Postbiotic as Novel Alternative Agent or Adjuvant for the Common Antibiotic Utilized in the Food Industry
- 作者: Sepordeh S.1, Jafari A.1, Bazzaz S.2, Abbasi A.2, Aslani R.3, Houshmandi S.4, Rad A.5
-
隶属关系:
- Student Research Committee, Tabriz University of Medical Sciences
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology,, Shahid Beheshti University of Medical Sciences
- Food Safety and Hygiene Division, Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences
- Department of Midwifery, Ardabil University of Medical Sciences
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences
- 期: 卷 25, 编号 10 (2024)
- 页面: 1245-1263
- 栏目: Biotechnology
- URL: https://rjpbr.com/1389-2010/article/view/645278
- DOI: https://doi.org/10.2174/1389201025666230912123849
- ID: 645278
如何引用文章
全文:
详细
Background:Antibiotic resistance is a serious public health problem as it causes previously manageable diseases to become deadly infections that can cause serious disability or even death. Scientists are creating novel approaches and procedures that are essential for the treatment of infections and limiting the improper use of antibiotics in an effort to counter this rising risk.
Objective:With a focus on the numerous postbiotic metabolites formed from the beneficial gut microorganisms, their potential antimicrobial actions, and recent associated advancements in the food and medical areas, this review presents an overview of the emerging ways to prevent antibiotic resistance.
Results:Presently, scientific literature confirms that plant-derived antimicrobials, RNA therapy, fecal microbiota transplantation, vaccines, nanoantibiotics, haemofiltration, predatory bacteria, immunotherapeutics, quorum-sensing inhibitors, phage therapies, and probiotics can be considered natural and efficient antibiotic alternative candidates. The investigations on appropriate probiotic strains have led to the characterization of specific metabolic byproducts of probiotics named postbiotics. Based on preclinical and clinical studies, postbiotics with their unique characteristics in terms of clinical (safe origin, without the potential spread of antibiotic resistance genes, unique and multiple antimicrobial action mechanisms), technological (stability and feasibility of large-scale production), and economic (low production costs) aspects can be used as a novel alternative agent or adjuvant for the common antibiotics utilized in the production of animal-based foods.
Conclusion:Postbiotic constituents may be a new approach for utilization in the pharmaceutical and food sectors for developing therapeutic treatments. Further metabolomics investigations are required to describe novel postbiotics and clinical trials are also required to define the sufficient dose and optimum administration frequency of postbiotics.
作者简介
Sama Sepordeh
Student Research Committee, Tabriz University of Medical Sciences
Email: info@benthamscience.net
Amir Jafari
Student Research Committee, Tabriz University of Medical Sciences
Email: info@benthamscience.net
Sara Bazzaz
Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology,, Shahid Beheshti University of Medical Sciences
Email: info@benthamscience.net
Amin Abbasi
Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology,, Shahid Beheshti University of Medical Sciences
Email: info@benthamscience.net
Ramin Aslani
Food Safety and Hygiene Division, Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences
Email: info@benthamscience.net
Sousan Houshmandi
Department of Midwifery, Ardabil University of Medical Sciences
Email: info@benthamscience.net
Aziz Rad
Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences
编辑信件的主要联系方式.
Email: info@benthamscience.net
参考
- Hayden, G.E.; Tuuri, R.E.; Scott, R.; Losek, J.D.; Blackshaw, A.M.; Schoenling, A.J.; Nietert, P.J.; Hall, G.A. Triage sepsis alert and sepsis protocol lower times to fluids and antibiotics in the ED. Am. J. Emerg. Med., 2016, 34(1), 1-9. doi: 10.1016/j.ajem.2015.08.039 PMID: 26386734
- Boucher, H.W.; Talbot, G.H.; Bradley, J.S.; Edwards, J.E.; Gilbert, D.; Rice, L.B.; Scheld, M.; Spellberg, B.; Bartlett, J. Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America. Clin. Infect. Dis., 2009, 48(1), 1-12. doi: 10.1086/595011 PMID: 19035777
- Laxminarayan, R.; Duse, A.; Wattal, C.; Zaidi, A.K.M.; Wertheim, H.F.L.; Sumpradit, N.; Vlieghe, E.; Hara, G.L.; Gould, I.M.; Goossens, H.; Greko, C.; So, A.D.; Bigdeli, M.; Tomson, G.; Woodhouse, W.; Ombaka, E.; Peralta, A.Q.; Qamar, F.N.; Mir, F.; Kariuki, S.; Bhutta, Z.A.; Coates, A.; Bergstrom, R.; Wright, G.D.; Brown, E.D.; Cars, O. Antibiotic resistancethe need for global solutions. Lancet Infect. Dis., 2013, 13(12), 1057-1098. doi: 10.1016/S1473-3099(13)70318-9 PMID: 24252483
- Waddington, C.; Carey, M.E.; Boinett, C.J.; Higginson, E.; Veeraraghavan, B.; Baker, S. Exploiting genomics to mitigate the public health impact of antimicrobial resistance. Genome Med., 2022, 14(1), 15. doi: 10.1186/s13073-022-01020-2 PMID: 35172877
- de Kraker, M.E.A.; Stewardson, A.J.; Harbarth, S. Will 10 million people die a year due to antimicrobial resistance by 2050? PLoS Med., 2016, 13(11), e1002184. doi: 10.1371/journal.pmed.1002184 PMID: 27898664
- Talebi Bezmin Abadi, A.; Rizvanov, A.A.; Haertlé, T.; Blatt, N.L. World Health Organization report: current crisis of antibiotic resistance. Bionanoscience, 2019, 9(4), 778-788. doi: 10.1007/s12668-019-00658-4
- Xie, R.; Zhang, X.D.; Zhao, Q.; Peng, B.; Zheng, J. Analysis of global prevalence of antibiotic resistance in Acinetobacter baumannii infections disclosed a faster increase in OECD countries. Emerg. Microbes Infect., 2018, 7(1), 1-10. doi: 10.1038/s41426-018-0038-9 PMID: 29535298
- Laxminarayan, R.; Chaudhury, R.R. Antibiotic resistance in India: drivers and opportunities for action. PLoS Med., 2016, 13(3), e1001974. doi: 10.1371/journal.pmed.1001974 PMID: 26934098
- Zaheer, R.; Cook, S.R.; Barbieri, R.; Goji, N.; Cameron, A.; Petkau, A.; Polo, R.O.; Tymensen, L.; Stamm, C.; Song, J.; Hannon, S.; Jones, T.; Church, D.; Booker, C.W.; Amoako, K.; Van Domselaar, G.; Read, R.R.; McAllister, T.A. Surveillance of Enterococcus spp. reveals distinct species and antimicrobial resistance diversity across a One-Health continuum. Sci. Rep., 2020, 10(1), 3937. doi: 10.1038/s41598-020-61002-5 PMID: 32127598
- Armstrong, G.L.; Conn, L.A.; Pinner, R.W. Trends in infectious disease mortality in the United States during the 20th century. JAMA, 1999, 281(1), 61-66. doi: 10.1001/jama.281.1.61 PMID: 9892452
- Singh, R.K.; Chang, H.W.; Yan, D.; Lee, K.M.; Ucmak, D.; Wong, K.; Abrouk, M.; Farahnik, B.; Nakamura, M.; Zhu, T.H.; Bhutani, T.; Liao, W. Influence of diet on the gut microbiome and implications for human health. J. Transl. Med., 2017, 15(1), 73. doi: 10.1186/s12967-017-1175-y PMID: 28388917
- Zaman, S.B.; Hussain, M.A.; Nye, R.; Mehta, V.; Mamun, K.T.; Hossain, N. A review on antibiotic resistance: alarm bells are ringing. Cureus, 2017, 9(6), e1403. doi: 10.7759/cureus.1403 PMID: 28852600
- Podolsky, S.H. The evolving response to antibiotic resistance (19452018). Palgrave Commun., 2018, 4(1), 124. doi: 10.1057/s41599-018-0181-x
- Davies, J.; Davies, D. Origins and evolution of antibiotic resistance. Microbiol. Mol. Biol. Rev., 2010, 74(3), 417-433. doi: 10.1128/MMBR.00016-10 PMID: 20805405
- Levy, S.B.; Marshall, B. Antibacterial resistance worldwide: causes, challenges and responses. Nat. Med., 2004, 10(S12)(Suppl.), S122-S129. doi: 10.1038/nm1145 PMID: 15577930
- Sommer, M.O.A.; Munck, C.; Toft-Kehler, R.V.; Andersson, D.I. Prediction of antibiotic resistance: time for a new preclinical paradigm? Nat. Rev. Microbiol., 2017, 15(11), 689-696. doi: 10.1038/nrmicro.2017.75 PMID: 28757648
- Yong, D.; Toleman, M.A.; Giske, C.G.; Cho, H.S.; Sundman, K.; Lee, K.; Walsh, T.R. Characterization of a new metallo-β-lactamase gene, bla(NDM-1), and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrob. Agents Chemother., 2009, 53(12), 5046-5054. doi: 10.1128/AAC.00774-09 PMID: 19770275
- Wellington, E.M.H.; Boxall, A.B.A.; Cross, P.; Feil, E.J.; Gaze, W.H.; Hawkey, P.M.; Johnson-Rollings, A.S.; Jones, D.L.; Lee, N.M.; Otten, W.; Thomas, C.M.; Williams, A.P. The role of the natural environment in the emergence of antibiotic resistance in Gram-negative bacteria. Lancet Infect. Dis., 2013, 13(2), 155-165. doi: 10.1016/S1473-3099(12)70317-1 PMID: 23347633
- Kapoor, G.; Saigal, S.; Elongavan, A. Action and resistance mechanisms of antibiotics: A guide for clinicians. J. Anaesthesiol. Clin. Pharmacol., 2017, 33(3), 300-305. doi: 10.4103/joacp.JOACP_349_15 PMID: 29109626
- Marchant, J. When antibiotics turn toxic. Nature, 2018, 555(7697), 431-433. doi: 10.1038/d41586-018-03267-5
- Tiseo, K.; Huber, L.; Gilbert, M.; Robinson, T.P.; Van Boeckel, T.P. Global trends in antimicrobial use in food animals from 2017 to 2030. Antibiotics (Basel), 2020, 9(12), 918. doi: 10.3390/antibiotics9120918 PMID: 33348801
- Laxminarayan, R.; Matsoso, P.; Pant, S.; Brower, C.; Røttingen, J.A.; Klugman, K.; Davies, S. Access to effective antimicrobials: a worldwide challenge. Lancet, 2016, 387(10014), 168-175. doi: 10.1016/S0140-6736(15)00474-2 PMID: 26603918
- Van Boeckel, T.P.; Glennon, E.E.; Chen, D.; Gilbert, M.; Robinson, T.P.; Grenfell, B.T.; Levin, S.A.; Bonhoeffer, S.; Laxminarayan, R. Reducing antimicrobial use in food animals. Science, 2017, 357(6358), 1350-1352. doi: 10.1126/science.aao1495 PMID: 28963240
- Van Boeckel, T.P.; Brower, C.; Gilbert, M.; Grenfell, B.T.; Levin, S.A.; Robinson, T.P.; Teillant, A.; Laxminarayan, R. Global trends in antimicrobial use in food animals. Proc. Natl. Acad. Sci. USA, 2015, 112(18), 5649-5654. doi: 10.1073/pnas.1503141112 PMID: 25792457
- Allen, H.K. Antibiotic resistance gene discovery in food-producing animals. Curr. Opin. Microbiol., 2014, 19, 25-29. doi: 10.1016/j.mib.2014.06.001 PMID: 24994584
- Huang, Q.; Liu, X.; Zhao, G.; Hu, T.; Wang, Y. Potential and challenges of tannins as an alternative to in-feed antibiotics for farm animal production. Anim. Nutr., 2018, 4(2), 137-150. doi: 10.1016/j.aninu.2017.09.004 PMID: 30140753
- Economou, V.; Gousia, P. Agriculture and food animals as a source of antimicrobial-resistant bacteria. Infect. Drug Resist., 2015, 8, 49-61. doi: 10.2147/IDR.S55778 PMID: 25878509
- Hawkey, P.M. The growing burden of antimicrobial resistance. J. Antimicrob. Chemother., 2008, 62(Suppl. 1), i1-i9. doi: 10.1093/jac/dkn241 PMID: 18684701
- Martínez, J.L. Natural antibiotic resistance and contamination by antibiotic resistance determinants: the two ages in the evolution of resistance to antimicrobials. Front. Microbiol., 2012, 3, 1. doi: 10.3389/fmicb.2012.00001 PMID: 22275914
- Mitema, E.S.; Kikuvi, G.M.; Wegener, H.C.; Stohr, K. An assessment of antimicrobial consumption in food producing animals in Kenya. J. Vet. Pharmacol. Ther., 2001, 24(6), 385-390. doi: 10.1046/j.1365-2885.2001.00360.x PMID: 11903868
- Marques, R.Z.; Wistuba, N.; Brito, J.C.M.; Bernardoni, V.; Rocha, D.C.; Gomes, M.P. Crop irrigation (soybean, bean, and corn) with enrofloxacin-contaminated water leads to yield reductions and antibiotic accumulation. Ecotoxicol. Environ. Saf., 2021, 216, 112193. doi: 10.1016/j.ecoenv.2021.112193 PMID: 33831726
- Shatzkes, K.; Connell, N.D.; Kadouri, D.E. Predatory bacteria: a new therapeutic approach for a post-antibiotic era. Future Microbiol., 2017, 12, 469-472. doi: 10.2217/fmb-2017-0021
- Wittebole, X.; De Roock, S.; Opal, S.M. A historical overview of bacteriophage therapy as an alternative to antibiotics for the treatment of bacterial pathogens. Virulence, 2014, 5(1), 226-235. doi: 10.4161/viru.25991 PMID: 23973944
- Lima, T.; Domingues, S.; Da Silva, G.J. Manure as a potential hotspot for antibiotic resistance dissemination by horizontal gene transfer events. Vet. Sci., 2020, 7(3), 110. doi: 10.3390/vetsci7030110 PMID: 32823495
- Losasso, C.; Di Cesare, A.; Mastrorilli, E.; Patuzzi, I.; Cibin, V.; Eckert, E.M.; Fontaneto, D.; Vanzo, A.; Ricci, A.; Corno, G. Assessing antimicrobial resistance gene load in vegan, vegetarian and omnivore human gut microbiota. Int. J. Antimicrob. Agents, 2018, 52(5), 702-705. doi: 10.1016/j.ijantimicag.2018.07.023 PMID: 30081136
- Fish, R.; Kutter, E.; Wheat, G.; Blasdel, B.; Kutateladze, M.; Kuhl, S. Bacteriophage treatment of intransigent diabetic toe ulcers: a case series. J. Wound Care, 2016, 25(Sup7), S27-S33. doi: 10.12968/jowc.2016.25.7.S27
- Kutateladze, M.; Adamia, R. Phage therapy experience at the Eliava Institute. Med. Mal. Infect., 2008, 38(8), 426-430. doi: 10.1016/j.medmal.2008.06.023 PMID: 18687542
- Wills, Q.F.; Kerrigan, C.; Soothill, J.S. Experimental bacteriophage protection against Staphylococcus aureus abscesses in a rabbit model. Antimicrob. Agents Chemother., 2005, 49(3), 1220-1221. doi: 10.1128/AAC.49.3.1220-1221.2005 PMID: 15728933
- Wang, J.; Hu, B.; Xu, M.; Yan, Q.; Liu, S.; Zhu, X.; Sun, Z.; Tao, D.; Ding, L.; Reed, E.; Gong, J.; Li, Q.; Hu, J. Therapeutic effectiveness of bacteriophages in the rescue of mice with extended spectrum β-lactamase-producing Escherichia coli bacteremia. Int. J. Mol. Med., 2006, 17(2), 347-355. doi: 10.3892/ijmm.17.2.347 PMID: 16391836
- Chanishvili, N. Phage therapy--history from Twort and dHerelle through Soviet experience to current approaches. Adv. Virus Res., 2012, 83, 3-40. doi: 10.1016/B978-0-12-394438-2.00001-3 PMID: 22748807
- Ramesh, V.; Fralick, J.A.; Rolfe, R.D. Prevention of Clostridium difficile -induced ileocecitis with Bacteriophage. Anaerobe, 1999, 5(2), 69-78. doi: 10.1006/anae.1999.0192
- Yosef, I.; Manor, M.; Kiro, R.; Qimron, U. Temperate and lytic bacteriophages programmed to sensitize and kill antibiotic-resistant bacteria. Proc. Natl. Acad. Sci. USA, 2015, 112(23), 7267-7272. doi: 10.1073/pnas.1500107112 PMID: 26060300
- Pouillot, F.; Chomton, M.; Blois, H.; Courroux, C.; Noelig, J.; Bidet, P.; Bingen, E.; Bonacorsi, S. Efficacy of bacteriophage therapy in experimental sepsis and meningitis caused by a clone O25b:H4-ST131 Escherichia coli strain producing CTX-M-15. Antimicrob. Agents Chemother., 2012, 56(7), 3568-3575. doi: 10.1128/AAC.06330-11 PMID: 22491690
- Wright, A.; Hawkins, C.H.; Änggård, E.E.; Harper, D.R. A controlled clinical trial of a therapeutic bacteriophage preparation in chronic otitis due to antibiotic-resistant Pseudomonas aeruginosa; a preliminary report of efficacy. Clin. Otolaryngol., 2009, 34(4), 349-357. doi: 10.1111/j.1749-4486.2009.01973.x PMID: 19673983
- Shatzkes, K.; Singleton, E.; Tang, C.; Zuena, M.; Shukla, S.; Gupta, S.; Dharani, S.; Onyile, O.; Rinaggio, J.; Connell, N.D.; Kadouri, D.E. Predatory bacteria attenuate Klebsiella pneumoniae burden in rat lungs. MBio, 2016, 7(6), e01847-e16. doi: 10.1128/mBio.01847-16 PMID: 27834203
- Opal, S.M. Non-antibiotic treatments for bacterial diseases in an era of progressive antibiotic resistance. Crit. Care, 2016, 20(1), 397. doi: 10.1186/s13054-016-1549-1
- Bonanno, G.; Procoli, A.; Mariotti, A.; Corallo, M.; Perillo, A.; Danese, S.; De Cristofaro, R.; Scambia, G.; Rutella, S. Effects of pegylated G-CSF on immune cell number and function in patients with gynecological malignancies. J. Transl. Med., 2010, 8(1), 114. doi: 10.1186/1479-5876-8-114 PMID: 21062439
- Trimboli, F.; Morittu, V.M.; Di Loria, A.; Minuti, A.; Spina, A.A.; Piccioli-Cappelli, F.; Trevisi, E.; Britti, D.; Lopreiato, V. Effect of pegbovigrastim on hematological profile of simmental dairy cows during the transition period. Animals (Basel), 2019, 9(10), 841. doi: 10.3390/ani9100841 PMID: 31640199
- Bonfiglio, G.; Neroni, B.; Radocchia, G.; Pompilio, A.; Mura, F.; Trancassini, M.; Di Bonaventura, G.; Pantanella, F.; Schippa, S. Growth control of adherent-invasive Escherichia coli (AIEC) by the predator bacteria Bdellovibrio bacteriovorus: a new therapeutic approach for Crohns disease patients. Microorganisms, 2019, 8(1), 17. doi: 10.3390/microorganisms8010017 PMID: 31861852
- Domenech, M.; Sempere, J.; de Miguel, S.; Yuste, J. Combination of antibodies and antibiotics as a promising strategy against multidrug-resistant pathogens of the respiratory tract. Front. Immunol., 2018, 9, 2700. doi: 10.3389/fimmu.2018.02700 PMID: 30515172
- Navalkele, B.D.; Chopra, T. Bezlotoxumab: an emerging monoclonal antibody therapy for prevention of recurrent Clostridium difficile infection. Biologics, 2018, 12, 11-21. PMID: 29403263
- Kang, J.H.; Super, M.; Yung, C.W.; Cooper, R.M.; Domansky, K.; Graveline, A.R.; Mammoto, T.; Berthet, J.B.; Tobin, H.; Cartwright, M.J.; Watters, A.L.; Rottman, M.; Waterhouse, A.; Mammoto, A.; Gamini, N.; Rodas, M.J.; Kole, A.; Jiang, A.; Valentin, T.M.; Diaz, A.; Takahashi, K.; Ingber, D.E. An extracorporeal blood-cleansing device for sepsis therapy. Nat. Med., 2014, 20(10), 1211-1216. doi: 10.1038/nm.3640 PMID: 25216635
- Amara, N.; Krom, B.P.; Kaufmann, G.F.; Meijler, M.M. Macromolecular inhibition of quorum sensing: enzymes, antibodies, and beyond. Chem. Rev., 2011, 111(1), 195-208. doi: 10.1021/cr100101c PMID: 21087050
- McDougald, D.; Rice, S.A.; Kjelleberg, S. Bacterial quorum sensing and interference by naturally occurring biomimics. Anal. Bioanal. Chem., 2007, 387(2), 445-453. doi: 10.1007/s00216-006-0761-2 PMID: 17019574
- Papenfort, K.; Bassler, B.L. Quorum sensing signalresponse systems in Gram-negative bacteria. Nat. Rev. Microbiol., 2016, 14(9), 576-588. doi: 10.1038/nrmicro.2016.89 PMID: 27510864
- Aleksić, I.; egan, S.; Andrić, F.; Zlatović, M.; Moric, I.; Opsenica, D.M.; Senerovic, L. Long-chain 4-aminoquinolines as quorum sensing inhibitors in Serratia marcescens and Pseudomonas aeruginosa. ACS Chem. Biol., 2017, 12(5), 1425-1434. doi: 10.1021/acschembio.6b01149 PMID: 28350449
- Kalia, V.C.; Patel, S.K.S.; Kang, Y.C.; Lee, J.K. Quorum sensing inhibitors as antipathogens: biotechnological applications. Biotechnol. Adv., 2019, 37(1), 68-90. doi: 10.1016/j.biotechadv.2018.11.006 PMID: 30471318
- Fetzner, S. Quorum quenching enzymes. J. Biotechnol., 2015, 201, 2-14. doi: 10.1016/j.jbiotec.2014.09.001 PMID: 25220028
- Goswami, J. Quorum sensing by super bugs and their resistance to antibiotics, a short review. Int. J. Pharm. Pharm. Sci., 2017, 3, 67-73.
- Kolodkin-Gal, I.; Romero, D.; Cao, S.; Clardy, J.; Kolter, R.; Losick, R. D-amino acids trigger biofilm disassembly. Science, 2010, 328(5978), 627-629. doi: 10.1126/science.1188628 PMID: 20431016
- Douafer, H.; Andrieu, V.; Phanstiel, O., IV; Brunel, J.M. Antibiotic adjuvants: make antibiotics great again! J. Med. Chem., 2019, 62(19), 8665-8681. doi: 10.1021/acs.jmedchem.8b01781 PMID: 31063379
- Smits, L.P.; Bouter, K.E.C.; de Vos, W.M.; Borody, T.J.; Nieuwdorp, M. Therapeutic potential of fecal microbiota transplantation. Gastroenterology, 2013, 145(5), 946-953. doi: 10.1053/j.gastro.2013.08.058 PMID: 24018052
- DePeters, E.J.; George, L.W. Rumen transfaunation. Immunol. Lett., 2014, 162(2), 69-76. doi: 10.1016/j.imlet.2014.05.009 PMID: 25262872
- Zhang, F.; Luo, W.; Shi, Y.; Fan, Z.; Ji, G. Should we standardize the 1,700-year-old fecal microbiota transplantation? Am. J. Gastroenterol., 2012, 107(11), 1755. doi: 10.1038/ajg.2012.251 PMID: 23160295
- Wortelboer, K.; Nieuwdorp, M.; Herrema, H. Fecal microbiota transplantation beyond Clostridioides difficile infections. EBioMedicine, 2019, 44, 716-729. doi: 10.1016/j.ebiom.2019.05.066 PMID: 31201141
- Khoruts, A.; Staley, C.; Sadowsky, M.J. Faecal microbiota transplantation for Clostridioides difficile: mechanisms and pharmacology. Nat. Rev. Gastroenterol. Hepatol., 2021, 18(1), 67-80. doi: 10.1038/s41575-020-0350-4 PMID: 32843743
- Ma, Y.; Yang, J.; Cui, B.; Xu, H.; Xiao, C.; Zhang, F. How Chinese clinicians face ethical and social challenges in fecal microbiota transplantation: a questionnaire study. BMC Med. Ethics, 2017, 18(1), 39. doi: 10.1186/s12910-017-0200-2 PMID: 28569156
- Vincent, M.G.; John, N.P.; Narayanan, P.; Vani, C.; Murugan, S. In vitro study on the efficacy of zinc oxide and titanium dioxide nanoparticles against metallo beta-lactamase and biofilm producing Pseudomonas aeruginosa. J. Appl. Pharm. Sci., 2014, 4, 041-046.
- Malka, E.; Perelshtein, I.; Lipovsky, A.; Shalom, Y.; Naparstek, L.; Perkas, N.; Patick, T.; Lubart, R.; Nitzan, Y.; Banin, E. Eradication of multi-drug resistant bacteria by a novel Zn-doped CuO nanocomposite. small, 2013, 9, 4069-4076.
- Huang, Z.; Zheng, X.; Yan, D.; Yin, G.; Liao, X.; Kang, Y.; Yao, Y.; Huang, D.; Hao, B. Toxicological effect of ZnO nanoparticles based on bacteria. Langmuir, 2008, 24(8), 4140-4144. doi: 10.1021/la7035949 PMID: 18341364
- Ansari, M.A.; Khan, H.M.; Khan, A.A.; Cameotra, S.S.; Saquib, Q.; Musarrat, J. Interaction of Al 2 O 3 nanoparticles with Escherichia coli and their cell envelope biomolecules. J. Appl. Microbiol., 2014, 116(4), 772-783. doi: 10.1111/jam.12423 PMID: 24354999
- Muzammil, S.; Hayat, S. Fakhar-E-Alam, M.; Aslam, B.; Siddique, M.H.; Nisar, M.A.; Saqalein, M.; Atif, M.; Sarwar, A.; Khurshid, A. Nanoantibiotics: Future nanotechnologies to combat antibiotic resistance. Front. Biosci., 2018, 10, 352-374.
- Friedman, A.; Friedman, J. New biomaterials for the sustained release of nitric oxide: past, present and future. Expert Opin. Drug Deliv., 2009, 6(10), 1113-1122. doi: 10.1517/17425240903196743 PMID: 19663720
- Kim, S.; Lee, D.G. PMAP-23 triggers cell death by nitric oxide-induced redox imbalance in Escherichia coli. Biochim. Biophys. Acta, Gen. Subj., 2019, 1863(7), 1187-1195. doi: 10.1016/j.bbagen.2019.04.014 PMID: 31026481
- Brisbois, E.J.; Bayliss, J.; Wu, J.; Major, T.C.; Xi, C.; Wang, S.C.; Bartlett, R.H.; Handa, H.; Meyerhoff, M.E. Optimized polymeric film-based nitric oxide delivery inhibits bacterial growth in a mouse burn wound model. Acta Biomater., 2014, 10(10), 4136-4142. doi: 10.1016/j.actbio.2014.06.032 PMID: 24980058
- Kadam, S.; Shai, S.; Shahane, A.; Kaushik, K.S. Recent advances in non-conventional antimicrobial approaches for chronic wound biofilms: have we found the chink in the armor? Biomedicines, 2019, 7(2), 35. doi: 10.3390/biomedicines7020035 PMID: 31052335
- Savoia, D. Plant-derived antimicrobial compounds: alternatives to antibiotics. Future Microbiol., 2012, 7(8), 979-990. doi: 10.2217/fmb.12.68 PMID: 22913356
- Jiang, Y.; Wu, N.; Fu, Y.J.; Wang, W.; Luo, M.; Zhao, C.J.; Zu, Y.G.; Liu, X.L. Chemical composition and antimicrobial activity of the essential oil of Rosemary. Environ. Toxicol. Pharmacol., 2011, 32(1), 63-68. doi: 10.1016/j.etap.2011.03.011 PMID: 21787731
- Ojeda-Sana, A.M.; van Baren, C.M.; Elechosa, M.A.; Juárez, M.A.; Moreno, S. New insights into antibacterial and antioxidant activities of rosemary essential oils and their main components. Food Control, 2013, 31(1), 189-195. doi: 10.1016/j.foodcont.2012.09.022
- Lemos, M.F.; Lemos, M.F.; Pacheco, H.P.; Endringer, D.C.; Scherer, R. Seasonality modifies rosemarys composition and biological activity. Ind. Crops Prod., 2015, 70, 41-47. doi: 10.1016/j.indcrop.2015.02.062
- Barreto, H.M.; Silva Filho, E.C.; Lima, E.O.; Coutinho, H.D.M.; Morais-Braga, M.F.B.; Tavares, C.C.A.; Tintino, S.R.; Rego, J.V.; de Abreu, A.P.L.; Lustosa, M.C.G.; Oliveira, R.W.G.; Citó, A.M.G.L.; Lopes, J.A.D. Chemical composition and possible use as adjuvant of the antibiotic therapy of the essential oil of Rosmarinus officinalis L. Ind. Crops Prod., 2014, 59, 290-294. doi: 10.1016/j.indcrop.2014.05.026
- Sarikurkcu, C.; Zengin, G.; Oskay, M.; Uysal, S.; Ceylan, R.; Aktumsek, A. Composition, antioxidant, antimicrobial and enzyme inhibition activities of two Origanum vulgare subspecies (subsp. vulgare and subsp. hirtum) essential oils. Ind. Crops Prod., 2015, 70, 178-184. doi: 10.1016/j.indcrop.2015.03.030
- Gutierrez, J.; Barry-Ryan, C.; Bourke, P. The antimicrobial efficacy of plant essential oil combinations and interactions with food ingredients. Int. J. Food Microbiol., 2008, 124(1), 91-97. doi: 10.1016/j.ijfoodmicro.2008.02.028 PMID: 18378032
- Hussain, A.I.; Anwar, F.; Hussain Sherazi, S.T.; Przybylski, R. Chemical composition, antioxidant and antimicrobial activities of basil (Ocimum basilicum) essential oils depends on seasonal variations. Food Chem., 2008, 108(3), 986-995. doi: 10.1016/j.foodchem.2007.12.010 PMID: 26065762
- Opalchenova, G.; Obreshkova, D. Comparative studies on the activity of basilan essential oil from Ocimum basilicum L.against multidrug resistant clinical isolates of the genera Staphylococcus, Enterococcus and Pseudomonas by using different test methods. J. Microbiol. Methods, 2003, 54(1), 105-110. doi: 10.1016/S0167-7012(03)00012-5 PMID: 12732427
- Koga, T.; Hirota, N.; Takumi, K. Bactericidal activities of essential oils of basil and sage against a range of bacteria and the effect of these essential oils on Vibrio parahaemolyticus. Microbiol. Res., 1999, 154(3), 267-273. doi: 10.1016/S0944-5013(99)80024-X PMID: 10652788
- Tyagi, A.K.; Malik, A. Antimicrobial potential and chemical composition of Mentha piperita oil in liquid and vapour phase against food spoiling microorganisms. Food Control, 2011, 22(11), 1707-1714. doi: 10.1016/j.foodcont.2011.04.002
- Mahboubi, M.; Haghi, G. Antimicrobial activity and chemical composition of Mentha pulegium L. essential oil. J. Ethnopharmacol., 2008, 119(2), 325-327. doi: 10.1016/j.jep.2008.07.023 PMID: 18703127
- Ahmad, A.; Khan, A.; Samber, N.; Manzoor, N. Antimicrobial activity of Mentha piperita essential oil in combination with silver ions. Synergy, 2014, 1(2), 92-98. doi: 10.1016/j.synres.2014.11.001
- Aleksic Sabo, V.; Knezevic, P. Antimicrobial activity of Eucalyptus camaldulensis Dehn. plant extracts and essential oils: A review. Ind. Crops Prod., 2019, 132, 413-429. doi: 10.1016/j.indcrop.2019.02.051 PMID: 32288268
- Wińska, K.; Mączka, W.; Łyczko, J.; Grabarczyk, M.; Czubaszek, A.; Szumny, A. Essential oils as antimicrobial agentsmyth or real alternative? Molecules, 2019, 24(11), 2130. doi: 10.3390/molecules24112130 PMID: 31195752
- Flores-Villaseñor, H.; Canizalez-Román, A.; Reyes-Lopez, M.; Nazmi, K.; de la Garza, M.; Zazueta-Beltrán, J.; León-Sicairos, N.; Bolscher, J.G.M. Bactericidal effect of bovine lactoferrin, LFcin, LFampin and LFchimera on antibiotic-resistant Staphylococcus aureus and Escherichia coli. Biometals, 2010, 23(3), 569-578. doi: 10.1007/s10534-010-9306-4 PMID: 20195887
- Cattoir, V.; Felden, B. Future antibacterial strategies: from basic concepts to clinical challenges. J. Infect. Dis., 2019, 220(3), 350-360. doi: 10.1093/infdis/jiz134 PMID: 30893436
- Parmeciano Di Noto, G.; Molina, M.C.; Quiroga, C. Insights into non-coding RNAs as novel antimicrobial drugs. Front. Genet., 2019, 10, 57. doi: 10.3389/fgene.2019.00057 PMID: 30853970
- Lipsitch, M.; Siber, G.R. How can vaccines contribute to solving the antimicrobial resistance problem? MBio, 2016, 7(3), e00428-e16. doi: 10.1128/mBio.00428-16 PMID: 27273824
- Abbasi, A.; Rad, A.H.; Maleki, L.A.; Kafil, H.S.; Baghbanzadeh, A. Antigenotoxicity and cytotoxic potentials of cell-free supernatants derived from saccharomyces cerevisiae var. boulardii on HT-29 human colon cancer cell lines. Probiotics Antimicrob. Proteins, 2023, 1-13. doi: 10.1007/s12602-022-10039-1 PMID: 36588138
- Rad, A.H.; Aghebati-Maleki, L.; Kafil, H.S.; Abbasi, A. Molecular mechanisms of postbiotics in colorectal cancer prevention and treatment. Crit. Rev. Food Sci. Nutr., 2021, 61(11), 1787-1803. doi: 10.1080/10408398.2020.1765310 PMID: 32410512
- Abbasi, A.; Rad, A.H.; Ghasempour, Z.; Sabahi, S.; Kafil, H.S.; Hasannezhad, P.; Rahbar Saadat, Y.; Shahbazi, N. The biological activities of postbiotics in gastrointestinal disorders. Crit. Rev. Food Sci. Nutr., 2022, 62(22), 5983-6004. doi: 10.1080/10408398.2021.1895061 PMID: 33715539
- Homayouni Rad, A.; Aghebati Maleki, L.; Samadi Kafil, H.; Abbasi, A. Postbiotics: A novel strategy in food allergy treatment. Crit. Rev. Food Sci. Nutr., 2021, 61(3), 492-499. doi: 10.1080/10408398.2020.1738333 PMID: 32160762
- Homayouni Rad, A.; Aghebati Maleki, L.; Samadi Kafil, H.; Fathi Zavoshti, H.; Abbasi, A. Postbiotics as novel health-promoting ingredients in functional foods. Health Promot. Perspect., 2020, 10(1), 3-4. doi: 10.15171/hpp.2020.02 PMID: 32104650
- Ozma, M.A.; Abbasi, A.; Sabahi, S. Characterization of postbiotics derived from Lactobacillus paracasei ATCC 55544 and its application in Malva sylvestris seed mucilage edible coating to the improvement of the microbiological, and sensory properties of lamb meat during storage. Biointerface Res. Appl. Chem., 2022, 13.
- Abbasi, A.; Rahbar Saadat, T.; Rahbar Saadat, Y. Microbial exopolysaccharidesβ-glucansas promising postbiotic candidates in vaccine adjuvants. Int. J. Biol. Macromol., 2022, 223, 346-361. doi: 10.1016/j.ijbiomac.2022.11.003
- Homayouni Rad, A.; Aghebati Maleki, L.; Samadi Kafil, H.; Fathi Zavoshti, H.; Abbasi, A. Postbiotics as promising tools for cancer adjuvant therapy. Adv. Pharm. Bull., 2020, 11(1), 1-5. doi: 10.34172/apb.2021.007 PMID: 33747846
- Besselink, M.G.H.; van Santvoort, H.C.; Buskens, E.; Boermeester, M.A.; van Goor, H.; Timmerman, H.M.; Nieuwenhuijs, V.B.; Bollen, T.L.; van Ramshorst, B.; Witteman, B.J.M.; Rosman, C.; Ploeg, R.J.; Brink, M.A.; Schaapherder, A.F.M.; Dejong, C.H.C.; Wahab, P.J.; van Laarhoven, C.J.H.M.; van der Harst, E.; van Eijck, C.H.J.; Cuesta, M.A.; Akkermans, L.M.A.; Gooszen, H.G. Probiotic prophylaxis in predicted severe acute pancreatitis: a randomised, double-blind, placebo-controlled trial. Lancet, 2008, 371(9613), 651-659. doi: 10.1016/S0140-6736(08)60207-X PMID: 18279948
- Zhang, L.S.; Davies, S.S. Microbial metabolism of dietary components to bioactive metabolites: opportunities for new therapeutic interventions. Genome Med., 2016, 8(1), 46. doi: 10.1186/s13073-016-0296-x PMID: 27102537
- Abbasi, A.; Hajipour, N.; Hasannezhad, P.; Baghbanzadeh, A.; Aghebati-Maleki, L. Potential in vivo delivery routes of postbiotics. Crit. Rev. Food Sci. Nutr., 2022, 62(12), 3345-3369. doi: 10.1080/10408398.2020.1865260 PMID: 33356449
- Rad, A.H.; Abbasi, A.; Kafil, H.S.; Ganbarov, K. Potential pharmaceutical and food applications of postbiotics: a review. Curr. Pharm. Biotechnol., 2020, 21(15), 1576-1587. doi: 10.2174/1389201021666200516154833 PMID: 32416671
- Sabahi, S.; Homayouni Rad, A.; Aghebati-Maleki, L.; Sangtarash, N.; Ozma, M.A.; Karimi, A.; Hosseini, H.; Abbasi, A. Postbiotics as the new frontier in food and pharmaceutical research. Crit. Rev. Food Sci. Nutr., 2022, 1-28. doi: 10.1080/10408398.2022.2056727 PMID: 35348016
- Konstantinov, S.R.; Kuipers, E.J.; Peppelenbosch, M.P. Functional genomic analyses of the gut microbiota for CRC screening. Nat. Rev. Gastroenterol. Hepatol., 2013, 10(12), 741-745. doi: 10.1038/nrgastro.2013.178 PMID: 24042452
- Ozma, M.A.; Abbasi, A.; Ahangarzadeh Rezaee, M.; Hosseini, H.; Hosseinzadeh, N.; Sabahi, S.; Noori, S.M.A.; Sepordeh, S.; Khodadadi, E.; Lahouty, M.; Kafil, H.S. A critical review on the nutritional and medicinal profiles of garlics (Allium sativum L.) bioactive compounds. Food Rev. Int., 2022, 1-38. doi: 10.1080/87559129.2022.2100417
- Abbasi, A.; Rad, A.H.; Maleki, L.A.; Kafil, H.S.; Baghbanzadeh, A. Cytotoxic potentials of cell-free supernatant derived from lactobacillus casei CRL431 on HCT-116 and HT-29 human colon cancer cell lines. Biointerface Res. Appl. Chem., 2023, 13(5), 476.
- Ozma, M.A.; Abbasi, A.; Akrami, S.; Lahouty, M.; Shahbazi, N.; Ganbarov, K.; Pagliano, P.; Sabahi, S.; Köse, Ş.; Yousefi, M.; Dao, S.; Asgharzadeh, M.; Hosseini, H.; Kafil, H.S. Postbiotics as the key mediators of the gut microbiota-host interactions. Infez. Med., 2022, 30(2), 180-193. PMID: 35693065
- Abbasi, A.; Sheykhsaran, E.; Kafil, H.S. Postbiotics: science, technology and applications; Bentham Science Publishers, 2021. doi: 10.2174/97816810883891210101
- Mohammad, M.A.; Molloy, A.; Scott, J. Hussein, Plasma cobalamin and folate and their metabolic markers methylmalonic acid and total homocysteine among Egyptian children before and after nutritional supplementation with the probiotic bacteria Lactobacillus acidophilus in yoghurt matrix. Int. J. Food Sci. Nutr., 2006, 57(7-8), 470-480. doi: 10.1080/09637480600968735 PMID: 17162326
- Liu, Y.; Hou, Y.; Wang, G.; Zheng, X.; Hao, H. Gut microbial metabolites of aromatic amino acids as signals in hostmicrobe interplay. Trends Endocrinol. Metab., 2020, 31(11), 818-834. doi: 10.1016/j.tem.2020.02.012 PMID: 32284282
- Devlin, A.S.; Marcobal, A.; Dodd, D.; Nayfach, S.; Plummer, N.; Meyer, T.; Pollard, K.S.; Sonnenburg, J.L.; Fischbach, M.A. Modulation of a circulating uremic solute via rational genetic manipulation of the gut microbiota. Cell Host Microbe, 2016, 20(6), 709-715. doi: 10.1016/j.chom.2016.10.021 PMID: 27916477
- Newburg, D.S.; Ko, J.S.; Leone, S.; Nanthakumar, N.N. Human milk oligosaccharides and synthetic galactosyloligosaccharides contain 3′-, 4-, and 6′-galactosyllactose and attenuate inflammation in human T84, NCM-460, and H4 cells and intestinal tissue ex vivo. J. Nutr., 2016, 146(2), 358-367. doi: 10.3945/jn.115.220749 PMID: 26701795
- Dunand, E.; Burns, P.; Binetti, A.; Bergamini, C.; Peralta, G.H.; Forzani, L.; Reinheimer, J.; Vinderola, G. Postbiotics produced at laboratory and industrial level as potential functional food ingredients with the capacity to protect mice against Salmonella infection. J. Appl. Microbiol., 2019, 127(1), 219-229. doi: 10.1111/jam.14276 PMID: 30973185
- Morisset, M.; Aubert-Jacquin, C.; Soulaines, P.; Moneret-Vautrin, D-A.; Dupont, C. A non-hydrolyzed, fermented milk formula reduces digestive and respiratory events in infants at high risk of allergy. Eur. J. Clin. Nutr., 2011, 65(2), 175-183. doi: 10.1038/ejcn.2010.250 PMID: 21081959
- Hofacre, C.L.; Smith, J.A.; Mathis, G.F. An optimists view on limiting necrotic enteritis and maintaining broiler gut health and performance in todays marketing, food safety, and regulatory climate. Poult. Sci., 2018, 97(6), 1929-1933. doi: 10.3382/ps/pey082 PMID: 29762789
- Wu, S.B.; Stanley, D.; Rodgers, N.; Swick, R.A.; Moore, R.J. Two necrotic enteritis predisposing factors, dietary fishmeal and Eimeria infection, induce large changes in the caecal microbiota of broiler chickens. Vet. Microbiol., 2014, 169(3-4), 188-197. doi: 10.1016/j.vetmic.2014.01.007 PMID: 24522272
- Lu, M.; Li, R.W.; Zhao, H.; Yan, X.; Lillehoj, H.S.; Sun, Z.; Oh, S.; Wang, Y.; Li, C. Effects of Eimeria maxima and Clostridium perfringens infections on cecal microbial composition and the possible correlation with body weight gain in broiler chickens. Res. Vet. Sci., 2020, 132, 142-149. doi: 10.1016/j.rvsc.2020.05.013 PMID: 32575030
- Timbermont, L.; Haesebrouck, F.; Ducatelle, R.; Van Immerseel, F. Necrotic enteritis in broilers: an updated review on the pathogenesis. Avian Pathol., 2011, 40(4), 341-347. doi: 10.1080/03079457.2011.590967 PMID: 21812711
- Parish, W.E. Necrotic enteritis in the fowl (Gallus gallus domesticus). I. Histopathology of the disease and isolation of a strain of Clostridium welchii. J. Comp. Pathol., 1961, 71, 377-393. doi: 10.1016/S0368-1742(61)80043-X PMID: 14483884
- Durso, L.M.; Cook, K.L. Impacts of antibiotic use in agriculture: what are the benefits and risks? Curr. Opin. Microbiol., 2014, 19, 37-44. doi: 10.1016/j.mib.2014.05.019 PMID: 24997398
- Salah-Eldin, A.; Fawzy, E.H.; Aboelmagd, B.A.; Ragab, E.A.; Bedawy, S. Clinical and laboratory studies on chicken isolates of Clostridium Perfringens in El-Behera, Egypt. J. Worlds Poult. Res., 2015, 5, 21-28.
- Karavolias, J.; Salois, M.J.; Baker, K.T.; Watkins, K. Raised without antibiotics: impact on animal welfare and implications for food policy. Transl. Anim. Sci., 2018, 2(4), 337-348. doi: 10.1093/tas/txy016 PMID: 32704717
- Kumar, S.; Chen, C.; Indugu, N.; Werlang, G.O.; Singh, M.; Kim, W.K.; Thippareddi, H. Effect of antibiotic withdrawal in feed on chicken gut microbial dynamics, immunity, growth performance and prevalence of foodborne pathogens. PLoS One, 2018, 13(2), e0192450. doi: 10.1371/journal.pone.0192450 PMID: 29444134
- Abd El-Hack, M.E.; El-Saadony, M.T.; Elbestawy, A.R.; El-Shall, N.A.; Saad, A.M.; Salem, H.M.; El-Tahan, A.M.; Khafaga, A.F.; Taha, A.E.; AbuQamar, S.F.; El-Tarabily, K.A. Necrotic enteritis in broiler chickens: disease characteristics and prevention using organic antibiotic alternatives a comprehensive review. Poult. Sci., 2022, 101(2), 101590. doi: 10.1016/j.psj.2021.101590 PMID: 34953377
- Eraky, R.D.; Abd El-Ghany, W.A. Genetic characterization, antibiogram pattern, and pathogenicity of Clostridium perfringens isolated from broiler chickens with necrotic enteritis. J. Indones. Trop. Anim. Agric., 2022, 47(1), 1-16. doi: 10.14710/jitaa.47.1.1-16
- Kareem, K.Y.; Loh, T.C.; Foo, H.L.; Asmara, S.A.; Akit, H. Influence of postbiotic RG14 and inulin combination on cecal microbiota, organic acid concentration, and cytokine expression in broiler chickens. Poult. Sci., 2017, 96(4), 966-975. doi: 10.3382/ps/pew362 PMID: 28339522
- Johnson, C.N.; Kogut, M.H.; Genovese, K.; He, H.; Kazemi, S.; Arsenault, R.J. Administration of a postbiotic causes immunomodulatory responses in broiler gut and reduces disease pathogenesis following challenge. Microorganisms, 2019, 7(8), 268. doi: 10.3390/microorganisms7080268 PMID: 31426502
- Swaggerty, C.L.; Byrd, J.A., II; Arsenault, R.J.; Perry, F.; Johnson, C.N.; Genovese, K.J.; He, H.; Kogut, M.H.; Piva, A.; Grilli, E. A blend of microencapsulated organic acids and botanicals reduces necrotic enteritis via specific signaling pathways in broilers. Poult. Sci., 2022, 101(4), 101753. doi: 10.1016/j.psj.2022.101753 PMID: 35240358
- Klemashevich, C.; Wu, C.; Howsmon, D.; Alaniz, R.C.; Lee, K.; Jayaraman, A. Rational identification of diet-derived postbiotics for improving intestinal microbiota function. Curr. Opin. Biotechnol., 2014, 26, 85-90. doi: 10.1016/j.copbio.2013.10.006 PMID: 24679263
- Asgari, F.; Madjd, Z.; Falak, R.; Bahar, M.A.; Nasrabadi, M.H.; Raiani, M.; Shekarabi, M. Probiotic feeding affects T cell populations in blood and lymphoid organs in chickens. Benef. Microbes, 2016, 7(5), 669-675. doi: 10.3920/BM2016.0014 PMID: 27349931
- Khalique, A.; Zeng, D.; Shoaib, M.; Wang, H.; Qing, X.; Rajput, D.S.; Pan, K.; Ni, X. Probiotics mitigating subclinical necrotic enteritis (SNE) as potential alternatives to antibiotics in poultry. AMB Express, 2020, 10(1), 50. doi: 10.1186/s13568-020-00989-6 PMID: 32172398
- Zhang, Z.; Guo, Q.; Wang, J.; Tan, H.; Jin, X.; Fan, Y.; Liu, J.; Zhao, S.; Zheng, J.; Peng, N. Postbiotics from Pichia kudriavzevii promote intestinal health performance through regulation of Limosilactobacillus reuteri in weaned piglets. Food Funct., 2023, 14(8), 3463-3474. doi: 10.1039/D2FO03695A PMID: 36912248
- Zheng, X.; Duan, Y.; Dong, H.; Zhang, J. Effects of dietary Lactobacillus plantarum in different treatments on growth performance and immune gene expression of white shrimp Litopenaeus vannamei under normal condition and stress of acute low salinity. Fish Shellfish Immunol., 2017, 62, 195-201. doi: 10.1016/j.fsi.2017.01.015 PMID: 28108342
- Mohapatra, S.; Chakraborty, T.; Kumar, V.; DeBoeck, G.; Mohanta, K.N. Aquaculture and stress management: a review of probiotic intervention. J. Anim. Physiol. Anim. Nutr. (Berl.), 2013, 97(3), 405-430. doi: 10.1111/j.1439-0396.2012.01301.x PMID: 22512693
- Zuo, Z.; Shang, B.; Shao, Y.; Li, W.; Sun, J. Screening of intestinal probiotics and the effects of feeding probiotics on the growth, immune, digestive enzyme activity and intestinal flora of Litopenaeus vannamei. Fish Shellfish Immunol., 2019, 86, 160-168. doi: 10.1016/j.fsi.2018.11.003 PMID: 30391532
- Stanton, C.; Ross, R.P.; Fitzgerald, G.F.; Sinderen, D.V. Fermented functional foods based on probiotics and their biogenic metabolites. Curr. Opin. Biotechnol., 2005, 16(2), 198-203. doi: 10.1016/j.copbio.2005.02.008 PMID: 15831387
- Huynh, T.G.; Cheng, A.C.; Chi, C.C.; Chiu, K.H.; Liu, C.H. A synbiotic improves the immunity of white shrimp, Litopenaeus vannamei: Metabolomic analysis reveal compelling evidence. Fish Shellfish Immunol., 2018, 79, 284-293. doi: 10.1016/j.fsi.2018.05.031 PMID: 29778843
- Yao, W.; Li, X.; Zhang, C.; Wang, J.; Cai, Y.; Leng, X. Effects of dietary synbiotics supplementation methods on growth, intestinal health, non-specific immunity and disease resistance of Pacific white shrimp, Litopenaeus vannamei. Fish Shellfish Immunol., 2021, 112, 46-55. doi: 10.1016/j.fsi.2021.02.011 PMID: 33609702
- Boonanuntanasarn, S.; Wongsasak, U.; Pitaksong, T.; Chaijamrus, S. Effects of dietary supplementation with β-glucan and synbiotics on growth, haemolymph chemistry, and intestinal microbiota and morphology in the Pacific white shrimp. Aquacult. Nutr., 2016, 22(4), 837-845. doi: 10.1111/anu.12302
- Chen, M.; Chen, X.Q.; Tian, L.X.; Liu, Y.J.; Niu, J. Beneficial impacts on growth, intestinal health, immune responses and ammonia resistance of pacific white shrimp (Litopenaeus vannamei) fed dietary synbiotic (mannan oligosaccharide and Bacillus licheniformis). Aquacult. Rep., 2020, 17, 100408. doi: 10.1016/j.aqrep.2020.100408
- Li, H.; Tian, X.; Zhao, K.; Jiang, W.; Dong, S. Effect of Clostridium butyricum in different forms on growth performance, disease resistance, expression of genes involved in immune responses and mTOR signaling pathway of Litopenaeus vannamai. Fish Shellfish Immunol., 2019, 87, 13-21. doi: 10.1016/j.fsi.2018.12.069 PMID: 30599253
- Centeno-Martinez, R.E.; Dong, W.; Klopp, R.N.; Yoon, I.; Boerman, J.P.; Johnson, T.A. Effects of feeding Saccharomyces cerevisiae fermentation postbiotic on the fecal microbial community of Holstein dairy calves. Anim. Microbiome, 2023, 5(1), 13. doi: 10.1186/s42523-023-00234-y PMID: 36803311
- Arpaia, N.; Campbell, C.; Fan, X.; Dikiy, S.; van der Veeken, J.; deRoos, P.; Liu, H.; Cross, J.R.; Pfeffer, K.; Coffer, P.J.; Rudensky, A.Y. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature, 2013, 504(7480), 451-455. doi: 10.1038/nature12726 PMID: 24226773
- Sabahi, S.; Abbasi, A.; Mortazavi, S.A. Characterization of cinnamon essential oil and its application in Malva sylvestris seed mucilage edible coating to the enhancement of the microbiological, physicochemical and sensory properties of lamb meat during storage. J. Appl. Microbiol., 2022, 133(2), 488-502. doi: 10.1111/jam.15578 PMID: 35429123
- Jensen, G.S.; Benson, K.F.; Carter, S.G.; Endres, J.R. GanedenBC30 cell wall and metabolites: anti-inflammatory and immune modulating effects in vitro. BMC Immunol., 2010, 11(1), 15. doi: 10.1186/1471-2172-11-15 PMID: 20331905
- Hoarau, C.; Martin, L.; Faugaret, D.; Baron, C.; Dauba, A.; Aubert-Jacquin, C.; Velge-Roussel, F.; Lebranchu, Y. Supernatant from bifidobacterium differentially modulates transduction signaling pathways for biological functions of human dendritic cells. PLoS One, 2008, 3(7), e2753. doi: 10.1371/journal.pone.0002753 PMID: 18648505
- Abbasi, A.; Aghebati-Maleki, A.; Yousefi, M.; Aghebati-Maleki, L. Probiotic intervention as a potential therapeutic for managing gestational disorders and improving pregnancy outcomes. J. Reprod. Immunol., 2021, 143, 103244. doi: 10.1016/j.jri.2020.103244 PMID: 33186834
- Cousin, F.J.; Jouan-Lanhouet, S.; Dimanche-Boitrel, M.T.; Corcos, L.; Jan, G. Milk fermented by Propionibacterium freudenreichii induces apoptosis of HGT-1 human gastric cancer cells. PLoS One, 2012, 7(3), e31892. doi: 10.1371/journal.pone.0031892 PMID: 22442660
- Żółkiewicz, J.; Marzec, A.; Ruszczyński, M.; Feleszko, W. Postbioticsa step beyond pre-and probiotics. Nutrients, 2020, 12(8), 2189. doi: 10.3390/nu12082189 PMID: 32717965
- Rigo-Adrover, M.; Knipping, K.; Garssen, J.; van Limpt, K.; Knol, J.; Franch, À.; Castell, M.; Rodríguez-lagunas, M.; Pérez-Cano, F. Prevention of rotavirus diarrhea in suckling rats by a specific fermented milk concentrate with prebiotic mixture. Nutrients, 2019, 11(1), 189. doi: 10.3390/nu11010189 PMID: 30669251
- Karimi, N.; Jabbari, V.; Nazemi, A.; Ganbarov, K.; Karimi, N.; Tanomand, A.; Karimi, S.; Abbasi, A.; Yousefi, B.; Khodadadi, E.; Kafil, H.S. Thymol, cardamom and Lactobacillus plantarum nanoparticles as a functional candy with high protection against Streptococcus mutans and tooth decay. Microb. Pathog., 2020, 148, 104481. doi: 10.1016/j.micpath.2020.104481 PMID: 32916244
- Nocerino, R.; Paparo, L.; Terrin, G.; Pezzella, V.; Amoroso, A.; Cosenza, L.; Cecere, G.; De Marco, G.; Micillo, M.; Albano, F.; Nugnes, R.; Ferri, P.; Ciccarelli, G.; Giaccio, G.; Spadaro, R.; Maddalena, Y.; Berni Canani, F.; Berni Canani, R. Cows milk and rice fermented with Lactobacillus paracasei CBA L74 prevent infectious diseases in children: A randomized controlled trial. Clin. Nutr., 2017, 36(1), 118-125. doi: 10.1016/j.clnu.2015.12.004 PMID: 26732025
- Malagón-Rojas, J.N.; Mantziari, A.; Salminen, S.; Szajewska, H. Postbiotics for preventing and treating common infectious diseases in children: a systematic review. Nutrients, 2020, 12(2), 389. doi: 10.3390/nu12020389 PMID: 32024037
- Osman, A.; El-Gazzar, N.; Almanaa, T.N.; El-Hadary, A.; Sitohy, M. Lipolytic postbiotic from Lactobacillus paracasei manages metabolic syndrome in albino wistar rats. Molecules, 2021, 26(2), 472. doi: 10.3390/molecules26020472 PMID: 33477482
- Abbasi, A.; Aghebati-Maleki, L.; Homayouni-Rad, A. The promising biological role of postbiotics derived from probiotic Lactobacillus species in reproductive health. Crit. Rev. Food Sci. Nutr., 2022, 62(32), 8829-8841. doi: 10.1080/10408398.2021.1935701 PMID: 34152234
- Brial, F.; Le Lay, A.; Dumas, M.E.; Gauguier, D. Implication of gut microbiota metabolites in cardiovascular and metabolic diseases. Cell. Mol. Life Sci., 2018, 75(21), 3977-3990. doi: 10.1007/s00018-018-2901-1 PMID: 30101405
- Nakamura, F.; Ishida, Y.; Sawada, D.; Ashida, N.; Sugawara, T.; Sakai, M.; Goto, T.; Kawada, T.; Fujiwara, S. Fragmented lactic acid bacterial cells activate peroxisome proliferator-activated receptors and ameliorate dyslipidemia in obese mice. J. Agric. Food Chem., 2016, 64(12), 2549-2559. doi: 10.1021/acs.jafc.5b05827 PMID: 26927959
- Irving, A.T.; Mimuro, H.; Kufer, T.A.; Lo, C.; Wheeler, R.; Turner, L.J.; Thomas, B.J.; Malosse, C.; Gantier, M.P.; Casillas, L.N.; Votta, B.J.; Bertin, J.; Boneca, I.G.; Sasakawa, C.; Philpott, D.J.; Ferrero, R.L.; Kaparakis-Liaskos, M. The immune receptor NOD1 and kinase RIP2 interact with bacterial peptidoglycan on early endosomes to promote autophagy and inflammatory signaling. Cell Host Microbe, 2014, 15(5), 623-635. doi: 10.1016/j.chom.2014.04.001 PMID: 24746552
- Dinić, M.; Lukić, J.; Djokić, J.; Milenković, M.; Strahinić, I.; Golić, N.; Begović, J. Lactobacillus fermentum postbiotic-induced autophagy as potential approach for treatment of acetaminophen hepatotoxicity. Front. Microbiol., 2017, 8, 594. doi: 10.3389/fmicb.2017.00594 PMID: 28428777
- Lin, J.; Zhuge, J.; Zheng, X.; Wu, Y.; Zhang, Z.; Xu, T.; Meftah, Z.; Xu, H.; Wu, Y.; Tian, N.; Gao, W.; Zhou, Y.; Zhang, X.; Wang, X. Urolithin A-induced mitophagy suppresses apoptosis and attenuates intervertebral disc degeneration via the AMPK signaling pathway. Free Radic. Biol. Med., 2020, 150, 109-119. doi: 10.1016/j.freeradbiomed.2020.02.024 PMID: 32105828
- Varian, B.J.; Poutahidis, T.; DiBenedictis, B.T.; Levkovich, T.; Ibrahim, Y.; Didyk, E.; Shikhman, L.; Cheung, H.K.; Hardas, A.; Ricciardi, C.E.; Kolandaivelu, K.; Veenema, A.H.; Alm, E.J.; Erdman, S.E. Microbial lysate upregulates host oxytocin. Brain Behav. Immun., 2017, 61, 36-49. doi: 10.1016/j.bbi.2016.11.002 PMID: 27825953
- Nataraj, B.H.; Mallappa, R.H. Antibiotic resistance crisis: an update on antagonistic interactions between probiotics and methicillin-resistant staphylococcus aureus (MRSA). Curr. Microbiol., 2021, 78(6), 2194-2211. doi: 10.1007/s00284-021-02442-8 PMID: 33881575
- Perrin, V.; Fenet, B.; Praly, J.P.; Lecroix, F.; Dung Ta, C. Identification and synthesis of a trisaccharide produced from lactose by transgalactosylation. Carbohydr. Res., 2000, 325(3), 202-210. doi: 10.1016/S0008-6215(99)00309-2 PMID: 10795811
- Rather, I.A.; Choi, S.B.; Kamli, M.R.; Hakeem, K.R.; Sabir, J.S.M.; Park, Y.H.; Hor, Y.Y. Potential adjuvant therapeutic effect of Lactobacillus plantarum probio-88 postbiotics against SARS-COV-2. Vaccines (Basel), 2021, 9(10), 1067. doi: 10.3390/vaccines9101067 PMID: 34696175
- Abbasi, A.; Bazzaz, S.; A. Ibrahim, S. Hekmatdoost, A.; Hosseini, H.; Sabahi, S.; Sheykhsaran, E.; Rahbar Saadat, Y.; Asghari Ozma, M.; Lahouty, M. A critical review on the gluten-induced enteropathy/celiac disease: Gluten-targeted dietary and non-dietary therapeutic approaches. Food Rev. Int., 2023, 1-41. doi: 10.1080/87559129.2023.2202405
- Spagnolello, O.; Pinacchio, C.; Santinelli, L.; Vassalini, P.; Innocenti, G.P.; De Girolamo, G.; Fabris, S.; Giovanetti, M.; Angeletti, S.; Russo, A.; Mastroianni, C.M.; Ciccozzi, M.; Ceccarelli, G.; dEttorre, G. Targeting microbiome: an alternative strategy for fighting SARS-CoV-2 infection. Chemotherapy, 2021, 66(1-2), 24-32. doi: 10.1159/000515344 PMID: 33756475
- Hosseini, H.; Abbasi, A.; Sabahi, S.; Akrami, S.; Yousefi-Avarvand, A. Assessing the potential biological activities of postbiotics derived from saccharomyces cerevisiae: an in vitro study. Probiotics Antimicrob. Proteins, 2023, 1-17. doi: 10.1007/s12602-023-10117-y PMID: 37402072
- Todorov, S.D.; Tagg, J.R.; Ivanova, I.V. Could probiotics and postbiotics function as "Silver bullet" in the Post-COVID-19 era? Probiotics Antimicrob. Proteins, 2021, 13(6), 1499-1507. doi: 10.1007/s12602-021-09833-0 PMID: 34386940
- Cecchini, M. Antimicrobial resistance in G7 countries and beyond: Economic issues, policies and options for action; OECD, 2015.
- Zamojska, D.; Nowak, A.; Nowak, I.; Macierzyńska-Piotrowska, E. Probiotics and postbiotics as substitutes of antibiotics in farm animals: A review. Animals (Basel), 2021, 11(12), 3431. doi: 10.3390/ani11123431 PMID: 34944208
- Fabrega, J.; Carapeto, R. Regulatory review of the environmental risk assessment of veterinary medicinal products in the European Union, with particular focus on the centralised authorisation procedure. Environ. Sci. Eur., 2020, 32(1), 99. doi: 10.1186/s12302-020-00374-x
- Abbasi, A.; Sabahi, S.; Bazzaz, S.; Tajani, A.G.; Lahouty, M.; Aslani, R.; Hosseini, H. An edible coating utilizing Malva sylvestris seed polysaccharide mucilage and postbiotic from Saccharomyces cerevisiae var. boulardii for the preservation of lamb meat. Int. J. Biol. Macromol., 2023, 246, 125660. doi: 10.1016/j.ijbiomac.2023.125660 PMID: 37399877
补充文件
