Industrial and Pharmaceutical Applications of Microbial Diversity of Hypersaline Ecology from Lonar Soda Crater


Cite item

Full Text

Abstract

The unidentified geochemical and physiochemical characteristics of Soda Lakes across the globe make it a novel reservoir and bring attention to scientific civic for its conceivable industrial and pharmaceutical applications. In India, in the Maharashtra state, Lonar Lake is a naturally created Soda Lake by a meteorite impact. Phylogenetic data from this lake explored a diverse array of microorganisms like haloalkaliphilic bacteria and Archaea. Previously reported studies postulated the major microbial communities present in this lake ecosystem are Proteobacteria, Actinobacteria, Firmicutes, and Cyanobacteria. Furthermore, it also contains Bacteroidetes, Nitrospirae, and Verrucomicrobia. This lake is also rich in phytoplankton, with the predominant presence of the Spirulina plantensis. Unique microbial strains from Lonar Lake ecosystems have fascinated consideration as a source of biological molecules with medicinal, industrial, and biotechnological potential. Recent literature revealed the isolation of antibioticproducing bacteria and alkaline proteases-producing alkaliphilic bacterium, as well as novel species of rare methylotrophs, other bacterial strains involved in producing vital enzymes, and unique actinomycetes are also reported. It indicates that the novel bacterial assemblage not reached hitherto may exist in this modified and unique ecology. This comprehensive review provides information about microbial diversity and its industrial and pharmaceutical interests that exist in Lonar Lake, which could be the future source of bioactive enzymes, biosurfactants, and biofuel and also useful in bioremediation. Furthermore, the novel species of microorganisms isolated from Lonar Lake have applications in the biosynthesis of medicines like antibiotics, antivirals, antifungals, anti-inflammatory agents, and precursors for synthesising valuable products. Data consolidated in the present review will cater to the needs of emerging industrial sectors for their commercial and therapeutic applications.

About the authors

Pradip Bawane

Department of Pharmacognosy, SVKM's NMIMS, Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management

Author for correspondence.
Email: info@benthamscience.net

Shirish Deshpande

Department of Pharmaceutical Chemistry, SVKM's NMIMS, School of Pharmacy & Technology Management

Email: info@benthamscience.net

Santosh Yele

Department of Pharmacognosy, SVKM's NMIMS, School of Pharmacy & Technology Management

Email: info@benthamscience.net

References

  1. Fredriksson, K.; Dube, A.; Milton, D.J. Balasundaram, MS Lonar Lake, India: An impact crater in basalt. Science, 1973, 180, 862-864.
  2. Maloof, A.C.; Stewart, S.T.; Weiss, B.P.; Soule, S.A.; Swanson-Hysell, N.L.; Louzada, K.L. Geology of lonar crater, India. Bulletin, 2010, 122, 109-126.
  3. Jourdan, F.; Moynier, F.; Koeberl, C.; Eroglu, S. 40Ar/39Ar age of the Lonar crater and consequence for the geochronology of planetary impacts. Geology, 2011, 39(7), 671-674. doi: 10.1130/G31888.1
  4. Nayak, V.K. Glassy objects (impactite glasses?) a possible new evidence for meteoritic origin of the Lonar Crater, Maharashtra State, India. Earth Planet. Sci. Lett., 1972, 14(1), 1-6. doi: 10.1016/0012-821X(72)90070-2
  5. Anil Kumar, P.; Srinivas, T.N.R.; Madhu, S.; Sravan, R.; Singh, S.; Naqvi, S.W.A.; Mayilraj, S.; Shivaji, S. Cecembia lonarensis gen. nov., sp. nov., a haloalkalitolerant bacterium of the family Cyclobacteriaceae, isolated from a haloalkaline lake and emended descriptions of the genera Indibacter, Nitritalea and Belliella. Int. J. Syst. Evol. Microbiol., 2012, 62(Pt_9), 2252-2258. doi: 10.1099/ijs.0.038604-0 PMID: 22081718
  6. Anil Kumar, P.; Srinivas, T.N.R.; Madhu, S.; Manorama, R.; Shivaji, S. Indibacter alkaliphilus gen. nov., sp. nov., an alkaliphilic bacterium isolated from a haloalkaline lake. Int. J. Syst. Evol. Microbiol., 2010, 60(4), 721-726. doi: 10.1099/ijs.0.014076-0 PMID: 20371870
  7. Antony, C.P.; Kumaresan, D.; Ferrando, L.; Boden, R.; Moussard, H.; Scavino, A.F.; Shouche, Y.S.; Murrell, J.C. Active methylotrophs in the sediments of Lonar Lake, a saline and alkaline ecosystem formed by meteor impact. ISME J., 2010, 4(11), 1470-1480. doi: 10.1038/ismej.2010.70 PMID: 20555363
  8. Antony, C.P.; Shimpi, G.G.; Cockell, C.S.; Patole, M.S.; Shouche, Y.S. Molecular characterization of prokaryotic communities associated with Lonar Crater basalts. Geomicrobiol. J., 2014, 31(6), 519-528. doi: 10.1080/01490451.2013.849314
  9. Antony, C.P.; Murrell, J.C.; Shouche, Y.S. Molecular diversity of methanogens and identification of Methanolobus sp. as active methylotrophic Archaea in Lonar crater lake sediments. FEMS Microbiol. Ecol., 2012, 81(1), 43-51. doi: 10.1111/j.1574-6941.2011.01274.x PMID: 22150151
  10. Srinivas, A.; Rahul, K.; Sasikala, C.; Subhash, Y.; Ramaprasad, E.V.V.; Ramana, C.V. Georgenia satyanarayanai sp. nov., an alkaliphilic and thermotolerant amylase-producing actinobacterium isolated from a soda lake. Int. J. Syst. Evol. Microbiol., 2012, 62(Pt_10), 2405-2409. doi: 10.1099/ijs.0.036210-0 PMID: 22140168
  11. Zavarzin, G.A.; Zhilina, T.N.; Kevbrin, V.V. Alkaliphilic microbial community and its functional diversity. Mикpoбиoлoгия, 1999, 68, 579-599.
  12. Joshi, A.; Thite, S.; Lodha, T.; Joseph, N.; Mengade, P. Genomic insights of an alkaliphilic bacterium Halalkalibacter alkaliphilus sp. nov. isolated from an Indian Soda Lake. Antonie van Leeuwenhoek, 2023, 116(5), 435-445. doi: 10.1007/s10482-023-01816-1 PMID: 36811745
  13. Surakasi, V.P.; Antony, C.P.; Sharma, S.; Patole, M.S.; Shouche, Y.S. Temporal bacterial diversity and detection of putative methanotrophs in surface mats of Lonar crater lake. J. Basic Microbiol., 2010, 50(5), 465-474. doi: 10.1002/jobm.201000001 PMID: 20586073
  14. Wani, A.A.; Surakasi, V.P.; Siddharth, J.; Raghavan, R.G.; Patole, M.S.; Ranade, D.; Shouche, Y.S. Molecular analyses of microbial diversity associated with the Lonar soda lake in India: An impact crater in a basalt area. Res. Microbiol., 2006, 157(10), 928-937. doi: 10.1016/j.resmic.2006.08.005 PMID: 17070674
  15. Chakraborty, J.; Rajput, V.; Sapkale, V.; Kamble, S.; Dharne, M. Spatio-temporal resolution of taxonomic and functional microbiome of Lonar soda lake of India reveals metabolic potential for bioremediation. Chemosphere, 2021, 264(Pt 2), 128574. doi: 10.1016/j.chemosphere.2020.128574 PMID: 33059288
  16. Paul, D.; Kumbhare, S.V.; Mhatre, S.S.; Chowdhury, S.P.; Shetty, S.A.; Marathe, N.P.; Bhute, S.; Shouche, Y.S. Exploration of microbial diversity and community structure of Lonar Lake: the only hypersaline meteorite crater lake within basalt rock. Front. Microbiol., 2016, 6, 1553. doi: 10.3389/fmicb.2015.01553 PMID: 26834712
  17. Shang, Y.; Wu, X.; Wang, X.; Wei, Q.; Ma, S.; Sun, G.; Zhang, H.; Wang, L.; Dou, H.; Zhang, H. Factors affecting seasonal variation of microbial community structure in Hulun Lake, China. Sci. Total Environ., 2022, 805, 150294. doi: 10.1016/j.scitotenv.2021.150294 PMID: 34536882
  18. Satpathy, K.K.; Mohanty, A.K.; Natesan, U.; Prasad, M.V.R.; Sarkar, S.K. Seasonal variation in physicochemical properties of coastal waters of Kalpakkam, east coast of India with special emphasis on nutrients. Environ. Monit. Assess., 2010, 164(1-4), 153-171. doi: 10.1007/s10661-009-0882-0 PMID: 19404759
  19. Maldhure, A.; Rodge, A.; Kothe, A.; Nagarnaik, P.; Khadse, G.; Bafana, A.; Kumar, M.; Labhasetwar, P. Identification of environmental stress parameters to study the natural colour change of water in highly saline inland Crater Lake at Lonar, India. Environ. Monit. Assess., 2023, 195(4), 524. doi: 10.1007/s10661-023-11068-1 PMID: 36995487
  20. Bhattacharjee, R.; Choubey, A.; Das, N.; Ohri, A.; Gaur, S. Detecting the carotenoid pigmentation due to haloarchaea microbes in the lonar lake, maharashtra, india using sentinel-2 images. Photonirvachak, 2021, 49(2), 305-316. doi: 10.1007/s12524-020-01219-z
  21. Junare, N.; Garode, A.M. Bacteriological and physico-chemical analysis of lonar lake water-a unique hypervelocity nature impact crater in basaltic rock in the world; IJSRST, 2018.
  22. Khobragade, K.S.; Pawar, V.B. Physico Chemical analysis of Lonar Lake with reference to Bacteriological Study. Int J Mod Sci Eng Technol, 2016, 3, 15-22.
  23. Martins, R.; Davids, W.; Al-Soud, W.; Levander, F.; Rådström, P.; Hatti-Kaul, R. Starch-hydrolyzing bacteria from Ethiopian soda lakes. Extremophiles, 2001, 5(2), 135-144. doi: 10.1007/s007920100183 PMID: 11354457
  24. Gessesse, A.; Gashe, B.A. Production of alkaline xylanase by an alkaliphilic Bacillus sp. isolated from an alkalinesoda lake. J. Appl. Microbiol., 1997, 83(4), 402-406. doi: 10.1046/j.1365-2672.1997.00242.x
  25. Haile, G.; Gessesse, A. Properties of alkaline protease C45 produced by alkaliphilic Bacillus Sp. isolated from Chitu, Ethiopian Soda Lake. J. Biotechnol. Biomater., 2012, 2(3), 136. doi: 10.4172/2155-952X.1000136
  26. Gosavi, S.M.; Phuge, S.K. First report on microplastics contamination in a meteorite impact Crater Lake from India. Environ. Sci. Pollut. Res. Int., 2023, 30(23), 64755-64770. doi: 10.1007/s11356-023-27074-2 PMID: 37079229
  27. Gaikwad, R.W.; Sasane, V.V. Assessment of ground water quality in and around Lonar lake and possible water treatment. Int. J. Environ. Sci., 2013, 3, 1263-1270.
  28. Yannawar, V.B.; Bhosle, A.B. Cultural Eutrophication of Lonar Lake, Maharashtra, India. Int. J. Innov. Appl. Stud., 2013, 3, 504-510.
  29. Duckworth, A.W.; Grant, W.D.; Jones, B.E.; Steenbergen, R. Phylogenetic diversity of soda lake alkaliphiles. FEMS Microbiol. Ecol., 1996, 19(3), 181-191. doi: 10.1111/j.1574-6941.1996.tb00211.x
  30. Vargas, V.A.; Delgado, O.D.; Hatti-Kaul, R.; Mattiasson, B. Lipase-producing microorganisms from a Kenyan alkaline soda lake. Biotechnol. Lett., 2004, 26(2), 81-86. doi: 10.1023/B:BILE.0000012898.50608.12 PMID: 15000472
  31. Sieber, J.R.; McInerney, M.J.; Gunsalus, R.P. Genomic insights into syntrophy: the paradigm for anaerobic metabolic cooperation. Annu. Rev. Microbiol., 2012, 66(1), 429-452. doi: 10.1146/annurev-micro-090110-102844 PMID: 22803797
  32. Kalwasińska, A.; Felföldi, T.; Szabó, A.; Deja-Sikora, E.; Kosobucki, P.; Walczak, M. Microbial communities associated with the anthropogenic, highly alkaline environment of a saline soda lime, Poland. Antonie van Leeuwenhoek, 2017, 110(7), 945-962. doi: 10.1007/s10482-017-0866-y PMID: 28382378
  33. Davies, J. Specialized microbial metabolites: Functions and origins. J. Antibiot., 2013, 66(7), 361-364. doi: 10.1038/ja.2013.61 PMID: 23756686
  34. Jadhav Raju, D. Modified silicified ecology at crate n.d.,
  35. Shwarup Mahto, S.; Kushwaha, A.P. An assessment of inter-seasonal surface water level fluctuation of Lonar Crater lake, Maharashtra, India Using multi-temporal Satellite dataset. AJRS, 2018, 6(1), 6-14. doi: 10.11648/j.ajrs.20180601.12
  36. Deshmukh, K.B.; Pathak, A.P.; Karuppayil, M.S. Bacterial diversity of lonar soda lake of India. Indian J. Microbiol., 2011, 51(1), 107-111. doi: 10.1007/s12088-011-0159-5 PMID: 22282637
  37. Sorokin, D.Y.; Kuenen, J.G.; Muyzer, G. The microbial sulfur cycle at extremely haloalkaline conditions of soda lakes. Front. Microbiol., 2011, 2, 44. doi: 10.3389/fmicb.2011.00044 PMID: 21747784
  38. Tambekar, D.H.; Pawar, A.L.; Dudhane, M.N. Lonar Lake water: Past and present. Nature. Environ Pollut Technol, 2010, 9, 217-221.
  39. Oremland, R.S.; Stolz, J.F.; Hollibaugh, J.T. The microbial arsenic cycle in Mono Lake, California. FEMS Microbiol. Ecol., 2004, 48(1), 15-27. doi: 10.1016/j.femsec.2003.12.016 PMID: 19712427
  40. Joshi, A.A.; Kanekar, P.P.; Kelkar, A.S.; Shouche, Y.S.; Vani, A.A.; Borgave, S.B.; Sarnaik, S.S. Cultivable bacterial diversity of alkaline Lonar lake, India. Microb. Ecol., 2008, 55(2), 163-172. doi: 10.1007/s00248-007-9264-8 PMID: 17604989
  41. Sorokin, D.Y.; Foti, M.; Pinkart, H.C.; Muyzer, G. Sulfur-oxidizing bacteria in Soap Lake (Washington State), a meromictic, haloalkaline lake with an unprecedented high sulfide content. Appl. Environ. Microbiol., 2007, 73(2), 451-455. doi: 10.1128/AEM.02087-06 PMID: 17114324
  42. Guan, T.W.; Lin, Y.J.; Ou, M.Y.; Chen, K.B. Isolation and diversity of sediment bacteria in the hypersaline aiding lake, China. PLoS One, 2020, 15(7), e0236006. doi: 10.1371/journal.pone.0236006 PMID: 32649724
  43. Anil Kumar, P.; Srinivas, T.N.R.; Pavan Kumar, P.; Madhu, S.; Shivaji, S. Nitritalea halalkaliphila gen. nov., sp. nov., an alkaliphilic bacterium of the family ‘Cyclobacteriaceae’, phylum Bacteroidetes. Int. J. Syst. Evol. Microbiol., 2010, 60(10), 2320-2325. doi: 10.1099/ijs.0.020230-0 PMID: 19933591
  44. Kumar, S.; Karan, R.; Kapoor, S.; Singh, S.P.; Khare, S.K. Screening and isolation of halophilic bacteria producing industrially important enzymes. Braz. J. Microbiol., 2012, 43(4), 1595-1603. doi: 10.1590/S1517-83822012000400044 PMID: 24031991
  45. Basak, P.; Majumder, N.S.; Nag, S.; Bhattacharyya, A.; Roy, D.; Chakraborty, A.; SenGupta, S.; Roy, A.; Mukherjee, A.; Pattanayak, R.; Ghosh, A.; Chattopadhyay, D.; Bhattacharyya, M. Spatiotemporal analysis of bacterial diversity in sediments of Sundarbans using parallel 16S rRNA gene tag sequencing. Microb. Ecol., 2015, 69(3), 500-511. doi: 10.1007/s00248-014-0498-y PMID: 25256302
  46. Bagade, A.V.; Paul, D.; Rikame, T.; Giri, A.P.; Dhotre, D.; Pawar, S. Diversity of arsenic resistant bacteria from Lonar lake: A meteorite impact alkaline crater lake in India. Arsen. Res. Glob. Sustain., 2016, 113-114. doi: 10.1201/b20466-55
  47. Nunoura, T.; Takaki, Y.; Kazama, H.; Hirai, M.; Ashi, J.; Imachi, H.; Takai, K. Microbial diversity in deep-sea methane seep sediments presented by SSU rRNA gene tag sequencing. Microbes Environ., 2012, 27(4), 382-390. doi: 10.1264/jsme2.ME12032 PMID: 22510646
  48. Khadka, R. Diversity of methane and short chain hydrocarbon degrading bacteria with an emphasis on methane biofilter systems., Doctoral thesis, University of Calgary, Calgary, Canada, 2018.
  49. Paul Antony, C.; Kumaresan, D.; Hunger, S.; Drake, H.L.; Murrell, J.C.; Shouche, Y.S. Microbiology of Lonar Lake and other soda lakes. ISME J., 2013, 7(3), 468-476. doi: 10.1038/ismej.2012.137 PMID: 23178675
  50. Pawar, A.L. Methylotrophic activities of Acenatobactor spp. from Lonar lake. Int. J. of Life. Sci., 2013, A12, 101-106.
  51. Surakasi, V.P.; Wani, A.A.; Shouche, Y.S.; Ranade, D.R. Phylogenetic analysis of methanogenic enrichment cultures obtained from Lonar Lake in India: isolation of Methanocalculus sp. and Methanoculleus sp. Microb. Ecol., 2007, 54(4), 697-704. doi: 10.1007/s00248-007-9228-z PMID: 17483868
  52. Shetty, S.A.; Marathe, N.P.; Munot, H.; Antony, C.P.; Dhotre, D.P.; Murrell, J.C.; Shouche, Y.S. Draft genome sequence of Methylophaga lonarensis MPLT, a haloalkaliphilic (non-methane-utilizing) methylotroph. Genome Announc., 2013, 1(3), e00202-e00213. doi: 10.1128/genomeA.00202-13 PMID: 23661481
  53. Singh, R.; Chaudhary, S.; Yadav, S.; Patil, S.A. Bioelectrocatalytic sulfide oxidation by a haloalkaliphilic electroactive microbial community dominated by Desulfobulbaceae. Electrochim. Acta, 2022, 423, 140576. doi: 10.1016/j.electacta.2022.140576
  54. Joshi, A.; Thite, S.; Dhotre, D.; Moorthy, M.; Joseph, N.; Ramana, V.V.; Shouche, Y. Nitrincola tapanii sp. nov., a novel alkaliphilic bacterium from An Indian Soda Lake. Int. J. Syst. Evol. Microbiol., 2020, 70(2), 1106-1111. doi: 10.1099/ijsem.0.003883 PMID: 31751193
  55. Cadillo-Quiroz, H.; Yashiro, E.; Yavitt, J.B.; Zinder, S.H. Characterization of the archaeal community in a minerotrophic fen and terminal restriction fragment length polymorphism-directed isolation of a novel hydrogenotrophic methanogen. Appl. Environ. Microbiol., 2008, 74(7), 2059-2068. doi: 10.1128/AEM.02222-07 PMID: 18281434
  56. Sultanpuram, V.R.; Mothe, T.; Mohammed, F. Streptomyces alkalithermotolerans sp. nov., a novel alkaliphilic and thermotolerant actinomycete isolated from a soda lake. Antonie van Leeuwenhoek, 2015, 107(2), 337-344. doi: 10.1007/s10482-014-0332-z PMID: 25391353
  57. Sharma, T.K.; Mawlankar, R.; Sonalkar, V.V.; Shinde, V.K.; Zhan, J.; Li, W.J.; Rele, M.V.; Dastager, S.G.; Kumar, L.S. Streptomyces lonarensis sp. nov., isolated from Lonar Lake, a meteorite salt water lake in India. Antonie van Leeuwenhoek, 2016, 109(2), 225-235. doi: 10.1007/s10482-015-0626-9 PMID: 26597560
  58. McInerney, M.J.; Struchtemeyer, C.G.; Sieber, J.; Mouttaki, H.; Stams, A.J.M.; Schink, B.; Rohlin, L.; Gunsalus, R.P. Physiology, ecology, phylogeny, and genomics of microorganisms capable of syntrophic metabolism. Ann. N. Y. Acad. Sci., 2008, 1125(1), 58-72. doi: 10.1196/annals.1419.005 PMID: 18378587
  59. Dhundale, V.R.; Hemke, V.M. Phylogenetic analysis of Bacilli from haloalkaline Lonar Soda crater. Int J Pharm Bio Sci, 2015, 6, 279-290.
  60. Bhosale, H.J.; Raut, S.; Kadam, T.A. Antifungal activity of Streptomyces longisporoflavus isolated from Lonar Lake against Alternaria solani. Int. J. Scientif. Res. in Biol. Sci., 2018, 5(3), 21-26. doi: 10.26438/ijsrbs/v5i3.2126
  61. Switzer Blum, J.; Burns Bindi, A.; Buzzelli, J.; Stolz, J.F.; Oremland, R.S. Bacillus arsenicoselenatis, sp. nov., and Bacillus selenitireducens, sp. nov.: two haloalkaliphiles from Mono Lake, California that respire oxyanions of selenium and arsenic. Arch. Microbiol., 1998, 171(1), 19-30. doi: 10.1007/s002030050673 PMID: 9871015
  62. Sultanpuram, V.R.; Mothe, T.; Mohammed, F. Salisediminibacterium haloalkalitolerans sp. nov., isolated from Lonar soda lake, India, and a proposal for reclassification of Bacillus locisalis as Salisediminibacterium locisalis comb. nov., and the emended description of the genus Salisediminibacterium and of the species Salisediminibacterium halotolerans. Arch. Microbiol., 2015, 197(4), 553-560. doi: 10.1007/s00203-015-1081-8 PMID: 25638045
  63. Kharat, K.R.; Kharat, A.; Hardikar, B.P. Antimicrobial and cytotoxic activity of Streptomyces sp. from Lonar Lake. Afr. J. Biotechnol., 2009, 8.
  64. Pathak, A.P.; Rathod, M.G. Production and characterization of alkaline protease by Bacillus pasteurii: a Lonar soda lake isolate. Innov Res Chem, 2013, 1, 22-26.
  65. Rathod, M.G.; Pathak, A.P. Optimized production, characterization and application of alkaline proteases from taxonomically assessed microbial isolates from Lonar soda lake, India. Biocatal. Agric. Biotechnol., 2016, 7, 164-173. doi: 10.1016/j.bcab.2016.06.002
  66. Rekadwad, B.N.; Khobragade, C.N. Digital data for quick response (QR) codes of alkalophilic Bacillus pumilus to identify and to compare bacilli isolated from Lonar Crator Lake, India. Data Brief, 2016, 7, 1306-1313. doi: 10.1016/j.dib.2016.03.103 PMID: 27141529
  67. Kumar, S.; Paul, D.; Shouche, Y.; Suryavanshi, M. Data on genome sequencing, assembly, annotation and genomic analysis of Rhodococcus rhodochrous strain SPC17 isolated from Lonar Lake. Data Brief, 2020, 29, 105336. doi: 10.1016/j.dib.2020.105336 PMID: 32154356
  68. Sisinthy, S.; Chakraborty, D.; Adicherla, H.; Gundlapally, S.R. Emended description of the family Chromatiaceae, phylogenetic analyses of the genera Alishewanella, Rheinheimera and Arsukibacterium, transfer of Rheinheimera longhuensis LH2-2T to the genus Alishewanella and description of Alishewanella alkalitolerans sp. nov. from Lonar Lake, India. Antonie van Leeuwenhoek, 2017, 110(9), 1227-1241. doi: 10.1007/s10482-017-0896-5 PMID: 28612170
  69. Bagade, A.; Nandre, V.; Paul, D.; Patil, Y.; Sharma, N.; Giri, A.; Kodam, K. Characterisation of hyper tolerant Bacillus firmus L-148 for arsenic oxidation. Environ. Pollut., 2020, 261, 114124. doi: 10.1016/j.envpol.2020.114124 PMID: 32078878
  70. Chakraborty, J.; Sapkale, V.; Shah, M.; Rajput, V.; Mehetre, G.; Agawane, S.; Kamble, S.; Dharne, M. Metagenome sequencing to unveil microbial community composition and prevalence of antibiotic and metal resistance genes in hypersaline and hyperalkaline Lonar Lake, India. Ecol. Indic., 2020, 110, 105827. doi: 10.1016/j.ecolind.2019.105827
  71. Joshi, A.; Thite, S.; Karodi, P.; Joseph, N.; Lodha, T. Alkalihalobacterium elongatum gen. nov. sp. nov.: An antibiotic-producing bacterium isolated from Lonar Lake and reclassification of the genus Alkalihalobacillus into seven novel genera. Front. Microbiol., 2021, 12, 722369. doi: 10.3389/fmicb.2021.722369 PMID: 34707580
  72. Govindaraju, A.; Good, N.M.; Zytnick, A.M.; Martinez-Gomez, N.C. Employing methylotrophs for a green economy: One-carbon to fuel them all and through metabolism redesign them. Curr. Opin. Microbiol., 2022, 67, 102145. doi: 10.1016/j.mib.2022.102145 PMID: 35525169
  73. Trotsenko, Y.A. Metabolic features of methane-and methanol-utilizing bacteria. Acta Biotechnol., 1983, 3(3), 269-277. doi: 10.1002/abio.370030311
  74. Chistoserdova, L. Applications of methylotrophs: can single carbon be harnessed for biotechnology? Curr. Opin. Biotechnol., 2018, 50, 189-194. doi: 10.1016/j.copbio.2018.01.012 PMID: 29414059
  75. Trotsenko, Y.A.; Torgonskaya, M.L. Current trends in methylotrophy-based biotechnology. Adv. Biotechnol. Microbiol., 2018, 9, 555763.
  76. Pham, D.N.; Nguyen, A.D.; Lee, E.Y. Outlook on engineering methylotrophs for one-carbon-based industrial biotechnology. Chem. Eng. J., 2022, 449, 137769. doi: 10.1016/j.cej.2022.137769
  77. Kumar, M.; Tomar, R.S.; Lade, H.; Paul, D. Methylotrophic bacteria in sustainable agriculture. World J. Microbiol. Biotechnol., 2016, 32(7), 120. doi: 10.1007/s11274-016-2074-8 PMID: 27263015
  78. Kumar, M.; Kour, D.; Yadav, A.N.; Saxena, R.; Rai, P.K.; Jyoti, A.; Tomar, R.S. Biodiversity of methylotrophic microbial communities and their potential role in mitigation of abiotic stresses in plants. Biologia, 2019, 74(3), 287-308. doi: 10.2478/s11756-019-00190-6
  79. Meena, K.K.; Sorty, A.M.; Bitla, U.M.; Choudhary, K.; Gupta, P.; Pareek, A.; Singh, D.P.; Prabha, R.; Sahu, P.K.; Gupta, V.K.; Singh, H.B.; Krishanani, K.K.; Minhas, P.S. Abiotic stress responses and microbe-mediated mitigation in plants: The omics strategies. Front. Plant Sci., 2017, 8, 172. doi: 10.3389/fpls.2017.00172 PMID: 28232845
  80. Sapp, A.; Huguet-Tapia, J.C.; Sánchez-Lamas, M.; Antelo, G.T.; Primo, E.D.; Rinaldi, J.; Klinke, S.; Goldbaum, F.A.; Bonomi, H.R.; Christner, B.C.; Otero, L.H. Draft genome sequence of Methylobacterium sp. strain V23, isolated from accretion ice of the Antarctic subglacial Lake Vostok. Genome Announc., 2018, 6(10), e00145-e18. doi: 10.1128/genomeA.00145-18 PMID: 29519839
  81. Yadav, A.N. Agriculturally important microbiomes: Biodiversity and multifarious PGP attributes for amelioration of diverse abiotic stresses in crops for sustainable agriculture. Biomed. J. Sci. Tech. Res., 2017, 1(4), 861-864. doi: 10.26717/BJSTR.2017.01.000321
  82. Cao, Y.R.; Wang, Q.; Jin, R.X.; Tang, S.K.; Jiang, Y.; He, W.X.; Lai, H.X.; Xu, L.H.; Jiang, C.L. Methylobacterium soli sp. nov. a methanol-utilizing bacterium isolated from the forest soil. Antonie van Leeuwenhoek, 2011, 99(3), 629-634. doi: 10.1007/s10482-010-9535-0 PMID: 21222033
  83. Subramani, R.; Aalbersberg, W. Culturable rare Actinomycetes: Diversity, isolation and marine natural product discovery. Appl. Microbiol. Biotechnol., 2013, 97(21), 9291-9321. doi: 10.1007/s00253-013-5229-7 PMID: 24057404
  84. Bramhachari, P.V.; Raju, G. Current advances in biotechnologydriven marine microbial metagenomics. In: Marine OMICS; 1st Ed.; CRC Press. , 2016; pp. 705-726.
  85. Timmermans, M.; Paudel, Y.; Ross, A. Investigating the biosynthesis of natural products from marine Proteobacteria: A survey of molecules and strategies. Mar. Drugs, 2017, 15(8), 235. doi: 10.3390/md15080235 PMID: 28762997
  86. Desriac, F.; Jégou, C.; Balnois, E.; Brillet, B.; Chevalier, P.; Fleury, Y. Antimicrobial peptides from marine proteobacteria. Mar. Drugs, 2013, 11(10), 3632-3660. doi: 10.3390/md11103632 PMID: 24084784
  87. Buijs, Y.; Bech, P.K.; Vazquez-Albacete, D.; Bentzon-Tilia, M.; Sonnenschein, E.C.; Gram, L.; Zhang, S.D. Marine Proteobacteria as a source of natural products: Advances in molecular tools and strategies. Nat. Prod. Rep., 2019, 36(9), 1333-1350. doi: 10.1039/C9NP00020H PMID: 31490501
  88. Sharma, A.; Verma, H.K.; Joshi, S.; Panwar, M.S.; Mandal, C.C. A link between cold environment and cancer. Tumour Biol., 2015, 36(8), 5953-5964. doi: 10.1007/s13277-015-3270-0 PMID: 25736923
  89. Chaudhary, H.S.; Soni, B.; Shrivastava, A.R.; Shrivastava, S. Diversity and versatility of actinomycetes and its role in antibiotic production. J. Appl. Pharm. Sci., 2013, 3, S83-S94. doi: 10.7324/JAPS.2013.38.S14
  90. Wanjari, H.V.; Dabhade, D.S. Lonar crater lake of INDIA: An abundant source of highaly economic important spirulina. IJRBAT, 2015, 2, 241-249.
  91. Prakash, I. Application of observational method in the successful construction of underground structures, sardar sarovar (Narmada) project, Gujarat India. Seventh International Conference on Case Histories in Geotechnical EngineeringAt, Missouri USA2013,
  92. Oli, A.K.; Shivshetty, N.; Kelmani, C.R.; Biradar, P.A. Actinomycetes in medical and pharmaceutical industries. In: Actinobacteria; Springer, 2022; pp. 291-320.
  93. Gessesse, A.; Gashe, B.A. Production of alkaline protease by an alkaliphilic bacteria isolated from an alkaline soda lake. Biotechnol. Lett., 1997, 19(5), 479-481. doi: 10.1023/A:1018308513853
  94. Kumazawa, T.; Nishimura, A.; Asai, N.; Adachi, T. Isolation of immune-regulatory tetragenococcus halophilus from miso. PLoS One, 2018, 13(12), e0208821. doi: 10.1371/journal.pone.0208821 PMID: 30586377
  95. Hegazy, G.E.; Abu-Serie, M.M.; Abo-Elela, G.M.; Ghozlan, H.; Sabry, S.A.; Soliman, N.A.; Abdel-Fattah, Y.R. In vitro dual (anticancer and antiviral) activity of the carotenoids produced by haloalkaliphilic archaeon Natrialba sp. M6. Sci. Rep., 2020, 10(1), 5986. doi: 10.1038/s41598-020-62663-y PMID: 32249805
  96. Nag, S.; DasSarma, P.; Crowley, D.J.; Hamawi, R.; Tepper, S.; Anton, B.P.; Guzmán, D.; DasSarma, S. Genomic analysis of haloarchaea from diverse environments, including permian halite, reveals diversity of ultraviolet radiation survival and DNA photolyase gene variants. Microorganisms, 2023, 11(3), 607. doi: 10.3390/microorganisms11030607 PMID: 36985181
  97. Chen, Y.H.; Lu, C.W.; Shyu, Y.T.; Lin, S.S. Revealing the saline adaptation strategies of the halophilic bacterium Halomonas beimenensis through high-throughput omics and transposon mutagenesis approaches. Sci. Rep., 2017, 7(1), 13037. doi: 10.1038/s41598-017-13450-9 PMID: 29026163
  98. Charlesworth, JC Burns, BP Untapped resources: Biotechnological potential of peptides and secondary metabolites in archaea. Archaea, 2015, 2015 doi: 10.1155/2015/282035
  99. Amoozegar, M.A.; Siroosi, M.; Atashgahi, S.; Smidt, H.; Ventosa, A. Systematics of haloarchaea and biotechnological potential of their hydrolytic enzymes. Microbiology (Reading), 2017, 163(5), 623-645. doi: 10.1099/mic.0.000463 PMID: 28548036
  100. De Simeis, D.; Serra, S. Actinomycetes: A Never-Ending Source of Bioactive Compounds—An Overview on Antibiotics Production. Antibiotics, 2021, 10(5), 483. doi: 10.3390/antibiotics10050483 PMID: 33922100
  101. Davies, J.; Davies, D. Origins and evolution of antibiotic resistance. Microbiol. Mol. Biol. Rev., 2010, 74(3), 417-433. doi: 10.1128/MMBR.00016-10 PMID: 20805405
  102. Mohammadipanah, F.; Wink, J. Actinobacteria from arid and desert habitats: Diversity and biological activity. Front. Microbiol., 2016, 6, 1541. doi: 10.3389/fmicb.2015.01541 PMID: 26858692
  103. Bawazir, A.M.A.; Shantaram, M. Ecology and distribution of actinomycetes in nature—a review. Int. J. Curr. Res., 2018, 10, 71664-71668.
  104. Kumar, A.; Naraian, R. Producers of bioactive compounds. In: New and Future Developments in Microbial Biotechnology and Bioengineering; Elsevier, 2019; pp. 205-221.
  105. Rodríguez-Frías, F.; Quer, J.; Tabernero, D.; Cortese, M.F.; Garcia-Garcia, S.; Rando-Segura, A.; Pumarola, T. Microorganisms as shapers of human civilization, from pandemics to even our genomes: Villains or friends? A historical approach. Microorganisms, 2021, 9(12), 2518. doi: 10.3390/microorganisms9122518 PMID: 34946123
  106. Jagannathan, S.V.; Manemann, E.M.; Rowe, S.E.; Callender, M.C.; Soto, W. Marine actinomycetes, new sources of biotechnological products. Mar. Drugs, 2021, 19(7), 365. doi: 10.3390/md19070365 PMID: 34201951
  107. Nair, S.; Abraham, J. Natural products from actinobacteria for drug discovery. In: Adv. Pharma. Biot; , 2020; pp. 333-363. doi: 10.1007/978-981-15-2195-9_23
  108. Betancur, L.A.; Naranjo-Gaybor, S.J.; Vinchira-Villarraga, D.M.; Moreno-Sarmiento, N.C.; Maldonado, L.A.; Suarez-Moreno, Z.R.; Acosta-González, A.; Padilla-Gonzalez, G.F.; Puyana, M.; Castellanos, L.; Ramos, F.A. Marine Actinobacteria as a source of compounds for phytopathogen control: An integrative metabolic-profiling/bioactivity and taxonomical approach. PLoS One, 2017, 12(2), e0170148. doi: 10.1371/journal.pone.0170148 PMID: 28225766
  109. Selim, M.S.M.; Abdelhamid, S.A.; Mohamed, S.S. Secondary metabolites and biodiversity of actinomycetes. J. Genet. Eng. Biotechnol., 2021, 19(1), 72. doi: 10.1186/s43141-021-00156-9 PMID: 33982192
  110. Genilloud, O. Actinomycetes: Still a source of novel antibiotics. Nat. Prod. Rep., 2017, 34(10), 1203-1232. doi: 10.1039/C7NP00026J PMID: 28820533
  111. Hug, J.; Bader, C.; Remškar, M.; Cirnski, K.; Müller, R. Concepts and methods to access novel antibiotics from actinomycetes. Antibiotics, 2018, 7(2), 44. doi: 10.3390/antibiotics7020044 PMID: 29789481
  112. Genilloud, O.; González, I.; Salazar, O.; Martín, J.; Tormo, J.R.; Vicente, F. Current approaches to exploit actinomycetes as a source of novel natural products. J. Ind. Microbiol. Biotechnol., 2011, 38(3), 375-389. doi: 10.1007/s10295-010-0882-7 PMID: 20931260
  113. Sharma, R.; Prakash, O.; Sonawane, M.S.; Nimonkar, Y.; Golellu, P.B.; Sharma, R. Diversity and distribution of phenol oxidase producing fungi from soda lake and description of curvularia lonarensis sp. nov. Front. Microbiol., 2016, 7, 1847. doi: 10.3389/fmicb.2016.01847 PMID: 27920761
  114. Dudhagara, P.; Ghelani, A.; Patel, R.; Chaudhari, R.; Bhatt, S. Bacterial tag encoded FLX titanium amplicon pyrosequencing (bTEFAP) based assessment of prokaryotic diversity in metagenome of Lonar soda lake, India. Genom. Data, 2015, 4, 8-11. doi: 10.1016/j.gdata.2015.01.010 PMID: 26484168
  115. Dudhagara, P.; Ghelani, A.; Bhatt, S. Structural characterization of mycobiome from the metagenome of Lonar Lake sediment using next generation sequencing. Indian J. Sci., 2015, 12, 11-16.
  116. Dudhagara, P.; Ghelani, A.; Bhavsar, S.; Bhatt, S. Metagenomic data of fungal internal transcribed Spacer and 18S rRNA gene sequences from Lonar lake sediment, India. Data Brief, 2015, 4, 266-268. doi: 10.1016/j.dib.2015.06.001 PMID: 26217800
  117. Gonçalves, M.F.M.; Vicente, T.F.L.; Esteves, A.C.; Alves, A. Novel halotolerant species of Emericellopsis and Parasarocladium associated with macroalgae in an estuarine environment. Mycologia, 2020, 112(1), 154-171. doi: 10.1080/00275514.2019.1677448 PMID: 31829905
  118. Grum-Grzhimaylo, A.A.; Georgieva, M.L.; Bondarenko, S.A.; Debets, A.J.M.; Bilanenko, E.N. On the diversity of fungi from soda soils. Fungal Divers., 2016, 76(1), 27-74. doi: 10.1007/s13225-015-0320-2
  119. De Zotti, M.; Biondi, B.; Peggion, C.; Park, Y.; Hahm, K.S.; Formaggio, F.; Toniolo, C. Synthesis, preferred conformation, protease stability, and membrane activity of heptaibin, a medium-length peptaibiotic. J. Pept. Sci., 2011, 17(8), 585-594. doi: 10.1002/psc.1364 PMID: 21495119
  120. Baranova, A.A.; Georgieva, M.L.; Bilanenko, E.N.; Andreev, Y.A.; Rogozhin, E.A.; Sadykova, V.S. Antimicrobial potential of alkalophilic micromycetes Emericellopsis alkalina. Appl. Biochem. Microbiol., 2017, 53(6), 703-710. doi: 10.1134/S0003683817060035
  121. Kuvarina, A.E.; Gavryushina, I.A.; Kulko, A.B.; Ivanov, I.A.; Rogozhin, E.A.; Georgieva, M.L.; Sadykova, V.S. The emericellipsins a–e from an alkalophilic fungus emericellopsis alkalina show potent activity against multidrug-resistant pathogenic fungi. J. Fungi, 2021, 7(2), 153. doi: 10.3390/jof7020153 PMID: 33669976
  122. Niu, X.; Thaochan, N.; Hu, Q. Diversity of linear non-ribosomal peptide in biocontrol fungi. J. Fungi, 2020, 6(2), 61. doi: 10.3390/jof6020061 PMID: 32408496
  123. Rateb, M.E.; Ebel, R. Secondary metabolites of fungi from marine habitats. Nat. Prod. Rep., 2011, 28(2), 290-344. doi: 10.1039/c0np00061b PMID: 21229157
  124. Fernández de Ullivarri, M.; Arbulu, S.; Garcia-Gutierrez, E.; Cotter, P.D. Antifungal peptides as therapeutic agents. Front. Cell. Infect. Microbiol., 2020, 10, 105. doi: 10.3389/fcimb.2020.00105 PMID: 32257965
  125. Ishiyama, D.; Satou, T.; Senda, H.; Fujimaki, T.; Honda, R.; Kanazawa, S. Heptaibin, a novel antifungal peptaibol antibiotic from Emericellopsis sp. BAUA8289. J. Antibiot., 2000, 53(7), 728-732. doi: 10.7164/antibiotics.53.728 PMID: 10994817
  126. Prakash, O.; Mahabare, K.; Yadav, K.K.; Sharma, R. Fungi from extreme environments: A potential source of laccases group of extremozymes. In: Fungi in Extreme Environments; Ecological Role and Biotechnological Significance, 2019; pp. 441-462.
  127. Schulz, B.; Boyle, C.; Draeger, S.; Römmert, A.K.; Krohn, K. Endophytic fungi: A source of novel biologically active secondary metabolites. Mycol. Res., 2002, 106(9), 996-1004. doi: 10.1017/S0953756202006342
  128. Solomon, L.; Tomii, V.P.; Dick, A.A. Importance of fungi in the petroleum, agro-allied, agriculture and pharmaceutical industries. NY Sci J, 2019, 12, 8-15.
  129. Deshmukh, S.K.; Misra, J.K.; Tewari, J.P.; Papp, T. Fungi: applications and management strategies; CRC Press, 2018. doi: 10.1201/9781315369471
  130. Chandra, P. Enespa; Singh, R.; Arora, P.K. Microbial lipases and their industrial applications: A comprehensive review. Microb. Cell Fact., 2020, 19(1), 169. doi: 10.1186/s12934-020-01428-8
  131. Barrera, V.A.; Martin, M.E.; Aulicino, M.; Martínez, S.; Chiessa, G.; Saparrat, M.C.N.; Gasoni, A.L. Carbon-substrate utilization profiles by Cladorrhinum (Ascomycota). Rev. Argent. Microbiol., 2019, 51(4), 302-306. doi: 10.1016/j.ram.2018.09.005 PMID: 30981496
  132. Gasoni, L.; Stegman de Gurfinkel, B. Biocontrol of Rhizoctonia solani by the endophytic fungus Cladorrhinum foecundissimum in cotton plants. Australas. Plant Pathol., 2009, 38(4), 389-391. doi: 10.1071/AP09013
  133. Hibbett, D.S.; Ohman, A.; Glotzer, D.; Nuhn, M.; Kirk, P.; Nilsson, R.H. Progress in molecular and morphological taxon discovery in Fungi and options for formal classification of environmental sequences. Fungal Biol. Rev., 2011, 25(1), 38-47. doi: 10.1016/j.fbr.2011.01.001
  134. Chaudhari, P.R.; Satyanarayan, S.; Verma, S.; Kotangale, J.P.; Wate, S.R. Limnological studies on brackish water Crater lake at Lonar, Maharashtra. INDIAN J Environ Prot, 2007, 27, 97.
  135. Soria-Mercado, I.E.; Villarreal-Gómez, L.J.; Rivas, G.G.; Sánchez, N.E.A. Bioactive compounds from bacteria associated to marine algae. In: Biotechnology; IntechOpen. , 2012; pp. 25-44.
  136. Axenov-Gribanov, D V; Kostka, D V; Vasilieva, UA; Shatilina, ZM; Krasnova, ME; Pereliaeva, E V Cultivable actinobacteria first found in baikal endemic algae is a new source of natural products with antibiotic activity. Int J Microbiol, 2020, 2020 doi: 10.1155/2020/5359816
  137. Wiese, J.; Thiel, V.; Nagel, K.; Staufenberger, T.; Imhoff, J.F. Diversity of antibiotic-active bacteria associated with the brown alga Laminaria saccharina from the Baltic Sea. Mar. Biotechnol., 2009, 11(2), 287-300. doi: 10.1007/s10126-008-9143-4 PMID: 18855068
  138. Braña, A.F.; Fiedler, H.P.; Nava, H.; González, V.; Sarmiento-Vizcaíno, A.; Molina, A.; Acuña, J.L.; García, L.A.; Blanco, G. Two Streptomyces species producing antibiotic, antitumor, and anti-inflammatory compounds are widespread among intertidal macroalgae and deep-sea coral reef invertebrates from the central Cantabrian Sea. Microb. Ecol., 2015, 69(3), 512-524. doi: 10.1007/s00248-014-0508-0 PMID: 25319239
  139. Gómez-Zorita, S.; Trepiana, J.; González-Arceo, M.; Aguirre, L.; Milton-Laskibar, I.; González, M.; Eseberri, I.; Fernández-Quintela, A.; Portillo, M.P. Anti-obesity effects of microalgae. Int. J. Mol. Sci., 2019, 21(1), 41. doi: 10.3390/ijms21010041 PMID: 31861663
  140. Santos, M.C.; Bicas, J.L. Natural blue pigments and bikaverin. Microbiol. Res., 2021, 244, 126653. doi: 10.1016/j.micres.2020.126653 PMID: 33302226
  141. Namazi, N.; Irandoost, P.; Larijani, B.; Azadbakht, L. The effects of supplementation with conjugated linoleic acid on anthropometric indices and body composition in overweight and obese subjects: A systematic review and meta-analysis. Crit. Rev. Food Sci. Nutr., 2019, 59(17), 2720-2733. doi: 10.1080/10408398.2018.1466107 PMID: 29672124
  142. Babu, B.; Wu, J.T. Production of natural butylated hydroxytoluene as an antioxidant by freshwater phytoplankton 1. J. Phycol., 2008, 44(6), 1447-1454. doi: 10.1111/j.1529-8817.2008.00596.x PMID: 27039859
  143. Linington, R.G.; González, J.; Ureña, L.D.; Romero, L.I.; Ortega-Barría, E.; Gerwick, W.H. Venturamides A and B: Antimalarial constituents of the panamanian marine Cyanobacterium Oscillatoria sp. J. Nat. Prod., 2007, 70(3), 397-401. doi: 10.1021/np0605790 PMID: 17328572
  144. Gutiérrez, M.; Pereira, A.R.; Debonsi, H.M.; Ligresti, A.; Di Marzo, V.; Gerwick, W.H. Cannabinomimetic lipid from a marine cyanobacterium. J. Nat. Prod., 2011, 74(10), 2313-2317. doi: 10.1021/np200610t PMID: 21999614
  145. Thajuddin, N.; Subramanian, G. Cyanobacterial biodiversity and potential applications in biotechnology. Curr. Sci., 2005, 47-57.
  146. Singh, R.; Parihar, P.; Singh, M.; Bajguz, A.; Kumar, J.; Singh, S.; Singh, V.P.; Prasad, S.M. Uncovering potential applications of cyanobacteria and algal metabolites in biology, agriculture and medicine: Current status and future prospects. Front. Microbiol., 2017, 8, 515. doi: 10.3389/fmicb.2017.00515 PMID: 28487674
  147. Alharbi, S.A. Production of a natural biodegradable polymer of Polyhydroxy alkanoates from bacteria and its biodegradation compared to commercial product., A thesis submitted for the Requirements of the Degree of Doctor of Philosophy (Biology/ Microbiology). 2020.
  148. Amadu, A.A.; deGraft-Johnson, K.A.A.; Ameka, G.K. Industrial applications of cyanobacteria. In: Cyanobacteria; intechopen. , 2021.
  149. Zahra, Z.; Choo, D.H.; Lee, H.; Parveen, A. Cyanobacteria: Review of current potentials and applications. Environments, 2020, 7(2), 13. doi: 10.3390/environments7020013
  150. Abed, R.M.M.; Dobretsov, S.; Sudesh, K. Applications of cyanobacteria in biotechnology. J. Appl. Microbiol., 2009, 106(1), 1-12. doi: 10.1111/j.1365-2672.2008.03918.x PMID: 19191979
  151. Marco, M.L.; Heeney, D.; Binda, S.; Cifelli, C.J.; Cotter, P.D.; Foligné, B.; Gänzle, M.; Kort, R.; Pasin, G.; Pihlanto, A.; Smid, E.J.; Hutkins, R. Health benefits of fermented foods: Microbiota and beyond. Curr. Opin. Biotechnol., 2017, 44, 94-102. doi: 10.1016/j.copbio.2016.11.010 PMID: 27998788
  152. Parvez, S.; Malik, K.A.; Ah Kang, S.; Kim, H.Y. Probiotics and their fermented food products are beneficial for health. J. Appl. Microbiol., 2006, 100(6), 1171-1185. doi: 10.1111/j.1365-2672.2006.02963.x PMID: 16696665
  153. Watanabe, F.; Bito, T. Vitamin B 12 sources and microbial interaction. Exp. Biol. Med., 2018, 243(2), 148-158. doi: 10.1177/1535370217746612 PMID: 29216732
  154. Tani, A.; Ogura, Y.; Hayashi, T.; Kimbara, K. Complete genome sequence of Methylobacterium aquaticum strain 22A, isolated from Racomitrium japonicum moss. Genome Announc., 2015, 3(2), e00266-e15. doi: 10.1128/genomeA.00266-15 PMID: 25858842
  155. Iguchi, H.; Yurimoto, H.; Sakai, Y. Interactions of methylotrophs with plants and other heterotrophic bacteria. Microorganisms, 2015, 3(2), 137-151. doi: 10.3390/microorganisms3020137 PMID: 27682083
  156. Helliwell, K.E. The roles of B vitamins in phytoplankton nutrition: new perspectives and prospects. New Phytol., 2017, 216(1), 62-68. doi: 10.1111/nph.14669 PMID: 28656633
  157. Watanabe, F. Vitamin B12 sources and bioavailability. Exp. Biol. Med., 2007, 232(10), 1266-1274. doi: 10.3181/0703-MR-67 PMID: 17959839
  158. Watanabe, F.; Yabuta, Y.; Bito, T.; Teng, F. Vitamin B₁₂-containing plant food sources for vegetarians. Nutrients, 2014, 6(5), 1861-1873. doi: 10.3390/nu6051861 PMID: 24803097
  159. Leak, D. Methylotrophs, Industrial Applications. In: Encyclopedia of Bioprocess Technology: Fermentation, Biocatalysis, and Bioseparation; Wiley, 2002.
  160. Gellissen, G.; Melber, K. Methylotrophic yeast hansenula polymorpha as production organism for recombinant pharmaceuticals. Arzneimittelforschung, 1996, 46(9), 943-948. PMID: 8876947
  161. Dudko, D.; Holtmann, D.; Buchhaupt, M. Methylotrophic bacteria with cobalamin-dependent mutases in primary metabolism as potential strains for vitamin B12 production. Antonie van Leeuwenhoek, 2023, 116(3), 207-220. doi: 10.1007/s10482-022-01795-9 PMID: 36385348
  162. Simó-Cabrera, L.; García-Chumillas, S.; Hagagy, N.; Saddiq, A.; Tag, H.; Selim, S. AbdElgawad, H.; Arribas Agüero, A.; Monzó Sánchez, F.; Cánovas, V.; Pire, C.; Martínez-Espinosa, R.M. Haloarchaea as cell factories to produce bioplastics. Mar. Drugs, 2021, 19(3), 159. doi: 10.3390/md19030159 PMID: 33803653
  163. Sy, A.; Timmers, A.C.J.; Knief, C.; Vorholt, J.A. Methylotrophic metabolism is advantageous for Methylobacterium extorquens during colonization of Medicago truncatula under competitive conditions. Appl. Environ. Microbiol., 2005, 71(11), 7245-7252. doi: 10.1128/AEM.71.11.7245-7252.2005 PMID: 16269765
  164. Yurimoto, H.; Shiraishi, K.; Sakai, Y. Physiology of methylotrophs living in the phyllosphere. Microorganisms, 2021, 9(4), 809. doi: 10.3390/microorganisms9040809 PMID: 33921272
  165. Riahi, L.; Cherif, H.; Miladi, S.; Neifar, M.; Bejaoui, B.; Chouchane, H.; Masmoudi, A.S.; Cherif, A. Use of plant growth promoting bacteria as an efficient biotechnological tool to enhance the biomass and secondary metabolites production of the industrial crop Pelargonium graveolens L’Hér. under semi-controlled conditions. Ind. Crops Prod., 2020, 154, 112721. doi: 10.1016/j.indcrop.2020.112721
  166. Sh A Hagaggi, N. Studies on the extremo-lipase produced by the halotolerant Oceanobacillus iheyensis strain QCS. NRMJ, 2020, 4(4), 907-920. doi: 10.21608/nrmj.2020.107542
  167. Cherif, H.; Sghaier, I.; Hassen, W. Halomonas desertis G11, Pseudomonas rhizophila S211 and Oceanobacillus iheyensis E9 as biological control agents against wheat fungal pathogens: PGPB consorcia optimization through mixture design and response surface analysis. Int. Clin. Pathol. J., 2022, 9, 20-28.
  168. Tambekar, D.H.; Dhundale, V.R. Screening of antimicrobial potentials of haloalkaliphilic bacteria isolated from lonar lake. Int. J. Pharm. Chem. Biol. Sci., 2013, 3(3), 820-825.
  169. Torbaghan, M.E.; Lakzian, A.; Astaraei, A.R.; Fotovat, A.; Besharati, H. Salt and alkali stresses reduction in wheat by plant growth promoting haloalkaliphilic bacteria. J. Soil Sci. Plant Nutr., 2017, 17(4), 1058-1087. doi: 10.4067/S0718-95162017000400016
  170. Kiplimo, D.; Mugweru, J.; Kituyi, S.; Kipnyargis, A.; Mwirichia, R. Diversity of esterase and lipase producing haloalkaliphilic bacteria from Lake Magadi in Kenya. J. Basic Microbiol., 2019, 59(12), 1173-1184. doi: 10.1002/jobm.201900353 PMID: 31621083
  171. Santhaseelan, H.; Dinakaran, V.T.; Dahms, H.U.; Ahamed, J.M.; Murugaiah, S.G.; Krishnan, M.; Hwang, J.S.; Rathinam, A.J. Recent antimicrobial responses of halophilic microbes in clinical pathogens. Microorganisms, 2022, 10(2), 417. doi: 10.3390/microorganisms10020417 PMID: 35208871
  172. Tambekar, D.H. T.D.H.; Tiwari AA, T.A.A.; Tambekar SD, T.S.D. Studies on production of antimicrobial substances from Bacillus species isolated from Lonar Lake. Indian J. Appl. Res., 2011, 4(8), 502-506. doi: 10.15373/2249555X/August2014/131
  173. Shinde, V.A.; Patil, R.B.; Pawar, P.V. Comparative study of antimicrobial potentials of phospholipid compound produced by halophilic and alkaliphiles Bacillus subtilis isolated from alkaline meteorite crater Lonar lake, India. Int. J. Life Sci., 2017, 5, 420-424.
  174. Loni, P.P.; Patil, J.U.; Phugare, S.S.; Bajekal, S.S. Purification and characterization of alkaline chitinase from Paenibacillus pasadenensis NCIM 5434. J. Basic Microbiol., 2014, 54(10), 1080-1089. doi: 10.1002/jobm.201300533 PMID: 24442594
  175. Passera, A.; Venturini, G.; Battelli, G.; Casati, P.; Penaca, F.; Quaglino, F.; Bianco, P.A. Competition assays revealed Paenibacillus pasadenensis strain R16 as a novel antifungal agent. Microbiol. Res., 2017, 198, 16-26. doi: 10.1016/j.micres.2017.02.001 PMID: 28285658
  176. Shivlata, L.; Satyanarayana, T. Thermophilic and alkaliphilic Actinobacteria: Biology and potential applications. Front. Microbiol., 2015, 6, 1014. doi: 10.3389/fmicb.2015.01014 PMID: 26441937
  177. Stainsby, F.M.; Soddell, J.; Seviour, R.; Upton, J.; Goodfellow, M. Dispelling the "Nocardia amarae" myth: A phylogenetic and phenotypic study of mycolic acid-containing actinomycetes isolated from activated sludge foam. Water Sci. Technol., 2002, 46(1-2), 81-90. doi: 10.2166/wst.2002.0460 PMID: 12216692
  178. Ashish, C.; Manish, B. Isolation and characterization of l-asparginase producing isolate from lonar lake, buldhana district, MS, India. Res. J. Recent Sci., 2014, 2277, 2502.
  179. Patil, S.N.; Aglave, B.A.; Pethkar, A.V.; Gaikwad, V.B. Stenotrophomonas koreensis a novel biosurfactant producer for abatement of heavy metals from the environment. Afr. J. Microbiol. Res., 2012, 6, 5173-5178.
  180. Kulkarni, A.; Wakte, P.S. Development of microphos technology by using alkaliphilic actinomycetes from the soil of Lonar lake. J. Pharmacogn. Phytochem., 2021, 10, 338-342.
  181. Borgave, S.B.; Joshi, A.A.; Kelkar, A.S.; Kanekar, P.P. Screening of alkaliphilic, haloalkaliphilic bacteria and alkalithermophilic actinomycetes isolated from alkaline soda Lake of Lonar, India for antimicrobial activity. Int. J. Pharm. Biol. Sci., 2012, 3, 258-274.
  182. Rathod, D.; Golinska, P.; Wypij, M.; Dahm, H.; Rai, M. A new report of Nocardiopsis valliformis strain OT1 from alkaline Lonar crater of India and its use in synthesis of silver nanoparticles with special reference to evaluation of antibacterial activity and cytotoxicity. Med. Microbiol. Immunol., 2016, 205(5), 435-447. doi: 10.1007/s00430-016-0462-1 PMID: 27278909
  183. Bennur, T.; Kumar, A.R.; Zinjarde, S.; Javdekar, V. Nocardiopsis species: Incidence, ecological roles and adaptations. Microbiol. Res., 2015, 174, 33-47. doi: 10.1016/j.micres.2015.03.010 PMID: 25946327
  184. Marathe, K.; Pandit, S.; Chaudhari, A.; Maheshwari, V. Screening of alkaliphilic-salt tolerant actinomycetes isolated from alkaline soda lake for protease inhibitor activity. Adv Pharmacol Toxicol, 2015, 16, 39.
  185. Deshmukh, S.K.; Verekar, S.A. Keratinophilic fungi from the vicinity of meteorite crater soils of Lonar (India). Mycopathologia, 2006, 162(4), 303-306. doi: 10.1007/s11046-006-0044-7 PMID: 17039278
  186. Kumar, J.; Singh, I.; Kushwaha, R.K.S. Keratinophilic fungi: Diversity, environmental and biotechnological implications. In: Progress in Mycology; Springer, 2021; pp. 419-436.
  187. Conrado, R.; Gomes, T.C.; Roque, G.S.C.; De Souza, A.O. Overview of bioactive fungal secondary metabolites: Cytotoxic and antimicrobial compounds. Antibiotics, 2022, 11(11), 1604. doi: 10.3390/antibiotics11111604 PMID: 36421247
  188. Sawant, S.S.; Salunke, B.K.; Kim, B.S. Degradation of corn stover by fungal cellulase cocktail for production of polyhydroxyalkanoates by moderate halophile Paracoccus sp. LL1. Bioresour. Technol., 2015, 194, 247-255. doi: 10.1016/j.biortech.2015.07.019 PMID: 26207871
  189. Tsukimoto, M.; Nagaoka, M.; Shishido, Y.; Fujimoto, J.; Nishisaka, F.; Matsumoto, S.; Harunari, E.; Imada, C.; Matsuzaki, T. Bacterial production of the tunicate-derived antitumor cyclic depsipeptide didemnin B. J. Nat. Prod., 2011, 74(11), 2329-2331. doi: 10.1021/np200543z PMID: 22035372
  190. Sakai, R.; Stroh, J.G.; Sullins, D.W.; Rinehart, K.L. Seven new didemnins from the marine tunicate Trididemnum solidum. J. Am. Chem. Soc., 1995, 117(13), 3734-3748. doi: 10.1021/ja00118a010
  191. Rinehart, K.L., Jr; Gloer, J.B.; Hughes, R.G., Jr; Renis, H.E.; McGovren, J.P.; Swynenberg, E.B. Didemnins: Antiviral and antitumor depsipeptides from a Caribbean tunicate. Science, 1981, 212, 933-935. doi: 10.1126/science.7233187
  192. Xu, Y.; Kersten, R.D.; Nam, S.J.; Lu, L.; Al-Suwailem, A.M.; Zheng, H.; Fenical, W.; Dorrestein, P.C.; Moore, B.S.; Qian, P.Y. Bacterial biosynthesis and maturation of the didemnin anti-cancer agents. J. Am. Chem. Soc., 2012, 134(20), 8625-8632. doi: 10.1021/ja301735a PMID: 22458477
  193. Wilson, M.Z.; Wang, R.; Gitai, Z.; Seyedsayamdost, M.R. Mode of action and resistance studies unveil new roles for tropodithietic acid as an anticancer agent and the γ-glutamyl cycle as a proton sink. Proc. Natl. Acad. Sci., 2016, 113(6), 1630-1635. doi: 10.1073/pnas.1518034113 PMID: 26802120
  194. D’Alvise, P.W.; Lillebø, S.; Wergeland, H.I.; Gram, L.; Bergh, Ø. Protection of cod larvae from vibriosis by Phaeobacter spp.: A comparison of strains and introduction times. Aquaculture, 2013, 384-387, 82-86. doi: 10.1016/j.aquaculture.2012.12.013
  195. Brinkhoff, T.; Bach, G.; Heidorn, T.; Liang, L.; Schlingloff, A.; Simon, M. Antibiotic production by a Roseobacter clade-affiliated species from the German Wadden Sea and its antagonistic effects on indigenous isolates. Appl. Environ. Microbiol., 2004, 70(4), 2560-2565. doi: 10.1128/AEM.70.4.2560-2565.2003 PMID: 15066861
  196. Um, S.; Pyee, Y.; Kim, E.H.; Lee, S.; Shin, J.; Oh, D.C. Thalassospiramide G, a new γ-amino-acid-bearing peptide from the marine bacterium Thalassospira sp. Mar. Drugs, 2013, 11(12), 611-622. doi: 10.3390/md11030611 PMID: 23442790
  197. Oh, D.C.; Strangman, W.K.; Kauffman, C.A.; Jensen, P.R.; Fenical, W. Thalassospiramides A and B, immunosuppressive peptides from the marine bacterium Thalassospira sp. Org. Lett., 2007, 9(8), 1525-1528. doi: 10.1021/ol070294u PMID: 17373804
  198. Zhang, W.; Lu, L.; Lai, Q.; Zhu, B.; Li, Z.; Xu, Y.; Shao, Z.; Herrup, K.; Moore, B.S.; Ross, A.C.; Qian, P.Y. Family-wide structural characterization and genomic comparisons decode the diversity-oriented biosynthesis of thalassospiramides by marine Proteobacteria. J. Biol. Chem., 2016, 291(53), 27228-27238. doi: 10.1074/jbc.M116.756858 PMID: 27875306
  199. Lu, L.; Meehan, M.J.; Gu, S.; Chen, Z.; Zhang, W.; Zhang, G.; Liu, L.; Huang, X.; Dorrestein, P.C.; Xu, Y.; Moore, B.S.; Qian, P.Y. Mechanism of action of thalassospiramides, a new class of calpain inhibitors. Sci. Rep., 2015, 5(1), 8783. doi: 10.1038/srep08783 PMID: 25740631
  200. Ross, A.C.; Xu, Y.; Lu, L.; Kersten, R.D.; Shao, Z.; Al-Suwailem, A.M.; Dorrestein, P.C.; Qian, P.Y.; Moore, B.S. Biosynthetic multitasking facilitates thalassospiramide structural diversity in marine bacteria. J. Am. Chem. Soc., 2013, 135(3), 1155-1162. doi: 10.1021/ja3119674 PMID: 23270364
  201. Shiozawa, H.; Kagasaki, T.; Kinoshita, T.; Haruyama, H.; Domon, H.; Utsui, Y.; Kodama, K.; Takahashi, S. Thiomarinol, a new hybrid antimicrobial antibiotic produced by a marine bacterium. Fermentation, isolation, structure, and antimicrobial activity. J. Antibiot., 1993, 46(12), 1834-1842. doi: 10.7164/antibiotics.46.1834 PMID: 8294241
  202. Speitling, M.; Smetanina, O.F.; Kuznetsova, T.A.; Laatsch, H. Bromoalterochromides A and A′ unprecedented chromopeptides from a marine Pseudoalteromonas maricaloris strain KMM 636T. J. Antibiot., 2007, 60(1), 36-42. doi: 10.1038/ja.2007.5 PMID: 17390587
  203. Barona-Gómez, F.; Wong, U.; Giannakopulos, A.E.; Derrick, P.J.; Challis, G.L. Identification of a cluster of genes that directs desferrioxamine biosynthesis in Streptomyces coelicolor M145. J. Am. Chem. Soc., 2004, 126(50), 16282-16283. doi: 10.1021/ja045774k PMID: 15600304
  204. Griffiths, G.L.; Sigel, S.P.; Payne, S.M.; Neilands, J.B. Vibriobactin, a siderophore from Vibrio cholerae. J. Biol. Chem., 1984, 259(1), 383-385. doi: 10.1016/S0021-9258(17)43671-4 PMID: 6706943
  205. Butterton, J.R.; Choi, M.H.; Watnick, P.I.; Carroll, P.A.; Calderwood, S.B. Vibrio cholerae VibF is required for vibriobactin synthesis and is a member of the family of nonribosomal peptide synthetases. J. Bacteriol., 2000, 182(6), 1731-1738. doi: 10.1128/JB.182.6.1731-1738.2000 PMID: 10692380
  206. Jalal, M.A.F.; Hossain, M.B.; Van der Helm, D.; Sanders-Loehr, J.; Actis, L.A.; Crosa, J.H. Structure of anguibactin, a unique plasmid-related bacterial siderophore from the fish pathogen Vibrio anguillarum. J. Am. Chem. Soc., 1989, 111(1), 292-296. doi: 10.1021/ja00183a044
  207. Soengas, R.G.; Anta, C.; Espada, A.; Paz, V.; Ares, I.R.; Balado, M.; Rodríguez, J.; Lemos, M.L.; Jiménez, C. Structural characterization of vanchrobactin, a new catechol siderophore produced by the fish pathogen Vibrio anguillarum serotype O2. Tetrahedron Lett., 2006, 47(39), 7113-7116. doi: 10.1016/j.tetlet.2006.07.104
  208. Yamamoto, S.; Okujo, N.; Yoshida, T.; Matsuura, S.; Shinoda, S. Structure and iron transport activity of vibrioferrin, a new siderophore of Vibrio parahaemolyticus. J. Biochem., 1994, 115(5), 868-874. doi: 10.1093/oxfordjournals.jbchem.a124432 PMID: 7961600
  209. Burkholder, P.R.; Pfister, R.M.; Leitz, F.H. Production of a pyrrole antibiotic by a marine bacterium. Appl. Microbiol., 1966, 14(4), 649-653. doi: 10.1128/am.14.4.649-653.1966 PMID: 4380876
  210. Lovell, F.M. The structure of a bromine-rich marine antibiotic. J. Am. Chem. Soc., 1966, 88(19), 4510-4511. doi: 10.1021/ja00971a040
  211. Durán, N.; Menck, C.F.M. Chromobacterium violaceum: a review of pharmacological and industiral perspectives. Crit. Rev. Microbiol., 2001, 27(3), 201-222. doi: 10.1080/20014091096747 PMID: 11596879
  212. Lichstein, H.C.; Van De Sand, V.F. Violacein, an antibiotic pigment produced by Chromobacterium violaceum. J. Infect. Dis., 1945, 76(1), 47-51. doi: 10.1093/infdis/76.1.47
  213. Böttcher, T.; Clardy, J. A chimeric siderophore halts swarming Vibrio. Angew. Chem. Int. Ed., 2014, 53(13), 3510-3513. doi: 10.1002/anie.201310729 PMID: 24615751
  214. Kadi, N.; Oves-Costales, D.; Barona-Gomez, F.; Challis, G.L. A new family of ATP-dependent oligomerization-macrocyclization biocatalysts. Nat. Chem. Biol., 2007, 3(10), 652-656. doi: 10.1038/nchembio.2007.23 PMID: 17704771
  215. Schupp, T.; Toupet, C.; Divers, M. Cloning and expression of two genes of Streptomyces pilosus involved in the biosynthesis of the siderophore desferrioxamine B. Gene, 1988, 64(2), 179-188. doi: 10.1016/0378-1119(88)90333-2 PMID: 2841191
  216. Schupp, T.; Waldmeier, U.; Divers, M. Biosynthesis of desferrioxamine B in Streptomyces pilosus: Evidence for the involvement of lysine decarboxylase. FEMS Microbiol. Lett., 1987, 42(2-3), 135-139. doi: 10.1111/j.1574-6968.1987.tb02060.x
  217. Fudou, R.; Iizuka, T.; Yamanaka, S. Haliangicin, a novel antifungal metabolite produced by a marine myxobacterium. 1. Fermentation and biological characteristics. J. Antibiot., 2001, 54(2), 149-152. doi: 10.7164/antibiotics.54.149 PMID: 11302487
  218. Sun, Y.; Feng, Z.; Tomura, T.; Suzuki, A.; Miyano, S.; Tsuge, T.; Mori, H.; Suh, J.W.; Iizuka, T.; Fudou, R.; Ojika, M. Heterologous production of the marine myxobacterial antibiotic haliangicin and its unnatural analogues generated by engineering of the biochemical pathway. Sci. Rep., 2016, 6(1), 22091. doi: 10.1038/srep22091 PMID: 26915413
  219. Ohlendorf, B.; Leyers, S.; Krick, A.; Kehraus, S.; Wiese, M.; König, G.M. Phenylnannolones A-C: biosynthesis of new secondary metabolites from the myxobacterium Nannocystis exedens. ChemBioChem, 2008, 9(18), 2997-3003. doi: 10.1002/cbic.200800434 PMID: 19040244
  220. Bouhired, S.M.; Crüsemann, M.; Almeida, C.; Weber, T.; Piel, J.; Schäberle, T.F.; König, G.M. Biosynthesis of phenylnannolone A, a multidrug resistance reversal agent from the halotolerant myxobacterium Nannocystis pusilla B150. ChemBioChem, 2014, 15(5), 757-765. doi: 10.1002/cbic.201300676 PMID: 24677362
  221. Sun, Y.; Tomura, T.; Sato, J.; Iizuka, T.; Fudou, R.; Ojika, M. Isolation and biosynthetic analysis of haliamide, a new PKS-NRPS hybrid metabolite from the marine myxobacterium Haliangium ochraceum. Molecules, 2016, 21(1), 59. doi: 10.3390/molecules21010059 PMID: 26751435

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers