, C.R. The role of oxidative stress on the pathophysiology of metabolic syndrome. Rev. Assoc. Med. Bras., 2017, 63(1), 85-91. doi: 10.1590/1806-9282.63.01.85 PMID: 28225880
- Zatalia, S.R.; Sanusi, H. The role of antioxidants in the pathophysiology, complications, and management of diabetes mellitus. Acta Med. Indones., 2013, 45(2), 141-147. PMID: 23770795
- Piste, P. Cysteinemaster antioxidant. Int. J. Pharm. Chem. Biol. Sci., 2013, 3(1), 143-149.
- Go, Y.M.; Jones, D.P. Cysteine/cystine redox signaling in cardiovascular disease. Free Radic. Biol. Med., 2011, 50(4), 495-509. doi: 10.1016/j.freeradbiomed.2010.11.029 PMID: 21130865
- Yubero-Serrano, E.M.; Pérez-Martínez, P. Advanced glycation end products and their involvement in cardiovascular disease. Angiology, 2020, 71(8), 698-700. doi: 10.1177/0003319720916301 PMID: 32242451
- Senoner, T.; Dichtl, W. Oxidative stress in cardiovascular diseases: Still a therapeutic target? Nutrients, 2019, 11(9), 2090. doi: 10.3390/nu11092090 PMID: 31487802
- Lee, H.W.; Gu, M.J.; Kim, Y.; Lee, J.Y.; Lee, S.; Choi, I.W.; Ha, S.K. Glyoxal-lysine dimer, an advanced glycation end product, induces oxidative damage and inflammatory response by interacting with RAGE. Antioxidants, 2021, 10(9), 1486. doi: 10.3390/antiox10091486 PMID: 34573117
- Mangge, H.; Becker, K.; Fuchs, D.; Gostner, J.M. Antioxidants, inflammation and cardiovascular disease. World J. Cardiol., 2014, 6(6), 462-477. doi: 10.4330/wjc.v6.i6.462 PMID: 24976919
- Sarangarajan, R.; Meera, S.; Rukkumani, R.; Sankar, P.; Anuradha, G. Antioxidants: Friend or foe? Asian Pac. J. Trop. Med., 2017, 10(12), 1111-1116. doi: 10.1016/j.apjtm.2017.10.017 PMID: 29268965
- Combs, Joseph The non-essential amino acid cysteine becomes essential for tumor proliferation and survival. Cancers, 2019, 11(5), 678.
- Tappia, P.S.; Xu, Y-J.; Rodriguez-Leyva, D.; Aroutiounova, N.; Dhalla, N.S. Cardioprotective effects of cysteine alone or in combination with taurine in diabetes. Physiol. Res., 2013, 62(2), 171-178. doi: 10.33549/physiolres.932388 PMID: 23234413
- Dludla, P.V.; Nkambule, B.B.; Dias, S.C.; Johnson, R. Cardioprotective potential of N-acetyl cysteine against hyperglycaemia-induced oxidative damage: A protocol for a systematic review. Syst. Rev., 2017, 6(1), 96. doi: 10.1186/s13643-017-0493-8 PMID: 28499416
- Masella, R.; Di Benedetto, R.; Varì, R.; Filesi, C.; Giovannini, C. Novel mechanisms of natural antioxidant compounds in biological systems: Involvement of glutathione and glutathione-related enzymes. J. Nutr. Biochem., 2005, 16(10), 577-586. doi: 10.1016/j.jnutbio.2005.05.013 PMID: 16111877
- Konukoglu, D; Uzun, H Endothelial dysfunction and hypertension. Adv Exp Med Biol, 2017, 956, 511-540.
- Rodrigo, R.; Fernandez-Gajardo, R.; Gutierrez, R. Oxidative stress and pathophysiology of ischemic stroke: Novel therapeutic opportunities. CNS Neurol Disord Drug Targets, 2013, 12(5), 689-714.
- Kasperczyk, S.; Dobrakowski, M.; Kasperczyk, A.; Romuk, E.; Rykaczewska-Czerwińska, M.; Pawlas, N.; Birkner, E. Effect of N -acetylcysteine administration on homocysteine level, oxidative damage to proteins, and levels of iron (Fe) and Fe-related proteins in lead-exposed workers. Toxicol. Ind. Health, 2016, 32(9), 1607-1618. doi: 10.1177/0748233715571152 PMID: 25731901
- Nakamura, M.; Sadoshima, J. Mechanisms of physiological and pathological cardiac hypertrophy. Nat. Rev. Cardiol., 2018, 15(7), 387-407. doi: 10.1038/s41569-018-0007-y PMID: 29674714
- Higashi, Y.; Maruhashi, T.; Noma, K.; Kihara, Y. Oxidative stress and endothelial dysfunction: Clinical evidence and therapeutic implications. Trends Cardiovasc. Med., 2014, 24(4), 165-169. doi: 10.1016/j.tcm.2013.12.001 PMID: 24373981
- Öztürk, Z. Diabetes, oxidative stress and endothelial dysfunction. Bezmialem Sci., 2019, 7(1), 52-57. doi: 10.14235/bas.galenos.2017.2145
- Mahmoudinezhad, M; Ghavami, Z; Jamilian, P; Zarezadeh, M; Ostadrahimi, A. The effect of N-acetylcysteine supplementation on endothelial function: A systematic review Clin. Nutr. Open Sci., 2023, 52, 136-150.
- Su, J.B. Vascular endothelial dysfunction and pharmacological treatment. World J. Cardiol., 2015, 7(11), 719-741. doi: 10.4330/wjc.v7.i11.719 PMID: 26635921
- Kattoor, A.J.; Pothineni, N.V.K.; Palagiri, D.; Mehta, J.L. Oxidative stress in atherosclerosis. Curr. Atheroscler. Rep., 2017, 19(11), 42. doi: 10.1007/s11883-017-0678-6 PMID: 28921056
- Zhang, S; Hong, F; Ma, C; Yang, S Hepatic lipid metabolism disorder and atherosclerosis. Endocr. Metab. Immune Disord. Drug Targets, 2022, 22(6), 590-600. doi: 10.2174/1871530322666211220110810
- Khosravi, M.; Poursaleh, A.; Ghasempour, G.; Farhad, S.; Najafi, M. The effects of oxidative stress on the development of atherosclerosis. Biol. Chem., 2019, 400(6), 711-732. doi: 10.1515/hsz-2018-0397 PMID: 30864421
- Cui, Y.; Zhu, Q.; Hao, H.; Flaker, G.C.; Liu, Z. N-acetylcysteine and atherosclerosis: Promises and challenges. Antioxidants, 2023, 12(12), 2073. doi: 10.3390/antiox12122073 PMID: 38136193
- Ganguly, P.; Alam, S.F. Role of homocysteine in the development of cardiovascular disease. Nutr. J., 2015, 14(1), 6. doi: 10.1186/1475-2891-14-6 PMID: 25577237
- Shah, A.K.; Bhullar, S.K.; Elimban, V.; Dhalla, N.S. Oxidative stress as a mechanism for functional alterations in cardiac hypertrophy and heart failure. Antioxidants, 2021, 10(6), 931. doi: 10.3390/antiox10060931 PMID: 34201261
- Mushtaq, S.; Ali, T.; Javed, Q.; Tabassum, S.; Murtaza, I. N-acetyl cysteine inhibits endothelin-1-induced ROS dependent cardiac hypertrophy through superoxide dismutase regulation. Cell J., 2015, 17(2), 355-360. PMID: 26199914
- Al Hariri, M.; Zibara, K.; Farhat, W.; Hashem, Y.; Soudani, N.; Al Ibrahim, F.; Hamade, E.; Zeidan, A.; Husari, A.; Kobeissy, F. Cigarette smoking-induced cardiac hypertrophy, vascular inflammation and injury are attenuated by antioxidant supplementation in an animal model. Front. Pharmacol., 2016, 7, 397. doi: 10.3389/fphar.2016.00397 PMID: 27881962
- Kemp, C.D.; Conte, J.V. The pathophysiology of heart failure. Cardiovasc. Pathol., 2012, 21(5), 365-371. doi: 10.1016/j.carpath.2011.11.007 PMID: 22227365
- Van der Pol, A.; Van Gilst, W.H.; Voors, A.A.; Van der Meer, P. Treating oxidative stress in heart failure: Past, present and future. Eur. J. Heart Fail., 2019, 21(4), 425-435. doi: 10.1002/ejhf.1320 PMID: 30338885
- Costa, C.R.M.; Seara, F.A.C.; Peixoto, M.S.; Ramos, I.P.; Barbosa, R.A.Q.; Carvalho, A.B.; Fortunato, R.S.; Silveira, A.L.B.; Olivares, E.L. Progression of heart failure is attenuated by antioxidant therapy with N-acetylcysteine in myocardial infarcted female rats. Mol. Biol. Rep., 2020, 47(11), 8645-8656. doi: 10.1007/s11033-020-05907-4 PMID: 33048324
- Phipps, M.S.; Cronin, C.A. Management of acute ischemic stroke. BMJ, 2020, 368, l6983. doi: 10.1136/bmj.l6983 PMID: 32054610
- Jadavji, N.M.; Mosnier, H.; Kelly, E.; Lawrence, K.; Cruickshank, S.; Stacey, S.; McCall, A.; Dhatt, S.; Arning, E.; Bottiglieri, T.; Smith, P.D. One-carbon metabolism supplementation improves outcome after stroke in aged male MTHFR-deficient mice. Neurobiol. Dis., 2019, 132, 104613. doi: 10.1016/j.nbd.2019.104613 PMID: 31525435
- Shahripour, B.R.; Harrigan, M.R.; Alexandrov, A.V. Nacetylcysteine (NAC) in neurological disorders: Mechanisms of action and therapeutic opportunities. Brain Behav., 2014, 4(2), 108-122. doi: 10.1002/brb3.208 PMID: 24683506
- Stanzione, R.; Cotugno, M.; Bianchi, F.; Marchitti, S.; Forte, M.; Volpe, M.; Rubattu, S. Pathogenesis of ischemic stroke: Role of epigenetic mechanisms. Genes (Basel), 2020, 11(1), 89. doi: 10.3390/genes11010089 PMID: 31941075
- Olmez, I.; Ozyurt, H. Reactive oxygen species and ischemic cerebrovascular disease. Neurochem Int., 2012, 60(2), 208-12. doi: 10.1016/j.neuint.2011.11.009
- Chen, H.; He, Y.; Chen, S.; Qi, S.; Shen, J. Therapeutic targets of oxidative/nitrosative stress and neuroinflammation in ischemic stroke: Applications for natural product efficacy with omics and systemic biology. Pharmacol. Res., 2020, 158, 104877. doi: 10.1016/j.phrs.2020.104877 PMID: 32407958
- Ma, W.Q.; Qu, Q.R.; Zhao, Y.; Liu, N.F. Association of RAGE gene Gly82Ser polymorphism with coronary artery disease and ischemic stroke. Medicine (Baltimore), 2016, 95(49), e5593. doi: 10.1097/MD.0000000000005593 PMID: 27930580
- Sapkota, A.; Park, S.J.; Choi, J.W. Receptor for advanced glycation end products is involved in LPA5-mediated brain damage after a transient ischemic stroke. Life (Basel), 2021, 11(2), 80. doi: 10.3390/life11020080 PMID: 33499230
- Cojocaru, I.M.; Cojocaru, M.; Sapira, V.; Ionescu, A. Evaluation of oxidative stress in patients with acute ischemic stroke. Rom. J. Intern. Med., 2013, 51(2), 97-106. PMID: 24294813
- Liu, Y.; Min, J.W.; Feng, S.; Subedi, K.; Qiao, F.; Mammenga, E.; Callegari, E.; Wang, H. Therapeutic role of a cysteine precursor, OTC, in ischemic stroke is mediated by improved proteostasis in mice. Transl. Stroke Res., 2020, 11(1), 147-160. doi: 10.1007/s12975-019-00707-w PMID: 31049841
- Hankey, G.J. Potential new risk factors for ischemic stroke: What is their potential? Stroke, 2006, 37(8), 2181-2188. doi: 10.1161/01.STR.0000229883.72010.e4 PMID: 16809576
- Tuo, Q.; Zhang, S.; Lei, P. Mechanisms of neuronal cell death in ischemic stroke and their therapeutic implications. Med. Res. Rev., 2022, 42(1), 259-305. PMID: 33957000
- Davis, S.M.; Pennypacker, K.R. Targeting antioxidant enzyme expression as a therapeutic strategy for ischemic stroke. Neurochem. Int., 2017, 107, 23-32. doi: 10.1016/j.neuint.2016.12.007 PMID: 28043837
- Üstün, Y.; Engin-Üstün, Y.; Öztürk, Ö.; Alanbay, I.; Yaman, H. Ischemia-modified albumin as an oxidative stress marker in preeclampsia. J. Matern. Fetal Neonatal Med., 2011, 24(3), 418-421. doi: 10.3109/14767058.2010.497879 PMID: 20617896
- Hong, D.K.; Kho, A.R.; Lee, S.H.; Jeong, J.H.; Kang, B.S.; Kang, D.H.; Park, M.K.; Park, K.H.; Lim, M.S.; Choi, B.Y.; Suh, S.W. Transient Receptor Potential Melastatin 2 (TRPM2) inhibition by antioxidant, N-Acetyl-l-Cysteine, reduces global cerebral ischemia-induced neuronal death. Int. J. Mol. Sci., 2020, 21(17), 6026. doi: 10.3390/ijms21176026 PMID: 32825703
- Deepthi, B.; Sowjanya, K.; Lidiya, B.; Bhargavi, R.S.; Babu, P.S. A modern review of diabetes mellitus: An annihilatory metabolic disorder. J. In Silico In Vitro Pharmacol, 2017, 3(1)
- Skapek, S.X.; Ferrari, A.; Gupta, A.A.; Lupo, P.J.; Butler, E.; Shipley, J.; Barr, F.G.; Hawkins, D.S.; Viswanathan, V. Rhabdomyosarcoma. Nat. Rev. Dis. Primers, 2019, 5(1), 1-8. doi: 10.1038/s41572-018-0051-2 PMID: 30617281
- Baluchnejadmojarad, T.; Kiasalari, Z.; Afshin-Majd, S.; Ghasemi, Z.; Roghani, M. S-allyl cysteine ameliorates cognitive deficits in streptozotocin-diabetic rats via suppression of oxidative stress, inflammation, and acetylcholinesterase. Eur. J. Pharmacol., 2017, 794, 69-76. doi: 10.1016/j.ejphar.2016.11.033 PMID: 27887948
- Hameed, I.; Masoodi, S.R.; Mir, S.A.; Nabi, M.; Ghazanfar, K.; Ganai, B.A. Type 2 diabetes mellitus: From a metabolic disorder to an inflammatory condition. World J. Diabetes, 2015, 6(4), 598-612. doi: 10.4239/wjd.v6.i4.598 PMID: 25987957
- Rani, V.; Deep, G. Oxidative stress and metabolic disorders: Pathogenesis and therapeutic strategies. Life Sci., 2016, 2016, S0024320516300522.
- Singh, R.; Devi, S.; Gollen, R. Role of free radical in atherosclerosis, diabetes and dyslipidaemia: Larger-than-life. Diabetes Metab. Res. Rev., 2015, 31(2), 113-126. doi: 10.1002/dmrr.2558 PMID: 24845883
- Karunakaran, U.; Park, K.G. A systematic review of oxidative stress and safety of antioxidants in diabetes: Focus on islets and their defense. Diabetes Metab. J., 2013, 37(2), 106-112. doi: 10.4093/dmj.2013.37.2.106 PMID: 23641350
- Manna, P.; Das, J.; Sil, P.C. Role of sulfur containing amino acids as an adjuvant therapy in the prevention of diabetes and its associated complications. Curr. Diabetes Rev., 2013, 9(3), 237-248. doi: 10.2174/1573399811309030005 PMID: 23547683
- Markova, I. The effect of lipotoxicity on renal dysfunction in a nonobese rat model of metabolic syndrome: A urinary proteomic approach J. Diabetes Res., 2019, 2019, 8712979.
- Kondakçı, G.; Aydın, A.F.; Doğru-Abbasoğlu, S.; Uysal, M. The effect of N-acetylcysteine supplementation on serum homocysteine levels and hepatic and renal oxidative stress in homocysteine thiolactone-treated rats. Arch. Physiol. Biochem., 2017, 123(2), 128-133. doi: 10.1080/13813455.2016.1273365 PMID: 28100069
- Kalantar-Zadeh, K.; Jafar, T.H.; Nitsch, D.; Neuen, B.L.; Perkovic, V. Chronic kidney disease. Lancet, 2021, 398(10302), 786-802. doi: 10.1016/S0140-6736(21)00519-5 PMID: 34175022
- Sandireddy, R.; Yerra, V.G.; Areti, A.; Komirishetty, P.; Kumar, A. Neuroinflammation and oxidative stress in diabetic neuropathy: Futuristic strategies based on these targets. Int. J. Endocrinol., 2014, 2014, 1-10. doi: 10.1155/2014/674987 PMID: 24883061
- Schwalfenberg, G.K. N-acetylcysteine: A review of clinical usefulness (an old drug with new tricks). J. Nutr. Metab., 2021, 2021, 1-13. doi: 10.1155/2021/9949453 PMID: 34221501
- Oyenihi, AB; Ayeleso, AO; Mukwevho, E; Masola, B Antioxidant strategies in the management of diabetic neuropathy. Biomed. Res. Int., 2015, 2015, 515042. doi: 10.1155/2015/515042
- Stitt, A.W.; Curtis, T.M.; Chen, M.; Medina, R.J.; McKay, G.J.; Jenkins, A.; Gardiner, T.A.; Lyons, T.J.; Hammes, H.P.; Simó, R.; Lois, N. The progress in understanding and treatment of diabetic retinopathy. Prog. Retin. Eye Res., 2016, 51, 156-186. doi: 10.1016/j.preteyeres.2015.08.001 PMID: 26297071
- Calderon, G.D.; Juarez, O.H.; Hernandez, G.E.; Punzo, S.M.; De la Cruz, Z.D. Oxidative stress and diabetic retinopathy: Development and treatment. Eye (Lond.), 2017, 31(8), 1122-1130. doi: 10.1038/eye.2017.64 PMID: 28452994
- Kowluru, R.A.; Mishra, M. Oxidative stress, mitochondrial damage and diabetic retinopathy. Biochim. Biophys. Acta Mol. Basis Dis., 2015, 1852(11), 2474-2483. doi: 10.1016/j.bbadis.2015.08.001
- Zhu, Y.; Zhang, X.L.; Zhu, B.F.; Ding, Y.N. Effect of antioxidant N-acetylcysteine on diabetic retinopathy and expression of VEGF and ICAM-1 from retinal blood vessels of diabetic rats. Mol. Biol. Rep., 2012, 39(4), 3727-3735. doi: 10.1007/s11033-011-1148-9 PMID: 21952821
- Sagoo, MK; Gnudi, L Diabetic nephropathy: An overview. Methods Mol. Biol., 2020, 2067(4), 3-7. doi: 10.1007/978-1-4939-9841-8_1
- Sagoo, M.K.; Gnudi, L. Diabetic nephropathy: Is there a role for oxidative stress? Free Radic. Biol. Med., 2018, 116, 50-63. doi: 10.1016/j.freeradbiomed.2017.12.040 PMID: 29305106
- Nogueira, G.B.; Punaro, G.R.; Oliveira, C.S.; Maciel, F.R.; Fernandes, T.O.; Lima, D.Y.; Rodrigues, A.M.; Mouro, M.G.; Araujo, S.R.R.; Higa, E.M.S. N-acetylcysteine protects against diabetic nephropathy through control of oxidative and nitrosative stress by recovery of nitric oxide in rats. Nitric Oxide, 2018, 78, 22-31. doi: 10.1016/j.niox.2018.05.003 PMID: 29778909
- Muzurović, E; Kraljević, I; Solak, M; Dragnić, S; Mikhailidis, DP Homocysteine and diabetes: Role in macrovascular and microvascular complications. J. Diabetes Complications, 2021, 35(3), 107834. doi: 10.1016/j.jdiacomp.2020.107834
- Small, D.M.; Coombes, J.S.; Bennett, N.; Johnson, D.W.; Gobe, G.C. Oxidative stress, anti-oxidant therapies and chronic kidney disease. Nephrology (Carlton), 2012, 17(4), 311-321. doi: 10.1111/j.1440-1797.2012.01572.x PMID: 22288610
- Elbini Dhouib, I.; Jallouli, M.; Annabi, A.; Gharbi, N.; Elfazaa, S.; Lasram, M.M. A minireview on N -acetylcysteine: An old drug with new approaches. Life Sci., 2016, 151, 359-363. doi: 10.1016/j.lfs.2016.03.003 PMID: 26946308
- Micucci, C.; Valli, D.; Matacchione, G.; Catalano, A. Current perspectives between metabolic syndrome and cancer. Oncotarget, 2016, 7(25), 38959-38972. doi: 10.18632/oncotarget.8341 PMID: 27029038
- Zhitkovich, A. N -Acetylcysteine: Antioxidant, aldehyde scavenger, and more. Chem. Res. Toxicol., 2019, 32(7), 1318-1319. doi: 10.1021/acs.chemrestox.9b00152 PMID: 31046246
- Esposito, K.; Capuano, A.; Giugliano, D. Metabolic syndrome and cancer: Holistic or reductionist? Endocrine, 2014, 45(3), 362-364. doi: 10.1007/s12020-013-0056-2 PMID: 24065310
- Ammirati, A.L. Chronic kidney disease. Rev. Assoc. Med. Bras., 2020, 66(66)(Suppl. 1), s03-s09. doi: 10.1590/1806-9282.66.s1.3 PMID: 31939529
- Daenen, K.; Andries, A.; Mekahli, D.; Van Schepdael, A.; Jouret, F.; Bammens, B. Oxidative stress in chronic kidney disease. Pediatr. Nephrol., 2019, 34(6), 975-991. doi: 10.1007/s00467-018-4005-4 PMID: 30105414
- Ling, X.C.; Kuo, K.L. Oxidative stress in chronic kidney disease. Renal Replacement Ther., 2018, 4(1), 53. doi: 10.1186/s41100-018-0195-2
- Ghorbani, A.; Shahbazian, H.; Shayanpour, S. Evaluation of administration of oral N-acetylcysteine to reduce oxidative stress in chronic hemodialysis patients: A double-blind, randomized, controlled clinical trial. Saudi J. Kidney Dis. Transpl., 2016, 27(1), 88-93. doi: 10.4103/1319-2442.174084 PMID: 26787572
- Gerogianni, SK; Babatsikou, FP Psychological aspects in chronic renal failure. Health Sci. J., 2014, 8(2), 205-214.
- Jakovljevic, B.; Gasic, B.; Kovacevic, P.; Rajkovaca, Z.; Kovacevic, T. Homocystein as a risk factor for developing complications in chronic renal failure. Mater. Sociomed., 2015, 27(2), 95-98. doi: 10.5455/msm.2015.27.95-98 PMID: 26005384
- Ostrakhovitch, E.A.; Tabibzadeh, S. Homocysteine in chronic kidney disease. Adv. Clin. Chem., 2015, 72, 77-106. doi: 10.1016/bs.acc.2015.07.002 PMID: 26471081
- Wang, Q.; Mazur, A.; Guerrero, F.; Lambrechts, K.; Buzzacott, P.; Belhomme, M.; Theron, M. Antioxidants, endothelial dysfunction, and DCS: In vitro and in vivo study. J. Appl. Physiol., 2015, 119(12), 1355-1362. doi: 10.1152/japplphysiol.00167.2015 PMID: 26472863
- Fang, X; Liu, L; Zhou, S; Zhu, M; Wang, B N-acetylcysteine inhibits atherosclerosis by correcting glutathione-dependent methylglyoxal elimination and dicarbonyl/oxidative stress in the aorta of diabetic mice. Mol. Med. Rep., 2021, 23(3), 201.
- Tossios, P.; Bloch, W.; Huebner, A.; Raji, M.R.; Dodos, F.; Klass, O.; Suedkamp, M.; Kasper, S.M.; Hellmich, M.; Mehlhorn, U. N-acetylcysteine prevents reactive oxygen speciesmediated myocardial stress in patients undergoing cardiac surgery: Results of a randomized, double-blind, placebo-controlled clinical trial. J. Thorac. Cardiovasc. Surg., 2003, 126(5), 1513-1520. doi: 10.1016/S0022-5223(03)00968-1 PMID: 14666027
- Khanna, A.K.; Xu, J.; Mehra, M.R. Antioxidant N-acetyl cysteine reverses cigarette smoke-induced myocardial infarction by inhibiting inflammation and oxidative stress in a rat model. Lab. Invest., 2012, 92(2), 224-235. doi: 10.1038/labinvest.2011.146 PMID: 21968809
- Sekhon, B.; Sekhon, C.; Khan, M.; Patel, S.J.; Singh, I.; Singh, A.K. N-Acetyl cysteine protects against injury in a rat model of focal cerebral ischemia. Brain Res., 2003, 971(1), 1-8. doi: 10.1016/S0006-8993(03)02244-3 PMID: 12691831
- Turkmen, S.; Cekic Gonenc, O.; Karaca, Y.; Mentese, A.; Demir, S.; Beyhun, E.; Sahin, A.; Gunduz, A.; Yulug, E.; Turedi, S. The effect of ethyl pyruvate and N-acetylcysteine on ischemia-reperfusion injury in an experimental model of ischemic stroke. Am. J. Emerg. Med., 2016, 34(9), 1804-1807. doi: 10.1016/j.ajem.2016.06.003 PMID: 27324856
- Ribeiro, G.; Roehrs, M.; Bairros, A.; Moro, A.; Charão, M.; Araújo, F.; Valentini, J.; Arbo, M.; Brucker, N.; Moresco, R.; Leal, M.; Morsch, V.; Garcia, S.C. N -acetylcysteine on oxidative damage in diabetic rats. Drug Chem. Toxicol., 2011, 34(4), 467-474. doi: 10.3109/01480545.2011.564179 PMID: 21770721
- Kamboj, S.S.; Vasishta, R.K.; Sandhir, R. N -acetylcysteine inhibits hyperglycemia-induced oxidative stress and apoptosis markers in diabetic neuropathy. J. Neurochem., 2010, 112(1), 77-91. doi: 10.1111/j.1471-4159.2009.06435.x PMID: 19840221
- Heloisa, M.; Shimizu, M.; Coimbra, T.M.; De Araujo, M.; Menezes, L.F.; Seguro, A.C. N-acetylcysteine attenuates the progression of chronic renal failure. Kidney Int., 2005, 68(5), 2208-2217. doi: 10.1111/j.1523-1755.2005.00677.x PMID: 16221220
- Luo, J.; Tsuji, T.; Yasuda, H.; Sun, Y.; Fujigaki, Y.; Hishida, A. The molecular mechanisms of the attenuation of cisplatin-induced acute renal failure by N-acetylcysteine in rats. Nephrol. Dial. Transplant., 2008, 23(7), 2198-2205. doi: 10.1093/ndt/gfn090 PMID: 18385389
- Sabetghadam, M.; Mazdeh, M.; Abolfathi, P.; Mohammadi, Y.; Mehrpooya, M. Evidence for a beneficial effect of oral N-acetylcysteine on functional outcomes and inflammatory biomarkers in patients with acute ischemic stroke. Neuropsychiatr. Dis. Treat., 2020, 16, 1265-1278. doi: 10.2147/NDT.S241497 PMID: 32547030
- Coyle, L.C.; Rodriguez, A.; Jeschke, R.E.; Simon-Lee, A.; Abbott, K.C.; Taylor, A.J. Acetylcysteine In Diabetes (AID): A randomized study of acetylcysteine for the prevention of contrast nephropathy in diabetics. Am. Heart J., 2006, 151(5), 1032.e9-1032.e12. doi: 10.1016/j.ahj.2006.02.002 PMID: 16644332
- Sisillo, E.; Ceriani, R.; Bortone, F.; Juliano, G.; Salvi, L.; Veglia, F.; Fiorentini, C.; Marenzi, G. N-acetylcysteine for prevention of acute renal failure in patients with chronic renal insufficiency undergoing cardiac surgery: A prospective, randomized, clinical trial. Crit. Care Med., 2008, 36(1), 81-86. doi: 10.1097/01.CCM.0000295305.22281.1D PMID: 18090169
- Liao, C.Y.; Chung, C.H.; Wu, C.C.; Lin, F.H.; Tsao, C.H.; Wang, C.C.; Chien, W.C. Protective effect of N -acetylcysteine on progression to end-stage renal disease: Necessity for prospective clinical trial. Eur. J. Intern. Med., 2017, 44, 67-73. doi: 10.1016/j.ejim.2017.06.011 PMID: 28633804
- Talasaz, A.H.; Khalili, H.; Fahimi, F.; Jenab, Y.; Broumand, M.A.; Salarifar, M.; Darabi, F. Effects of N-acetylcysteine on the cardiac remodeling biomarkers and major adverse events following acute myocardial infarction: A randomized clinical trial. Am. J. Cardiovasc. Drugs, 2014, 14(1), 51-61. doi: 10.1007/s40256-013-0048-x PMID: 24105017
- Pereira, J.E.G.; El Dib, R.; Braz, L.G.; Escudero, J.; Hayes, J.; Johnston, B.C. N-acetylcysteine use among patients undergoing cardiac surgery: A systematic review and meta-analysis of randomized trials. PLoS One, 2019, 14(5), e0213862. doi: 10.1371/journal.pone.0213862 PMID: 31071081
- Hamed, T.; Ibrahim, M.; Salem, H. Possible ameliorating effect of N-acetyl Cysteine on Type II Diabetic Nephropathy: Clinical trial. AIJPMS, 2023, 3(2), 61-69. doi: 10.21608/aijpms.2023.155638.1159
Arquivos suplementares
