Protein Engineering in Cyanobacterial Biotechnology: Tools and Recent Updates
- Авторы: Tyagi S.1, Kar S.2, Srivastava A.3, Shukla P.4
-
Учреждения:
- Rice Breeding Platform, International Rice Research Institute- South Asia Regional Centre, Banaras Hindu University
- Enzyme Technology and Protein Bioinformatics Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University
- Department of Biological and Environmental Science, Nanoscience Centre,, University of Jyväskylä
- Enzyme Technology and Protein Bioinformatics Laboratory, School of Biotechnology, Institute of Science,, Banaras Hindu University
- Выпуск: Том 25, № 2 (2024)
- Страницы: 95-106
- Раздел: Life Sciences
- URL: https://rjpbr.com/1389-2037/article/view/645514
- DOI: https://doi.org/10.2174/1389203724666230822100104
- ID: 645514
Цитировать
Полный текст
Аннотация
Cyanobacteria have emerged as a microbial cell factory to produce a variety of bioproducts, including peptides and proteins. Cyanobacteria stand out among other organisms due to their photoautotrophic metabolism and ability to produce a wide range of metabolites. As photoautotrophic hosts can produce industrial compounds and proteins by using minimal resources such as sunlight, atmospheric carbon dioxide, and fewer nutrients, cyanobacteria are cost-effective industrial hosts. Therefore, the use of protein engineering tools for rational protein design, and the desired modification of enzyme activity has become a desirable undertaking in cyanobacterial biology. Protein engineering can improve their biological functions as well as the stability of their intracellular proteins. This review aims to highlight the success of protein engineering in the direction of cyanobacterial biotechnology and outlines the emerging technologies, current challenges, and prospects of protein engineering in cyanobacterial biotechnology.
Об авторах
Swati Tyagi
Rice Breeding Platform, International Rice Research Institute- South Asia Regional Centre, Banaras Hindu University
Email: info@benthamscience.net
Srabani Kar
Enzyme Technology and Protein Bioinformatics Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University
Email: info@benthamscience.net
Amit Srivastava
Department of Biological and Environmental Science, Nanoscience Centre,, University of Jyväskylä
Email: info@benthamscience.net
Pratyoosh Shukla
Enzyme Technology and Protein Bioinformatics Laboratory, School of Biotechnology, Institute of Science,, Banaras Hindu University
Автор, ответственный за переписку.
Email: info@benthamscience.net
Список литературы
- Barrios-Llerena, M.E.; Chong, P.K.; Gan, C.S.; Snijders, A.P.L.; Reardon, K.F.; Wright, P.C. Shotgun proteomics of cyanobacteriaapplications of experimental and data-mining techniques. Brief. Funct. Genomics, 2006, 5(2), 121-132. doi: 10.1093/bfgp/ell021 PMID: 16772275
- Sharma, N.K.; Tiwari, S.P.; Tripathi, K.; Rai, A.K. Sustainability and cyanobacteria (blue-green algae): Facts and challenges. J. Appl. Phycol., 2011, 23(6), 1059-1081. doi: 10.1007/s10811-010-9626-3
- Vijayakumar, S.; Menakha, M. Pharmaceutical applications of cyanobacteria: A review. J. Acute. Med., 2015, 5(1), 15-23. doi: 10.1016/j.jacme.2015.02.004
- Zhang, X.; Betterle, N.; Hidalgo, M.D.; Melis, A. Recombinant protein stability in cyanobacteria. ACS Synth. Biol., 2021, 10(4), 810-825. doi: 10.1021/acssynbio.0c00610 PMID: 33684287
- Kudo, H.; Hayashi, Y.; Arai, M. Improving hydrocarbon production by engineering cyanobacterial acyl-(acyl carrier protein) reductase. Biotechnol. Biofuels, 2019, 12(1), 291. doi: 10.1186/s13068-019-1623-4 PMID: 31890019
- Zong, H.; Han, L.; Chen, J.; Pan, Z.; Wang, L.; Sun, R.; Ding, K.; Xie, Y.; Jiang, H.; Lu, H.; Gilly, J.; Zhang, B.; Zhu, J. Kinetics study of the natural split Npu DnaE intein in the generation of bispecific IgG antibodies. Appl. Microbiol. Biotechnol., 2022, 106(1), 161-171. doi: 10.1007/s00253-021-11707-y PMID: 34882254
- Han, L.; Chen, J.; Ding, K.; Zong, H.; Xie, Y.; Jiang, H.; Zhang, B.; Lu, H.; Yin, W.; Gilly, J.; Zhu, J. Efficient generation of bispecific IgG antibodies by split intein mediated protein trans-splicing system. Sci. Rep., 2017, 7(1), 8360. doi: 10.1038/s41598-017-08641-3 PMID: 28827777
- Qamar, H.; Hussain, K.; Soni, A.; Khan, A.; Hussain, T.; Chénais, B. Cyanobacteria as natural therapeutics and pharmaceutical potential: Role in antitumor activity and as nanovectors. Molecules, 2021, 26(1), 247. doi: 10.3390/molecules26010247 PMID: 33466486
- Srivastava, A.; Shukla, P. Cyanobacterial peptides: Metabolic potential and environmental fate. Protein Pept. Lett., 2022, 29(5), 375-378. doi: 10.2174/0929866529666220314111105 PMID: 35289251
- Porter, J.L.; Rusli, R.A.; Ollis, D.L. Directed evolution of enzymes for industrial biocatalysis. ChemBioChem, 2016, 17(3), 197-203. doi: 10.1002/cbic.201500280 PMID: 26661585
- Kumar, A.; Singh, S. Directed evolution: Tailoring biocatalysts for industrial applications. Crit. Rev. Biotechnol., 2013, 33(4), 365-378. doi: 10.3109/07388551.2012.716810 PMID: 22985113
- Engqvist, M.K.M.; Rabe, K.S. Applications of protein engineering and directed evolution in plant research. Plant Physiol., 2019, 179(3), 907-917. doi: 10.1104/pp.18.01534 PMID: 30626612
- Packer, M.S.; Liu, D.R. Methods for the directed evolution of proteins. Nat. Rev. Genet., 2015, 16(7), 379-394. doi: 10.1038/nrg3927 PMID: 26055155
- Pucci, F.; Schwersensky, M.; Rooman, M. Artificial intelligence challenges for predicting the impact of mutations on protein stability. Curr. Opin. Struct. Biol., 2022, 72, 161-168. doi: 10.1016/j.sbi.2021.11.001 PMID: 34922207
- Johannes, T.W.; Zhao, H. Directed evolution of enzymes and biosynthetic pathways. Curr. Opin. Microbiol., 2006, 9(3), 261-267. doi: 10.1016/j.mib.2006.03.003 PMID: 16621678
- Li, Y. Split-inteins and their bioapplications. Biotechnol. Lett., 2015, 37(11), 2121-2137. doi: 10.1007/s10529-015-1905-2 PMID: 26153348
- Borra, R.; Dong, D.; Elnagar, A.Y.; Woldemariam, G.A.; Camarero, J.A. In-cell fluorescence activation and labeling of proteins mediated by FRET-quenched split inteins. J. Am. Chem. Soc., 2012, 134(14), 6344-6353. doi: 10.1021/ja300209u PMID: 22404648
- Züger, S.; Iwai, H. Intein-based biosynthetic incorporation of unlabeled protein tags into isotopically labeled proteins for NMR studies. Nat. Biotechnol., 2005, 23(6), 736-740. doi: 10.1038/nbt1097 PMID: 15908942
- Busche, A.E.L.; Aranko, A.S.; Talebzadeh-Farooji, M.; Bernhard, F.; Dötsch, V.; Iwaï, H. Segmental isotopic labeling of a central domain in a multidomain protein by protein trans-splicing using only one robust DnaE intein. Angew. Chem. Int. Ed., 2009, 48(33), 6128-6131. doi: 10.1002/anie.200901488 PMID: 19591176
- Yang, J.Y.; Yang, W.Y. Site-specific two-color protein labeling for FRET studies using split inteins. J. Am. Chem. Soc., 2009, 131(33), 11644-11645. doi: 10.1021/ja9030215 PMID: 19645470
- Ramirez, M.; Valdes, N.; Guan, D.; Chen, Z. Engineering split intein DnaE from Nostoc punctiforme for rapid protein purification. Protein Eng. Des. Sel., 2013, 26(3), 215-223. doi: 10.1093/protein/gzs097 PMID: 23223807
- Colyer, C.L.; Kinkade, C.S.; Viskari, P.J.; Landers, J.P. Analysis of cyanobacterial pigments and proteins by electrophoretic and chromatographic methods. Anal. Bioanal. Chem., 2005, 382(3), 559-569. doi: 10.1007/s00216-004-3020-4 PMID: 15714301
- Rouet, R.; Christ, D. Bispecific antibodies with native chain structure. Nat. Biotechnol., 2014, 32(2), 136-137. doi: 10.1038/nbt.2812 PMID: 24509759
- Rubin-Pitel, S.B.; Cho, C.M.; Chen, W.; Zhao, H. Directed evolution tools in bioproduct and bioprocess development.Bioproc. value-added. prod. rene. res; Elsevier, 2007, pp. 49-72. doi: 10.1016/B978-044452114-9/50004-9
- Wang, Y.; Xue, P.; Cao, M.; Yu, T.; Lane, S.T.; Zhao, H. Directed evolution: Methodologies and applications. Chem. Rev., 2021, 121(20), 12384-12444. doi: 10.1021/acs.chemrev.1c00260 PMID: 34297541
- Kamravamanesh, D.; Kovacs, T.; Pflügl, S.; Druzhinina, I.; Kroll, P.; Lackner, M.; Herwig, C. Increased poly-β-hydroxybutyrate production from carbon dioxide in randomly mutated cells of cyanobacterial strain Synechocystis sp. PCC 6714: Mutant generation and characterization. Bioresour. Technol., 2018, 266, 34-44. doi: 10.1016/j.biortech.2018.06.057 PMID: 29957289
- Xin, Y.; Shen, C.; She, Y.; Chen, H.; Wang, C.; Wei, L.; Yoon, K.; Han, D.; Hu, Q.; Xu, J. Biosynthesis of triacylglycerol molecules with a tailored PUFA profile in industrial microalgae. Mol. Plant, 2019, 12(4), 474-488. doi: 10.1016/j.molp.2018.12.007 PMID: 30580039
- Cordero, B.F.; Obraztsova, I.; Couso, I.; Leon, R.; Vargas, M.A.; Rodriguez, H. Enhancement of lutein production in Chlorella sorokiniana (Chorophyta) by improvement of culture conditions and random mutagenesis. Mar. Drugs, 2011, 9(9), 1607-1624. doi: 10.3390/md9091607 PMID: 22131961
- de Jaeger, L.; Verbeek, R.E.M.; Draaisma, R.B.; Martens, D.E.; Springer, J.; Eggink, G.; Wijffels, R.H. Superior triacylglycerol (TAG) accumulation in starchless mutants of Scenedesmus obliquus: (I) mutant generation and characterization. Biotechnol. Biofuels, 2014, 7(1), 69. doi: 10.1186/1754-6834-7-69 PMID: 24920957
- Doan, T.T.Y.; Obbard, J.P. Enhanced intracellular lipid in Nannochloropsis sp. via random mutagenesis and flow cytometric cell sorting. Algal Res., 2012, 1(1), 17-21. doi: 10.1016/j.algal.2012.03.001
- Lin, P.C.; Saha, R.; Zhang, F.; Pakrasi, H.B. Metabolic engineering of the pentose phosphate pathway for enhanced limonene production in the cyanobacterium Synechocystis sp. PCC 6803. Sci. Rep., 2017, 7(1), 17503. doi: 10.1038/s41598-017-17831-y PMID: 29235513
- Cirino, P.C.; Mayer, K.M.; Umeno, D. Generating mutant libraries using error-prone PCR. Directed evolution library creation. Methods Protoc., 2003, 3-9.
- Dorrazehi, G.M. The catalytic activity of a DD-peptidase impairs its evolutionary conversion into a beta-lactamase; Doctoral dissertation, UCL-Université Catholique de Louvain, 2022.
- Wong, T.S.; Tee, K.L.; Hauer, B.; Schwaneberg, U. Sequence saturation mutagenesis (SeSaM): A novel method for directed evolution. Nucleic Acids Res., 2004, 32(3), 26e-26. doi: 10.1093/nar/gnh028 PMID: 14872057
- Hiraide, Y.; Yamamoto, H.; Kawajiri, Y.; Yamakawa, H.; Wada, K.; Fujita, Y. Super-activator variants of the cyanobacterial transcriptional regulator ChlR essential for tetrapyrrole biosynthesis under low oxygen conditions. Biosci. Biotechnol. Biochem., 2020, 84(3), 481-490. doi: 10.1080/09168451.2019.1687281 PMID: 31690227
- Pattharaprachayakul, N.; Lee, H.J.; Incharoensakdi, A.; Woo, H.M. Evolutionary engineering of cyanobacteria to enhance the production of α-farnesene from CO2. J. Agric. Food Chem., 2019, 67(49), 13658-13664. doi: 10.1021/acs.jafc.9b06254 PMID: 31755253
- Dubey, K.K.; Pramanik, A.; Yadav, J. Enzyme Engineering.Advances in Enzyme Technology; Elsevier, 2019, pp. 325-347. doi: 10.1016/B978-0-444-64114-4.00012-1
- Bloom, J.D.; Arnold, F.H. In the light of directed evolution: Pathways of adaptive protein evolution. Proc. Natl. Acad. Sci., 2009, 106(Suppl 1)(1), 9995-10000. doi: 10.1073/pnas.0901522106 PMID: 19528653
- Smith, M.A.; Romero, P.A.; Wu, T.; Brustad, E.M.; Arnold, F.H. Chimeragenesis of distantly-related proteins by noncontiguous recombination. Protein Sci., 2013, 22(2), 231-238. doi: 10.1002/pro.2202 PMID: 23225662
- Mezzolla, V.; DUrso, O.; Poltronieri, P. Role of PhaC type I and type II enzymes during PHA biosynthesis. Polymers, 2018, 10(8), 910. doi: 10.3390/polym10080910 PMID: 30960835
- Tan, GY; Chen, CL; Li, L; Ge, L; Wang, L; Razaad, IM; Li, Y; Zhao, L; Mo, Y; Wang, JY Start a research on biopolymer polyhydroxyalkanoate (PHA): A review. Polymers, 2014, 6(3), 706-754.
- Sudesh, K.; Taguchi, K.; Doi, Y. Effect of increased PHA synthase activity on polyhydroxyalkanoates biosynthesis in Synechocystis sp. PCC6803. Int. J. Biol. Macromol., 2002, 30(2), 97-104. doi: 10.1016/S0141-8130(02)00010-7 PMID: 11911900
- Khetkorn, W.; Incharoensakdi, A.; Lindblad, P.; Jantaro, S. Enhancement of poly-3-hydroxybutyrate production in Synechocystis sp. PCC 6803 by overexpression of its native biosynthetic genes. Bioresour. Technol., 2016, 214, 761-768. doi: 10.1016/j.biortech.2016.05.014 PMID: 27213577
- Maeda, T.; Vardar, G.; Self, W.T.; Wood, T.K. Inhibition of hydrogen uptake in Escherichia coli by expressing the hydrogenase from the cyanobacterium Synechocystis sp. PCC 6803. BMC Biotech, 2007, 7(1), 1-12. doi: 10.1186/1472-6750-7-25
- Zheng, L.; Baumann, U.; Reymond, J.L. An efficient one-step site-directed and site-saturation mutagenesis protocol. Nucleic Acids Res., 2004, 32(14), e115. doi: 10.1093/nar/gnh110 PMID: 15304544
- Engqvist, M.K.M.; Nielsen, J. ANT: Software for generating and evaluating degenerate codons for natural and expanded genetic codes. ACS Synth. Biol., 2015, 4(8), 935-938. doi: 10.1021/acssynbio.5b00018 PMID: 25901796
- Ogola, H.J.O.; Hashimoto, N.; Miyabe, S.; Ashida, H.; Ishikawa, T.; Shibata, H.; Sawa, Y. Enhancement of hydrogen peroxide stability of a novel Anabaena sp. DyP-type peroxidase by site-directed mutagenesis of methionine residues. Appl. Microbiol. Biotechnol., 2010, 87(5), 1727-1736. doi: 10.1007/s00253-010-2603-6 PMID: 20422179
- Masukawa, H.; Inoue, K.; Sakurai, H.; Wolk, C.P.; Hausinger, R.P. Site-directed mutagenesis of the Anabaena sp. strain PCC 7120 nitrogenase active site to increase photobiological hydrogen production. Appl. Environ. Microbiol., 2010, 76(20), 6741-6750. doi: 10.1128/AEM.01056-10 PMID: 20709836
- Formighieri, C.; Melis, A. A phycocyanin·phellandrene synthase fusion enhances recombinant protein expression and β-phellandrene (monoterpene) hydrocarbons production in Synechocystis (cyanobacteria). Metab. Eng., 2015, 32, 116-124. doi: 10.1016/j.ymben.2015.09.010 PMID: 26410450
- Betterle, N.; Hidalgo, M.D.; Melis, A. Cyanobacterial production of biopharmaceutical and biotherapeutic proteins. Front. Plant Sci., 2020, 11, 237. doi: 10.3389/fpls.2020.00237 PMID: 32194609
- Chaves, J.E.; Rueda-Romero, P.; Kirst, H.; Melis, A. Engineering isoprene synthase expression and activity in cyanobacteria. ACS Synth. Biol., 2017, 6(12), 2281-2292. doi: 10.1021/acssynbio.7b00214 PMID: 28858481
- Lee, H.J.; Choi, J.; Lee, S.M.; Um, Y.; Sim, S.J.; Kim, Y.; Woo, H.M. Photosynthetic CO2 conversion to fatty acid ethyl esters (FAEEs) using engineered cyanobacteria. J. Agric. Food Chem., 2017, 65(6), 1087-1092. doi: 10.1021/acs.jafc.7b00002 PMID: 28128561
- Betterle, N.; Melis, A. Heterologous leader sequences in fusion constructs enhance expression of geranyl diphosphate synthase and yield of β-phellandrene production in cyanobacteria (Synechocystis). ACS Synth. Biol., 2018, 7(3), 912-921. doi: 10.1021/acssynbio.7b00431 PMID: 29397685
- Betterle, N.; Melis, A. Photosynthetic generation of heterologous terpenoids in cyanobacteria. Biotechnol. Bioeng., 2019, 116(8), 2041-2051. doi: 10.1002/bit.26988 PMID: 30963538
- Valsami, E.A.; Psychogyiou, M.E.; Pateraki, A.; Chrysoulaki, E.; Melis, A.; Ghanotakis, D.F. Fusion constructs enhance heterologous β-phellandrene production in Synechocystis sp. PCC 6803. J. Appl. Phycol., 2020, 32(5), 2889-2902. doi: 10.1007/s10811-020-02186-1
- Lauersen, K.J.; Wichmann, J.; Baier, T.; Kampranis, S.C.; Pateraki, I.; Møller, B.L.; Kruse, O. Phototrophic production of heterologous diterpenoids and a hydroxy-functionalized derivative from Chlamydomonas reinhardtii. Metab. Eng., 2018, 49, 116-127. doi: 10.1016/j.ymben.2018.07.005 PMID: 30017797
- Schneider, C.; Niisuke, K.; Boeglin, W.E.; Voehler, M.; Stec, D.F.; Porter, N.A.; Brash, A.R. Enzymatic synthesis of a bicyclobutane fatty acid by a hemoproteinlipoxygenase fusion protein from the cyanobacterium Anabaena PCC 7120. Proc. Natl. Acad. Sci. USA, 2007, 104(48), 18941-18945. doi: 10.1073/pnas.0707148104 PMID: 18025466
- Chaves, J.E.; Melis, A. Biotechnology of cyanobacterial isoprene production. Appl. Microbiol. Biotechnol., 2018, 102(15), 6451-6458. doi: 10.1007/s00253-018-9093-3 PMID: 29802477
- Pramanik, S; Contreras, F; Davari, MD; Schwaneberg, U Protein engineering by efficient sequence space exploration through combination of directed evolution and computational design methodologies. Protein engineering: Tools and Applications., 2021, 153-176.
- Sproles, A.E.; Fields, F.J.; Smalley, T.N.; Le, C.H.; Badary, A.; Mayfield, S.P. Recent advancements in the genetic engineering of microalgae. Algal Res., 2021, 53, 102158. doi: 10.1016/j.algal.2020.102158
- Lima, A.M.; Siqueira, A.S.; Möller, M.L.S.; Souza, R.C.; Cruz, J.N.; Lima, A.R.J.; Silva, R.C.; Aguiar, D.C.F.; Junior, J.L.S.G.V.; Gonçalves, E.C. In silico improvement of the cyanobacterial lectin microvirin and mannose interaction. J. Biomol. Struct. Dyn., 2022, 40(3), 1064-1073. doi: 10.1080/07391102.2020.1821782 PMID: 32990187
- Wijma, H.J.; Fürst, M.J.; Janssen, D.B. A computational library design protocol for rapid improvement of protein stability: FRESCO. Protein engineering. Methods Protoc., 2018, 69-85.
- Fortelny, N.; Pavlidis, P.; Overall, C.M. The path of no returnTruncated protein N-termini and current ignorance of their genesis. Proteomics, 2015, 15(14), 2547-2552. doi: 10.1002/pmic.201500043 PMID: 26010509
- Floor, R.J.; Wijma, H.J.; Colpa, D.I.; Ramos-Silva, A.; Jekel, P.A.; Szymański, W.; Janssen, D.B. Computational library design for increasing haloalkane dehalogenase stability. ChemBioChem,, 2014, 15(11), 1660-1672. doi: 10.1002/cbic.201402128
- Weinstein, J.J.; Goldenzweig, A.; Hoch, S.; Fleishman, S.J. PROSS 2: A new server for the design of stable and highly expressed protein variants. Bioinformatics, 2021, 37(1), 123-125. doi: 10.1093/bioinformatics/btaa1071 PMID: 33367682
- Dong, F.; Zhang, M.; Ma, R.; Lu, C.; Xu, F. Insights of conformational dynamics on catalytic activity in the computational stability design of Bacillus subtilis LipA. Arch. Biochem. Biophys., 2022, 722, 109196. doi: 10.1016/j.abb.2022.109196 PMID: 35339426
- Berland, M.; Offmann, B.; André, I.; Remaud-Siméon, M.; Charton, P. A web-based tool for rational screening of mutants libraries using ProSAR. Protein Eng. Des. Sel., 2014, 27(10), 375-381. doi: 10.1093/protein/gzu035 PMID: 25169579
- Mckenna, A.; Dubey, S. Machine learning based predictive model for the analysis of sequence activity relationships using protein spectra and protein descriptors. J. Biomed. Inform., 2022, 128, 104016. doi: 10.1016/j.jbi.2022.104016 PMID: 35143999
- Damián-Almazo, J.Y.; Saab-Rincón, G. Site-directed mutagenesis as applied to biocatalysts; Genetic manipulation of DNA and proteinexamples from current research. InTech: Rijeka, Croatia, 2013, pp. 303-330.
- Reetz, M.T.; Bocola, M.; Carballeira, J.D.; Zha, D.; Vogel, A. Expanding the range of substrate acceptance of enzymes: Combinatorial active-site saturation test. Angew. Chem. Int. Ed., 2005, 44(27), 4192-4196. doi: 10.1002/anie.200500767 PMID: 15929154
- Maeda, S.; Konishi, M.; Yanagisawa, S.; Omata, T. Nitrite transport activity of a novel HPP family protein conserved in cyanobacteria and chloroplasts. Plant Cell Physiol., 2014, 55(7), 1311-1324. doi: 10.1093/pcp/pcu075 PMID: 24904028
- Vicente, J.B.; Gomes, C.M.; Wasserfallen, A.; Teixeira, M. Module fusion in an A-type flavoprotein from the cyanobacterium Synechocystis condenses a multiple-component pathway in a single polypeptide chain. Biochem. Biophys. Res. Commun., 2002, 294(1), 82-87. doi: 10.1016/S0006-291X(02)00434-5 PMID: 12054744
- Ducat, D.C.; Way, J.C.; Silver, P.A. Engineering cyanobacteria to generate high-value products. Trends Biotechnol., 2011, 29(2), 95-103. doi: 10.1016/j.tibtech.2010.12.003 PMID: 21211860
- Caspi, J.; Amitai, G.; Belenkiy, O.; Pietrokovski, S. Distribution of split DnaE inteins in cyanobacteria. Mol. Microbiol., 2003, 50(5), 1569-1577. doi: 10.1046/j.1365-2958.2003.03825.x PMID: 14651639
- Stevens, A.J.; Sekar, G.; Shah, N.H.; Mostafavi, A.Z.; Cowburn, D.; Muir, T.W. A promiscuous split intein with expanded protein engineering applications. Proc. Natl. Acad. Sci., 2017, 114(32), 8538-8543. doi: 10.1073/pnas.1701083114 PMID: 28739907
- Diez-Quijada, L.; Benítez-González, M.M.; Puerto, M.; Jos, A.; Cameán, A.M. Immunotoxic effects induced by microcystins and cylindrospermopsin: A review. Toxins, 2021, 13(10), 711. doi: 10.3390/toxins13100711 PMID: 34679003
- Ma, J.; Mo, Y.; Tang, M.; Shen, J.; Qi, Y.; Zhao, W.; Huang, Y.; Xu, Y.; Qian, C. Bispecific antibodies: From research to clinical application. Front. Immunol., 2021, 12, 626616. doi: 10.3389/fimmu.2021.626616 PMID: 34025638
- Raran-Kurussi, S.; Cherry, S.; Zhang, D.; Waugh, D.S. Removal of affinity tags with TEV protease. In heterologous gene expression in E. coli; Humana Press: New York, 2017, pp. 221-230. doi: 10.1007/978-1-4939-6887-9_14
- Parks, T.D.; Leuther, K.K.; Howard, E.D.; Johnston, S.A.; Dougherty, W.G. Release of proteins and peptides from fusion proteins using a recombinant plant virus proteinase. Anal. Biochem., 1994, 216(2), 413-417. doi: 10.1006/abio.1994.1060 PMID: 8179197
- He, Y.H.; Li, Y.M.; Chen, Y.X. Phosphorylation regulates proteolytic efficiency of TEV protease detected by a 5(6)-carboxyfluorescein-pyrene based fluorescent sensor. Talanta, 2016, 150, 340-345. doi: 10.1016/j.talanta.2015.12.028 PMID: 26838417
- van den Berg, S.; Löfdahl, P.Å.; Härd, T.; Berglund, H. Improved solubility of TEV protease by directed evolution. J. Biotechnol., 2006, 121(3), 291-298. doi: 10.1016/j.jbiotec.2005.08.006 PMID: 16150509
Дополнительные файлы
