Protein Engineering in Cyanobacterial Biotechnology: Tools and Recent Updates

  • Авторлар: Tyagi S.1, Kar S.2, Srivastava A.3, Shukla P.4
  • Мекемелер:
    1. Rice Breeding Platform, International Rice Research Institute- South Asia Regional Centre, Banaras Hindu University
    2. Enzyme Technology and Protein Bioinformatics Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University
    3. Department of Biological and Environmental Science, Nanoscience Centre,, University of Jyväskylä
    4. Enzyme Technology and Protein Bioinformatics Laboratory, School of Biotechnology, Institute of Science,, Banaras Hindu University
  • Шығарылым: Том 25, № 2 (2024)
  • Беттер: 95-106
  • Бөлім: Life Sciences
  • URL: https://rjpbr.com/1389-2037/article/view/645514
  • DOI: https://doi.org/10.2174/1389203724666230822100104
  • ID: 645514

Дәйексөз келтіру

Толық мәтін

Аннотация

Cyanobacteria have emerged as a microbial cell factory to produce a variety of bioproducts, including peptides and proteins. Cyanobacteria stand out among other organisms due to their photoautotrophic metabolism and ability to produce a wide range of metabolites. As photoautotrophic hosts can produce industrial compounds and proteins by using minimal resources such as sunlight, atmospheric carbon dioxide, and fewer nutrients, cyanobacteria are cost-effective industrial hosts. Therefore, the use of protein engineering tools for rational protein design, and the desired modification of enzyme activity has become a desirable undertaking in cyanobacterial biology. Protein engineering can improve their biological functions as well as the stability of their intracellular proteins. This review aims to highlight the success of protein engineering in the direction of cyanobacterial biotechnology and outlines the emerging technologies, current challenges, and prospects of protein engineering in cyanobacterial biotechnology.

Авторлар туралы

Swati Tyagi

Rice Breeding Platform, International Rice Research Institute- South Asia Regional Centre, Banaras Hindu University

Email: info@benthamscience.net

Srabani Kar

Enzyme Technology and Protein Bioinformatics Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University

Email: info@benthamscience.net

Amit Srivastava

Department of Biological and Environmental Science, Nanoscience Centre,, University of Jyväskylä

Email: info@benthamscience.net

Pratyoosh Shukla

Enzyme Technology and Protein Bioinformatics Laboratory, School of Biotechnology, Institute of Science,, Banaras Hindu University

Хат алмасуға жауапты Автор.
Email: info@benthamscience.net

Әдебиет тізімі

  1. Barrios-Llerena, M.E.; Chong, P.K.; Gan, C.S.; Snijders, A.P.L.; Reardon, K.F.; Wright, P.C. Shotgun proteomics of cyanobacteria—applications of experimental and data-mining techniques. Brief. Funct. Genomics, 2006, 5(2), 121-132. doi: 10.1093/bfgp/ell021 PMID: 16772275
  2. Sharma, N.K.; Tiwari, S.P.; Tripathi, K.; Rai, A.K. Sustainability and cyanobacteria (blue-green algae): Facts and challenges. J. Appl. Phycol., 2011, 23(6), 1059-1081. doi: 10.1007/s10811-010-9626-3
  3. Vijayakumar, S.; Menakha, M. Pharmaceutical applications of cyanobacteria: A review. J. Acute. Med., 2015, 5(1), 15-23. doi: 10.1016/j.jacme.2015.02.004
  4. Zhang, X.; Betterle, N.; Hidalgo, M.D.; Melis, A. Recombinant protein stability in cyanobacteria. ACS Synth. Biol., 2021, 10(4), 810-825. doi: 10.1021/acssynbio.0c00610 PMID: 33684287
  5. Kudo, H.; Hayashi, Y.; Arai, M. Improving hydrocarbon production by engineering cyanobacterial acyl-(acyl carrier protein) reductase. Biotechnol. Biofuels, 2019, 12(1), 291. doi: 10.1186/s13068-019-1623-4 PMID: 31890019
  6. Zong, H.; Han, L.; Chen, J.; Pan, Z.; Wang, L.; Sun, R.; Ding, K.; Xie, Y.; Jiang, H.; Lu, H.; Gilly, J.; Zhang, B.; Zhu, J. Kinetics study of the natural split Npu DnaE intein in the generation of bispecific IgG antibodies. Appl. Microbiol. Biotechnol., 2022, 106(1), 161-171. doi: 10.1007/s00253-021-11707-y PMID: 34882254
  7. Han, L.; Chen, J.; Ding, K.; Zong, H.; Xie, Y.; Jiang, H.; Zhang, B.; Lu, H.; Yin, W.; Gilly, J.; Zhu, J. Efficient generation of bispecific IgG antibodies by split intein mediated protein trans-splicing system. Sci. Rep., 2017, 7(1), 8360. doi: 10.1038/s41598-017-08641-3 PMID: 28827777
  8. Qamar, H.; Hussain, K.; Soni, A.; Khan, A.; Hussain, T.; Chénais, B. Cyanobacteria as natural therapeutics and pharmaceutical potential: Role in antitumor activity and as nanovectors. Molecules, 2021, 26(1), 247. doi: 10.3390/molecules26010247 PMID: 33466486
  9. Srivastava, A.; Shukla, P. Cyanobacterial peptides: Metabolic potential and environmental fate. Protein Pept. Lett., 2022, 29(5), 375-378. doi: 10.2174/0929866529666220314111105 PMID: 35289251
  10. Porter, J.L.; Rusli, R.A.; Ollis, D.L. Directed evolution of enzymes for industrial biocatalysis. ChemBioChem, 2016, 17(3), 197-203. doi: 10.1002/cbic.201500280 PMID: 26661585
  11. Kumar, A.; Singh, S. Directed evolution: Tailoring biocatalysts for industrial applications. Crit. Rev. Biotechnol., 2013, 33(4), 365-378. doi: 10.3109/07388551.2012.716810 PMID: 22985113
  12. Engqvist, M.K.M.; Rabe, K.S. Applications of protein engineering and directed evolution in plant research. Plant Physiol., 2019, 179(3), 907-917. doi: 10.1104/pp.18.01534 PMID: 30626612
  13. Packer, M.S.; Liu, D.R. Methods for the directed evolution of proteins. Nat. Rev. Genet., 2015, 16(7), 379-394. doi: 10.1038/nrg3927 PMID: 26055155
  14. Pucci, F.; Schwersensky, M.; Rooman, M. Artificial intelligence challenges for predicting the impact of mutations on protein stability. Curr. Opin. Struct. Biol., 2022, 72, 161-168. doi: 10.1016/j.sbi.2021.11.001 PMID: 34922207
  15. Johannes, T.W.; Zhao, H. Directed evolution of enzymes and biosynthetic pathways. Curr. Opin. Microbiol., 2006, 9(3), 261-267. doi: 10.1016/j.mib.2006.03.003 PMID: 16621678
  16. Li, Y. Split-inteins and their bioapplications. Biotechnol. Lett., 2015, 37(11), 2121-2137. doi: 10.1007/s10529-015-1905-2 PMID: 26153348
  17. Borra, R.; Dong, D.; Elnagar, A.Y.; Woldemariam, G.A.; Camarero, J.A. In-cell fluorescence activation and labeling of proteins mediated by FRET-quenched split inteins. J. Am. Chem. Soc., 2012, 134(14), 6344-6353. doi: 10.1021/ja300209u PMID: 22404648
  18. Züger, S.; Iwai, H. Intein-based biosynthetic incorporation of unlabeled protein tags into isotopically labeled proteins for NMR studies. Nat. Biotechnol., 2005, 23(6), 736-740. doi: 10.1038/nbt1097 PMID: 15908942
  19. Busche, A.E.L.; Aranko, A.S.; Talebzadeh-Farooji, M.; Bernhard, F.; Dötsch, V.; Iwaï, H. Segmental isotopic labeling of a central domain in a multidomain protein by protein trans-splicing using only one robust DnaE intein. Angew. Chem. Int. Ed., 2009, 48(33), 6128-6131. doi: 10.1002/anie.200901488 PMID: 19591176
  20. Yang, J.Y.; Yang, W.Y. Site-specific two-color protein labeling for FRET studies using split inteins. J. Am. Chem. Soc., 2009, 131(33), 11644-11645. doi: 10.1021/ja9030215 PMID: 19645470
  21. Ramirez, M.; Valdes, N.; Guan, D.; Chen, Z. Engineering split intein DnaE from Nostoc punctiforme for rapid protein purification. Protein Eng. Des. Sel., 2013, 26(3), 215-223. doi: 10.1093/protein/gzs097 PMID: 23223807
  22. Colyer, C.L.; Kinkade, C.S.; Viskari, P.J.; Landers, J.P. Analysis of cyanobacterial pigments and proteins by electrophoretic and chromatographic methods. Anal. Bioanal. Chem., 2005, 382(3), 559-569. doi: 10.1007/s00216-004-3020-4 PMID: 15714301
  23. Rouet, R.; Christ, D. Bispecific antibodies with native chain structure. Nat. Biotechnol., 2014, 32(2), 136-137. doi: 10.1038/nbt.2812 PMID: 24509759
  24. Rubin-Pitel, S.B.; Cho, C.M.; Chen, W.; Zhao, H. Directed evolution tools in bioproduct and bioprocess development.Bioproc. value-added. prod. rene. res; Elsevier, 2007, pp. 49-72. doi: 10.1016/B978-044452114-9/50004-9
  25. Wang, Y.; Xue, P.; Cao, M.; Yu, T.; Lane, S.T.; Zhao, H. Directed evolution: Methodologies and applications. Chem. Rev., 2021, 121(20), 12384-12444. doi: 10.1021/acs.chemrev.1c00260 PMID: 34297541
  26. Kamravamanesh, D.; Kovacs, T.; Pflügl, S.; Druzhinina, I.; Kroll, P.; Lackner, M.; Herwig, C. Increased poly-β-hydroxybutyrate production from carbon dioxide in randomly mutated cells of cyanobacterial strain Synechocystis sp. PCC 6714: Mutant generation and characterization. Bioresour. Technol., 2018, 266, 34-44. doi: 10.1016/j.biortech.2018.06.057 PMID: 29957289
  27. Xin, Y.; Shen, C.; She, Y.; Chen, H.; Wang, C.; Wei, L.; Yoon, K.; Han, D.; Hu, Q.; Xu, J. Biosynthesis of triacylglycerol molecules with a tailored PUFA profile in industrial microalgae. Mol. Plant, 2019, 12(4), 474-488. doi: 10.1016/j.molp.2018.12.007 PMID: 30580039
  28. Cordero, B.F.; Obraztsova, I.; Couso, I.; Leon, R.; Vargas, M.A.; Rodriguez, H. Enhancement of lutein production in Chlorella sorokiniana (Chorophyta) by improvement of culture conditions and random mutagenesis. Mar. Drugs, 2011, 9(9), 1607-1624. doi: 10.3390/md9091607 PMID: 22131961
  29. de Jaeger, L.; Verbeek, R.E.M.; Draaisma, R.B.; Martens, D.E.; Springer, J.; Eggink, G.; Wijffels, R.H. Superior triacylglycerol (TAG) accumulation in starchless mutants of Scenedesmus obliquus: (I) mutant generation and characterization. Biotechnol. Biofuels, 2014, 7(1), 69. doi: 10.1186/1754-6834-7-69 PMID: 24920957
  30. Doan, T.T.Y.; Obbard, J.P. Enhanced intracellular lipid in Nannochloropsis sp. via random mutagenesis and flow cytometric cell sorting. Algal Res., 2012, 1(1), 17-21. doi: 10.1016/j.algal.2012.03.001
  31. Lin, P.C.; Saha, R.; Zhang, F.; Pakrasi, H.B. Metabolic engineering of the pentose phosphate pathway for enhanced limonene production in the cyanobacterium Synechocystis sp. PCC 6803. Sci. Rep., 2017, 7(1), 17503. doi: 10.1038/s41598-017-17831-y PMID: 29235513
  32. Cirino, P.C.; Mayer, K.M.; Umeno, D. Generating mutant libraries using error-prone PCR. Directed evolution library creation. Methods Protoc., 2003, 3-9.
  33. Dorrazehi, G.M. The catalytic activity of a DD-peptidase impairs its evolutionary conversion into a beta-lactamase; Doctoral dissertation, UCL-Université Catholique de Louvain, 2022.
  34. Wong, T.S.; Tee, K.L.; Hauer, B.; Schwaneberg, U. Sequence saturation mutagenesis (SeSaM): A novel method for directed evolution. Nucleic Acids Res., 2004, 32(3), 26e-26. doi: 10.1093/nar/gnh028 PMID: 14872057
  35. Hiraide, Y.; Yamamoto, H.; Kawajiri, Y.; Yamakawa, H.; Wada, K.; Fujita, Y. Super-activator variants of the cyanobacterial transcriptional regulator ChlR essential for tetrapyrrole biosynthesis under low oxygen conditions. Biosci. Biotechnol. Biochem., 2020, 84(3), 481-490. doi: 10.1080/09168451.2019.1687281 PMID: 31690227
  36. Pattharaprachayakul, N.; Lee, H.J.; Incharoensakdi, A.; Woo, H.M. Evolutionary engineering of cyanobacteria to enhance the production of α-farnesene from CO2. J. Agric. Food Chem., 2019, 67(49), 13658-13664. doi: 10.1021/acs.jafc.9b06254 PMID: 31755253
  37. Dubey, K.K.; Pramanik, A.; Yadav, J. Enzyme Engineering.Advances in Enzyme Technology; Elsevier, 2019, pp. 325-347. doi: 10.1016/B978-0-444-64114-4.00012-1
  38. Bloom, J.D.; Arnold, F.H. In the light of directed evolution: Pathways of adaptive protein evolution. Proc. Natl. Acad. Sci., 2009, 106(Suppl 1)(1), 9995-10000. doi: 10.1073/pnas.0901522106 PMID: 19528653
  39. Smith, M.A.; Romero, P.A.; Wu, T.; Brustad, E.M.; Arnold, F.H. Chimeragenesis of distantly-related proteins by noncontiguous recombination. Protein Sci., 2013, 22(2), 231-238. doi: 10.1002/pro.2202 PMID: 23225662
  40. Mezzolla, V.; D’Urso, O.; Poltronieri, P. Role of PhaC type I and type II enzymes during PHA biosynthesis. Polymers, 2018, 10(8), 910. doi: 10.3390/polym10080910 PMID: 30960835
  41. Tan, GY; Chen, CL; Li, L; Ge, L; Wang, L; Razaad, IM; Li, Y; Zhao, L; Mo, Y; Wang, JY Start a research on biopolymer polyhydroxyalkanoate (PHA): A review. Polymers, 2014, 6(3), 706-754.
  42. Sudesh, K.; Taguchi, K.; Doi, Y. Effect of increased PHA synthase activity on polyhydroxyalkanoates biosynthesis in Synechocystis sp. PCC6803. Int. J. Biol. Macromol., 2002, 30(2), 97-104. doi: 10.1016/S0141-8130(02)00010-7 PMID: 11911900
  43. Khetkorn, W.; Incharoensakdi, A.; Lindblad, P.; Jantaro, S. Enhancement of poly-3-hydroxybutyrate production in Synechocystis sp. PCC 6803 by overexpression of its native biosynthetic genes. Bioresour. Technol., 2016, 214, 761-768. doi: 10.1016/j.biortech.2016.05.014 PMID: 27213577
  44. Maeda, T.; Vardar, G.; Self, W.T.; Wood, T.K. Inhibition of hydrogen uptake in Escherichia coli by expressing the hydrogenase from the cyanobacterium Synechocystis sp. PCC 6803. BMC Biotech, 2007, 7(1), 1-12. doi: 10.1186/1472-6750-7-25
  45. Zheng, L.; Baumann, U.; Reymond, J.L. An efficient one-step site-directed and site-saturation mutagenesis protocol. Nucleic Acids Res., 2004, 32(14), e115. doi: 10.1093/nar/gnh110 PMID: 15304544
  46. Engqvist, M.K.M.; Nielsen, J. ANT: Software for generating and evaluating degenerate codons for natural and expanded genetic codes. ACS Synth. Biol., 2015, 4(8), 935-938. doi: 10.1021/acssynbio.5b00018 PMID: 25901796
  47. Ogola, H.J.O.; Hashimoto, N.; Miyabe, S.; Ashida, H.; Ishikawa, T.; Shibata, H.; Sawa, Y. Enhancement of hydrogen peroxide stability of a novel Anabaena sp. DyP-type peroxidase by site-directed mutagenesis of methionine residues. Appl. Microbiol. Biotechnol., 2010, 87(5), 1727-1736. doi: 10.1007/s00253-010-2603-6 PMID: 20422179
  48. Masukawa, H.; Inoue, K.; Sakurai, H.; Wolk, C.P.; Hausinger, R.P. Site-directed mutagenesis of the Anabaena sp. strain PCC 7120 nitrogenase active site to increase photobiological hydrogen production. Appl. Environ. Microbiol., 2010, 76(20), 6741-6750. doi: 10.1128/AEM.01056-10 PMID: 20709836
  49. Formighieri, C.; Melis, A. A phycocyanin·phellandrene synthase fusion enhances recombinant protein expression and β-phellandrene (monoterpene) hydrocarbons production in Synechocystis (cyanobacteria). Metab. Eng., 2015, 32, 116-124. doi: 10.1016/j.ymben.2015.09.010 PMID: 26410450
  50. Betterle, N.; Hidalgo, M.D.; Melis, A. Cyanobacterial production of biopharmaceutical and biotherapeutic proteins. Front. Plant Sci., 2020, 11, 237. doi: 10.3389/fpls.2020.00237 PMID: 32194609
  51. Chaves, J.E.; Rueda-Romero, P.; Kirst, H.; Melis, A. Engineering isoprene synthase expression and activity in cyanobacteria. ACS Synth. Biol., 2017, 6(12), 2281-2292. doi: 10.1021/acssynbio.7b00214 PMID: 28858481
  52. Lee, H.J.; Choi, J.; Lee, S.M.; Um, Y.; Sim, S.J.; Kim, Y.; Woo, H.M. Photosynthetic CO2 conversion to fatty acid ethyl esters (FAEEs) using engineered cyanobacteria. J. Agric. Food Chem., 2017, 65(6), 1087-1092. doi: 10.1021/acs.jafc.7b00002 PMID: 28128561
  53. Betterle, N.; Melis, A. Heterologous leader sequences in fusion constructs enhance expression of geranyl diphosphate synthase and yield of β-phellandrene production in cyanobacteria (Synechocystis). ACS Synth. Biol., 2018, 7(3), 912-921. doi: 10.1021/acssynbio.7b00431 PMID: 29397685
  54. Betterle, N.; Melis, A. Photosynthetic generation of heterologous terpenoids in cyanobacteria. Biotechnol. Bioeng., 2019, 116(8), 2041-2051. doi: 10.1002/bit.26988 PMID: 30963538
  55. Valsami, E.A.; Psychogyiou, M.E.; Pateraki, A.; Chrysoulaki, E.; Melis, A.; Ghanotakis, D.F. Fusion constructs enhance heterologous β-phellandrene production in Synechocystis sp. PCC 6803. J. Appl. Phycol., 2020, 32(5), 2889-2902. doi: 10.1007/s10811-020-02186-1
  56. Lauersen, K.J.; Wichmann, J.; Baier, T.; Kampranis, S.C.; Pateraki, I.; Møller, B.L.; Kruse, O. Phototrophic production of heterologous diterpenoids and a hydroxy-functionalized derivative from Chlamydomonas reinhardtii. Metab. Eng., 2018, 49, 116-127. doi: 10.1016/j.ymben.2018.07.005 PMID: 30017797
  57. Schneider, C.; Niisuke, K.; Boeglin, W.E.; Voehler, M.; Stec, D.F.; Porter, N.A.; Brash, A.R. Enzymatic synthesis of a bicyclobutane fatty acid by a hemoprotein–lipoxygenase fusion protein from the cyanobacterium Anabaena PCC 7120. Proc. Natl. Acad. Sci. USA, 2007, 104(48), 18941-18945. doi: 10.1073/pnas.0707148104 PMID: 18025466
  58. Chaves, J.E.; Melis, A. Biotechnology of cyanobacterial isoprene production. Appl. Microbiol. Biotechnol., 2018, 102(15), 6451-6458. doi: 10.1007/s00253-018-9093-3 PMID: 29802477
  59. Pramanik, S; Contreras, F; Davari, MD; Schwaneberg, U Protein engineering by efficient sequence space exploration through combination of directed evolution and computational design methodologies. Protein engineering: Tools and Applications., 2021, 153-176.
  60. Sproles, A.E.; Fields, F.J.; Smalley, T.N.; Le, C.H.; Badary, A.; Mayfield, S.P. Recent advancements in the genetic engineering of microalgae. Algal Res., 2021, 53, 102158. doi: 10.1016/j.algal.2020.102158
  61. Lima, A.M.; Siqueira, A.S.; Möller, M.L.S.; Souza, R.C.; Cruz, J.N.; Lima, A.R.J.; Silva, R.C.; Aguiar, D.C.F.; Junior, J.L.S.G.V.; Gonçalves, E.C. In silico improvement of the cyanobacterial lectin microvirin and mannose interaction. J. Biomol. Struct. Dyn., 2022, 40(3), 1064-1073. doi: 10.1080/07391102.2020.1821782 PMID: 32990187
  62. Wijma, H.J.; Fürst, M.J.; Janssen, D.B. A computational library design protocol for rapid improvement of protein stability: FRESCO. Protein engineering. Methods Protoc., 2018, 69-85.
  63. Fortelny, N.; Pavlidis, P.; Overall, C.M. The path of no return—Truncated protein N-termini and current ignorance of their genesis. Proteomics, 2015, 15(14), 2547-2552. doi: 10.1002/pmic.201500043 PMID: 26010509
  64. Floor, R.J.; Wijma, H.J.; Colpa, D.I.; Ramos-Silva, A.; Jekel, P.A.; Szymański, W.; Janssen, D.B. Computational library design for increasing haloalkane dehalogenase stability. ChemBioChem,, 2014, 15(11), 1660-1672. doi: 10.1002/cbic.201402128
  65. Weinstein, J.J.; Goldenzweig, A.; Hoch, S.; Fleishman, S.J. PROSS 2: A new server for the design of stable and highly expressed protein variants. Bioinformatics, 2021, 37(1), 123-125. doi: 10.1093/bioinformatics/btaa1071 PMID: 33367682
  66. Dong, F.; Zhang, M.; Ma, R.; Lu, C.; Xu, F. Insights of conformational dynamics on catalytic activity in the computational stability design of Bacillus subtilis LipA. Arch. Biochem. Biophys., 2022, 722, 109196. doi: 10.1016/j.abb.2022.109196 PMID: 35339426
  67. Berland, M.; Offmann, B.; André, I.; Remaud-Siméon, M.; Charton, P. A web-based tool for rational screening of mutants libraries using ProSAR. Protein Eng. Des. Sel., 2014, 27(10), 375-381. doi: 10.1093/protein/gzu035 PMID: 25169579
  68. Mckenna, A.; Dubey, S. Machine learning based predictive model for the analysis of sequence activity relationships using protein spectra and protein descriptors. J. Biomed. Inform., 2022, 128, 104016. doi: 10.1016/j.jbi.2022.104016 PMID: 35143999
  69. Damián-Almazo, J.Y.; Saab-Rincón, G. Site-directed mutagenesis as applied to biocatalysts; Genetic manipulation of DNA and protein–examples from current research. InTech: Rijeka, Croatia, 2013, pp. 303-330.
  70. Reetz, M.T.; Bocola, M.; Carballeira, J.D.; Zha, D.; Vogel, A. Expanding the range of substrate acceptance of enzymes: Combinatorial active-site saturation test. Angew. Chem. Int. Ed., 2005, 44(27), 4192-4196. doi: 10.1002/anie.200500767 PMID: 15929154
  71. Maeda, S.; Konishi, M.; Yanagisawa, S.; Omata, T. Nitrite transport activity of a novel HPP family protein conserved in cyanobacteria and chloroplasts. Plant Cell Physiol., 2014, 55(7), 1311-1324. doi: 10.1093/pcp/pcu075 PMID: 24904028
  72. Vicente, J.B.; Gomes, C.M.; Wasserfallen, A.; Teixeira, M. Module fusion in an A-type flavoprotein from the cyanobacterium Synechocystis condenses a multiple-component pathway in a single polypeptide chain. Biochem. Biophys. Res. Commun., 2002, 294(1), 82-87. doi: 10.1016/S0006-291X(02)00434-5 PMID: 12054744
  73. Ducat, D.C.; Way, J.C.; Silver, P.A. Engineering cyanobacteria to generate high-value products. Trends Biotechnol., 2011, 29(2), 95-103. doi: 10.1016/j.tibtech.2010.12.003 PMID: 21211860
  74. Caspi, J.; Amitai, G.; Belenkiy, O.; Pietrokovski, S. Distribution of split DnaE inteins in cyanobacteria. Mol. Microbiol., 2003, 50(5), 1569-1577. doi: 10.1046/j.1365-2958.2003.03825.x PMID: 14651639
  75. Stevens, A.J.; Sekar, G.; Shah, N.H.; Mostafavi, A.Z.; Cowburn, D.; Muir, T.W. A promiscuous split intein with expanded protein engineering applications. Proc. Natl. Acad. Sci., 2017, 114(32), 8538-8543. doi: 10.1073/pnas.1701083114 PMID: 28739907
  76. Diez-Quijada, L.; Benítez-González, M.M.; Puerto, M.; Jos, A.; Cameán, A.M. Immunotoxic effects induced by microcystins and cylindrospermopsin: A review. Toxins, 2021, 13(10), 711. doi: 10.3390/toxins13100711 PMID: 34679003
  77. Ma, J.; Mo, Y.; Tang, M.; Shen, J.; Qi, Y.; Zhao, W.; Huang, Y.; Xu, Y.; Qian, C. Bispecific antibodies: From research to clinical application. Front. Immunol., 2021, 12, 626616. doi: 10.3389/fimmu.2021.626616 PMID: 34025638
  78. Raran-Kurussi, S.; Cherry, S.; Zhang, D.; Waugh, D.S. Removal of affinity tags with TEV protease. In heterologous gene expression in E. coli; Humana Press: New York, 2017, pp. 221-230. doi: 10.1007/978-1-4939-6887-9_14
  79. Parks, T.D.; Leuther, K.K.; Howard, E.D.; Johnston, S.A.; Dougherty, W.G. Release of proteins and peptides from fusion proteins using a recombinant plant virus proteinase. Anal. Biochem., 1994, 216(2), 413-417. doi: 10.1006/abio.1994.1060 PMID: 8179197
  80. He, Y.H.; Li, Y.M.; Chen, Y.X. Phosphorylation regulates proteolytic efficiency of TEV protease detected by a 5(6)-carboxyfluorescein-pyrene based fluorescent sensor. Talanta, 2016, 150, 340-345. doi: 10.1016/j.talanta.2015.12.028 PMID: 26838417
  81. van den Berg, S.; Löfdahl, P.Å.; Härd, T.; Berglund, H. Improved solubility of TEV protease by directed evolution. J. Biotechnol., 2006, 121(3), 291-298. doi: 10.1016/j.jbiotec.2005.08.006 PMID: 16150509

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Bentham Science Publishers, 2024