Postbiotic as Novel Alternative Agent or Adjuvant for the Common Antibiotic Utilized in the Food Industry

  • 作者: Sepordeh S.1, Jafari A.1, Bazzaz S.2, Abbasi A.2, Aslani R.3, Houshmandi S.4, Rad A.5
  • 隶属关系:
    1. Student Research Committee, Tabriz University of Medical Sciences
    2. Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology,, Shahid Beheshti University of Medical Sciences
    3. Food Safety and Hygiene Division, Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences
    4. Department of Midwifery, Ardabil University of Medical Sciences
    5. Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences
  • 期: 卷 25, 编号 10 (2024)
  • 页面: 1245-1263
  • 栏目: Biotechnology
  • URL: https://rjpbr.com/1389-2010/article/view/645278
  • DOI: https://doi.org/10.2174/1389201025666230912123849
  • ID: 645278

如何引用文章

全文:

详细

Background:Antibiotic resistance is a serious public health problem as it causes previously manageable diseases to become deadly infections that can cause serious disability or even death. Scientists are creating novel approaches and procedures that are essential for the treatment of infections and limiting the improper use of antibiotics in an effort to counter this rising risk.

Objective:With a focus on the numerous postbiotic metabolites formed from the beneficial gut microorganisms, their potential antimicrobial actions, and recent associated advancements in the food and medical areas, this review presents an overview of the emerging ways to prevent antibiotic resistance.

Results:Presently, scientific literature confirms that plant-derived antimicrobials, RNA therapy, fecal microbiota transplantation, vaccines, nanoantibiotics, haemofiltration, predatory bacteria, immunotherapeutics, quorum-sensing inhibitors, phage therapies, and probiotics can be considered natural and efficient antibiotic alternative candidates. The investigations on appropriate probiotic strains have led to the characterization of specific metabolic byproducts of probiotics named postbiotics. Based on preclinical and clinical studies, postbiotics with their unique characteristics in terms of clinical (safe origin, without the potential spread of antibiotic resistance genes, unique and multiple antimicrobial action mechanisms), technological (stability and feasibility of large-scale production), and economic (low production costs) aspects can be used as a novel alternative agent or adjuvant for the common antibiotics utilized in the production of animal-based foods.

Conclusion:Postbiotic constituents may be a new approach for utilization in the pharmaceutical and food sectors for developing therapeutic treatments. Further metabolomics investigations are required to describe novel postbiotics and clinical trials are also required to define the sufficient dose and optimum administration frequency of postbiotics.

作者简介

Sama Sepordeh

Student Research Committee, Tabriz University of Medical Sciences

Email: info@benthamscience.net

Amir Jafari

Student Research Committee, Tabriz University of Medical Sciences

Email: info@benthamscience.net

Sara Bazzaz

Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology,, Shahid Beheshti University of Medical Sciences

Email: info@benthamscience.net

Amin Abbasi

Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology,, Shahid Beheshti University of Medical Sciences

Email: info@benthamscience.net

Ramin Aslani

Food Safety and Hygiene Division, Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences

Email: info@benthamscience.net

Sousan Houshmandi

Department of Midwifery, Ardabil University of Medical Sciences

Email: info@benthamscience.net

Aziz Rad

Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences

编辑信件的主要联系方式.
Email: info@benthamscience.net

参考

  1. Hayden, G.E.; Tuuri, R.E.; Scott, R.; Losek, J.D.; Blackshaw, A.M.; Schoenling, A.J.; Nietert, P.J.; Hall, G.A. Triage sepsis alert and sepsis protocol lower times to fluids and antibiotics in the ED. Am. J. Emerg. Med., 2016, 34(1), 1-9. doi: 10.1016/j.ajem.2015.08.039 PMID: 26386734
  2. Boucher, H.W.; Talbot, G.H.; Bradley, J.S.; Edwards, J.E.; Gilbert, D.; Rice, L.B.; Scheld, M.; Spellberg, B.; Bartlett, J. Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America. Clin. Infect. Dis., 2009, 48(1), 1-12. doi: 10.1086/595011 PMID: 19035777
  3. Laxminarayan, R.; Duse, A.; Wattal, C.; Zaidi, A.K.M.; Wertheim, H.F.L.; Sumpradit, N.; Vlieghe, E.; Hara, G.L.; Gould, I.M.; Goossens, H.; Greko, C.; So, A.D.; Bigdeli, M.; Tomson, G.; Woodhouse, W.; Ombaka, E.; Peralta, A.Q.; Qamar, F.N.; Mir, F.; Kariuki, S.; Bhutta, Z.A.; Coates, A.; Bergstrom, R.; Wright, G.D.; Brown, E.D.; Cars, O. Antibiotic resistance—the need for global solutions. Lancet Infect. Dis., 2013, 13(12), 1057-1098. doi: 10.1016/S1473-3099(13)70318-9 PMID: 24252483
  4. Waddington, C.; Carey, M.E.; Boinett, C.J.; Higginson, E.; Veeraraghavan, B.; Baker, S. Exploiting genomics to mitigate the public health impact of antimicrobial resistance. Genome Med., 2022, 14(1), 15. doi: 10.1186/s13073-022-01020-2 PMID: 35172877
  5. de Kraker, M.E.A.; Stewardson, A.J.; Harbarth, S. Will 10 million people die a year due to antimicrobial resistance by 2050? PLoS Med., 2016, 13(11), e1002184. doi: 10.1371/journal.pmed.1002184 PMID: 27898664
  6. Talebi Bezmin Abadi, A.; Rizvanov, A.A.; Haertlé, T.; Blatt, N.L. World Health Organization report: current crisis of antibiotic resistance. Bionanoscience, 2019, 9(4), 778-788. doi: 10.1007/s12668-019-00658-4
  7. Xie, R.; Zhang, X.D.; Zhao, Q.; Peng, B.; Zheng, J. Analysis of global prevalence of antibiotic resistance in Acinetobacter baumannii infections disclosed a faster increase in OECD countries. Emerg. Microbes Infect., 2018, 7(1), 1-10. doi: 10.1038/s41426-018-0038-9 PMID: 29535298
  8. Laxminarayan, R.; Chaudhury, R.R. Antibiotic resistance in India: drivers and opportunities for action. PLoS Med., 2016, 13(3), e1001974. doi: 10.1371/journal.pmed.1001974 PMID: 26934098
  9. Zaheer, R.; Cook, S.R.; Barbieri, R.; Goji, N.; Cameron, A.; Petkau, A.; Polo, R.O.; Tymensen, L.; Stamm, C.; Song, J.; Hannon, S.; Jones, T.; Church, D.; Booker, C.W.; Amoako, K.; Van Domselaar, G.; Read, R.R.; McAllister, T.A. Surveillance of Enterococcus spp. reveals distinct species and antimicrobial resistance diversity across a One-Health continuum. Sci. Rep., 2020, 10(1), 3937. doi: 10.1038/s41598-020-61002-5 PMID: 32127598
  10. Armstrong, G.L.; Conn, L.A.; Pinner, R.W. Trends in infectious disease mortality in the United States during the 20th century. JAMA, 1999, 281(1), 61-66. doi: 10.1001/jama.281.1.61 PMID: 9892452
  11. Singh, R.K.; Chang, H.W.; Yan, D.; Lee, K.M.; Ucmak, D.; Wong, K.; Abrouk, M.; Farahnik, B.; Nakamura, M.; Zhu, T.H.; Bhutani, T.; Liao, W. Influence of diet on the gut microbiome and implications for human health. J. Transl. Med., 2017, 15(1), 73. doi: 10.1186/s12967-017-1175-y PMID: 28388917
  12. Zaman, S.B.; Hussain, M.A.; Nye, R.; Mehta, V.; Mamun, K.T.; Hossain, N. A review on antibiotic resistance: alarm bells are ringing. Cureus, 2017, 9(6), e1403. doi: 10.7759/cureus.1403 PMID: 28852600
  13. Podolsky, S.H. The evolving response to antibiotic resistance (1945–2018). Palgrave Commun., 2018, 4(1), 124. doi: 10.1057/s41599-018-0181-x
  14. Davies, J.; Davies, D. Origins and evolution of antibiotic resistance. Microbiol. Mol. Biol. Rev., 2010, 74(3), 417-433. doi: 10.1128/MMBR.00016-10 PMID: 20805405
  15. Levy, S.B.; Marshall, B. Antibacterial resistance worldwide: causes, challenges and responses. Nat. Med., 2004, 10(S12)(Suppl.), S122-S129. doi: 10.1038/nm1145 PMID: 15577930
  16. Sommer, M.O.A.; Munck, C.; Toft-Kehler, R.V.; Andersson, D.I. Prediction of antibiotic resistance: time for a new preclinical paradigm? Nat. Rev. Microbiol., 2017, 15(11), 689-696. doi: 10.1038/nrmicro.2017.75 PMID: 28757648
  17. Yong, D.; Toleman, M.A.; Giske, C.G.; Cho, H.S.; Sundman, K.; Lee, K.; Walsh, T.R. Characterization of a new metallo-β-lactamase gene, bla(NDM-1), and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrob. Agents Chemother., 2009, 53(12), 5046-5054. doi: 10.1128/AAC.00774-09 PMID: 19770275
  18. Wellington, E.M.H.; Boxall, A.B.A.; Cross, P.; Feil, E.J.; Gaze, W.H.; Hawkey, P.M.; Johnson-Rollings, A.S.; Jones, D.L.; Lee, N.M.; Otten, W.; Thomas, C.M.; Williams, A.P. The role of the natural environment in the emergence of antibiotic resistance in Gram-negative bacteria. Lancet Infect. Dis., 2013, 13(2), 155-165. doi: 10.1016/S1473-3099(12)70317-1 PMID: 23347633
  19. Kapoor, G.; Saigal, S.; Elongavan, A. Action and resistance mechanisms of antibiotics: A guide for clinicians. J. Anaesthesiol. Clin. Pharmacol., 2017, 33(3), 300-305. doi: 10.4103/joacp.JOACP_349_15 PMID: 29109626
  20. Marchant, J. When antibiotics turn toxic. Nature, 2018, 555(7697), 431-433. doi: 10.1038/d41586-018-03267-5
  21. Tiseo, K.; Huber, L.; Gilbert, M.; Robinson, T.P.; Van Boeckel, T.P. Global trends in antimicrobial use in food animals from 2017 to 2030. Antibiotics (Basel), 2020, 9(12), 918. doi: 10.3390/antibiotics9120918 PMID: 33348801
  22. Laxminarayan, R.; Matsoso, P.; Pant, S.; Brower, C.; Røttingen, J.A.; Klugman, K.; Davies, S. Access to effective antimicrobials: a worldwide challenge. Lancet, 2016, 387(10014), 168-175. doi: 10.1016/S0140-6736(15)00474-2 PMID: 26603918
  23. Van Boeckel, T.P.; Glennon, E.E.; Chen, D.; Gilbert, M.; Robinson, T.P.; Grenfell, B.T.; Levin, S.A.; Bonhoeffer, S.; Laxminarayan, R. Reducing antimicrobial use in food animals. Science, 2017, 357(6358), 1350-1352. doi: 10.1126/science.aao1495 PMID: 28963240
  24. Van Boeckel, T.P.; Brower, C.; Gilbert, M.; Grenfell, B.T.; Levin, S.A.; Robinson, T.P.; Teillant, A.; Laxminarayan, R. Global trends in antimicrobial use in food animals. Proc. Natl. Acad. Sci. USA, 2015, 112(18), 5649-5654. doi: 10.1073/pnas.1503141112 PMID: 25792457
  25. Allen, H.K. Antibiotic resistance gene discovery in food-producing animals. Curr. Opin. Microbiol., 2014, 19, 25-29. doi: 10.1016/j.mib.2014.06.001 PMID: 24994584
  26. Huang, Q.; Liu, X.; Zhao, G.; Hu, T.; Wang, Y. Potential and challenges of tannins as an alternative to in-feed antibiotics for farm animal production. Anim. Nutr., 2018, 4(2), 137-150. doi: 10.1016/j.aninu.2017.09.004 PMID: 30140753
  27. Economou, V.; Gousia, P. Agriculture and food animals as a source of antimicrobial-resistant bacteria. Infect. Drug Resist., 2015, 8, 49-61. doi: 10.2147/IDR.S55778 PMID: 25878509
  28. Hawkey, P.M. The growing burden of antimicrobial resistance. J. Antimicrob. Chemother., 2008, 62(Suppl. 1), i1-i9. doi: 10.1093/jac/dkn241 PMID: 18684701
  29. Martínez, J.L. Natural antibiotic resistance and contamination by antibiotic resistance determinants: the two ages in the evolution of resistance to antimicrobials. Front. Microbiol., 2012, 3, 1. doi: 10.3389/fmicb.2012.00001 PMID: 22275914
  30. Mitema, E.S.; Kikuvi, G.M.; Wegener, H.C.; Stohr, K. An assessment of antimicrobial consumption in food producing animals in Kenya. J. Vet. Pharmacol. Ther., 2001, 24(6), 385-390. doi: 10.1046/j.1365-2885.2001.00360.x PMID: 11903868
  31. Marques, R.Z.; Wistuba, N.; Brito, J.C.M.; Bernardoni, V.; Rocha, D.C.; Gomes, M.P. Crop irrigation (soybean, bean, and corn) with enrofloxacin-contaminated water leads to yield reductions and antibiotic accumulation. Ecotoxicol. Environ. Saf., 2021, 216, 112193. doi: 10.1016/j.ecoenv.2021.112193 PMID: 33831726
  32. Shatzkes, K.; Connell, N.D.; Kadouri, D.E. Predatory bacteria: a new therapeutic approach for a post-antibiotic era. Future Microbiol., 2017, 12, 469-472. doi: 10.2217/fmb-2017-0021
  33. Wittebole, X.; De Roock, S.; Opal, S.M. A historical overview of bacteriophage therapy as an alternative to antibiotics for the treatment of bacterial pathogens. Virulence, 2014, 5(1), 226-235. doi: 10.4161/viru.25991 PMID: 23973944
  34. Lima, T.; Domingues, S.; Da Silva, G.J. Manure as a potential hotspot for antibiotic resistance dissemination by horizontal gene transfer events. Vet. Sci., 2020, 7(3), 110. doi: 10.3390/vetsci7030110 PMID: 32823495
  35. Losasso, C.; Di Cesare, A.; Mastrorilli, E.; Patuzzi, I.; Cibin, V.; Eckert, E.M.; Fontaneto, D.; Vanzo, A.; Ricci, A.; Corno, G. Assessing antimicrobial resistance gene load in vegan, vegetarian and omnivore human gut microbiota. Int. J. Antimicrob. Agents, 2018, 52(5), 702-705. doi: 10.1016/j.ijantimicag.2018.07.023 PMID: 30081136
  36. Fish, R.; Kutter, E.; Wheat, G.; Blasdel, B.; Kutateladze, M.; Kuhl, S. Bacteriophage treatment of intransigent diabetic toe ulcers: a case series. J. Wound Care, 2016, 25(Sup7), S27-S33. doi: 10.12968/jowc.2016.25.7.S27
  37. Kutateladze, M.; Adamia, R. Phage therapy experience at the Eliava Institute. Med. Mal. Infect., 2008, 38(8), 426-430. doi: 10.1016/j.medmal.2008.06.023 PMID: 18687542
  38. Wills, Q.F.; Kerrigan, C.; Soothill, J.S. Experimental bacteriophage protection against Staphylococcus aureus abscesses in a rabbit model. Antimicrob. Agents Chemother., 2005, 49(3), 1220-1221. doi: 10.1128/AAC.49.3.1220-1221.2005 PMID: 15728933
  39. Wang, J.; Hu, B.; Xu, M.; Yan, Q.; Liu, S.; Zhu, X.; Sun, Z.; Tao, D.; Ding, L.; Reed, E.; Gong, J.; Li, Q.; Hu, J. Therapeutic effectiveness of bacteriophages in the rescue of mice with extended spectrum β-lactamase-producing Escherichia coli bacteremia. Int. J. Mol. Med., 2006, 17(2), 347-355. doi: 10.3892/ijmm.17.2.347 PMID: 16391836
  40. Chanishvili, N. Phage therapy--history from Twort and d’Herelle through Soviet experience to current approaches. Adv. Virus Res., 2012, 83, 3-40. doi: 10.1016/B978-0-12-394438-2.00001-3 PMID: 22748807
  41. Ramesh, V.; Fralick, J.A.; Rolfe, R.D. Prevention of Clostridium difficile -induced ileocecitis with Bacteriophage. Anaerobe, 1999, 5(2), 69-78. doi: 10.1006/anae.1999.0192
  42. Yosef, I.; Manor, M.; Kiro, R.; Qimron, U. Temperate and lytic bacteriophages programmed to sensitize and kill antibiotic-resistant bacteria. Proc. Natl. Acad. Sci. USA, 2015, 112(23), 7267-7272. doi: 10.1073/pnas.1500107112 PMID: 26060300
  43. Pouillot, F.; Chomton, M.; Blois, H.; Courroux, C.; Noelig, J.; Bidet, P.; Bingen, E.; Bonacorsi, S. Efficacy of bacteriophage therapy in experimental sepsis and meningitis caused by a clone O25b:H4-ST131 Escherichia coli strain producing CTX-M-15. Antimicrob. Agents Chemother., 2012, 56(7), 3568-3575. doi: 10.1128/AAC.06330-11 PMID: 22491690
  44. Wright, A.; Hawkins, C.H.; Änggård, E.E.; Harper, D.R. A controlled clinical trial of a therapeutic bacteriophage preparation in chronic otitis due to antibiotic-resistant Pseudomonas aeruginosa; a preliminary report of efficacy. Clin. Otolaryngol., 2009, 34(4), 349-357. doi: 10.1111/j.1749-4486.2009.01973.x PMID: 19673983
  45. Shatzkes, K.; Singleton, E.; Tang, C.; Zuena, M.; Shukla, S.; Gupta, S.; Dharani, S.; Onyile, O.; Rinaggio, J.; Connell, N.D.; Kadouri, D.E. Predatory bacteria attenuate Klebsiella pneumoniae burden in rat lungs. MBio, 2016, 7(6), e01847-e16. doi: 10.1128/mBio.01847-16 PMID: 27834203
  46. Opal, S.M. Non-antibiotic treatments for bacterial diseases in an era of progressive antibiotic resistance. Crit. Care, 2016, 20(1), 397. doi: 10.1186/s13054-016-1549-1
  47. Bonanno, G.; Procoli, A.; Mariotti, A.; Corallo, M.; Perillo, A.; Danese, S.; De Cristofaro, R.; Scambia, G.; Rutella, S. Effects of pegylated G-CSF on immune cell number and function in patients with gynecological malignancies. J. Transl. Med., 2010, 8(1), 114. doi: 10.1186/1479-5876-8-114 PMID: 21062439
  48. Trimboli, F.; Morittu, V.M.; Di Loria, A.; Minuti, A.; Spina, A.A.; Piccioli-Cappelli, F.; Trevisi, E.; Britti, D.; Lopreiato, V. Effect of pegbovigrastim on hematological profile of simmental dairy cows during the transition period. Animals (Basel), 2019, 9(10), 841. doi: 10.3390/ani9100841 PMID: 31640199
  49. Bonfiglio, G.; Neroni, B.; Radocchia, G.; Pompilio, A.; Mura, F.; Trancassini, M.; Di Bonaventura, G.; Pantanella, F.; Schippa, S. Growth control of adherent-invasive Escherichia coli (AIEC) by the predator bacteria Bdellovibrio bacteriovorus: a new therapeutic approach for Crohn’s disease patients. Microorganisms, 2019, 8(1), 17. doi: 10.3390/microorganisms8010017 PMID: 31861852
  50. Domenech, M.; Sempere, J.; de Miguel, S.; Yuste, J. Combination of antibodies and antibiotics as a promising strategy against multidrug-resistant pathogens of the respiratory tract. Front. Immunol., 2018, 9, 2700. doi: 10.3389/fimmu.2018.02700 PMID: 30515172
  51. Navalkele, B.D.; Chopra, T. Bezlotoxumab: an emerging monoclonal antibody therapy for prevention of recurrent Clostridium difficile infection. Biologics, 2018, 12, 11-21. PMID: 29403263
  52. Kang, J.H.; Super, M.; Yung, C.W.; Cooper, R.M.; Domansky, K.; Graveline, A.R.; Mammoto, T.; Berthet, J.B.; Tobin, H.; Cartwright, M.J.; Watters, A.L.; Rottman, M.; Waterhouse, A.; Mammoto, A.; Gamini, N.; Rodas, M.J.; Kole, A.; Jiang, A.; Valentin, T.M.; Diaz, A.; Takahashi, K.; Ingber, D.E. An extracorporeal blood-cleansing device for sepsis therapy. Nat. Med., 2014, 20(10), 1211-1216. doi: 10.1038/nm.3640 PMID: 25216635
  53. Amara, N.; Krom, B.P.; Kaufmann, G.F.; Meijler, M.M. Macromolecular inhibition of quorum sensing: enzymes, antibodies, and beyond. Chem. Rev., 2011, 111(1), 195-208. doi: 10.1021/cr100101c PMID: 21087050
  54. McDougald, D.; Rice, S.A.; Kjelleberg, S. Bacterial quorum sensing and interference by naturally occurring biomimics. Anal. Bioanal. Chem., 2007, 387(2), 445-453. doi: 10.1007/s00216-006-0761-2 PMID: 17019574
  55. Papenfort, K.; Bassler, B.L. Quorum sensing signal–response systems in Gram-negative bacteria. Nat. Rev. Microbiol., 2016, 14(9), 576-588. doi: 10.1038/nrmicro.2016.89 PMID: 27510864
  56. Aleksić, I.; Šegan, S.; Andrić, F.; Zlatović, M.; Moric, I.; Opsenica, D.M.; Senerovic, L. Long-chain 4-aminoquinolines as quorum sensing inhibitors in Serratia marcescens and Pseudomonas aeruginosa. ACS Chem. Biol., 2017, 12(5), 1425-1434. doi: 10.1021/acschembio.6b01149 PMID: 28350449
  57. Kalia, V.C.; Patel, S.K.S.; Kang, Y.C.; Lee, J.K. Quorum sensing inhibitors as antipathogens: biotechnological applications. Biotechnol. Adv., 2019, 37(1), 68-90. doi: 10.1016/j.biotechadv.2018.11.006 PMID: 30471318
  58. Fetzner, S. Quorum quenching enzymes. J. Biotechnol., 2015, 201, 2-14. doi: 10.1016/j.jbiotec.2014.09.001 PMID: 25220028
  59. Goswami, J. Quorum sensing by super bugs and their resistance to antibiotics, a short review. Int. J. Pharm. Pharm. Sci., 2017, 3, 67-73.
  60. Kolodkin-Gal, I.; Romero, D.; Cao, S.; Clardy, J.; Kolter, R.; Losick, R. D-amino acids trigger biofilm disassembly. Science, 2010, 328(5978), 627-629. doi: 10.1126/science.1188628 PMID: 20431016
  61. Douafer, H.; Andrieu, V.; Phanstiel, O., IV; Brunel, J.M. Antibiotic adjuvants: make antibiotics great again! J. Med. Chem., 2019, 62(19), 8665-8681. doi: 10.1021/acs.jmedchem.8b01781 PMID: 31063379
  62. Smits, L.P.; Bouter, K.E.C.; de Vos, W.M.; Borody, T.J.; Nieuwdorp, M. Therapeutic potential of fecal microbiota transplantation. Gastroenterology, 2013, 145(5), 946-953. doi: 10.1053/j.gastro.2013.08.058 PMID: 24018052
  63. DePeters, E.J.; George, L.W. Rumen transfaunation. Immunol. Lett., 2014, 162(2), 69-76. doi: 10.1016/j.imlet.2014.05.009 PMID: 25262872
  64. Zhang, F.; Luo, W.; Shi, Y.; Fan, Z.; Ji, G. Should we standardize the 1,700-year-old fecal microbiota transplantation? Am. J. Gastroenterol., 2012, 107(11), 1755. doi: 10.1038/ajg.2012.251 PMID: 23160295
  65. Wortelboer, K.; Nieuwdorp, M.; Herrema, H. Fecal microbiota transplantation beyond Clostridioides difficile infections. EBioMedicine, 2019, 44, 716-729. doi: 10.1016/j.ebiom.2019.05.066 PMID: 31201141
  66. Khoruts, A.; Staley, C.; Sadowsky, M.J. Faecal microbiota transplantation for Clostridioides difficile: mechanisms and pharmacology. Nat. Rev. Gastroenterol. Hepatol., 2021, 18(1), 67-80. doi: 10.1038/s41575-020-0350-4 PMID: 32843743
  67. Ma, Y.; Yang, J.; Cui, B.; Xu, H.; Xiao, C.; Zhang, F. How Chinese clinicians face ethical and social challenges in fecal microbiota transplantation: a questionnaire study. BMC Med. Ethics, 2017, 18(1), 39. doi: 10.1186/s12910-017-0200-2 PMID: 28569156
  68. Vincent, M.G.; John, N.P.; Narayanan, P.; Vani, C.; Murugan, S. In vitro study on the efficacy of zinc oxide and titanium dioxide nanoparticles against metallo beta-lactamase and biofilm producing Pseudomonas aeruginosa. J. Appl. Pharm. Sci., 2014, 4, 041-046.
  69. Malka, E.; Perelshtein, I.; Lipovsky, A.; Shalom, Y.; Naparstek, L.; Perkas, N.; Patick, T.; Lubart, R.; Nitzan, Y.; Banin, E. Eradication of multi-drug resistant bacteria by a novel Zn-doped CuO nanocomposite. small, 2013, 9, 4069-4076.
  70. Huang, Z.; Zheng, X.; Yan, D.; Yin, G.; Liao, X.; Kang, Y.; Yao, Y.; Huang, D.; Hao, B. Toxicological effect of ZnO nanoparticles based on bacteria. Langmuir, 2008, 24(8), 4140-4144. doi: 10.1021/la7035949 PMID: 18341364
  71. Ansari, M.A.; Khan, H.M.; Khan, A.A.; Cameotra, S.S.; Saquib, Q.; Musarrat, J. Interaction of Al 2 O 3 nanoparticles with Escherichia coli and their cell envelope biomolecules. J. Appl. Microbiol., 2014, 116(4), 772-783. doi: 10.1111/jam.12423 PMID: 24354999
  72. Muzammil, S.; Hayat, S. Fakhar-E-Alam, M.; Aslam, B.; Siddique, M.H.; Nisar, M.A.; Saqalein, M.; Atif, M.; Sarwar, A.; Khurshid, A. Nanoantibiotics: Future nanotechnologies to combat antibiotic resistance. Front. Biosci., 2018, 10, 352-374.
  73. Friedman, A.; Friedman, J. New biomaterials for the sustained release of nitric oxide: past, present and future. Expert Opin. Drug Deliv., 2009, 6(10), 1113-1122. doi: 10.1517/17425240903196743 PMID: 19663720
  74. Kim, S.; Lee, D.G. PMAP-23 triggers cell death by nitric oxide-induced redox imbalance in Escherichia coli. Biochim. Biophys. Acta, Gen. Subj., 2019, 1863(7), 1187-1195. doi: 10.1016/j.bbagen.2019.04.014 PMID: 31026481
  75. Brisbois, E.J.; Bayliss, J.; Wu, J.; Major, T.C.; Xi, C.; Wang, S.C.; Bartlett, R.H.; Handa, H.; Meyerhoff, M.E. Optimized polymeric film-based nitric oxide delivery inhibits bacterial growth in a mouse burn wound model. Acta Biomater., 2014, 10(10), 4136-4142. doi: 10.1016/j.actbio.2014.06.032 PMID: 24980058
  76. Kadam, S.; Shai, S.; Shahane, A.; Kaushik, K.S. Recent advances in non-conventional antimicrobial approaches for chronic wound biofilms: have we found the ‘chink in the armor’? Biomedicines, 2019, 7(2), 35. doi: 10.3390/biomedicines7020035 PMID: 31052335
  77. Savoia, D. Plant-derived antimicrobial compounds: alternatives to antibiotics. Future Microbiol., 2012, 7(8), 979-990. doi: 10.2217/fmb.12.68 PMID: 22913356
  78. Jiang, Y.; Wu, N.; Fu, Y.J.; Wang, W.; Luo, M.; Zhao, C.J.; Zu, Y.G.; Liu, X.L. Chemical composition and antimicrobial activity of the essential oil of Rosemary. Environ. Toxicol. Pharmacol., 2011, 32(1), 63-68. doi: 10.1016/j.etap.2011.03.011 PMID: 21787731
  79. Ojeda-Sana, A.M.; van Baren, C.M.; Elechosa, M.A.; Juárez, M.A.; Moreno, S. New insights into antibacterial and antioxidant activities of rosemary essential oils and their main components. Food Control, 2013, 31(1), 189-195. doi: 10.1016/j.foodcont.2012.09.022
  80. Lemos, M.F.; Lemos, M.F.; Pacheco, H.P.; Endringer, D.C.; Scherer, R. Seasonality modifies rosemary’s composition and biological activity. Ind. Crops Prod., 2015, 70, 41-47. doi: 10.1016/j.indcrop.2015.02.062
  81. Barreto, H.M.; Silva Filho, E.C.; Lima, E.O.; Coutinho, H.D.M.; Morais-Braga, M.F.B.; Tavares, C.C.A.; Tintino, S.R.; Rego, J.V.; de Abreu, A.P.L.; Lustosa, M.C.G.; Oliveira, R.W.G.; Citó, A.M.G.L.; Lopes, J.A.D. Chemical composition and possible use as adjuvant of the antibiotic therapy of the essential oil of Rosmarinus officinalis L. Ind. Crops Prod., 2014, 59, 290-294. doi: 10.1016/j.indcrop.2014.05.026
  82. Sarikurkcu, C.; Zengin, G.; Oskay, M.; Uysal, S.; Ceylan, R.; Aktumsek, A. Composition, antioxidant, antimicrobial and enzyme inhibition activities of two Origanum vulgare subspecies (subsp. vulgare and subsp. hirtum) essential oils. Ind. Crops Prod., 2015, 70, 178-184. doi: 10.1016/j.indcrop.2015.03.030
  83. Gutierrez, J.; Barry-Ryan, C.; Bourke, P. The antimicrobial efficacy of plant essential oil combinations and interactions with food ingredients. Int. J. Food Microbiol., 2008, 124(1), 91-97. doi: 10.1016/j.ijfoodmicro.2008.02.028 PMID: 18378032
  84. Hussain, A.I.; Anwar, F.; Hussain Sherazi, S.T.; Przybylski, R. Chemical composition, antioxidant and antimicrobial activities of basil (Ocimum basilicum) essential oils depends on seasonal variations. Food Chem., 2008, 108(3), 986-995. doi: 10.1016/j.foodchem.2007.12.010 PMID: 26065762
  85. Opalchenova, G.; Obreshkova, D. Comparative studies on the activity of basil—an essential oil from Ocimum basilicum L.—against multidrug resistant clinical isolates of the genera Staphylococcus, Enterococcus and Pseudomonas by using different test methods. J. Microbiol. Methods, 2003, 54(1), 105-110. doi: 10.1016/S0167-7012(03)00012-5 PMID: 12732427
  86. Koga, T.; Hirota, N.; Takumi, K. Bactericidal activities of essential oils of basil and sage against a range of bacteria and the effect of these essential oils on Vibrio parahaemolyticus. Microbiol. Res., 1999, 154(3), 267-273. doi: 10.1016/S0944-5013(99)80024-X PMID: 10652788
  87. Tyagi, A.K.; Malik, A. Antimicrobial potential and chemical composition of Mentha piperita oil in liquid and vapour phase against food spoiling microorganisms. Food Control, 2011, 22(11), 1707-1714. doi: 10.1016/j.foodcont.2011.04.002
  88. Mahboubi, M.; Haghi, G. Antimicrobial activity and chemical composition of Mentha pulegium L. essential oil. J. Ethnopharmacol., 2008, 119(2), 325-327. doi: 10.1016/j.jep.2008.07.023 PMID: 18703127
  89. Ahmad, A.; Khan, A.; Samber, N.; Manzoor, N. Antimicrobial activity of Mentha piperita essential oil in combination with silver ions. Synergy, 2014, 1(2), 92-98. doi: 10.1016/j.synres.2014.11.001
  90. Aleksic Sabo, V.; Knezevic, P. Antimicrobial activity of Eucalyptus camaldulensis Dehn. plant extracts and essential oils: A review. Ind. Crops Prod., 2019, 132, 413-429. doi: 10.1016/j.indcrop.2019.02.051 PMID: 32288268
  91. Wińska, K.; Mączka, W.; Łyczko, J.; Grabarczyk, M.; Czubaszek, A.; Szumny, A. Essential oils as antimicrobial agents—myth or real alternative? Molecules, 2019, 24(11), 2130. doi: 10.3390/molecules24112130 PMID: 31195752
  92. Flores-Villaseñor, H.; Canizalez-Román, A.; Reyes-Lopez, M.; Nazmi, K.; de la Garza, M.; Zazueta-Beltrán, J.; León-Sicairos, N.; Bolscher, J.G.M. Bactericidal effect of bovine lactoferrin, LFcin, LFampin and LFchimera on antibiotic-resistant Staphylococcus aureus and Escherichia coli. Biometals, 2010, 23(3), 569-578. doi: 10.1007/s10534-010-9306-4 PMID: 20195887
  93. Cattoir, V.; Felden, B. Future antibacterial strategies: from basic concepts to clinical challenges. J. Infect. Dis., 2019, 220(3), 350-360. doi: 10.1093/infdis/jiz134 PMID: 30893436
  94. Parmeciano Di Noto, G.; Molina, M.C.; Quiroga, C. Insights into non-coding RNAs as novel antimicrobial drugs. Front. Genet., 2019, 10, 57. doi: 10.3389/fgene.2019.00057 PMID: 30853970
  95. Lipsitch, M.; Siber, G.R. How can vaccines contribute to solving the antimicrobial resistance problem? MBio, 2016, 7(3), e00428-e16. doi: 10.1128/mBio.00428-16 PMID: 27273824
  96. Abbasi, A.; Rad, A.H.; Maleki, L.A.; Kafil, H.S.; Baghbanzadeh, A. Antigenotoxicity and cytotoxic potentials of cell-free supernatants derived from saccharomyces cerevisiae var. boulardii on HT-29 human colon cancer cell lines. Probiotics Antimicrob. Proteins, 2023, 1-13. doi: 10.1007/s12602-022-10039-1 PMID: 36588138
  97. Rad, A.H.; Aghebati-Maleki, L.; Kafil, H.S.; Abbasi, A. Molecular mechanisms of postbiotics in colorectal cancer prevention and treatment. Crit. Rev. Food Sci. Nutr., 2021, 61(11), 1787-1803. doi: 10.1080/10408398.2020.1765310 PMID: 32410512
  98. Abbasi, A.; Rad, A.H.; Ghasempour, Z.; Sabahi, S.; Kafil, H.S.; Hasannezhad, P.; Rahbar Saadat, Y.; Shahbazi, N. The biological activities of postbiotics in gastrointestinal disorders. Crit. Rev. Food Sci. Nutr., 2022, 62(22), 5983-6004. doi: 10.1080/10408398.2021.1895061 PMID: 33715539
  99. Homayouni Rad, A.; Aghebati Maleki, L.; Samadi Kafil, H.; Abbasi, A. Postbiotics: A novel strategy in food allergy treatment. Crit. Rev. Food Sci. Nutr., 2021, 61(3), 492-499. doi: 10.1080/10408398.2020.1738333 PMID: 32160762
  100. Homayouni Rad, A.; Aghebati Maleki, L.; Samadi Kafil, H.; Fathi Zavoshti, H.; Abbasi, A. Postbiotics as novel health-promoting ingredients in functional foods. Health Promot. Perspect., 2020, 10(1), 3-4. doi: 10.15171/hpp.2020.02 PMID: 32104650
  101. Ozma, M.A.; Abbasi, A.; Sabahi, S. Characterization of postbiotics derived from Lactobacillus paracasei ATCC 55544 and its application in Malva sylvestris seed mucilage edible coating to the improvement of the microbiological, and sensory properties of lamb meat during storage. Biointerface Res. Appl. Chem., 2022, 13.
  102. Abbasi, A.; Rahbar Saadat, T.; Rahbar Saadat, Y. Microbial exopolysaccharides–β-glucans–as promising postbiotic candidates in vaccine adjuvants. Int. J. Biol. Macromol., 2022, 223, 346-361. doi: 10.1016/j.ijbiomac.2022.11.003
  103. Homayouni Rad, A.; Aghebati Maleki, L.; Samadi Kafil, H.; Fathi Zavoshti, H.; Abbasi, A. Postbiotics as promising tools for cancer adjuvant therapy. Adv. Pharm. Bull., 2020, 11(1), 1-5. doi: 10.34172/apb.2021.007 PMID: 33747846
  104. Besselink, M.G.H.; van Santvoort, H.C.; Buskens, E.; Boermeester, M.A.; van Goor, H.; Timmerman, H.M.; Nieuwenhuijs, V.B.; Bollen, T.L.; van Ramshorst, B.; Witteman, B.J.M.; Rosman, C.; Ploeg, R.J.; Brink, M.A.; Schaapherder, A.F.M.; Dejong, C.H.C.; Wahab, P.J.; van Laarhoven, C.J.H.M.; van der Harst, E.; van Eijck, C.H.J.; Cuesta, M.A.; Akkermans, L.M.A.; Gooszen, H.G. Probiotic prophylaxis in predicted severe acute pancreatitis: a randomised, double-blind, placebo-controlled trial. Lancet, 2008, 371(9613), 651-659. doi: 10.1016/S0140-6736(08)60207-X PMID: 18279948
  105. Zhang, L.S.; Davies, S.S. Microbial metabolism of dietary components to bioactive metabolites: opportunities for new therapeutic interventions. Genome Med., 2016, 8(1), 46. doi: 10.1186/s13073-016-0296-x PMID: 27102537
  106. Abbasi, A.; Hajipour, N.; Hasannezhad, P.; Baghbanzadeh, A.; Aghebati-Maleki, L. Potential in vivo delivery routes of postbiotics. Crit. Rev. Food Sci. Nutr., 2022, 62(12), 3345-3369. doi: 10.1080/10408398.2020.1865260 PMID: 33356449
  107. Rad, A.H.; Abbasi, A.; Kafil, H.S.; Ganbarov, K. Potential pharmaceutical and food applications of postbiotics: a review. Curr. Pharm. Biotechnol., 2020, 21(15), 1576-1587. doi: 10.2174/1389201021666200516154833 PMID: 32416671
  108. Sabahi, S.; Homayouni Rad, A.; Aghebati-Maleki, L.; Sangtarash, N.; Ozma, M.A.; Karimi, A.; Hosseini, H.; Abbasi, A. Postbiotics as the new frontier in food and pharmaceutical research. Crit. Rev. Food Sci. Nutr., 2022, 1-28. doi: 10.1080/10408398.2022.2056727 PMID: 35348016
  109. Konstantinov, S.R.; Kuipers, E.J.; Peppelenbosch, M.P. Functional genomic analyses of the gut microbiota for CRC screening. Nat. Rev. Gastroenterol. Hepatol., 2013, 10(12), 741-745. doi: 10.1038/nrgastro.2013.178 PMID: 24042452
  110. Ozma, M.A.; Abbasi, A.; Ahangarzadeh Rezaee, M.; Hosseini, H.; Hosseinzadeh, N.; Sabahi, S.; Noori, S.M.A.; Sepordeh, S.; Khodadadi, E.; Lahouty, M.; Kafil, H.S. A critical review on the nutritional and medicinal profiles of garlic’s (Allium sativum L.) bioactive compounds. Food Rev. Int., 2022, 1-38. doi: 10.1080/87559129.2022.2100417
  111. Abbasi, A.; Rad, A.H.; Maleki, L.A.; Kafil, H.S.; Baghbanzadeh, A. Cytotoxic potentials of cell-free supernatant derived from lactobacillus casei CRL431 on HCT-116 and HT-29 human colon cancer cell lines. Biointerface Res. Appl. Chem., 2023, 13(5), 476.
  112. Ozma, M.A.; Abbasi, A.; Akrami, S.; Lahouty, M.; Shahbazi, N.; Ganbarov, K.; Pagliano, P.; Sabahi, S.; Köse, Ş.; Yousefi, M.; Dao, S.; Asgharzadeh, M.; Hosseini, H.; Kafil, H.S. Postbiotics as the key mediators of the gut microbiota-host interactions. Infez. Med., 2022, 30(2), 180-193. PMID: 35693065
  113. Abbasi, A.; Sheykhsaran, E.; Kafil, H.S. Postbiotics: science, technology and applications; Bentham Science Publishers, 2021. doi: 10.2174/97816810883891210101
  114. Mohammad, M.A.; Molloy, A.; Scott, J. Hussein, Plasma cobalamin and folate and their metabolic markers methylmalonic acid and total homocysteine among Egyptian children before and after nutritional supplementation with the probiotic bacteria Lactobacillus acidophilus in yoghurt matrix. Int. J. Food Sci. Nutr., 2006, 57(7-8), 470-480. doi: 10.1080/09637480600968735 PMID: 17162326
  115. Liu, Y.; Hou, Y.; Wang, G.; Zheng, X.; Hao, H. Gut microbial metabolites of aromatic amino acids as signals in host–microbe interplay. Trends Endocrinol. Metab., 2020, 31(11), 818-834. doi: 10.1016/j.tem.2020.02.012 PMID: 32284282
  116. Devlin, A.S.; Marcobal, A.; Dodd, D.; Nayfach, S.; Plummer, N.; Meyer, T.; Pollard, K.S.; Sonnenburg, J.L.; Fischbach, M.A. Modulation of a circulating uremic solute via rational genetic manipulation of the gut microbiota. Cell Host Microbe, 2016, 20(6), 709-715. doi: 10.1016/j.chom.2016.10.021 PMID: 27916477
  117. Newburg, D.S.; Ko, J.S.; Leone, S.; Nanthakumar, N.N. Human milk oligosaccharides and synthetic galactosyloligosaccharides contain 3′-, 4-, and 6′-galactosyllactose and attenuate inflammation in human T84, NCM-460, and H4 cells and intestinal tissue ex vivo. J. Nutr., 2016, 146(2), 358-367. doi: 10.3945/jn.115.220749 PMID: 26701795
  118. Dunand, E.; Burns, P.; Binetti, A.; Bergamini, C.; Peralta, G.H.; Forzani, L.; Reinheimer, J.; Vinderola, G. Postbiotics produced at laboratory and industrial level as potential functional food ingredients with the capacity to protect mice against Salmonella infection. J. Appl. Microbiol., 2019, 127(1), 219-229. doi: 10.1111/jam.14276 PMID: 30973185
  119. Morisset, M.; Aubert-Jacquin, C.; Soulaines, P.; Moneret-Vautrin, D-A.; Dupont, C. A non-hydrolyzed, fermented milk formula reduces digestive and respiratory events in infants at high risk of allergy. Eur. J. Clin. Nutr., 2011, 65(2), 175-183. doi: 10.1038/ejcn.2010.250 PMID: 21081959
  120. Hofacre, C.L.; Smith, J.A.; Mathis, G.F. An optimist’s view on limiting necrotic enteritis and maintaining broiler gut health and performance in today’s marketing, food safety, and regulatory climate. Poult. Sci., 2018, 97(6), 1929-1933. doi: 10.3382/ps/pey082 PMID: 29762789
  121. Wu, S.B.; Stanley, D.; Rodgers, N.; Swick, R.A.; Moore, R.J. Two necrotic enteritis predisposing factors, dietary fishmeal and Eimeria infection, induce large changes in the caecal microbiota of broiler chickens. Vet. Microbiol., 2014, 169(3-4), 188-197. doi: 10.1016/j.vetmic.2014.01.007 PMID: 24522272
  122. Lu, M.; Li, R.W.; Zhao, H.; Yan, X.; Lillehoj, H.S.; Sun, Z.; Oh, S.; Wang, Y.; Li, C. Effects of Eimeria maxima and Clostridium perfringens infections on cecal microbial composition and the possible correlation with body weight gain in broiler chickens. Res. Vet. Sci., 2020, 132, 142-149. doi: 10.1016/j.rvsc.2020.05.013 PMID: 32575030
  123. Timbermont, L.; Haesebrouck, F.; Ducatelle, R.; Van Immerseel, F. Necrotic enteritis in broilers: an updated review on the pathogenesis. Avian Pathol., 2011, 40(4), 341-347. doi: 10.1080/03079457.2011.590967 PMID: 21812711
  124. Parish, W.E. Necrotic enteritis in the fowl (Gallus gallus domesticus). I. Histopathology of the disease and isolation of a strain of Clostridium welchii. J. Comp. Pathol., 1961, 71, 377-393. doi: 10.1016/S0368-1742(61)80043-X PMID: 14483884
  125. Durso, L.M.; Cook, K.L. Impacts of antibiotic use in agriculture: what are the benefits and risks? Curr. Opin. Microbiol., 2014, 19, 37-44. doi: 10.1016/j.mib.2014.05.019 PMID: 24997398
  126. Salah-Eldin, A.; Fawzy, E.H.; Aboelmagd, B.A.; Ragab, E.A.; Bedawy, S. Clinical and laboratory studies on chicken isolates of Clostridium Perfringens in El-Behera, Egypt. J. Worlds Poult. Res., 2015, 5, 21-28.
  127. Karavolias, J.; Salois, M.J.; Baker, K.T.; Watkins, K. Raised without antibiotics: impact on animal welfare and implications for food policy. Transl. Anim. Sci., 2018, 2(4), 337-348. doi: 10.1093/tas/txy016 PMID: 32704717
  128. Kumar, S.; Chen, C.; Indugu, N.; Werlang, G.O.; Singh, M.; Kim, W.K.; Thippareddi, H. Effect of antibiotic withdrawal in feed on chicken gut microbial dynamics, immunity, growth performance and prevalence of foodborne pathogens. PLoS One, 2018, 13(2), e0192450. doi: 10.1371/journal.pone.0192450 PMID: 29444134
  129. Abd El-Hack, M.E.; El-Saadony, M.T.; Elbestawy, A.R.; El-Shall, N.A.; Saad, A.M.; Salem, H.M.; El-Tahan, A.M.; Khafaga, A.F.; Taha, A.E.; AbuQamar, S.F.; El-Tarabily, K.A. Necrotic enteritis in broiler chickens: disease characteristics and prevention using organic antibiotic alternatives – a comprehensive review. Poult. Sci., 2022, 101(2), 101590. doi: 10.1016/j.psj.2021.101590 PMID: 34953377
  130. Eraky, R.D.; Abd El-Ghany, W.A. Genetic characterization, antibiogram pattern, and pathogenicity of Clostridium perfringens isolated from broiler chickens with necrotic enteritis. J. Indones. Trop. Anim. Agric., 2022, 47(1), 1-16. doi: 10.14710/jitaa.47.1.1-16
  131. Kareem, K.Y.; Loh, T.C.; Foo, H.L.; Asmara, S.A.; Akit, H. Influence of postbiotic RG14 and inulin combination on cecal microbiota, organic acid concentration, and cytokine expression in broiler chickens. Poult. Sci., 2017, 96(4), 966-975. doi: 10.3382/ps/pew362 PMID: 28339522
  132. Johnson, C.N.; Kogut, M.H.; Genovese, K.; He, H.; Kazemi, S.; Arsenault, R.J. Administration of a postbiotic causes immunomodulatory responses in broiler gut and reduces disease pathogenesis following challenge. Microorganisms, 2019, 7(8), 268. doi: 10.3390/microorganisms7080268 PMID: 31426502
  133. Swaggerty, C.L.; Byrd, J.A., II; Arsenault, R.J.; Perry, F.; Johnson, C.N.; Genovese, K.J.; He, H.; Kogut, M.H.; Piva, A.; Grilli, E. A blend of microencapsulated organic acids and botanicals reduces necrotic enteritis via specific signaling pathways in broilers. Poult. Sci., 2022, 101(4), 101753. doi: 10.1016/j.psj.2022.101753 PMID: 35240358
  134. Klemashevich, C.; Wu, C.; Howsmon, D.; Alaniz, R.C.; Lee, K.; Jayaraman, A. Rational identification of diet-derived postbiotics for improving intestinal microbiota function. Curr. Opin. Biotechnol., 2014, 26, 85-90. doi: 10.1016/j.copbio.2013.10.006 PMID: 24679263
  135. Asgari, F.; Madjd, Z.; Falak, R.; Bahar, M.A.; Nasrabadi, M.H.; Raiani, M.; Shekarabi, M. Probiotic feeding affects T cell populations in blood and lymphoid organs in chickens. Benef. Microbes, 2016, 7(5), 669-675. doi: 10.3920/BM2016.0014 PMID: 27349931
  136. Khalique, A.; Zeng, D.; Shoaib, M.; Wang, H.; Qing, X.; Rajput, D.S.; Pan, K.; Ni, X. Probiotics mitigating subclinical necrotic enteritis (SNE) as potential alternatives to antibiotics in poultry. AMB Express, 2020, 10(1), 50. doi: 10.1186/s13568-020-00989-6 PMID: 32172398
  137. Zhang, Z.; Guo, Q.; Wang, J.; Tan, H.; Jin, X.; Fan, Y.; Liu, J.; Zhao, S.; Zheng, J.; Peng, N. Postbiotics from Pichia kudriavzevii promote intestinal health performance through regulation of Limosilactobacillus reuteri in weaned piglets. Food Funct., 2023, 14(8), 3463-3474. doi: 10.1039/D2FO03695A PMID: 36912248
  138. Zheng, X.; Duan, Y.; Dong, H.; Zhang, J. Effects of dietary Lactobacillus plantarum in different treatments on growth performance and immune gene expression of white shrimp Litopenaeus vannamei under normal condition and stress of acute low salinity. Fish Shellfish Immunol., 2017, 62, 195-201. doi: 10.1016/j.fsi.2017.01.015 PMID: 28108342
  139. Mohapatra, S.; Chakraborty, T.; Kumar, V.; DeBoeck, G.; Mohanta, K.N. Aquaculture and stress management: a review of probiotic intervention. J. Anim. Physiol. Anim. Nutr. (Berl.), 2013, 97(3), 405-430. doi: 10.1111/j.1439-0396.2012.01301.x PMID: 22512693
  140. Zuo, Z.; Shang, B.; Shao, Y.; Li, W.; Sun, J. Screening of intestinal probiotics and the effects of feeding probiotics on the growth, immune, digestive enzyme activity and intestinal flora of Litopenaeus vannamei. Fish Shellfish Immunol., 2019, 86, 160-168. doi: 10.1016/j.fsi.2018.11.003 PMID: 30391532
  141. Stanton, C.; Ross, R.P.; Fitzgerald, G.F.; Sinderen, D.V. Fermented functional foods based on probiotics and their biogenic metabolites. Curr. Opin. Biotechnol., 2005, 16(2), 198-203. doi: 10.1016/j.copbio.2005.02.008 PMID: 15831387
  142. Huynh, T.G.; Cheng, A.C.; Chi, C.C.; Chiu, K.H.; Liu, C.H. A synbiotic improves the immunity of white shrimp, Litopenaeus vannamei: Metabolomic analysis reveal compelling evidence. Fish Shellfish Immunol., 2018, 79, 284-293. doi: 10.1016/j.fsi.2018.05.031 PMID: 29778843
  143. Yao, W.; Li, X.; Zhang, C.; Wang, J.; Cai, Y.; Leng, X. Effects of dietary synbiotics supplementation methods on growth, intestinal health, non-specific immunity and disease resistance of Pacific white shrimp, Litopenaeus vannamei. Fish Shellfish Immunol., 2021, 112, 46-55. doi: 10.1016/j.fsi.2021.02.011 PMID: 33609702
  144. Boonanuntanasarn, S.; Wongsasak, U.; Pitaksong, T.; Chaijamrus, S. Effects of dietary supplementation with β-glucan and synbiotics on growth, haemolymph chemistry, and intestinal microbiota and morphology in the Pacific white shrimp. Aquacult. Nutr., 2016, 22(4), 837-845. doi: 10.1111/anu.12302
  145. Chen, M.; Chen, X.Q.; Tian, L.X.; Liu, Y.J.; Niu, J. Beneficial impacts on growth, intestinal health, immune responses and ammonia resistance of pacific white shrimp (Litopenaeus vannamei) fed dietary synbiotic (mannan oligosaccharide and Bacillus licheniformis). Aquacult. Rep., 2020, 17, 100408. doi: 10.1016/j.aqrep.2020.100408
  146. Li, H.; Tian, X.; Zhao, K.; Jiang, W.; Dong, S. Effect of Clostridium butyricum in different forms on growth performance, disease resistance, expression of genes involved in immune responses and mTOR signaling pathway of Litopenaeus vannamai. Fish Shellfish Immunol., 2019, 87, 13-21. doi: 10.1016/j.fsi.2018.12.069 PMID: 30599253
  147. Centeno-Martinez, R.E.; Dong, W.; Klopp, R.N.; Yoon, I.; Boerman, J.P.; Johnson, T.A. Effects of feeding Saccharomyces cerevisiae fermentation postbiotic on the fecal microbial community of Holstein dairy calves. Anim. Microbiome, 2023, 5(1), 13. doi: 10.1186/s42523-023-00234-y PMID: 36803311
  148. Arpaia, N.; Campbell, C.; Fan, X.; Dikiy, S.; van der Veeken, J.; deRoos, P.; Liu, H.; Cross, J.R.; Pfeffer, K.; Coffer, P.J.; Rudensky, A.Y. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature, 2013, 504(7480), 451-455. doi: 10.1038/nature12726 PMID: 24226773
  149. Sabahi, S.; Abbasi, A.; Mortazavi, S.A. Characterization of cinnamon essential oil and its application in Malva sylvestris seed mucilage edible coating to the enhancement of the microbiological, physicochemical and sensory properties of lamb meat during storage. J. Appl. Microbiol., 2022, 133(2), 488-502. doi: 10.1111/jam.15578 PMID: 35429123
  150. Jensen, G.S.; Benson, K.F.; Carter, S.G.; Endres, J.R. GanedenBC30™ cell wall and metabolites: anti-inflammatory and immune modulating effects in vitro. BMC Immunol., 2010, 11(1), 15. doi: 10.1186/1471-2172-11-15 PMID: 20331905
  151. Hoarau, C.; Martin, L.; Faugaret, D.; Baron, C.; Dauba, A.; Aubert-Jacquin, C.; Velge-Roussel, F.; Lebranchu, Y. Supernatant from bifidobacterium differentially modulates transduction signaling pathways for biological functions of human dendritic cells. PLoS One, 2008, 3(7), e2753. doi: 10.1371/journal.pone.0002753 PMID: 18648505
  152. Abbasi, A.; Aghebati-Maleki, A.; Yousefi, M.; Aghebati-Maleki, L. Probiotic intervention as a potential therapeutic for managing gestational disorders and improving pregnancy outcomes. J. Reprod. Immunol., 2021, 143, 103244. doi: 10.1016/j.jri.2020.103244 PMID: 33186834
  153. Cousin, F.J.; Jouan-Lanhouet, S.; Dimanche-Boitrel, M.T.; Corcos, L.; Jan, G. Milk fermented by Propionibacterium freudenreichii induces apoptosis of HGT-1 human gastric cancer cells. PLoS One, 2012, 7(3), e31892. doi: 10.1371/journal.pone.0031892 PMID: 22442660
  154. Żółkiewicz, J.; Marzec, A.; Ruszczyński, M.; Feleszko, W. Postbiotics—a step beyond pre-and probiotics. Nutrients, 2020, 12(8), 2189. doi: 10.3390/nu12082189 PMID: 32717965
  155. Rigo-Adrover, M.; Knipping, K.; Garssen, J.; van Limpt, K.; Knol, J.; Franch, À.; Castell, M.; Rodríguez-lagunas, M.; Pérez-Cano, F. Prevention of rotavirus diarrhea in suckling rats by a specific fermented milk concentrate with prebiotic mixture. Nutrients, 2019, 11(1), 189. doi: 10.3390/nu11010189 PMID: 30669251
  156. Karimi, N.; Jabbari, V.; Nazemi, A.; Ganbarov, K.; Karimi, N.; Tanomand, A.; Karimi, S.; Abbasi, A.; Yousefi, B.; Khodadadi, E.; Kafil, H.S. Thymol, cardamom and Lactobacillus plantarum nanoparticles as a functional candy with high protection against Streptococcus mutans and tooth decay. Microb. Pathog., 2020, 148, 104481. doi: 10.1016/j.micpath.2020.104481 PMID: 32916244
  157. Nocerino, R.; Paparo, L.; Terrin, G.; Pezzella, V.; Amoroso, A.; Cosenza, L.; Cecere, G.; De Marco, G.; Micillo, M.; Albano, F.; Nugnes, R.; Ferri, P.; Ciccarelli, G.; Giaccio, G.; Spadaro, R.; Maddalena, Y.; Berni Canani, F.; Berni Canani, R. Cow’s milk and rice fermented with Lactobacillus paracasei CBA L74 prevent infectious diseases in children: A randomized controlled trial. Clin. Nutr., 2017, 36(1), 118-125. doi: 10.1016/j.clnu.2015.12.004 PMID: 26732025
  158. Malagón-Rojas, J.N.; Mantziari, A.; Salminen, S.; Szajewska, H. Postbiotics for preventing and treating common infectious diseases in children: a systematic review. Nutrients, 2020, 12(2), 389. doi: 10.3390/nu12020389 PMID: 32024037
  159. Osman, A.; El-Gazzar, N.; Almanaa, T.N.; El-Hadary, A.; Sitohy, M. Lipolytic postbiotic from Lactobacillus paracasei manages metabolic syndrome in albino wistar rats. Molecules, 2021, 26(2), 472. doi: 10.3390/molecules26020472 PMID: 33477482
  160. Abbasi, A.; Aghebati-Maleki, L.; Homayouni-Rad, A. The promising biological role of postbiotics derived from probiotic Lactobacillus species in reproductive health. Crit. Rev. Food Sci. Nutr., 2022, 62(32), 8829-8841. doi: 10.1080/10408398.2021.1935701 PMID: 34152234
  161. Brial, F.; Le Lay, A.; Dumas, M.E.; Gauguier, D. Implication of gut microbiota metabolites in cardiovascular and metabolic diseases. Cell. Mol. Life Sci., 2018, 75(21), 3977-3990. doi: 10.1007/s00018-018-2901-1 PMID: 30101405
  162. Nakamura, F.; Ishida, Y.; Sawada, D.; Ashida, N.; Sugawara, T.; Sakai, M.; Goto, T.; Kawada, T.; Fujiwara, S. Fragmented lactic acid bacterial cells activate peroxisome proliferator-activated receptors and ameliorate dyslipidemia in obese mice. J. Agric. Food Chem., 2016, 64(12), 2549-2559. doi: 10.1021/acs.jafc.5b05827 PMID: 26927959
  163. Irving, A.T.; Mimuro, H.; Kufer, T.A.; Lo, C.; Wheeler, R.; Turner, L.J.; Thomas, B.J.; Malosse, C.; Gantier, M.P.; Casillas, L.N.; Votta, B.J.; Bertin, J.; Boneca, I.G.; Sasakawa, C.; Philpott, D.J.; Ferrero, R.L.; Kaparakis-Liaskos, M. The immune receptor NOD1 and kinase RIP2 interact with bacterial peptidoglycan on early endosomes to promote autophagy and inflammatory signaling. Cell Host Microbe, 2014, 15(5), 623-635. doi: 10.1016/j.chom.2014.04.001 PMID: 24746552
  164. Dinić, M.; Lukić, J.; Djokić, J.; Milenković, M.; Strahinić, I.; Golić, N.; Begović, J. Lactobacillus fermentum postbiotic-induced autophagy as potential approach for treatment of acetaminophen hepatotoxicity. Front. Microbiol., 2017, 8, 594. doi: 10.3389/fmicb.2017.00594 PMID: 28428777
  165. Lin, J.; Zhuge, J.; Zheng, X.; Wu, Y.; Zhang, Z.; Xu, T.; Meftah, Z.; Xu, H.; Wu, Y.; Tian, N.; Gao, W.; Zhou, Y.; Zhang, X.; Wang, X. Urolithin A-induced mitophagy suppresses apoptosis and attenuates intervertebral disc degeneration via the AMPK signaling pathway. Free Radic. Biol. Med., 2020, 150, 109-119. doi: 10.1016/j.freeradbiomed.2020.02.024 PMID: 32105828
  166. Varian, B.J.; Poutahidis, T.; DiBenedictis, B.T.; Levkovich, T.; Ibrahim, Y.; Didyk, E.; Shikhman, L.; Cheung, H.K.; Hardas, A.; Ricciardi, C.E.; Kolandaivelu, K.; Veenema, A.H.; Alm, E.J.; Erdman, S.E. Microbial lysate upregulates host oxytocin. Brain Behav. Immun., 2017, 61, 36-49. doi: 10.1016/j.bbi.2016.11.002 PMID: 27825953
  167. Nataraj, B.H.; Mallappa, R.H. Antibiotic resistance crisis: an update on antagonistic interactions between probiotics and methicillin-resistant staphylococcus aureus (MRSA). Curr. Microbiol., 2021, 78(6), 2194-2211. doi: 10.1007/s00284-021-02442-8 PMID: 33881575
  168. Perrin, V.; Fenet, B.; Praly, J.P.; Lecroix, F.; Dung Ta, C. Identification and synthesis of a trisaccharide produced from lactose by transgalactosylation. Carbohydr. Res., 2000, 325(3), 202-210. doi: 10.1016/S0008-6215(99)00309-2 PMID: 10795811
  169. Rather, I.A.; Choi, S.B.; Kamli, M.R.; Hakeem, K.R.; Sabir, J.S.M.; Park, Y.H.; Hor, Y.Y. Potential adjuvant therapeutic effect of Lactobacillus plantarum probio-88 postbiotics against SARS-COV-2. Vaccines (Basel), 2021, 9(10), 1067. doi: 10.3390/vaccines9101067 PMID: 34696175
  170. Abbasi, A.; Bazzaz, S.; A. Ibrahim, S. Hekmatdoost, A.; Hosseini, H.; Sabahi, S.; Sheykhsaran, E.; Rahbar Saadat, Y.; Asghari Ozma, M.; Lahouty, M. A critical review on the gluten-induced enteropathy/celiac disease: Gluten-targeted dietary and non-dietary therapeutic approaches. Food Rev. Int., 2023, 1-41. doi: 10.1080/87559129.2023.2202405
  171. Spagnolello, O.; Pinacchio, C.; Santinelli, L.; Vassalini, P.; Innocenti, G.P.; De Girolamo, G.; Fabris, S.; Giovanetti, M.; Angeletti, S.; Russo, A.; Mastroianni, C.M.; Ciccozzi, M.; Ceccarelli, G.; d’Ettorre, G. Targeting microbiome: an alternative strategy for fighting SARS-CoV-2 infection. Chemotherapy, 2021, 66(1-2), 24-32. doi: 10.1159/000515344 PMID: 33756475
  172. Hosseini, H.; Abbasi, A.; Sabahi, S.; Akrami, S.; Yousefi-Avarvand, A. Assessing the potential biological activities of postbiotics derived from saccharomyces cerevisiae: an in vitro study. Probiotics Antimicrob. Proteins, 2023, 1-17. doi: 10.1007/s12602-023-10117-y PMID: 37402072
  173. Todorov, S.D.; Tagg, J.R.; Ivanova, I.V. Could probiotics and postbiotics function as "Silver bullet" in the Post-COVID-19 era? Probiotics Antimicrob. Proteins, 2021, 13(6), 1499-1507. doi: 10.1007/s12602-021-09833-0 PMID: 34386940
  174. Cecchini, M. Antimicrobial resistance in G7 countries and beyond: Economic issues, policies and options for action; OECD, 2015.
  175. Zamojska, D.; Nowak, A.; Nowak, I.; Macierzyńska-Piotrowska, E. Probiotics and postbiotics as substitutes of antibiotics in farm animals: A review. Animals (Basel), 2021, 11(12), 3431. doi: 10.3390/ani11123431 PMID: 34944208
  176. Fabrega, J.; Carapeto, R. Regulatory review of the environmental risk assessment of veterinary medicinal products in the European Union, with particular focus on the centralised authorisation procedure. Environ. Sci. Eur., 2020, 32(1), 99. doi: 10.1186/s12302-020-00374-x
  177. Abbasi, A.; Sabahi, S.; Bazzaz, S.; Tajani, A.G.; Lahouty, M.; Aslani, R.; Hosseini, H. An edible coating utilizing Malva sylvestris seed polysaccharide mucilage and postbiotic from Saccharomyces cerevisiae var. boulardii for the preservation of lamb meat. Int. J. Biol. Macromol., 2023, 246, 125660. doi: 10.1016/j.ijbiomac.2023.125660 PMID: 37399877

补充文件

附件文件
动作
1. JATS XML

版权所有 © Bentham Science Publishers, 2024