Unfolded Protein Response Signaling in Hepatic Stem Cell Activation in Liver Fibrosis
- Authors: Salimi Z.1, Rostami M.2, Milasi Y.1, Mafi A.1, Raoufinia R.3, Kiani A.4, Sakhaei F.1, Ghezelbash B.5, Butler A.6, Mohammad-Sadeghipour M.7, Sahebkar A.8
-
Affiliations:
- Department of Clinical Biochemistry, School of Pharmacy & Pharmaceutical Sciences, Isfahan University of Medical Sciences
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences
- Medical Genetics and Molecular Medicine Department, School of Medicine, Mashhad University of Medical Science
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences
- Research Department, Royal College of Surgeons in Ireland
- Department of Clinical Biochemistry, Afzalipoor Faculty of Medicine, Kerman University of Medical Sciences
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Science
- Issue: Vol 25, No 1 (2024)
- Pages: 59-70
- Section: Life Sciences
- URL: https://rjpbr.com/1389-2037/article/view/645488
- DOI: https://doi.org/10.2174/1389203724666230822085951
- ID: 645488
Cite item
Full Text
Abstract
Frequent exposure to various external and internal adverse forces (stresses) disrupts cell protein homeostasis through endoplasmic reticulum (ER) capacity saturation. This process leads to the unfolded protein response (UPR), which aims to re-establish/maintain optimal cellular equilibrium. This complex mechanism is involved in the pathogenesis of various disorders, such as metabolic syndrome, fibrotic diseases, neurodegeneration, and cancer, by altering cellular metabolic changes integral to activating the hepatic stellate cells (HSCs). The development of hepatic fibrosis is one of the consequences of UPR activation. Therefore, novel therapies that target the UPR pathway effectively and specifically are being studied. This article covers the involvement of the UPR signaling pathway in cellular damage in liver fibrosis. Investigating the pathogenic pathways related to the ER/UPR stress axis that contribute to liver fibrosis can help to guide future drug therapy approaches.
About the authors
Zohreh Salimi
Department of Clinical Biochemistry, School of Pharmacy & Pharmaceutical Sciences, Isfahan University of Medical Sciences
Email: info@benthamscience.net
Mehdi Rostami
Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences
Email: info@benthamscience.net
Yaser Milasi
Department of Clinical Biochemistry, School of Pharmacy & Pharmaceutical Sciences, Isfahan University of Medical Sciences
Email: info@benthamscience.net
Alireza Mafi
Department of Clinical Biochemistry, School of Pharmacy & Pharmaceutical Sciences, Isfahan University of Medical Sciences
Email: info@benthamscience.net
Ramin Raoufinia
Medical Genetics and Molecular Medicine Department, School of Medicine, Mashhad University of Medical Science
Email: info@benthamscience.net
Amirhossein Kiani
Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences
Email: info@benthamscience.net
Fariba Sakhaei
Department of Clinical Biochemistry, School of Pharmacy & Pharmaceutical Sciences, Isfahan University of Medical Sciences
Email: info@benthamscience.net
Behrooz Ghezelbash
Department of Immunology, School of Medicine, Isfahan University of Medical Sciences
Email: info@benthamscience.net
Alexandra Butler
Research Department, Royal College of Surgeons in Ireland
Email: info@benthamscience.net
Maryam Mohammad-Sadeghipour
Department of Clinical Biochemistry, Afzalipoor Faculty of Medicine, Kerman University of Medical Sciences
Author for correspondence.
Email: info@benthamscience.net
Amirhossein Sahebkar
Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Science
Author for correspondence.
Email: info@benthamscience.net
References
- Ozgur, R.; Uzilday, B.; Iwata, Y.; Koizumi, N.; Turkan, I. Interplay between the unfolded protein response and reactive oxygen species: A dynamic duo. J. Exp. Bot., 2018, 69(14), 3333-3345. doi: 10.1093/jxb/ery040 PMID: 29415271
- Chen, X.; Cubillos-Ruiz, J.R. Endoplasmic reticulum stress signals in the tumour and its microenvironment. Nat. Rev. Cancer, 2021, 21(2), 71-88. doi: 10.1038/s41568-020-00312-2 PMID: 33214692
- Schröder, M. Endoplasmic reticulum stress responses. Cell. Mol. Life Sci., 2008, 65(6), 862-894. doi: 10.1007/s00018-007-7383-5 PMID: 18038217
- Kapoor, A.; Sanyal, A.J. Endoplasmic reticulum stress and the unfolded protein response. Clin. Liver Dis., 2009, 13(4), 581-590. doi: 10.1016/j.cld.2009.07.004 PMID: 19818306
- Aghaei, M.; Dastghaib, S.; Aftabi, S.; Aghanoori, M.R.; Alizadeh, J.; Mokarram, P.; Mehrbod, P.; Ashrafizadeh, M.; Zarrabi, A.; McAlinden, K.D.; Eapen, M.S.; Sohal, S.S.; Sharma, P.; Zeki, A.A.; Ghavami, S. The ER stress/UPR axis in chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis. Life., 2020, 11(1), 1. doi: 10.3390/life11010001 PMID: 33374938
- Salminen, A.; Kaarniranta, K. ER stress and hormetic regulation of the aging process. Ageing Res. Rev., 2010, 9(3), 211-217. doi: 10.1016/j.arr.2010.04.003 PMID: 20416402
- Kim, I.; Xu, W.; Reed, J.C. Cell death and endoplasmic reticulum stress: Disease relevance and therapeutic opportunities. Nat. Rev. Drug Discov., 2008, 7(12), 1013-1030. doi: 10.1038/nrd2755 PMID: 19043451
- Kim, S.R.; Lee, Y.C. Endoplasmic reticulum stress and the related signaling networks in severe asthma. Allergy Asthma Immunol. Res., 2015, 7(2), 106-117. doi: 10.4168/aair.2015.7.2.106 PMID: 25729617
- Kelsen, SG The unfolded protein response in chronic obstructive pulmonary disease. Ann. Am. Thorac. Soc., 2016, 13(S2)
- Wang, M.; Wey, S.; Zhang, Y.; Ye, R.; Lee, A.S. Role of the unfolded protein response regulator GRP78/BiP in development, cancer, and neurological disorders. Antioxid. Redox Signal., 2009, 11(9), 2307-2316. doi: 10.1089/ars.2009.2485 PMID: 19309259
- Walter, P.; Ron, D. The unfolded protein response: From stress pathway to homeostatic regulation. Science., 2011, 334(6059), 1081-1086. doi: 10.1126/science.1209038 PMID: 22116877
- Koo, J.H.; Lee, H.J.; Kim, W.; Kim, S.G. Endoplasmic reticulum stress in hepatic stellate cells promotes liver fibrosis via PERK-Mediated degradation of HNRNPA1 and up-regulation of SMAD2. Gastroenterology., 2016, 150(1), 181-193.e8. doi: 10.1053/j.gastro.2015.09.039 PMID: 26435271
- Li, X; Wang, Y; Wang, H; Huang, C; Huang, Y; Li, J Endoplasmic reticulum stress is the crossroads of autophagy, inflammation, and apoptosis signaling pathways and participates in liver fibrosis. Inflamm Res., 2015, 64(1), 1-7. doi: 10.1007/s00011-014-0772-y
- Maiers, J.; Malhi, H. Endoplasmic reticulum stress in metabolic liver diseases and hepatic fibrosis. Semin. Liver Dis., 2019, 39(2), 235-248. doi: 10.1055/s-0039-1681032 PMID: 30912096
- Iracheta-Vellve, A.; Petrasek, J.; Gyongyosi, B.; Satishchandran, A.; Lowe, P.; Kodys, K.; Catalano, D.; Calenda, C.D.; Kurt-Jones, E.A.; Fitzgerald, K.A.; Szabo, G. Endoplasmic reticulum stress-induced hepatocellular death pathways mediate liver injury and fibrosis via stimulator of interferon genes. J. Biol. Chem., 2016, 291(52), 26794-26805. doi: 10.1074/jbc.M116.736991 PMID: 27810900
- Dastghaib, S.; Shojaei, S.; Mostafavi-Pour, Z.; Sharma, P.; Patterson, J.B.; Samali, A.; Mokarram, P.; Ghavami, S. Simvastatin induces unfolded protein response and enhances temozolomide-induced cell death in glioblastoma cells. Cells, 2020, 9(11), 2339. doi: 10.3390/cells9112339 PMID: 33105603
- Dastghaib, S.; Kumar, P.S.; Aftabi, S.; Damera, G.; Dalvand, A.; Sepanjnia, A.; Kiumarsi, M.; Aghanoori, M.R.; Sohal, S.S.; Ande, S.R.; Alizadeh, J.; Mokarram, P.; Ghavami, S.; Sharma, P.; Zeki, A.A. Mechanisms targeting the unfolded protein response in asthma. Am. J. Respir. Cell Mol. Biol., 2021, 64(1), 29-38. doi: 10.1165/rcmb.2019-0235TR PMID: 32915643
- Arsène, F.; Tomoyasu, T.; Bukau, B. The heat shock response of Escherichia coli. Int. J. Food Microbiol., 2000, 55(1-3), 3-9. doi: 10.1016/S0168-1605(00)00206-3 PMID: 10791710
- Anckar, J.; Sistonen, L. Regulation of HSF1 function in the heat stress response: Implications in aging and disease. Annu. Rev. Biochem., 2011, 80(1), 1089-1115. doi: 10.1146/annurev-biochem-060809-095203 PMID: 21417720
- Yeganeh, B.; Rezaei Moghadam, A.; Tran, A.T.; Rahim, M.N.; Ande, S.R.; Hashemi, M.; Coombs, K.M.; Ghavami, S. Asthma and influenza virus infection:focusing on cell death and stress pathways in influenza virus replication. Iran. J. Allergy Asthma Immunol., 2013, 12(1), 1-17. PMID: 23454774
- Bertolotti, A.; Zhang, Y.; Hendershot, L.M.; Harding, H.P.; Ron, D. Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nat. Cell Biol., 2000, 2(6), 326-332. doi: 10.1038/35014014 PMID: 10854322
- Oikawa, D.; Kimata, Y.; Kohno, K.; Iwawaki, T. Activation of mammalian IRE1α upon ER stress depends on dissociation of BiP rather than on direct interaction with unfolded proteins. Exp. Cell Res., 2009, 315(15), 2496-2504. doi: 10.1016/j.yexcr.2009.06.009 PMID: 19538957
- Carrara, M.; Prischi, F.; Nowak, P.R.; Kopp, M.C.; Ali, M.M.U. Noncanonical binding of BiP ATPase domain to Ire1 and Perk is dissociated by unfolded protein CH1 to initiate ER stress signaling. eLife, 2015, 4, e03522. doi: 10.7554/eLife.03522 PMID: 25692299
- Mehrbod, P.; Ande, S.R.; Alizadeh, J.; Rahimizadeh, S.; Shariati, A.; Malek, H.; Hashemi, M.; Glover, K.K.M.; Sher, A.A.; Coombs, K.M.; Ghavami, S. The roles of apoptosis, autophagy and unfolded protein response in arbovirus, influenza virus, and HIV infections. Virulence., 2019, 10(1), 376-413. doi: 10.1080/21505594.2019.1605803 PMID: 30966844
- Veyron, S.; Peyroche, G.; Cherfils, J. FIC proteins: from bacteria to humans and back again. Pathog. Dis., 2018, 76(2) doi: 10.1093/femspd/fty012 PMID: 29617857
- Preissler, S.; Rato, C.; Perera, L.A.; Saudek, V.; Ron, D. FICD acts bifunctionally to AMPylate and de-AMPylate the endoplasmic reticulum chaperone BiP. Nat. Struct. Mol. Biol., 2017, 24(1), 23-29. doi: 10.1038/nsmb.3337 PMID: 27918543
- Ham, H.; Woolery, A.R.; Tracy, C.; Stenesen, D.; Krämer, H.; Orth, K. Unfolded protein response-regulated Drosophila Fic (dFic) protein reversibly AMPylates BiP chaperone during endoplasmic reticulum homeostasis. J. Biol. Chem., 2014, 289(52), 36059-36069. doi: 10.1074/jbc.M114.612515 PMID: 25395623
- McMahon, M.; Samali, A.; Chevet, E. Regulation of the unfolded protein response by noncoding RNA. Am. J. Physiol. Cell Physiol., 2017, 313(3), C243-C254. doi: 10.1152/ajpcell.00293.2016 PMID: 28637678
- Preissler, S.; Ron, D. Early events in the endoplasmic reticulum unfolded protein response. Cold Spring Harb. Perspect. Biol., 2019, 11(4), a033894. doi: 10.1101/cshperspect.a033894 PMID: 30396883
- Casey, A.K.; Moehlman, A.T.; Zhang, J.; Servage, K.A.; Krämer, H.; Orth, K. Fic-mediated deAMPylation is not dependent on homodimerization and rescues toxic AMPylation in flies. J. Biol. Chem., 2017, 292(51), 21193-21204. doi: 10.1074/jbc.M117.799296 PMID: 29089387
- Kimata, Y.; Ishiwata-Kimata, Y.; Ito, T.; Hirata, A.; Suzuki, T.; Oikawa, D.; Takeuchi, M.; Kohno, K. Two regulatory steps of ER-stress sensor Ire1 involving its cluster formation and interaction with unfolded proteins. J. Cell Biol., 2007, 179(1), 75-86. doi: 10.1083/jcb.200704166 PMID: 17923530
- Fu, J; Tao, T; Li, Z; Chen, Y; Li, J; Peng, L. The roles of ER stress in epilepsy: Molecular mechanisms and therapeutic implications. Biomed. Pharmacother., 2020, 131, 110658..
- Sundaram, A.; Plumb, R.; Appathurai, S.; Mariappan, M. The Sec61 translocon limits IRE1α signaling during the unfolded protein response. eLife, 2017, 6, e27187. doi: 10.7554/eLife.27187 PMID: 28504640
- Sundaram, A.; Appathurai, S.; Plumb, R.; Mariappan, M. Dynamic changes in complexes of IRE1α, PERK, and ATF6α during endoplasmic reticulum stress. Mol. Biol. Cell, 2018, 29(11), 1376-1388. doi: 10.1091/mbc.E17-10-0594 PMID: 29851562
- Sano, R.; Reed, J.C. ER stress-induced cell death mechanisms. Biochim. Biophys. Acta Mol. Cell Res., 2013, 1833(12), 3460-3470. doi: 10.1016/j.bbamcr.2013.06.028 PMID: 23850759
- Wang, M.; Kaufman, R.J. Protein misfolding in the endoplasmic reticulum as a conduit to human disease. Nature., 2016, 529(7586), 326-335. doi: 10.1038/nature17041 PMID: 26791723
- Rutkowski, D.T.; Arnold, S.M.; Miller, C.N.; Wu, J.; Li, J.; Gunnison, K.M.; Mori, K.; Sadighi Akha, A.A.; Raden, D.; Kaufman, R.J. Adaptation to ER stress is mediated by differential stabilities of pro-survival and pro-apoptotic mRNAs and proteins. PLoS Biol., 2006, 4(11), e374. doi: 10.1371/journal.pbio.0040374 PMID: 17090218
- Lin, J.H.; Li, H.; Yasumura, D.; Cohen, H.R.; Zhang, C.; Panning, B.; Shokat, K.M.; LaVail, M.M.; Walter, P. IRE1 signaling affects cell fate during the unfolded protein response. Science., 2007, 318(5852), 944-949. doi: 10.1126/science.1146361 PMID: 17991856
- Deegan, S.; Saveljeva, S.; Gorman, A.M.; Samali, A. Stress-induced self-cannibalism: On the regulation of autophagy by endoplasmic reticulum stress. Cell. Mol. Life Sci., 2013, 70(14), 2425-2441. doi: 10.1007/s00018-012-1173-4 PMID: 23052213
- Tsuru, A.; Fujimoto, N.; Takahashi, S.; Saito, M.; Nakamura, D.; Iwano, M.; Iwawaki, T.; Kadokura, H.; Ron, D.; Kohno, K. Negative feedback by IRE1β optimizes mucin production in goblet cells. Proc. Natl. Acad. Sci., 2013, 110(8), 2864-2869. doi: 10.1073/pnas.1212484110 PMID: 23386727
- Iwawaki, T.; Akai, R.; Yamanaka, S.; Kohno, K. Function of IRE1 alpha in the placenta is essential for placental development and embryonic viability. Proc. Natl. Acad. Sci., 2009, 106(39), 16657-16662. doi: 10.1073/pnas.0903775106 PMID: 19805353
- Upton, J.P.; Wang, L.; Han, D.; Wang, E.S.; Huskey, N.E.; Lim, L.; Truitt, M.; McManus, M.T.; Ruggero, D.; Goga, A.; Papa, F.R.; Oakes, S.A. IRE1α cleaves select microRNAs during ER stress to derepress translation of proapoptotic Caspase-2. Science., 2012, 338(6108), 818-822. doi: 10.1126/science.1226191 PMID: 23042294
- Han, D.; Lerner, A.G.; Vande Walle, L.; Upton, J.P.; Xu, W.; Hagen, A.; Backes, B.J.; Oakes, S.A.; Papa, F.R. IRE1alpha kinase activation modes control alternate endoribonuclease outputs to determine divergent cell fates. Cell., 2009, 138(3), 562-575. doi: 10.1016/j.cell.2009.07.017 PMID: 19665977
- Yeganeh, B.; Rezaei Moghadam, A.; Alizadeh, J.; Wiechec, E.; Alavian, S.M.; Hashemi, M.; Geramizadeh, B.; Samali, A.; Bagheri, L.K.; Post, M.; Peymani, P.; Coombs, K.M.; Ghavami, S. Hepatitis B and C virus-induced hepatitis: Apoptosis, autophagy, and unfolded protein response. World J. Gastroenterol., 2015, 21(47), 13225-13239. doi: 10.3748/wjg.v21.i47.13225 PMID: 26715805
- Yanagitani, K.; Imagawa, Y.; Iwawaki, T.; Hosoda, A.; Saito, M.; Kimata, Y.; Kohno, K. Cotranslational targeting of XBP1 protein to the membrane promotes cytoplasmic splicing of its own mRNA. Mol. Cell, 2009, 34(2), 191-200. doi: 10.1016/j.molcel.2009.02.033 PMID: 19394296
- Yoshida, H.; Matsui, T.; Yamamoto, A.; Okada, T.; Mori, K. XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell., 2001, 107(7), 881-891. doi: 10.1016/S0092-8674(01)00611-0 PMID: 11779464
- Lee, K.; Tirasophon, W.; Shen, X.; Michalak, M.; Prywes, R.; Okada, T.; Yoshida, H.; Mori, K.; Kaufman, R.J. IRE1-mediated unconventional mRNA splicing and S2P-mediated ATF6 cleavage merge to regulate XBP1 in signaling the unfolded protein response. Genes Dev., 2002, 16(4), 452-466. doi: 10.1101/gad.964702 PMID: 11850408
- Ghavami, S.; Sharma, P.; Yeganeh, B.; Ojo, O.O.; Jha, A.; Mutawe, M.M.; Kashani, H.H.; Los, M.J.; Klonisch, T.; Unruh, H.; Halayko, A.J. Airway mesenchymal cell death by mevalonate cascade inhibition: Integration of autophagy, unfolded protein response and apoptosis focusing on Bcl2 family proteins. Biochim. Biophys. Acta Mol. Cell Res., 2014, 1843(7), 1259-1271. doi: 10.1016/j.bbamcr.2014.03.006 PMID: 24637330
- Ghavami, S.; Yeganeh, B.; Stelmack, G.L.; Kashani, H.H.; Sharma, P.; Cunnington, R.; Rattan, S.; Bathe, K.; Klonisch, T.; Dixon, I.M.C.; Freed, D.H.; Halayko, A.J. Apoptosis, autophagy and ER stress in mevalonate cascade inhibition-induced cell death of human atrial fibroblasts. Cell Death Dis., 2012, 3(6), e330. doi: 10.1038/cddis.2012.61 PMID: 22717585
- Scorrano, L.; Oakes, S.A.; Opferman, J.T.; Cheng, E.H.; Sorcinelli, M.D.; Pozzan, T.; Korsmeyer, S.J. BAX and BAK regulation of endoplasmic reticulum Ca2+: A control point for apoptosis. Science., 2003, 300(5616), 135-139. doi: 10.1126/science.1081208 PMID: 12624178
- Bultynck, G.; Kiviluoto, S.; Henke, N.; Ivanova, H.; Schneider, L.; Rybalchenko, V.; Luyten, T.; Nuyts, K.; De Borggraeve, W.; Bezprozvanny, I.; Parys, J.B.; De Smedt, H.; Missiaen, L.; Methner, A. The C terminus of Bax inhibitor-1 forms a Ca2+-permeable channel pore. J. Biol. Chem., 2012, 287(4), 2544-2557. doi: 10.1074/jbc.M111.275354 PMID: 22128171
- Varadarajan, S.; Bampton, E.T.W.; Smalley, J.L.; Tanaka, K.; Caves, R.E.; Butterworth, M.; Wei, J.; Pellecchia, M.; Mitcheson, J.; Gant, T.W.; Dinsdale, D.; Cohen, G.M. A novel cellular stress response characterised by a rapid reorganisation of membranes of the endoplasmic reticulum. Cell Death Differ., 2012, 19(12), 1896-1907. doi: 10.1038/cdd.2012.108 PMID: 22955944
- Ishikawa, T.; Watanabe, N.; Nagano, M.; Kawai-Yamada, M.; Lam, E. Bax inhibitor-1: A highly conserved endoplasmic reticulum-resident cell death suppressor. Cell Death Differ., 2011, 18(8), 1271-1278. doi: 10.1038/cdd.2011.59 PMID: 21597463
- Gaddam, D.; Stevens, N.; Hollien, J. Comparison of mRNA localization and regulation during endoplasmic reticulum stress in Drosophila cells. Mol. Biol. Cell, 2013, 24(1), 14-20. doi: 10.1091/mbc.e12-06-0491 PMID: 23135994
- Hollien, J.; Weissman, J.S. Decay of endoplasmic reticulum-localized mRNAs during the unfolded protein response. Science., 2006, 313(5783), 104-107. doi: 10.1126/science.1129631 PMID: 16825573
- Srinivasan, V.; Korhonen, L.; Lindholm, D. The unfolded protein response and autophagy as drug targets in neuropsychiatric disorders. Front. Cell. Neurosci., 2020, 14, 554548. doi: 10.3389/fncel.2020.554548 PMID: 33132844
- McGrath, E.; Logue, S.; Mnich, K.; Deegan, S.; Jäger, R.; Gorman, A.; Samali, A. The unfolded protein response in breast cancer. Cancers., 2018, 10(10), 344. doi: 10.3390/cancers10100344 PMID: 30248920
- Cnop, M.; Toivonen, S.; Igoillo-Esteve, M.; Salpea, P. Endoplasmic reticulum stress and eIF2α phosphorylation: The Achilles heel of pancreatic β cells. Mol. Metab., 2017, 6(9), 1024-1039. doi: 10.1016/j.molmet.2017.06.001 PMID: 28951826
- Okamura, K.; Kimata, Y.; Higashio, H.; Tsuru, A.; Kohno, K. Dissociation of Kar2p/BiP from an ER sensory molecule, Ire1p, triggers the unfolded protein response in yeast. Biochem. Biophys. Res. Commun., 2000, 279(2), 445-450. doi: 10.1006/bbrc.2000.3987 PMID: 11118306
- Amin-Wetzel, N.; Neidhardt, L.; Yan, Y.; Mayer, M.P.; Ron, D. Unstructured regions in IRE1α specify BiP-mediated destabilisation of the luminal domain dimer and repression of the UPR. eLife, 2019, 8, e50793. doi: 10.7554/eLife.50793 PMID: 31873072
- Wang, X.; Ron, D. Stress-induced phosphorylation and activation of the transcription factor CHOP (GADD153) by p38 MAP Kinase. Science, 1996, 272(5266), 1347-1349. doi: 10.1126/science.272.5266.1347 PMID: 8650547
- Kim, B.J.; Ryu, S.W.; Song, B.J. JNK- and p38 kinase-mediated phosphorylation of Bax leads to its activation and mitochondrial translocation and to apoptosis of human hepatoma HepG2 cells. J. Biol. Chem., 2006, 281(30), 21256-21265. doi: 10.1074/jbc.M510644200 PMID: 16709574
- Hetz, C.; Bernasconi, P.; Fisher, J.; Lee, A.H.; Bassik, M.C.; Antonsson, B.; Brandt, G.S.; Iwakoshi, N.N.; Schinzel, A.; Glimcher, L.H.; Korsmeyer, S.J. Proapoptotic BAX and BAK modulate the unfolded protein response by a direct interaction with IRE1alpha. Science., 2006, 312(5773), 572-576. doi: 10.1126/science.1123480 PMID: 16645094
- Rizzuto, R.; Pinton, P.; Carrington, W.; Fay, F.S.; Fogarty, K.E.; Lifshitz, L.M.; Tuft, R.A.; Pozzan, T. Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. Science., 1998, 280(5370), 1763-1766. doi: 10.1126/science.280.5370.1763 PMID: 9624056
- Roy, B.; Lee, A.S. The mammalian endoplasmic reticulum stress response element consists of an evolutionarily conserved tripartite structure and interacts with a novel stress-inducible complex. Nucleic Acids Res., 1999, 27(6), 1437-1443. doi: 10.1093/nar/27.6.1437 PMID: 10037803
- Sano, R.; Hou, Y.C.C.; Hedvat, M.; Correa, R.G.; Shu, C.W.; Krajewska, M.; Diaz, P.W.; Tamble, C.M.; Quarato, G.; Gottlieb, R.A.; Yamaguchi, M.; Nizet, V.; Dahl, R.; Thomas, D.D.; Tait, S.W.; Green, D.R.; Fisher, P.B.; Matsuzawa, S.I.; Reed, J.C. Endoplasmic reticulum protein BI-1 regulates Ca 2+ -mediated bioenergetics to promote autophagy. Genes Dev., 2012, 26(10), 1041-1054. doi: 10.1101/gad.184325.111 PMID: 22588718
- Cavener, D.R.; Gupta, S.; McGrath, B.C. PERK in beta cell biology and insulin biogenesis. Trends Endocrinol. Metab., 2010, 21(12), 714-721. doi: 10.1016/j.tem.2010.08.005 PMID: 20850340
- Delépine, M.; Nicolino, M.; Barrett, T.; Golamaully, M.; Mark Lathrop, G.; Julier, C. EIF2AK3, encoding translation initiation factor 2-α kinase 3, is mutated in patients with Wolcott-Rallison syndrome. Nat. Genet., 2000, 25(4), 406-409. doi: 10.1038/78085 PMID: 10932183
- Deng, X.; Xiao, L.; Lang, W.; Gao, F.; Ruvolo, P.; May, W.S., Jr Novel role for JNK as a stress-activated Bcl2 kinase. J. Biol. Chem., 2001, 276(26), 23681-23688. doi: 10.1074/jbc.M100279200 PMID: 11323415
- Wek, R.C.; Cavener, D.R. Translational control and the unfolded protein response. Antioxid. Redox Signal., 2007, 9(12), 2357-2372. doi: 10.1089/ars.2007.1764 PMID: 17760508
- Mahameed, M.; Wilhelm, T.; Darawshi, O.; Obiedat, A.; Tommy, W.S.; Chintha, C.; Schubert, T.; Samali, A.; Chevet, E.; Eriksson, L.A.; Huber, M.; Tirosh, B. The unfolded protein response modulators GSK2606414 and KIRA6 are potent KIT inhibitors. Cell Death Dis., 2019, 10(4), 300. doi: 10.1038/s41419-019-1523-3 PMID: 30931942
- Puthalakath, H.; OReilly, L.A.; Gunn, P.; Lee, L.; Kelly, P.N.; Huntington, N.D.; Hughes, P.D.; Michalak, E.M.; McKimm-Breschkin, J.; Motoyama, N.; Gotoh, T.; Akira, S.; Bouillet, P.; Strasser, A. ER stress triggers apoptosis by activating BH3-only protein Bim. Cell., 2007, 129(7), 1337-1349. doi: 10.1016/j.cell.2007.04.027 PMID: 17604722
- Li, G.; Mongillo, M.; Chin, K.T.; Harding, H.; Ron, D.; Marks, A.R.; Tabas, I. Role of ERO1-αmediated stimulation of inositol 1,4,5-triphosphate receptor activity in endoplasmic reticulum stressinduced apoptosis. J. Cell Biol., 2009, 186(6), 783-792. doi: 10.1083/jcb.200904060 PMID: 19752026
- Dai, X.; Yan, X.; Wintergerst, K.A.; Cai, L.; Keller, B.B.; Tan, Y. Nrf2: Redox and metabolic regulator of stem cell state and function. Trends Mol. Med., 2020, 26(2), 185-200. doi: 10.1016/j.molmed.2019.09.007 PMID: 31679988
- Oyadomari, S.; Mori, M. Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death Differ., 2004, 11(4), 381-389. doi: 10.1038/sj.cdd.4401373 PMID: 14685163
- Novoa, I.; Zeng, H.; Harding, H.P.; Ron, D. Feedback inhibition of the unfolded protein response by GADD34-mediated dephosphorylation of eIF2alpha. J. Cell Biol., 2001, 153(5), 1011-1022. doi: 10.1083/jcb.153.5.1011 PMID: 11381086
- McCullough, K.D.; Martindale, J.L.; Klotz, L.O.; Aw, T.Y.; Holbrook, N.J. Gadd153 sensitizes cells to endoplasmic reticulum stress by down-regulating Bcl2 and perturbing the cellular redox state. Mol. Cell. Biol., 2001, 21(4), 1249-1259. doi: 10.1128/MCB.21.4.1249-1259.2001 PMID: 11158311
- Rainbolt, T.K.; Saunders, J.M.; Wiseman, R.L. Stress-responsive regulation of mitochondria through the ER unfolded protein response. Trends Endocrinol. Metab., 2014, 25(10), 528-537. doi: 10.1016/j.tem.2014.06.007 PMID: 25048297
- Shutt, T.E.; McBride, H.M. Staying cool in difficult times: Mitochondrial dynamics, quality control and the stress response. Biochim. Biophys. Acta Mol. Cell Res., 2013, 1833(2), 417-424. doi: 10.1016/j.bbamcr.2012.05.024 PMID: 22683990
- Wai, T.; Langer, T. Mitochondrial dynamics and metabolic regulation. Trends Endocrinol. Metab., 2016, 27(2), 105-117. doi: 10.1016/j.tem.2015.12.001 PMID: 26754340
- Lebeau, J.; Saunders, J.M.; Moraes, V.W.R.; Madhavan, A.; Madrazo, N.; Anthony, M.C.; Wiseman, R.L. The PERK arm of the unfolded protein response regulates mitochondrial morphology during acute endoplasmic reticulum stress. Cell Rep., 2018, 22(11), 2827-2836. doi: 10.1016/j.celrep.2018.02.055 PMID: 29539413
- Logue, S.E.; McGrath, E.P.; Cleary, P.; Greene, S.; Mnich, K.; Almanza, A.; Chevet, E.; Dwyer, R.M.; Oommen, A.; Legembre, P.; Godey, F.; Madden, E.C.; Leuzzi, B.; Obacz, J.; Zeng, Q.; Patterson, J.B.; Jäger, R.; Gorman, A.M.; Samali, A. Inhibition of IRE1 RNase activity modulates the tumor cell secretome and enhances response to chemotherapy. Nat. Commun., 2018, 9(1), 3267. doi: 10.1038/s41467-018-05763-8 PMID: 30111846
- Almanza, A.; Carlesso, A.; Chintha, C.; Creedican, S.; Doultsinos, D.; Leuzzi, B.; Luís, A.; McCarthy, N.; Montibeller, L.; More, S.; Papaioannou, A.; Püschel, F.; Sassano, M.L.; Skoko, J.; Agostinis, P.; de Belleroche, J.; Eriksson, L.A.; Fulda, S.; Gorman, A.M.; Healy, S.; Kozlov, A.; Muñoz-Pinedo, C.; Rehm, M.; Chevet, E.; Samali, A. Endoplasmic reticulum stress signalling - from basic mechanisms to clinical applications. FEBS J., 2019, 286(2), 241-278. doi: 10.1111/febs.14608 PMID: 30027602
- Hombach-Klonisch, S.; Mehrpour, M.; Shojaei, S.; Harlos, C.; Pitz, M.; Hamai, A.; Siemianowicz, K.; Likus, W.; Wiechec, E.; Toyota, B.D.; Hoshyar, R.; Seyfoori, A.; Sepehri, Z.; Ande, S.R.; Khadem, F.; Akbari, M.; Gorman, A.M.; Samali, A.; Klonisch, T.; Ghavami, S. Glioblastoma and chemoresistance to alkylating agents: Involvement of apoptosis, autophagy, and unfolded protein response. Pharmacol. Ther., 2018, 184, 13-41. doi: 10.1016/j.pharmthera.2017.10.017 PMID: 29080702
- Szegezdi, E.; Logue, S.E.; Gorman, A.M.; Samali, A. Mediators of endoplasmic reticulum stress-induced apoptosis. EMBO Rep., 2006, 7(9), 880-885. doi: 10.1038/sj.embor.7400779 PMID: 16953201
- Shojaei, S.; Suresh, M.; Klionsky, D.J.; Labouta, H.I.; Ghavami, S. Autophagy and SARS-CoV-2 infection: A possible smart targeting of the autophagy pathway. Virulence, 2020, 11(1), 805-810. doi: 10.1080/21505594.2020.1780088 PMID: 32567972
- Sureda, A.; Alizadeh, J.; Nabavi, S.F.; Berindan-Neagoe, I.; Cismaru, C.A.; Jeandet, P.; Łos, M.J.; Clementi, E.; Nabavi, S.M.; Ghavami, S. Endoplasmic reticulum as a potential therapeutic target for covid-19 infection management? Eur. J. Pharmacol., 2020, 882, 173288. doi: 10.1016/j.ejphar.2020.173288 PMID: 32561291
- Shore, G.C.; Papa, F.R.; Oakes, S.A. Signaling cell death from the endoplasmic reticulum stress response. Curr. Opin. Cell Biol., 2011, 23(2), 143-149. doi: 10.1016/j.ceb.2010.11.003 PMID: 21146390
- Senft, D.; Ronai, Z.A. UPR, autophagy, and mitochondria crosstalk underlies the ER stress response. Trends Biochem. Sci., 2015, 40(3), 141-148. doi: 10.1016/j.tibs.2015.01.002 PMID: 25656104
- Bchir, W.; Maurin, A.C.; Carraro, V.; Averous, J.; Jousse, C.; Muranishi, Y.; Parry, L.; Stepien, G.; Fafournoux, P.; Bruhat, A. The eIF2α/ATF4 pathway is essential for stress-induced autophagy gene expression. Nucleic Acids Res., 2013, 41(16), 7683-7699. doi: 10.1093/nar/gkt563 PMID: 23804767
- Wei, Y.; Pattingre, S.; Sinha, S.; Bassik, M.; Levine, B. JNK1-mediated phosphorylation of Bcl-2 regulates starvation-induced autophagy. Mol. Cell, 2008, 30(6), 678-688. doi: 10.1016/j.molcel.2008.06.001 PMID: 18570871
- Haberzettl, P.; Hill, B.G. Oxidized lipids activate autophagy in a JNK-dependent manner by stimulating the endoplasmic reticulum stress response. Redox Biol., 2013, 1(1), 56-64. doi: 10.1016/j.redox.2012.10.003 PMID: 24024137
- Adolph, T.E.; Tomczak, M.F.; Niederreiter, L.; Ko, H.J.; Böck, J.; Martinez-Naves, E.; Glickman, J.N.; Tschurtschenthaler, M.; Hartwig, J.; Hosomi, S.; Flak, M.B.; Cusick, J.L.; Kohno, K.; Iwawaki, T.; Billmann-Born, S.; Raine, T.; Bharti, R.; Lucius, R.; Kweon, M.N.; Marciniak, S.J.; Choi, A.; Hagen, S.J.; Schreiber, S.; Rosenstiel, P.; Kaser, A.; Blumberg, R.S. Paneth cells as a site of origin for intestinal inflammation. Nature., 2013, 503(7475), 272-276. doi: 10.1038/nature12599 PMID: 24089213
- Mandic, A.; Hansson, J.; Linder, S.; Shoshan, M.C. Cisplatin induces endoplasmic reticulum stress and nucleus-independent apoptotic signaling. J. Biol. Chem., 2003, 278(11), 9100-9106. doi: 10.1074/jbc.M210284200 PMID: 12509415
- Van de Craen, M.; Vandenabeele, P.; Declercq, W.; Van den Brande, I.; Van Loo, G.; Molemans, F.; Schotte, P.; Van Criekinge, W.; Beyaert, R.; Fiers, W. Characterization of seven murine caspase family members. FEBS Lett., 1997, 403(1), 61-69. doi: 10.1016/S0014-5793(97)00026-4 PMID: 9038361
- Xie, Q.; Khaoustov, V.I.; Chung, C.C.; Sohn, J.; Krishnan, B.; Lewis, D.E.; Yoffe, B. Effect of tauroursodeoxycholic acid on endoplasmic reticulum stressinduced caspase-12 activation. Hepatology., 2002, 36(3), 592-601. doi: 10.1053/jhep.2002.35441 PMID: 12198651
- Morishima, N.; Nakanishi, K.; Tsuchiya, K.; Shibata, T.; Seiwa, E. Translocation of Bim to the endoplasmic reticulum (ER) mediates ER stress signaling for activation of caspase-12 during ER stress-induced apoptosis. J. Biol. Chem., 2004, 279(48), 50375-50381. doi: 10.1074/jbc.M408493200 PMID: 15452118
- Shojaei, S.; Koleini, N.; Samiei, E.; Aghaei, M.; Cole, L.K.; Alizadeh, J.; Islam, M.I.; Vosoughi, A.; Albokashy, M.; Butterfield, Y.; Marzban, H.; Xu, F.; Thliveris, J.; Kardami, E.; Hatch, G.M.; Eftekharpour, E.; Akbari, M.; Hombach-Klonisch, S.; Klonisch, T.; Ghavami, S. Simvastatin increases temozolomide-induced cell death by targeting the fusion of autophagosomes and lysosomes. FEBS J., 2020, 287(5), 1005-1034. doi: 10.1111/febs.15069 PMID: 31545550
- Kroemer, G.; Mariño, G.; Levine, B. Autophagy and the integrated stress response. Mol. Cell, 2010, 40(2), 280-293. doi: 10.1016/j.molcel.2010.09.023 PMID: 20965422
- Alizadeh, J.; Glogowska, A.; Thliveris, J.; Kalantari, F.; Shojaei, S.; Hombach-Klonisch, S.; Klonisch, T.; Ghavami, S. Autophagy modulates transforming growth factor beta 1 induced epithelial to mesenchymal transition in non-small cell lung cancer cells. Biochim. Biophys. Acta Mol. Cell Res., 2018, 1865(5), 749-768. doi: 10.1016/j.bbamcr.2018.02.007 PMID: 29481833
- Alizadeh, J.; Shojaei, S.; Sepanjnia, A.; Hashemi, M.; Eftekharpour, E.; Ghavami, S. Simultaneous detection of autophagy and epithelial to mesenchymal transition in the non-small cell lung cancer cells. Methods Mol. Biol., 2017, 1854, 87-103. doi: 10.1007/7651_2017_84 PMID: 29101677
- Morishima, N.; Nakanishi, K.; Takenouchi, H.; Shibata, T.; Yasuhiko, Y. An endoplasmic reticulum stress-specific caspase cascade in apoptosis. Cytochrome c-independent activation of caspase-9 by caspase-12. J. Biol. Chem., 2002, 277(37), 34287-34294. doi: 10.1074/jbc.M204973200 PMID: 12097332
- Hitomi, J.; Katayama, T.; Taniguchi, M.; Honda, A.; Imaizumi, K.; Tohyama, M. Apoptosis induced by endoplasmic reticulum stress depends on activation of caspase-3 via caspase-12. Neurosci. Lett., 2004, 357(2), 127-130. doi: 10.1016/j.neulet.2003.12.080 PMID: 15036591
- Sakurai, M.; Takahashi, G.; Abe, K.; Horinouchi, T.; Itoyama, Y.; Tabayashi, K. Endoplasmic reticulum stress induced in motor neurons by transient spinal cord ischemia in rabbits. J. Thorac. Cardiovasc. Surg., 2005, 130(3), 640-645. doi: 10.1016/j.jtcvs.2005.01.007 PMID: 16153907
- Tinhofer, I.; Anether, G.; Senfter, M.; Pfaller, K.; Bernhard, D.; Hara, M.; Greil, R. Stressful death of T-ALL tumor cells following treatment with the antitumor agent Tetrocarcin-A. FASEB J., 2002, 16(10), 1295-1297. doi: 10.1096/fj.02-0020fje PMID: 12060673
- Cullinan, S.B.; Diehl, J.A. Coordination of ER and oxidative stress signaling: The PERK/Nrf2 signaling pathway. Int. J. Biochem. Cell Biol., 2006, 38(3), 317-332. doi: 10.1016/j.biocel.2005.09.018 PMID: 16290097
- Belmont, P.J.; Chen, W.J.; Thuerauf, D.J.; Glembotski, C.C. Regulation of microRNA expression in the heart by the ATF6 branch of the ER stress response. J. Mol. Cell. Cardiol., 2012, 52(5), 1176-1182. doi: 10.1016/j.yjmcc.2012.01.017 PMID: 22326432
- Cullinan, S.B.; Diehl, J.A. PERK-dependent activation of Nrf2 contributes to redox homeostasis and cell survival following endoplasmic reticulum stress. J. Biol. Chem., 2004, 279(19), 20108-20117. doi: 10.1074/jbc.M314219200 PMID: 14978030
- Dhar, D.; Baglieri, J.; Kisseleva, T.; Brenner, D.A. Mechanisms of liver fibrosis and its role in liver cancer. Exp. Biol. Med., 2020, 245(2), 96-108. doi: 10.1177/1535370219898141 PMID: 31924111
- Toosi, A.E. Liver fibrosis: Causes and methods of assessment, a review. Rev. Roum. Med. Intern., 2015, 53(4), 304-314.
- Li, S.; Tan, H.Y.; Wang, N.; Zhang, Z.J.; Lao, L.; Wong, C.W.; Feng, Y. The role of oxidative stress and antioxidants in liver diseases. Int. J. Mol. Sci., 2015, 16(11), 26087-26124. doi: 10.3390/ijms161125942 PMID: 26540040
- Cederbaum, A.I.; Lu, Y.; Wu, D. Role of oxidative stress in alcohol-induced liver injury. Arch. Toxicol., 2009, 83(6), 519-548. doi: 10.1007/s00204-009-0432-0 PMID: 19448996
- Czaja, A.J. Hepatic inflammation and progressive liver fibrosis in chronic liver disease. World J. Gastroenterol., 2014, 20(10), 2515-2532. doi: 10.3748/wjg.v20.i10.2515 PMID: 24627588
- Aboutwerat, A.; Pemberton, P.W.; Smith, A.; Burrows, P.C.; McMahon, R.F.T.; Jain, S.K.; Warnes, T.W. Oxidant stress is a significant feature of primary biliary cirrhosis. Biochim. Biophys. Acta Mol. Basis Dis., 2003, 1637(2), 142-150. doi: 10.1016/S0925-4439(02)00225-9 PMID: 12633902
- Tiao, M.M.; Lin, T.K.; Wang, P.W.; Chen, J.B.; Liou, C.W. The role of mitochondria in cholestatic liver injury. Chang Gung Med. J., 2009, 32(4), 346-353. PMID: 19664341
- Novo, E.; Cannito, S.; Paternostro, C.; Bocca, C.; Miglietta, A.; Parola, M. Cellular and molecular mechanisms in liver fibrogenesis. Arch. Biochem. Biophys., 2014, 548, 20-37. doi: 10.1016/j.abb.2014.02.015 PMID: 24631571
- Parola, M.; Marra, F.; Pinzani, M. Myofibroblast like cells and liver fibrogenesis: Emerging concepts in a rapidly moving scenario. Mol. Aspects Med., 2008, 29(1-2), 58-66. doi: 10.1016/j.mam.2007.09.002 PMID: 18022682
- Friedman, S.L. Mechanisms of hepatic fibrogenesis. Gastroenterology, 2008, 134(6), 1655-1669. doi: 10.1053/j.gastro.2008.03.003 PMID: 18471545
- Czochra, P.; Klopcic, B.; Meyer, E.; Herkel, J.; Garcia-Lazaro, J.F.; Thieringer, F.; Schirmacher, P.; Biesterfeld, S.; Galle, P.R.; Lohse, A.W.; Kanzler, S. Liver fibrosis induced by hepatic overexpression of PDGF-B in transgenic mice. J. Hepatol., 2006, 45(3), 419-428. doi: 10.1016/j.jhep.2006.04.010 PMID: 16842882
- Jiang, J.X.; Török, N.J. Liver injury and the activation of the hepatic myofibroblasts. Curr. Pathobiol. Rep., 2013, 1(3), 215-223. doi: 10.1007/s40139-013-0019-6 PMID: 23977452
- Dorner, A.J.; Wasley, L.C.; Kaufman, R.J. Increased synthesis of secreted proteins induces expression of glucose-regulated proteins in butyrate-treated Chinese hamster ovary cells. J. Biol. Chem., 1989, 264(34), 20602-20607. doi: 10.1016/S0021-9258(19)47105-6 PMID: 2511206
- Hernández-Gea, V.; Hilscher, M.; Rozenfeld, R.; Lim, M.P.; Nieto, N.; Werner, S.; Devi, L.A.; Friedman, S.L. Endoplasmic reticulum stress induces fibrogenic activity in hepatic stellate cells through autophagy. J. Hepatol., 2013, 59(1), 98-104. doi: 10.1016/j.jhep.2013.02.016 PMID: 23485523
- Heindryckx, F.; Binet, F.; Ponticos, M.; Rombouts, K.; Lau, J.; Kreuger, J.; Gerwins, P. Endoplasmic reticulum stress enhances fibrosis through IRE 1α-mediated degradation of miR-150 and XBP -1 splicing. EMBO Mol. Med., 2016, 8(7), 729-744. doi: 10.15252/emmm.201505925 PMID: 27226027
- Kim, R.S.; Hasegawa, D.; Goossens, N.; Tsuchida, T.; Athwal, V.; Sun, X.; Robinson, C.L.; Bhattacharya, D.; Chou, H.I.; Zhang, D.Y.; Fuchs, B.C.; Lee, Y.; Hoshida, Y.; Friedman, S.L. The XBP1 arm of the unfolded protein response induces fibrogenic activity in hepatic stellate cells through autophagy. Sci. Rep., 2016, 6(1), 39342. doi: 10.1038/srep39342 PMID: 27996033
- Maiers, J.L.; Kostallari, E.; Mushref, M.; deAssuncao, T.M.; Li, H.; Jalan-Sakrikar, N.; Huebert, R.C.; Cao, S.; Malhi, H.; Shah, V.H. The unfolded protein response mediates fibrogenesis and collagen I secretion through regulating TANGO1 in mice. Hepatology, 2017, 65(3), 983-998. doi: 10.1002/hep.28921 PMID: 28039913
- Rutkowski, D.T.; Hegde, R.S. Regulation of basal cellular physiology by the homeostatic unfolded protein response. J. Cell Biol., 2010, 189(5), 783-794. doi: 10.1083/jcb.201003138 PMID: 20513765
- de Galarreta, M.R.; Navarro, A.; Ansorena, E.; Garzón, A.G.; Mòdol, T.; López-Zabalza, M.J.; Martínez-Irujo, J.J.; Iraburu, M.J. Unfolded protein response induced by Brefeldin A increases collagen type I levels in hepatic stellate cells through an IRE1α, p38 MAPK and Smad-dependent pathway. Biochim. Biophys. Acta Mol. Cell Res., 2016, 1863(8), 2115-2123. doi: 10.1016/j.bbamcr.2016.05.002 PMID: 27155082
- Wei, W.; Zhang, F.; Chen, H.; Tang, Y.; Xing, T.; Luo, Q.; Yu, L.; Du, J.; Shen, J.; Zhang, L. Toxoplasma gondii dense granule protein 15 induces apoptosis in choriocarcinoma JEG-3 cells through endoplasmic reticulum stress. Parasit. Vectors, 2018, 11(1), 251. doi: 10.1186/s13071-018-2835-3 PMID: 29665822
- Sato, H.; Shiba, Y.; Tsuchiya, Y.; Saito, M.; Kohno, K. 4µ8C inhibits insulin secretion independent of IRE1α RNase activity. Cell Struct. Funct., 2017, 42(1), 61-70. doi: 10.1247/csf.17002 PMID: 28321016
- Darling, N.J.; Cook, S.J. The role of MAPK signalling pathways in the response to endoplasmic reticulum stress. Biochim. Biophys. Acta Mol. Cell Res., 2014, 1843(10), 2150-2163. doi: 10.1016/j.bbamcr.2014.01.009 PMID: 24440275
- Huang, Y.; Li, X.; Wang, Y.; Wang, H.; Huang, C.; Li, J. Endoplasmic reticulum stress-induced hepatic stellate cell apoptosis through calcium-mediated JNK/P38 MAPK and Calpain/Caspase-12 pathways. Mol. Cell. Biochem., 2014, 394(1-2), 1-12. doi: 10.1007/s11010-014-2073-8 PMID: 24961950
- Zhao, G.; Hatting, M.; Nevzorova, Y.A.; Peng, J.; Hu, W.; Boekschoten, M.V.; Roskams, T.; Muller, M.; Gassler, N.; Liedtke, C.; Davis, R.J.; Cubero, F.J.; Trautwein, C. Jnk1 in murine hepatic stellate cells is a crucial mediator of liver fibrogenesis. Gut, 2014, 63(7), 1159-1172. doi: 10.1136/gutjnl-2013-305507 PMID: 24037431
- Shih, Y.C.; Chen, C.L.; Zhang, Y.; Mellor, R.L.; Kanter, E.M.; Fang, Y.; Wang, H.C.; Hung, C.T.; Nong, J.Y.; Chen, H.J.; Lee, T.H.; Tseng, Y.S.; Chen, C.N.; Wu, C.C.; Lin, S.L.; Yamada, K.A.; Nerbonne, J.M.; Yang, K.C. Endoplasmic reticulum protein TXNDC5 augments myocardial fibrosis by facilitating extracellular matrix protein folding and redox-sensitive cardiac fibroblast activation. Circ. Res., 2018, 122(8), 1052-1068. doi: 10.1161/CIRCRESAHA.117.312130 PMID: 29535165
- Groenendyk, J.; Lee, D.; Jung, J.; Dyck, J.R.B.; Lopaschuk, G.D.; Agellon, L.B.; Michalak, M. Inhibition of the unfolded protein response mechanism prevents cardiac fibrosis. PLoS One, 2016, 11(7), e0159682. doi: 10.1371/journal.pone.0159682 PMID: 27441395
- Wang, C.; Zhang, F.; Cao, Y.; Zhang, M.; Wang, A.; Xu, M.; Su, M.; Zhang, M.; Zhuge, Y. Etoposide induces apoptosis in activated human hepatic stellate cells via ER stress. Sci. Rep., 2016, 6(1), 34330. doi: 10.1038/srep34330 PMID: 27680712
- Li, Y.; Chen, Y.; Huang, H.; Shi, M.; Yang, W.; Kuang, J.; Yan, J. Autophagy mediated by endoplasmic reticulum stress enhances the caffeine-induced apoptosis of hepatic stellate cells. Int. J. Mol. Med., 2017, 40(5), 1405-1414. doi: 10.3892/ijmm.2017.3145 PMID: 28949381
- He, L.; Hou, X.; Fan, F.; Wu, H. Quercetin stimulates mitochondrial apoptosis dependent on activation of endoplasmic reticulum stress in hepatic stellate cells. Pharm. Biol., 2016, 54(12), 3237-3243. doi: 10.1080/13880209.2016.1223143 PMID: 27572285
- Tsubouchi, K.; Araya, J.; Minagawa, S.; Hara, H.; Ichikawa, A.; Saito, N.; Kadota, T.; Sato, N.; Yoshida, M.; Kurita, Y.; Kobayashi, K.; Ito, S.; Fujita, Y.; Utsumi, H.; Yanagisawa, H.; Hashimoto, M.; Wakui, H.; Yoshii, Y.; Ishikawa, T.; Numata, T.; Kaneko, Y.; Asano, H.; Yamashita, M.; Odaka, M.; Morikawa, T.; Nakayama, K.; Nakanishi, Y.; Kuwano, K. Azithromycin attenuates myofibroblast differentiation and lung fibrosis development through proteasomal degradation of NOX4. Autophagy., 2017, 13(8), 1420-1434. doi: 10.1080/15548627.2017.1328348 PMID: 28613983
- Kawamura, K.; Ichikado, K.; Yasuda, Y.; Anan, K.; Suga, M. Azithromycin for idiopathic acute exacerbation of idiopathic pulmonary fibrosis: a retrospective single-center study. BMC Pulm. Med., 2017, 17(1), 94. doi: 10.1186/s12890-017-0437-z PMID: 28629448
Supplementary files
