PI3K Signaling Pathways as a Molecular Target for Glioblastoma Multiforme


Cite item

Full Text

Abstract

Glioblastoma multiforme (GBM) is the most common type of cancer that affects the central nervous system (CNS). It currently accounts for about 2% of diagnosed malignant tumors worldwide, with 296,000 new cases reported per year. The first-choice treatment consists of surgical resection, radiotherapy, and adjuvant chemotherapy, which increases patients' survival by 15 months. New clinical and pre-clinical research aims to improve this prognosis by proposing the search for new drugs that effectively eliminate cancer cells, circumventing problems such as resistance to treatment. One of the promising therapeutic strategies in the treatment of GBM is the inhibition of the phosphatidylinositol 3-kinase (PI3K) pathway, which is closely related to the process of tumor carcinogenesis. This review sought to address the main scientific studies of synthetic or natural drug prototypes that target specific therapy co-directed via the PI3K pathway, against human glioblastoma.

About the authors

Andressa Letícia da Silva

Laboratory of Pharmacology and Immunity, Institute of Biological and Health Sciences, Federal University of Alagoas

Email: info@benthamscience.net

Thiago de Araújo

Laboratory of Pharmacology and Immunity, Institute of Biological and Health Sciences, Federal University of Alagoas

Email: info@benthamscience.net

Shakira de Albuquerque Ferreira

Laboratory of Pharmacology and Immunity, Institute of Biological and Health Sciences, Federal University of Alagoas

Email: info@benthamscience.net

Anderson Leite

Laboratory of Pharmacology and Immunity, Institute of Biological and Health Sciences, Federal University of Alagoas

Email: info@benthamscience.net

João Kaycke da Silva

Laboratory of Pharmacology and Immunity, Institute of Biological and Health Sciences, Federal University of Alagoas

Email: info@benthamscience.net

Lilyana Albuquerque

Laboratory of Pharmacology and Immunity, Institute of Biological and Health Sciences, Federal University of Alagoas

Email: info@benthamscience.net

Ana Rachel de Lima

Federal University of Alagoas, Federal University of Alagoas

Email: info@benthamscience.net

Herbert Charles Silva Barros

Municipal Secretary of Health of Maceio, Governo do estado de Alagoas

Email: info@benthamscience.net

Leandro Silva

Biological and Molecular Chemistry Research Group, Institute of Chemistry and Biotechnology, Federal University of Alagoa

Email: info@benthamscience.net

Edeildo da Silva-Júnior

Biological and Molecular Chemistry Research Group, Institute of Chemistry and Biotechnology, Federal University of Alagoas

Email: info@benthamscience.net

João de Araújo-Júnior

Laboratory of Medicinal Chemistry, Institute of Pharmaceutical Sciences, Federal University of Alagoas

Email: info@benthamscience.net

Vivaldo Neto

Paulo Niemeyer State Brain Institute, Study and Research Center, Brain Biomedicine Laboratory, Federal University of Rio de Janeiro

Email: info@benthamscience.net

Aline de Queiroz

Laboratory of Pharmacology and Immunity, Institute of Biological and Health Sciences, Federal University of Alagoas

Email: info@benthamscience.net

Magna Alexandre-Moreira

Laboratory of Pharmacology and Immunity, Institute of Biological and Health Sciences, Federal University of Alagoas

Author for correspondence.
Email: info@benthamscience.net

References

  1. Kontomanolis, E.N.; Koutras, A.; Syllaios, A.; Schizas, D.; Mastoraki, A.; Garmpis, N.; Diakosavvas, M.; Angelou, K.; Tsatsaris, G.; Pagkalos, A.; Ntounis, T.; Fasoulakis, Z. Role of oncogenes and tumor-suppressor genes in carcinogenesis: A review. Anticancer Res., 2020, 40(11), 6009-6015. doi: 10.21873/anticanres.14622 PMID: 33109539
  2. Anderson, N.M.; Simon, M.C. The tumor microenvironment. Curr. Biol., 2020, 30(16), R921-R925. doi: 10.1016/j.cub.2020.06.081 PMID: 32810447
  3. Merabishvili, V. Cancer Incidence in Five Continents Volume XI; Bray, F.; Colombet, M.; Mery, L.; Piñeros, M.; Znaor, A.; Zanetti, R.; Ferlay, J., Eds.; IARC Scientific Publication, 2021. (166.)
  4. Salimi, A.; Zali, A.; Seddighi, A.S.; Seddighi, A.; Meshkat, S.; Hosseini, M.; Nikouei, A.; Akbari, M.E. Descriptive epidemiology of brain and central nervous system tumours: Results from Iran national cancer registry, 2010-2014. J. Cancer Epidemiol., 2020, 2020, 1-10. doi: 10.1155/2020/3534641 PMID: 33014059
  5. Stewart, B.W. World Health Organization, For A, De M, Cancer L. World cancer report; Iarc Press: Lyon, 2014.
  6. Brain, central nervous system. Available from: https://gco.iarc.fr/today/data/factsheets/cancers/31-Brain-central-nervous-system-fact- sheet.pdf
  7. Louis, D.N.; Ohgaki, H.; Wiestler, O.D.; Cavenee, W.K.; Burger, P.C.; Jouvet, A.; Scheithauer, B.W.; Kleihues, P. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol., 2007, 114(2), 97-109. doi: 10.1007/s00401-007-0243-4 PMID: 17618441
  8. Thakkar, J.P.; Dolecek, T.A.; Horbinski, C.; Ostrom, Q.T.; Lightner, D.D.; Barnholtz-Sloan, J.S.; Villano, J.L. Epidemiologic and molecular prognostic review of glioblastoma. Cancer Epidemiol. Biomarkers Prev., 2014, 23(10), 1985-1996. doi: 10.1158/1055-9965.EPI-14-0275 PMID: 25053711
  9. Tan, A.C.; Ashley, D.M.; López, G.Y.; Malinzak, M.; Friedman, H.S.; Khasraw, M. Management of glioblastoma: State of the art and future directions. CA Cancer J. Clin., 2020, 70(4), 299-312. doi: 10.3322/caac.21613 PMID: 32478924
  10. Alexander, B.M.; Cloughesy, T.F. Adult Glioblastoma. J. Clin. Oncol., 2017, 35(21), 2402-2409. doi: 10.1200/JCO.2017.73.0119 PMID: 28640706
  11. DeCordova, S.; Shastri, A.; Tsolaki, A.G.; Yasmin, H.; Klein, L.; Singh, S.K.; Kishore, U. Molecular heterogeneity and immunosuppressive microenvironment in glioblastoma. Front. Immunol., 2020, 11, 1402. doi: 10.3389/fimmu.2020.01402 PMID: 32765498
  12. Ostrom, Q.T.; Gittleman, H.; Liao, P.; Vecchione-Koval, T.; Wolinsky, Y.; Kruchko, C.; Barnholtz-Sloan, J.S. CBTRUS statistical report: Primary brain and other central nervous system tumors diagnosed in the United States in 2010–2014. Neuro-oncol., 2017, 19(S5), v1-v88. doi: 10.1093/neuonc/nox158 PMID: 29117289
  13. Żukiel, R.; Piestrzeniewicz, R.; Nowak, S.; Jankowski, R.; Wieloch, M. Historia leczenia operacyjnego guzów mózgu. Neuroskop., 2004, 6, 9-19.
  14. Louis, D.N.; Perry, A.; Reifenberger, G.; von Deimling, A.; Figarella-Branger, D.; Cavenee, W.K.; Ohgaki, H.; Wiestler, O.D.; Kleihues, P.; Ellison, D.W. The 2016 World Health Organization classification of tumors of the central nervous system: A summary. Acta Neuropathol., 2016, 131(6), 803-820. doi: 10.1007/s00401-016-1545-1 PMID: 27157931
  15. Wen, P.Y.; Packer, R.J. The 2021 WHO classification of tumors of the central nervous system: Clinical implications. Neuro-oncol., 2021, 23(8), 1215-1217. doi: 10.1093/neuonc/noab120 PMID: 34185090
  16. Zhou, Y.S.; Wang, W.; Chen, N.; Wang, L.C.; Huang, J.B. Research progress of anti-glioma chemotherapeutic drugs (Review). Oncol. Rep., 2022, 47(5), 101. doi: 10.3892/or.2022.8312 PMID: 35362540
  17. Louis, D.N.; Perry, A.; Wesseling, P.; Brat, D.J.; Cree, I.A.; Figarella-Branger, D.; Hawkins, C.; Ng, H.K.; Pfister, S.M.; Reifenberger, G.; Soffietti, R.; von Deimling, A.; Ellison, D.W. The 2021 WHO classification of tumors of the central nervous system: A summary. Neuro-oncol., 2021, 23(8), 1231-1251. doi: 10.1093/neuonc/noab106 PMID: 34185076
  18. Cruz, J.V.R.; Batista, C.; Afonso, B.H.; Alexandre-Moreira, M.S.; Dubois, L.G.; Pontes, B.; Moura Neto, V.; Mendes, F.A. Obstacles to glioblastoma treatment two decades after temozolomide. Cancers., 2022, 14(13), 3203. doi: 10.3390/cancers14133203 PMID: 35804976
  19. Olar, A.; Wani, K.M.; Alfaro-Munoz, K.D.; Heathcock, L.E.; van Thuijl, H.F.; Gilbert, M.R.; Armstrong, T.S.; Sulman, E.P.; Cahill, D.P.; Vera-Bolanos, E.; Yuan, Y.; Reijneveld, J.C.; Ylstra, B.; Wesseling, P.; Aldape, K.D. IDH mutation status and role of WHO grade and mitotic index in overall survival in grade II–III diffuse gliomas. Acta Neuropathol., 2015, 129(4), 585-596. doi: 10.1007/s00401-015-1398-z PMID: 25701198
  20. Ohgaki, H.; Kleihues, P. The definition of primary and secondary glioblastoma. Clin. Cancer Res., 2013, 19(4), 764-772. doi: 10.1158/1078-0432.CCR-12-3002 PMID: 23209033
  21. Cancer biology: Molecular and genetic basis - Oncology for Medical Students. wiki.cancer.org.au
  22. Nayak, A.; Ralte, A.M.; Sharma, M.C.; Singh, V.P.; Mahapatra, A.K.; Mehta, V.S.; Sarkar, C. p53 protein alterations in adult astrocytic tumors and oligodendrogliomas. Neurol. India, 2004, 52(2), 228-232. PMID: 15269478
  23. Hanif, F.; Muzaffar, K.; Perveen, K.; Malhi, S.M.; Simjee, ShU. Glioblastoma multiforme: A review of its epidemiology and pathogenesis through clinical presentation and treatment. Asian Pac. J. Cancer Prev., 2017, 18(1), 3-9. PMID: 28239999
  24. Birbilis, T.A.; Matis, G.K.; Eleftheriadis, S.G.; Theodoropoulou, E.N.; Sivridis, E. Spinal metastasis of glioblastoma multiforme: An uncommon suspect? Spine., 2010, 35(7), E264-E269. doi: 10.1097/BRS.0b013e3181c11748 PMID: 20195200
  25. Lun, M.; Lok, E.; Gautam, S.; Wu, E.; Wong, E.T. The natural history of extracranial metastasis from glioblastoma multiforme. J. Neurooncol., 2011, 105(2), 261-273. doi: 10.1007/s11060-011-0575-8 PMID: 21512826
  26. Urbańska, K.; Sokołowska, J.; Szmidt, M.; Sysa, P. Review Glioblastoma multiforme – an overview. Contemp. Oncol., 2014, 5(5), 307-312. doi: 10.5114/wo.2014.40559 PMID: 25477751
  27. Lohmann, P.; Werner, J.M.; Shah, N.; Fink, G.; Langen, K.J.; Galldiks, N. Combined amino acid positron emission tomography and advanced magnetic resonance imaging in glioma patients. Cancers., 2019, 11(2), 153. doi: 10.3390/cancers11020153 PMID: 30699942
  28. Liu, S.; Shi, W.; Zhao, Q.; Zheng, Z.; Liu, Z.; Meng, L.; Dong, L.; Jiang, X. Progress and prospect in tumor treating fields treatment of glioblastoma. Biomed. Pharmacother., 2021, 141, 111810. doi: 10.1016/j.biopha.2021.111810 PMID: 34214730
  29. Katsetos, C.D.; Dráberová, E.; Legido, A.; Dumontet, C.; Dráber, P. Tubulin targets in the pathobiology and therapy of glioblastoma multiforme. I. class III β-tubulin. J. Cell. Physiol., 2009, 221(3), 505-513. doi: 10.1002/jcp.21870 PMID: 19650075
  30. Mehta, S.; Lo Cascio, C. Developmentally regulated signaling pathways in glioma invasion. Cell. Mol. Life Sci., 2018, 75(3), 385-402. doi: 10.1007/s00018-017-2608-8 PMID: 28821904
  31. Haumann, R.; Videira, J.C.; Kaspers, G.J.L.; van Vuurden, D.G.; Hulleman, E. Overview of current drug delivery methods across the blood–brain barrier for the treatment of primary brain tumors. CNS Drugs., 2020, 34(11), 1121-1131. doi: 10.1007/s40263-020-00766-w PMID: 32965590
  32. Spangle, J.M.; Roberts, T.M.; Zhao, J.J. The emerging role of PI3K/AKT-mediated epigenetic regulation in cancer. Biochim. Biophys. Acta Rev. Cancer, 2017, 1868(1), 123-131. doi: 10.1016/j.bbcan.2017.03.002 PMID: 28315368
  33. Kaplan, D.R.; Whitman, M.; Schaffhausen, B.; Pallas, D.C.; White, M.; Cantley, L.; Roberts, T.M. Common elements in growth factor stimulation and oncogenic transformation: 85 kd phosphoprotein and phosphatidylinositol kinase activity. Cell, 1987, 50(7), 1021-1029. doi: 10.1016/0092-8674(87)90168-1 PMID: 2441878
  34. Martini, M.; De Santis, M.C.; Braccini, L.; Gulluni, F.; Hirsch, E. PI3K/AKT signaling pathway and cancer: An updated review. Ann. Med., 2014, 46(6), 372-383. doi: 10.3109/07853890.2014.912836 PMID: 24897931
  35. El Sheikh, S.S.; Domin, J.; Tomtitchong, P.; Abel, P.; Stamp, G.; Lalani, E.N. Topographical expression of class IA and class II phosphoinositide 3-kinase enzymes in normal human tissues is consistent with a role in differentiation. BMC Clin. Pathol., 2003, 3(1), 4. doi: 10.1186/1472-6890-3-4 PMID: 14563213
  36. Vivanco, I.; Sawyers, C.L. The phosphatidylinositol 3-Kinase–AKT pathway in human cancer. Nat. Rev. Cancer, 2002, 2(7), 489-501. doi: 10.1038/nrc839 PMID: 12094235
  37. Alzahrani, A.S. PI3K/Akt/mTOR inhibitors in cancer: At the bench and bedside. Semin. Cancer Biol., 2019, 59, 125-132. doi: 10.1016/j.semcancer.2019.07.009 PMID: 31323288
  38. Hay, N.; Sonenberg, N. Upstream and downstream of mTOR. Genes Dev., 2004, 18(16), 1926-1945. doi: 10.1101/gad.1212704 PMID: 15314020
  39. Murugan, A.K. mTOR: Role in cancer, metastasis and drug resistance. Semin. Cancer Biol., 2019, 59, 92-111. doi: 10.1016/j.semcancer.2019.07.003 PMID: 31408724
  40. Liu, P.; Cheng, H.; Roberts, T.M.; Zhao, J.J. Targeting the phosphoinositide 3-kinase pathway in cancer. Nat. Rev. Drug Discov., 2009, 8(8), 627-644. doi: 10.1038/nrd2926 PMID: 19644473
  41. Noorolyai, S.; Shajari, N.; Baghbani, E.; Sadreddini, S.; Baradaran, B. The relation between PI3K/AKT signalling pathway and cancer. Gene, 2019, 698, 120-128. doi: 10.1016/j.gene.2019.02.076 PMID: 30849534
  42. Squarize, C.H.; Castilho, R.M.; Abrahao, A.C.; Molinolo, A.; Lingen, M.W.; Gutkind, J.S. PTEN deficiency contributes to the development and progression of head and neck cancer. Neoplasia., 2013, 15(5), 461-471. doi: 10.1593/neo.121024 PMID: 23633918
  43. Kurig, B.; Shymanets, A.; Bohnacker, T. Ras is an indispensable coregulator of the class I B phosphoinositide 3-kinase p87/p110γ. Proceedings of the National Academy of Sciences, 2009, pp. 20312-7.
  44. Mishra, R.; Patel, H.; Alanazi, S.; Kilroy, M.K.; Garrett, J.T. PI3K inhibitors in cancer: Clinical implications and adverse effects. Int. J. Mol. Sci., 2021, 22(7), 3464. doi: 10.3390/ijms22073464 PMID: 33801659
  45. Yoshioka, K. Class II phosphatidylinositol 3-kinase isoforms in vesicular trafficking. Biochem. Soc. Trans., 2021, 49(2), 893-901. doi: 10.1042/BST20200835 PMID: 33666217
  46. Merrill, N.M.; Schipper, J.L.; Karnes, J.B.; Kauffman, A.L.; Martin, K.R.; MacKeigan, J.P. PI3K- C2α knockdown decreases autophagy and maturation of endocytic vesicles. Donaldson JG, editor. PLOS ONE., 2017, 12(9), e0184909.
  47. Gulluni, F.; De Santis, M.C.; Margaria, J.P.; Martini, M.; Hirsch, E. Class II PI3K functions in cell biology and disease. Trends Cell Biol., 2019, 29(4), 339-359. doi: 10.1016/j.tcb.2019.01.001 PMID: 30691999
  48. Cisse, O.; Quraishi, M.; Gulluni, F.; Guffanti, F.; Mavrommati, I.; Suthanthirakumaran, M.; Oh, L.C.R.; Schlatter, J.N.; Sarvananthan, A.; Broggini, M.; Hirsch, E.; Falasca, M.; Maffucci, T. Downregulation of class II phosphoinositide 3-kinase PI3K-C2β delays cell division and potentiates the effect of docetaxel on cancer cell growth. J. Exp. Clin. Cancer Res., 2019, 38(1), 472. doi: 10.1186/s13046-019-1472-9 PMID: 31752944
  49. Brown, W.J.; DeWald, D.B.; Emr, S.D.; Plutner, H.; Balch, W.E. Role for phosphatidylinositol 3-kinase in the sorting and transport of newly synthesized lysosomal enzymes in mammalian cells. J. Cell Biol., 1995, 130(4), 781-796. doi: 10.1083/jcb.130.4.781 PMID: 7642697
  50. Ellis, H.; Ma, C.X. PI3K inhibitors in breast cancer therapy. Curr. Oncol. Rep., 2019, 21(12), 110. doi: 10.1007/s11912-019-0846-7 PMID: 31828441
  51. Fattahi, S.; Amjadi-Moheb, F.; Tabaripour, R.; Ashrafi, G.H.; Akhavan-Niaki, H. PI3K/AKT/mTOR signaling in gastric cancer: Epigenetics and beyond. Life Sci., 2020, 262, 118513. doi: 10.1016/j.lfs.2020.118513 PMID: 33011222
  52. Murugan, A.K. Special issue: PI3K/Akt signaling in human cancer. Semin. Cancer Biol., 2019, 59, 1-2. doi: 10.1016/j.semcancer.2019.10.022 PMID: 31689493
  53. Colardo, M.; Segatto, M.; Di Bartolomeo, S. Targeting RTK-PI3K-mTOR Axis in gliomas: An update. Int. J. Mol. Sci., 2021, 22(9), 4899. doi: 10.3390/ijms22094899 PMID: 34063168
  54. Bleeker, F.E.; Lamba, S.; Zanon, C.; Molenaar, R.J.; Hulsebos, T.J.M.; Troost, D.; van Tilborg, A.A.; Vandertop, W.P.; Leenstra, S.; van Noorden, C.J.F.; Bardelli, A. Mutational profiling of kinases in glioblastoma. BMC Cancer, 2014, 14(1), 718. doi: 10.1186/1471-2407-14-718 PMID: 25256166
  55. Langhans, J.; Schneele, L.; Trenkler, N.; von Bandemer, H.; Nonnenmacher, L.; Karpel-Massler, G.; Siegelin, M.D.; Zhou, S.; Halatsch, M.E.; Debatin, K.M.; Westhoff, M.A. The effects of PI3K-mediated signalling on glioblastoma cell behaviour. Oncogenesis, 2017, 6(11), 398. doi: 10.1038/s41389-017-0004-8 PMID: 29184057
  56. Zhang, Y.; Dube, C.; Gibert, M., Jr; Cruickshanks, N.; Wang, B.; Coughlan, M.; Yang, Y.; Setiady, I.; Deveau, C.; Saoud, K.; Grello, C.; Oxford, M.; Yuan, F.; Abounader, R. The p53 pathway in glioblastoma. Cancers., 2018, 10(9), 297. doi: 10.3390/cancers10090297 PMID: 30200436
  57. Cantley, L.C. The phosphoinositide 3-kinase pathway. Science, 2002, 296(5573), 1655-1657. doi: 10.1126/science.296.5573.1655 PMID: 12040186
  58. Westhoff, M.A.; Karpel-Massler, G.; Brühl, O.; Enzenmüller, S.; La Ferla-Brühl, K.; Siegelin, M.D.; Nonnenmacher, L.; Debatin, K.M. A critical evaluation of PI3K inhibition in glioblastoma and neuroblastoma therapy. Mol. Cell. Ther., 2014, 2(1), 32. doi: 10.1186/2052-8426-2-32 PMID: 26056598
  59. Shahcheraghi, S.H.; Tchokonte-Nana, V.; Lotfi, M.; Lotfi, M.; Ghorbani, A.; Sadeghnia, H.R. Wnt/beta-catenin and PI3K/Akt/mTOR signaling pathways in glioblastoma: Two main targets for drug design: A review. Curr. Pharm. Des., 2020, 26(15), 1729-1741. doi: 10.2174/1381612826666200131100630 PMID: 32003685
  60. Petővári, G.; Hujber, Z.; Krencz, I.; Dankó, T.; Nagy, N.; Tóth, F.; Raffay, R.; Mészáros, K.; Rajnai, H.; Vetlényi, E.; Takács-Vellai, K.; Jeney, A.; Sebestyén, A. Targeting cellular metabolism using rapamycin and/or doxycycline enhances anti-tumour effects in human glioma cells. Cancer Cell Int., 2018, 18(1), 211. doi: 10.1186/s12935-018-0710-0 PMID: 30574020
  61. Chen, Z.X.; Wallis, K.; Fell, S.M.; Sobrado, V.R.; Hemmer, M.C.; Ramsköld, D.; Hellman, U.; Sandberg, R.; Kenchappa, R.S.; Martinson, T.; Johnsen, J.I.; Kogner, P.; Schlisio, S. RNA helicase A is a downstream mediator of KIF1Bβ tumor-suppressor function in neuroblastoma. Cancer Discov., 2014, 4(4), 434-451. doi: 10.1158/2159-8290.CD-13-0362 PMID: 24469107
  62. Ströbele, S.; Schneider, M.; Schneele, L.; Siegelin, M.D.; Nonnenmacher, L.; Zhou, S. A potential role for the inhibition of PI3K signaling in glioblastoma therapy. Castresana JS, editor. PLOS ONE., 2015, 10(6), e0131670.
  63. Felsberg, J.; Hentschel, B.; Kaulich, K.; Gramatzki, D.; Zacher, A.; Malzkorn, B.; Kamp, M.; Sabel, M.; Simon, M.; Westphal, M.; Schackert, G.; Tonn, J.C.; Pietsch, T.; von Deimling, A.; Loeffler, M.; Reifenberger, G.; Weller, M. Epidermal growth factor receptor variant III (EGFRvIII) positivity in EGFR -amplified glioblastomas: Prognostic role and comparison between primary and recurrent tumors. Clin. Cancer Res., 2017, 23(22), 6846-6855. doi: 10.1158/1078-0432.CCR-17-0890 PMID: 28855349
  64. Xie, S.; Ni, J.; McFaline-Figueroa, J.R.; Wang, Y.; Bronson, R.T.; Ligon, K.L.; Wen, P.Y.; Roberts, T.M.; Zhao, J.J. Divergent roles of PI3K isoforms in PTEN-deficient glioblastomas. Cell Rep., 2020, 32(13), 108196. doi: 10.1016/j.celrep.2020.108196 PMID: 32997991
  65. Wang, H.; Xu, T.; Jiang, Y.; Xu, H.; Yan, Y.; Fu, D.; Chen, J. The challenges and the promise of molecular targeted therapy in malignant gliomas. Neoplasia, 2015, 17(3), 239-255. doi: 10.1016/j.neo.2015.02.002 PMID: 25810009
  66. Le Rhun, E.; Preusser, M.; Roth, P.; Reardon, D.A.; van den Bent, M.; Wen, P.; Reifenberger, G.; Weller, M. Molecular targeted therapy of glioblastoma. Cancer Treat. Rev., 2019, 80, 101896. doi: 10.1016/j.ctrv.2019.101896 PMID: 31541850
  67. Ou, A.; Yung, W.K.A.; Majd, N. Molecular mechanisms of treatment resistance in glioblastoma. Int. J. Mol. Sci., 2020, 22(1), 351. doi: 10.3390/ijms22010351 PMID: 33396284
  68. Li, X.; Wu, C.; Chen, N.; Gu, H.; Yen, A.; Cao, L.; Wang, E.; Wang, L. PI3K/Akt/mTOR signaling pathway and targeted therapy for glioblastoma. Oncotarget., 2016, 7(22), 33440-33450. doi: 10.18632/oncotarget.7961 PMID: 26967052
  69. Yang, J.; Nie, J.; Ma, X.; Wei, Y.; Peng, Y.; Wei, X. Targeting PI3K in cancer: Mechanisms and advances in clinical trials. Mol. Cancer., 2019, 18(1), 26. doi: 10.1186/s12943-019-0954-x PMID: 30782187
  70. Sami, A.; Karsy, M. Targeting the PI3K/AKT/mTOR signaling pathway in glioblastoma: novel therapeutic agents and advances in understanding. Tumour Biol., 2013, 34(4), 1991-2002. doi: 10.1007/s13277-013-0800-5 PMID: 23625692
  71. Shergalis, A.; Bankhead, A.; Luesakul, U.; Muangsin, N.; Neamati, N. Current challenges and opportunities in treating glioblastoma. Pharmacol Rev., 2018, 70(3), 412-445. doi: 10.1124/pr.117.014944
  72. Hughes, J.P.; Rees, S.; Kalindjian, S.B.; Philpott, K.L. Principles of early drug discovery. Br. J. Pharmacol., 2011, 162(6), 1239-1249. doi: 10.1111/j.1476-5381.2010.01127.x PMID: 21091654
  73. Ediriweera, M.K.; Tennekoon, K.H.; Samarakoon, S.R. In vitro assays and techniques utilized in anticancer drug discovery. J. Appl. Toxicol., 2019, 39(1), 38-71. doi: 10.1002/jat.3658 PMID: 30073673
  74. Kotecki, N.; Kindt, N.; Krayem, M.; Awada, A. New horizons in early drugs development in solid cancers. Curr. Opin. Oncol., 2021, 33(5), 513-519. doi: 10.1097/CCO.0000000000000766 PMID: 34310410
  75. Atanasov, A.G.; Waltenberger, B.; Pferschy-Wenzig, E.M.; Linder, T.; Wawrosch, C.; Uhrin, P.; Temml, V.; Wang, L.; Schwaiger, S.; Heiss, E.H.; Rollinger, J.M.; Schuster, D.; Breuss, J.M.; Bochkov, V.; Mihovilovic, M.D.; Kopp, B.; Bauer, R.; Dirsch, V.M.; Stuppner, H. Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnol. Adv., 2015, 33(8), 1582-1614. doi: 10.1016/j.biotechadv.2015.08.001 PMID: 26281720
  76. Yao, W.; Gong, H.; Mei, H.; Shi, L.; Yu, J.; Hu, Y. Taxifolin targets PI3K and mTOR and inhibits glioblastoma multiforme. J. Oncol., 2021, 20(2021), 1-12.
  77. Thuan, N.H.; Shrestha, A.; Trung, N.T.; Tatipamula, V.B.; Van Cuong, D.; Canh, N.X.; Van Giang, N.; Kim, T.S.; Sohng, J.K.; Dhakal, D. Advances in biochemistry and the biotechnological production of taxifolin and its derivatives. Biotechnol. Appl. Biochem., 2022, 69(2), 848-861. doi: 10.1002/bab.2156 PMID: 33797804
  78. Das, A.; Baidya, R.; Chakraborty, T.; Samanta, A.K.; Roy, S. Pharmacological basis and new insights of taxifolin: A comprehensive review. Biomed. Pharmacother., 2021, 142, 112004. doi: 10.1016/j.biopha.2021.112004 PMID: 34388527
  79. Xie, J.; Pang, Y.; Wu, X. Taxifolin suppresses the malignant progression of gastric cancer by regulating the AhR/CYP1A1 signaling pathway. Int. J. Mol. Med., 2021, 48(5), 197. doi: 10.3892/ijmm.2021.5030 PMID: 34490474
  80. Wang, R.; Zhu, X.; Wang, Q.; Li, X.; Wang, E.; Zhao, Q.; Wang, Q.; Cao, H. The anti-tumor effect of taxifolin on lung cancer via suppressing stemness and epithelial-mesenchymal transition in vitro and oncogenesis in nude mice. Ann. Transl. Med., 2020, 8(9), 590-0. doi: 10.21037/atm-20-3329 PMID: 32566617
  81. Butt, S.S.; Khan, K.; Badshah, Y.; Rafiq, M.; Shabbir, M. Evaluation of pro-apoptotic potential of taxifolin against liver cancer. PeerJ, 2021, 9, e11276. doi: 10.7717/peerj.11276 PMID: 34113483
  82. Li, J.; Hu, L.; Zhou, T.; Gong, X.; Jiang, R.; Li, H.; Kuang, G.; Wan, J.; Li, H. Taxifolin inhibits breast cancer cells proliferation, migration and invasion by promoting mesenchymal to epithelial transition via β-catenin signaling. Life Sci., 2019, 232, 116617. doi: 10.1016/j.lfs.2019.116617 PMID: 31260685
  83. Su, R.Y.; Hsueh, S.C.; Chen, C.Y.; Hsu, M.J.; Lu, H.F.; Peng, S.F.; Chen, P.Y.; Lien, J.C.; Chen, Y.L.; Chueh, F.S.; Chung, J.G.; Yeh, M.Y.; Huang, Y.P. Demethoxycurcumin suppresses proliferation, migration, and Invasion of Human Brain Glioblastoma Multiforme GBM 8401 Cells via PI3K/Akt Pathway. Anticancer Res., 2021, 41(4), 1859-1870. doi: 10.21873/anticanres.14952 PMID: 33813391
  84. Han, G.; Bi, R.; Le, Q.; Zhao, L.L.; Dong, Y.; Lin, Q.H. Study on effect of demethoxycurcumin in Curcuma long on stability of curcumin. Zhong Yao Cai, 2008, 31(4), 592-594. PMID: 18661836
  85. Hatamipour, M.; Ramezani, M.; Tabassi, S.A.S.; Johnston, T.P.; Ramezani, M.; Sahebkar, A. Demethoxycurcumin: A naturally occurring curcumin analogue with antitumor properties. J. Cell. Physiol., 2018, 233(12), 9247-9260. doi: 10.1002/jcp.27029 PMID: 30076727
  86. Hoxhaj, G.; Manning, B.D. The PI3K–AKT network at the interface of oncogenic signalling and cancer metabolism. Nat. Rev. Cancer, 2020, 20(2), 74-88. doi: 10.1038/s41568-019-0216-7 PMID: 31686003
  87. Jiang, H.; Shang, X.; Wu, H.; Gautam, S.C.; Al-Holou, S.; Li, C.; Kuo, J.; Zhang, L.; Chopp, M. Resveratrol downregulates PI3K/Akt/mTOR signaling pathways in human U251 glioma cells. J. Exp. Ther. Oncol., 2009, 8(1), 25-33. PMID: 19827268
  88. Clark, P.A.; Bhattacharya, S.; Elmayan, A.; Darjatmoko, S.R.; Thuro, B.A.; Yan, M.B.; van Ginkel, P.R.; Polans, A.S.; Kuo, J.S. Resveratrol targeting of AKT and p53 in glioblastoma and glioblastoma stem-like cells to suppress growth and infiltration. J. Neurosurg., 2017, 126(5), 1448-1460. doi: 10.3171/2016.1.JNS152077 PMID: 27419830
  89. Debinski, W.; Tatter, S.B. Convection-enhanced delivery for the treatment of brain tumors. Expert Rev. Neurother., 2009, 9(10), 1519-1527. doi: 10.1586/ern.09.99 PMID: 19831841
  90. Florean, C.; Dicato, M.; Diederich, M. Immune-modulating and anti-inflammatory marine compounds against cancer. Semin. Cancer Biol., 2022, 80, 58-72. doi: 10.1016/j.semcancer.2020.02.008 PMID: 32070764
  91. Yao, Y.; Sun, S.; Cao, M.; Mao, M.; He, J.; Gai, Q.; Qin, Y.; Yao, X.; Lu, H.; Chen, F.; Wang, W.; Luo, M.; Zhang, H.; Huang, H.; Ju, J.; Bian, X.W.; Wang, Y. Grincamycin B functions as a potent inhibitor for glioblastoma stem cell via targeting RHOA and PI3K/AKT. ACS Chem. Neurosci., 2020, 11(15), 2256-2265. doi: 10.1021/acschemneuro.0c00206 PMID: 32584547
  92. Wang, Z.; Li, Z.; Zhao, W.; Huang, H.; Wang, J.; Zhang, H.; Lu, J.; Wang, R.; Li, W.; Cheng, Z.; Xu, W.; Di Zhu; Zhou, L.; Jiang, W.; Yu, L.; Liu, J.; Luo, C.; Zhu, H.; Dan Ye; Pan, W.; Ju, J.; Dang, Y. Identification and characterization of isocitrate dehydrogenase 1 (IDH1) as a functional target of marine natural product grincamycin B. Acta Pharmacol. Sin., 2021, 42(5), 801-813. doi: 10.1038/s41401-020-0491-6 PMID: 32796956
  93. Calvert, A.E.; Chalastanis, A.; Wu, Y.; Hurley, L.A.; Kouri, F.M.; Bi, Y.; Kachman, M.; May, J.L.; Bartom, E.; Hua, Y.; Mishra, R.K.; Schiltz, G.E.; Dubrovskyi, O.; Mazar, A.P.; Peter, M.E.; Zheng, H.; James, C.D.; Burant, C.F.; Chandel, N.S.; Davuluri, R.V.; Horbinski, C.; Stegh, A.H. Cancer-associated IDH1 promotes growth and resistance to targeted therapies in the absence of mutation. Cell Rep., 2017, 19(9), 1858-1873. doi: 10.1016/j.celrep.2017.05.014 PMID: 28564604
  94. Pan, L.; Chai, H.; Kinghorn, A.D. The continuing search for antitumor agents from higher plants. Phytochem. Lett., 2010, 3(1), 1-8. doi: 10.1016/j.phytol.2009.11.005 PMID: 20228943
  95. Gairola, K.; Gururani, S.; Bahuguna, A.; Garia, V.; Pujari, R.; Dubey, S.K. Natural products targeting cancer stem cells: Implications for cancer chemoprevention and therapeutics. J. Food Biochem., 2021, 45(7), e13772. doi: 10.1111/jfbc.13772 PMID: 34028051
  96. Lathia, J.D.; Mack, S.C.; Mulkearns-Hubert, E.E.; Valentim, C.L.L.; Rich, J.N. Cancer stem cells in glioblastoma. Genes Dev., 2015, 29(12), 1203-1217. doi: 10.1101/gad.261982.115 PMID: 26109046
  97. Biserova, K.; Jakovlevs, A.; Uljanovs, R.; Strumfa, I. Cancer stem cells: Significance in origin, pathogenesis and treatment of glioblastoma. Cells, 2021, 10(3), 621. doi: 10.3390/cells10030621 PMID: 33799798
  98. Sonabend, A.M.; Carminucci, A.S.; Amendolara, B.; Bansal, M.; Leung, R.; Lei, L.; Realubit, R.; Li, H.; Karan, C.; Yun, J.; Showers, C.; Rothcock, R.; O, J.; Califano, A.; Canoll, P.; Bruce, J.N. Convection-enhanced delivery of etoposide is effective against murine proneural glioblastoma. Neuro-oncol., 2014, 16(9), 1210-1219. doi: 10.1093/neuonc/nou026 PMID: 24637229
  99. Wang, Z.; Liang, P.; He, X.; Wu, B.; Liu, Q.; Xu, Z.; Wu, H.; Liu, Z.; Qian, Y.; Wang, S.; Zhu, R. Etoposide loaded layered double hydroxide nanoparticles reversing chemoresistance and eradicating human glioma stem cells in vitro and in vivo. Nanoscale, 2018, 10(27), 13106-13121. doi: 10.1039/C8NR02708K PMID: 29961791
  100. Needle, M.N.; Molloy, P.T.; Geyer, J.R.; Herman-Liu, A.; Belasco, J.B.; Goldwein, J.W.; Sutton, L.; Phillips, P.C. Phase II study of daily oral etoposide in children with recurrent brain tumors and other solid tumors. Med. Pediatr. Oncol., 1997, 29(1), 28-32. doi: 10.1002/(SICI)1096-911X(199707)29:13.0.CO;2-U PMID: 9142202
  101. Gimple, R.C.; Bhargava, S.; Dixit, D.; Rich, J.N. Glioblastoma stem cells: Lessons from the tumor hierarchy in a lethal cancer. Genes Dev., 2019, 33(11-12), 591-609. doi: 10.1101/gad.324301.119 PMID: 31160393
  102. Wang, J.B.; Pan, H.X.; Tang, G.L. Production of doramectin by rational engineering of the avermectin biosynthetic pathway. Bioorg. Med. Chem. Lett., 2011, 21(11), 3320-3323. doi: 10.1016/j.bmcl.2011.04.008 PMID: 21514826
  103. Gao, A.; Wang, X.; Xiang, W.; Liang, H.; Gao, J.; Yan, Y. Reversal of P-glycoprotein-mediated multidrug resistance in vitro by doramectin and nemadectin. J. Pharm. Pharmacol., 2010, 62(3), 393-399. doi: 10.1211/jpp.62.03.0016 PMID: 20487225
  104. Chen, C.; Liang, H.; Qin, R.; Li, X.; Wang, L.; Du, S.; Chen, Z.; Meng, X.; Lv, Z.; Wang, Q.; Meng, J.; Gao, A. Doramectin inhibits glioblastoma cell survival via regulation of autophagy in vitro and in vivo. Int. J. Oncol., 2022, 60(3), 29. doi: 10.3892/ijo.2022.5319 PMID: 35137919
  105. Wang, J.; Liu, X.; Hong, Y.; Wang, S.; Chen, P.; Gu, A.; Guo, X.; Zhao, P. Ibrutinib, a Bruton’s tyrosine kinase inhibitor, exhibits antitumoral activity and induces autophagy in glioblastoma. J. Exp. Clin. Cancer Res., 2017, 36(1), 96. doi: 10.1186/s13046-017-0549-6 PMID: 28716053
  106. Nadeem Abbas, M.; Kausar, S.; Wang, F.; Zhao, Y.; Cui, H. Advances in targeting the epidermal growth factor receptor pathway by synthetic products and its regulation by epigenetic modulators as a therapy for glioblastoma. Cells., 2019, 8(4), 350. doi: 10.3390/cells8040350 PMID: 31013819
  107. Charmsaz, S.; Prencipe, M.; Kiely, M.; Pidgeon, G.; Collins, D. Innovative technologies changing cancer treatment. Cancers., 2018, 10(6), 208. doi: 10.3390/cancers10060208 PMID: 29921753
  108. Bittlinger, M.; Bicer, S.; Peppercorn, J.; Kimmelman, J. Ethical considerations for phase I trials in oncology. J. Clin. Oncol., 2022, 40(30), 3474-3488. doi: 10.1200/JCO.21.02125 PMID: 35275736
  109. Minneci, P.C.; Deans, K.J. Clinical trials. Semin. Pediatr. Surg., 2018, 27(6), 332-337. doi: 10.1053/j.sempedsurg.2018.10.003 PMID: 30473036
  110. Mokhtari, R.B.; Homayouni, T.S.; Baluch, N.; Morgatskaya, E.; Kumar, S.; Das, B.; Yeger, H. Combination therapy in combating cancer. Oncotarget., 2017, 8(23), 38022-38043. doi: 10.18632/oncotarget.16723 PMID: 28410237
  111. Lah, T.T.; Novak, M.; Pena Almidon, M.A.; Marinelli, O.; Žvar Baškovič, B.; Majc, B.; Mlinar, M.; Bošnjak, R.; Breznik, B.; Zomer, R.; Nabissi, M. Cannabigerol is a potential therapeutic agent in a novel combined therapy for glioblastoma. Cells, 2021, 10(2), 340. doi: 10.3390/cells10020340 PMID: 33562819
  112. Ghosh, D.; Nandi, S.; Bhattacharjee, S. Combination therapy to checkmate Glioblastoma: Clinical challenges and advances. Clin. Transl. Med., 2018, 7(1), 33. doi: 10.1186/s40169-018-0211-8 PMID: 30327965
  113. Yang, J.; Shi, Z.; Liu, R.; Wu, Y.; Zhang, X. Combined-therapeutic strategies synergistically potentiate glioblastoma multiforme treatment via nanotechnology. Theranostics., 2020, 10(7), 3223-3239. doi: 10.7150/thno.40298 PMID: 32194864
  114. Speranza, M.C.; Nowicki, M.O.; Behera, P.; Cho, C.F.; Chiocca, E.A.; Lawler, S.E. BKM-120 (Buparlisib): A Phosphatidyl- inositol-3 kinase inhibitor with anti-invasive properties in glioblastoma. Sci. Rep., 2016, 6(1), 20189. doi: 10.1038/srep20189 PMID: 26846842
  115. Chakravarti, A.; Zhai, G.; Suzuki, Y.; Sarkesh, S.; Black, P.M.; Muzikansky, A.; Loeffler, J.S. The prognostic significance of phosphatidylinositol 3-kinase pathway activation in human gliomas. J. Clin. Oncol., 2004, 22(10), 1926-1933. doi: 10.1200/JCO.2004.07.193 PMID: 15143086
  116. Wachsberger, P.R.; Lawrence, Y.R.; Liu, Y.; Rice, B.; Feo, N.; Leiby, B.; Dicker, A.P. Hsp90 inhibition enhances PI-3 kinase inhibition and radiosensitivity in glioblastoma. J. Cancer Res. Clin. Oncol., 2014, 140(4), 573-582. doi: 10.1007/s00432-014-1594-6 PMID: 24500492
  117. Hainsworth, J.D.; Becker, K.P.; Mekhail, T.; Chowdhary, S.A.; Eakle, J.F.; Wright, D.; Langdon, R.M.; Yost, K.J.; Padula, G.D.A.; West-Osterfield, K.; Scarberry, M.; Shaifer, C.A.; Shastry, M.; Burris, H.A., III; Shih, K. Phase I/II study of bevacizumab with BKM120, an oral PI3K inhibitor, in patients with refractory solid tumors (phase I) and relapsed/refractory glioblastoma (phase II). J. Neurooncol., 2019, 144(2), 303-311. doi: 10.1007/s11060-019-03227-7 PMID: 31392595
  118. Wen, P.Y.; Rodon, J.A.; Mason, W.; Beck, J.T.; DeGroot, J.; Donnet, V.; Mills, D.; El-Hashimy, M.; Rosenthal, M. Phase I, open-label, multicentre study of buparlisib in combination with temozolomide or with concomitant radiation therapy and temozolomide in patients with newly diagnosed glioblastoma. ESMO Open, 2020, 5(4), e000673. doi: 10.1136/esmoopen-2020-000673 PMID: 32661186
  119. Heffron, T.P.; Ndubaku, C.O.; Salphati, L.; Alicke, B.; Cheong, J.; Drobnick, J.; Edgar, K.; Gould, S.E.; Lee, L.B.; Lesnick, J.D.; Lewis, C.; Nonomiya, J.; Pang, J.; Plise, E.G.; Sideris, S.; Wallin, J.; Wang, L.; Zhang, X.; Olivero, A.G. Discovery of clinical development candidate GDC-0084, a brain penetrant inhibitor of PI3K and mTOR. ACS Med. Chem. Lett., 2016, 7(4), 351-356. doi: 10.1021/acsmedchemlett.6b00005 PMID: 27096040
  120. Salphati, L.; Alicke, B.; Heffron, T.P.; Shahidi-Latham, S.; Nishimura, M.; Cao, T.; Carano, R.A.; Cheong, J.; Greve, J.; Koeppen, H.; Lau, S.; Lee, L.B.; Nannini-Pepe, M.; Pang, J.; Plise, E.G.; Quiason, C.; Rangell, L.; Zhang, X.; Gould, S.E.; Phillips, H.S.; Olivero, A.G. Brain distribution and efficacy of the brain penetrant PI3K inhibitor GDC-0084 in orthotopic mouse models of human glioblastoma. Drug Metab. Dispos., 2016, 44(12), 1881-1889. doi: 10.1124/dmd.116.071423 PMID: 27638506
  121. Wen, P.Y.; De Groot, J.F.; Battiste, J.D.; Goldlust, S.A.; Garner, J.S.; Simpson, J.A.; Kijlstra, J.; Olivero, A.; Cloughesy, T.F. Escalation portion of phase II study to evaluate the safety, pharmacokinetics, and clinical activity of the PI3K/mTOR inhibitor paxalisib (GDC-0084) in glioblastoma (GBM) with unmethylated O6-methylguanine-methyltransferase (MGMT) promotor status. J. Clin. Oncol., 2020, 38(S15), 2550-0. doi: 10.1200/JCO.2020.38.15_suppl.2550
  122. Przystal, J.M.; Cianciolo Cosentino, C.; Yadavilli, S.; Zhang, J.; Laternser, S.; Bonner, E.R.; Prasad, R.; Dawood, A.A.; Lobeto, N.; Chin Chong, W.; Biery, M.C.; Myers, C.; Olson, J.M.; Panditharatna, E.; Kritzer, B.; Mourabit, S.; Vitanza, N.A.; Filbin, M.G.; de Iuliis, G.N.; Dun, M.D.; Koschmann, C.; Cain, J.E.; Grotzer, M.A.; Waszak, S.M.; Mueller, S.; Nazarian, J. Imipridones affect tumor bioenergetics and promote cell lineage differentiation in diffuse midline gliomas. Neuro-oncol., 2022, 24(9), 1438-1451. doi: 10.1093/neuonc/noac041 PMID: 35157764
  123. Chan, H.Y.; Choi, J.; Jackson, C.; Lim, M. Combination immunotherapy strategies for glioblastoma. J. Neurooncol., 2021, 151(3), 375-391. doi: 10.1007/s11060-020-03481-0 PMID: 33611705
  124. Hörnschemeyer, J.; Kirschstein, T.; Reichart, G.; Sasse, C.; Venus, J.; Einsle, A.; Porath, K.; Linnebacher, M.; Köhling, R.; Lange, F. Studies on biological and molecular effects of small-molecule kinase inhibitors on human glioblastoma cells and organotypic brain slices. Life., 2022, 12(8), 1258. doi: 10.3390/life12081258 PMID: 36013437
  125. Sweeney, C.; Bracarda, S.; Sternberg, C.N.; Chi, K.N.; Olmos, D.; Sandhu, S.; Massard, C.; Matsubara, N.; Alekseev, B.; Parnis, F.; Atduev, V.; Buchschacher, G.L., Jr; Gafanov, R.; Corrales, L.; Borre, M.; Stroyakovskiy, D.; Alves, G.V.; Bournakis, E.; Puente, J.; Harle-Yge, M.L.; Gallo, J.; Chen, G.; Hanover, J.; Wongchenko, M.J.; Garcia, J.; de Bono, J.S. Ipatasertib plus abiraterone and prednisolone in metastatic castration-resistant prostate cancer (IPATential150): A multicentre, randomised, double-blind, phase 3 trial. Lancet., 2021, 398(10295), 131-142. doi: 10.1016/S0140-6736(21)00580-8 PMID: 34246347
  126. Dent, R.; Oliveira, M.; Isakoff, S.J.; Im, S.A.; Espié, M.; Blau, S.; Tan, A.R.; Saura, C.; Wongchenko, M.J.; Xu, N.; Bradley, D.; Reilly, S.J.; Mani, A.; Kim, S.B.; Lee, K.S.; Sohn, J.H.; Kim, J.H.; Seo, J.H.; Kim, J.S.; Park, S.; Velez, M.; Dakhil, S.; Hurvitz, S.; Valero, V.; Vidal, G.; Figlin, R.; Allison, M.A.K.; Chan, D.; Cobleigh, M.; Hansen, V.; Iannotti, N.; Lawler, W.; Salkini, M.; Seigel, L.; Romieu, G.; Debled, M.; Levy, C.; Hardy-Bessard, A.; Guiu, S.; Estevez, L.G.; Villanueva, R.; Martin, A.G.; Rovira, P.S.; Montaño, A.; Plaza, M.I.C.; Saenz, J.A.G.; Garau, I.; Bermejo, B.; Alonso, E.V.; Wang, H-C.; Huang, C-S.; Chen, S-C.; Chen, Y-H.; Tseng, L-M.; Wong, A.; Ang, C.S.P.; De Laurentiis, M.; Conte, P.F.; De Braud, F.; Montemurro, F.; Gianni, L.; Dirix, L. Final results of the double-blind placebo-controlled randomized phase 2 LOTUS trial of first-line ipatasertib plus paclitaxel for inoperable locally advanced/metastatic triple-negative breast cancer. Breast Cancer Res. Treat., 2021, 189(2), 377-386. doi: 10.1007/s10549-021-06143-5 PMID: 34264439
  127. Kaley, T.J.; Panageas, K.S.; Pentsova, E.I.; Mellinghoff, I.K.; Nolan, C.; Gavrilovic, I.; DeAngelis, L.M.; Abrey, L.E.; Holland, E.C.; Omuro, A.; Lacouture, M.E.; Ludwig, E.; Lassman, A.B. Phase I clinical trial of temsirolimus and perifosine for recurrent glioblastoma. Ann. Clin. Transl. Neurol., 2020, 7(4), 429-436. doi: 10.1002/acn3.51009 PMID: 32293798
  128. Galanis, E.; Buckner, J.C.; Maurer, M.J.; Kreisberg, J.I.; Ballman, K.; Boni, J.; Peralba, J.M.; Jenkins, R.B.; Dakhil, S.R.; Morton, R.F.; Jaeckle, K.A.; Scheithauer, B.W.; Dancey, J.; Hidalgo, M.; Walsh, D.J. Phase II trial of temsirolimus (CCI-779) in recurrent glioblastoma multiforme: A North Central Cancer Treatment Group Study. J. Clin. Oncol., 2005, 23(23), 5294-5304. doi: 10.1200/JCO.2005.23.622 PMID: 15998902
  129. Almeida Pachioni, J.D.; Magalhães, J.G.; Cardoso Lima, E.J.; Moura Bueno, L.D.; Barbosa, J.F.; Malta de Sá, M.; Rangel-Yagui, C.O. Alkylphospholipids - a promising class of chemotherapeutic agents with a broad pharmacological spectrum. J. Pharm. Pharm. Sci., 2013, 16(5), 742-759. doi: 10.18433/J3CW23 PMID: 24393556
  130. Pitter, K.L.; Galbán, C.J.; Galbán, S.; Saeed-Tehrani, O.; Li, F.; Charles, N. Perifosine and CCI 779 co-operate to induce cell death and decrease proliferation in PTEN-Intact and PTEN-Deficient PDGF-Driven Murine Glioblastoma. PLoS ONE., 2011, 6(1), e14545.
  131. Kaley, T.J.; Panageas, K.S.; Mellinghoff, I.K.; Nolan, C.; Gavrilovic, I.T.; DeAngelis, L.M.; Abrey, L.E.; Holland, E.C.; Lassman, A.B. Phase II trial of an AKT inhibitor (perifosine) for recurrent glioblastoma. J. Neurooncol., 2019, 144(2), 403-407. doi: 10.1007/s11060-019-03243-7 PMID: 31325145
  132. Chinnaiyan, P.; Won, M.; Wen, P.Y.; Rojiani, A.M.; Wendland, M.; Dipetrillo, T.A.; Corn, B.W.; Mehta, M.P. RTOG 0913: A phase 1 study of daily everolimus (RAD001) in combination with radiation therapy and temozolomide in patients with newly diagnosed glioblastoma. Int. J. Radiat. Oncol. Biol. Phys., 2013, 86(5), 880-884. doi: 10.1016/j.ijrobp.2013.04.036 PMID: 23725999
  133. Chinnaiyan, P.; Won, M.; Wen, P.Y.; Rojiani, A.M.; Werner-Wasik, M.; Shih, H.A.; Ashby, L.S.; Michael Yu, H.H.; Stieber, V.W.; Malone, S.C.; Fiveash, J.B.; Mohile, N.A.; Ahluwalia, M.S.; Wendland, M.M.; Stella, P.J.; Kee, A.Y.; Mehta, M.P. A randomized phase II study of everolimus in combination with chemoradiation in newly diagnosed glioblastoma: Results of NRG Oncology RTOG 0913. Neuro-oncol., 2018, 20(5), 666-673. doi: 10.1093/neuonc/nox209 PMID: 29126203
  134. O’Reilly, K.E.; Rojo, F.; She, Q.B.; Solit, D.; Mills, G.B.; Smith, D.; Lane, H.; Hofmann, F.; Hicklin, D.J.; Ludwig, D.L.; Baselga, J.; Rosen, N. mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. Cancer Res., 2006, 66(3), 1500-1508. doi: 10.1158/0008-5472.CAN-05-2925 PMID: 16452206
  135. Luchman, H.A.; Stechishin, O.D.M.; Nguyen, S.A.; Lun, X.Q.; Cairncross, J.G.; Weiss, S. Dual mTORC1/2 blockade inhibits glioblastoma brain tumor initiating cells in vitro and in vivo and synergizes with temozolomide to increase orthotopic xenograft survival. Clin. Cancer Res., 2014, 20(22), 5756-5767. doi: 10.1158/1078-0432.CCR-13-3389 PMID: 25316808
  136. Lapointe, S.; Mason, W.; MacNeil, M.; Harlos, C.; Tsang, R.; Sederias, J.; Luchman, H.A.; Weiss, S.; Rossiter, J.P.; Tu, D.; Seymour, L.; Smoragiewicz, M. A phase I study of vistusertib (dual mTORC1/2 inhibitor) in patients with previously treated glioblastoma multiforme: A CCTG study. Invest. New Drugs, 2020, 38(4), 1137-1144. doi: 10.1007/s10637-019-00875-4 PMID: 31707687
  137. Osuka, S.; Van Meir, E.G. Overcoming therapeutic resistance in glioblastoma: the way forward. J. Clin. Invest., 2017, 127(2), 415-426. doi: 10.1172/JCI89587 PMID: 28145904
  138. Arrillaga-Romany, I.; Chi, A.S.; Allen, J.E.; Oster, W.; Wen, P.Y.; Batchelor, T.T. A phase 2 study of the first imipridone ONC201, a selective DRD2 antagonist for oncology, administered every three weeks in recurrent glioblastoma. Oncotarget, 2017, 8(45), 79298-79304. doi: 10.18632/oncotarget.17837 PMID: 29108308
  139. Mecca, C; Giambanco, I; Donato, R; Arcuri, C. Targeting mTOR in glioblastoma: Rationale and preclinical/clinical evidence. Dis Markers, 2018, 2018, 9230479.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers