Recent Advances in Biomedical Nanotechnology Related to Natural Products


如何引用文章

全文:

详细

Natural product processing via nanotechnology has opened the door to innovative and significant applications in medical fields. On one hand, plants-derived bioactive ingredients such as phenols, pentacyclic triterpenes and flavonoids exhibit significant pharmacological activities, on another hand, most of them are hydrophobic in nature, posing challenges to their use. To overcome this issue, nanoencapsulation technology is employed to encapsulate these lipophilic compounds and enhance their bioavailability. In this regard, various nano-sized vehicles, including degradable functional polymer organic compounds, mesoporous silicon or carbon materials, offer superior stability and retention for bioactive ingredients against decomposition and loss during delivery as well as sustained release. On the other hand, some naturally occurring polymers, lipids and even microorganisms, which constitute a significant portion of Earth's biomass, show promising potential for biomedical applications as well. Through nano-processing, these natural products can be developed into nano-delivery systems with desirable characteristics for encapsulation a wide range of bioactive components and therapeutic agents, facilitating in vivo drug transport. Beyond the presentation of the most recent nanoencapsulation and nano-processing advancements with formulations mainly based on natural products, this review emphasizes the importance of their physicochemical properties at the nanoscale and their potential in disease therapy.

作者简介

Qing Xia

School of Pharmacy and Bioengineering, Chongqing University of Technology

Email: info@benthamscience.net

Tingting Liang

School of Pharmacy and Bioengineering, Chongqing University of Technology

Email: info@benthamscience.net

Yue Zhou

School of Pharmacy and Bioengineering, Chongqing University of Technology

Email: info@benthamscience.net

Jun Liu

School of Pharmacy and Bioengineering, Chongqing University of Technology

Email: info@benthamscience.net

Yue Tang

School of Pharmacy and Bioengineering, Chongqing University of Technology

Email: info@benthamscience.net

Feila Liu

School of Pharmacy and Bioengineering, Chongqing University of Technology

编辑信件的主要联系方式.
Email: info@benthamscience.net

参考

  1. Chaudhry, Q.; Scotter, M.; Blackburn, J.; Ross, B.; Boxall, A.; Castle, L.; Aitken, R.; Watkins, R. Applications and implications of nanotechnologies for the food sector. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess., 2008, 25(3), 241-258. doi: 10.1080/02652030701744538 PMID: 18311618
  2. Wang, Z.; Xue, X.; Lu, H.; He, Y.; Lu, Z.; Chen, Z.; Yuan, Y.; Tang, N.; Dreyer, C.A.; Quigley, L.; Curro, N.; Lam, K.S.; Walton, J.H.; Lin, T.; Louie, A.Y.; Gilbert, D.A.; Liu, K.; Ferrara, K.W.; Li, Y. Two-way magnetic resonance tuning and enhanced subtraction imaging for non-invasive and quantitative biological imaging. Nat. Nanotechnol., 2020, 15(6), 482-490. doi: 10.1038/s41565-020-0678-5 PMID: 32451501
  3. Zhu, X.; Liu, X.; Zhang, H.; Zhao, M.; Pei, P.; Chen, Y.; Yang, Y.; Lu, L.; Yu, P.; Sun, C.; Ming, J.; Ábrahám, I.M.; El-Toni, A.M.; Khan, A.; Zhang, F. High-fidelity NIR-II multiplexed lifetime bioimaging with bright double interfaced lanthanide nanoparticles. Angew. Chem. Int. Ed., 2021, 60(44), 23545-23551. doi: 10.1002/anie.202108124 PMID: 34487416
  4. Xu, Y.; Dang, D.; Zhang, N.; Zhang, J.; Xu, R.; Wang, Z.; Zhou, Y.; Zhang, H.; Liu, H.; Yang, Z.; Meng, L.; Lam, J.W.Y.; Tang, B.Z. Aggregation-induced emission (AIE) in super-resolution imaging: Cationic AIE luminogens (AIEgens) for tunable organelle-specific imaging and dynamic tracking in nanometer scale. ACS Nano, 2022, 16(4), 5932-5942. doi: 10.1021/acsnano.1c11125 PMID: 35344346
  5. Yang, J.K.; Hwang, I.J.; Cha, M.G.; Kim, H.I.; Yim, D.; Jeong, D.H.; Lee, Y.S.; Kim, J.H. Reaction kinetics-mediated control over silver nanogap shells as surface-enhanced raman scattering nanoprobes for detection of alzheimer’s disease biomarkers. Small, 2019, 15(19), 1900613. doi: 10.1002/smll.201900613 PMID: 30957959
  6. Sun, M.; Xin, T.; Ran, Z.; Pei, X.; Ma, C.; Liu, J.; Cao, M.; Bai, J.; Zhou, M. A bendable biofuel cell-based fully integrated biomedical nanodevice for point-of-care diagnosis of scurvy. ACS Sens., 2021, 6(1), 275-284. doi: 10.1021/acssensors.0c02335 PMID: 33356148
  7. Kim, W.H.; Lee, J.U.; Jeon, M.J.; Park, K.H.; Sim, S.J. Three-dimensional hierarchical plasmonic nano-architecture based label-free surface-enhanced Raman spectroscopy detection of urinary exosomal miRNA for clinical diagnosis of prostate cancer. Biosens. Bioelectron., 2022, 205, 114116. doi: 10.1016/j.bios.2022.114116 PMID: 35235898
  8. Yan, R.; Lu, N.; Han, S.; Lu, Z.; Xiao, Y.; Zhao, Z.; Zhang, M. Simultaneous detection of dual biomarkers using hierarchical MoS2 nanostructuring and nano-signal amplification-based electrochemical aptasensor toward accurate diagnosis of prostate cancer. Biosens. Bioelectron., 2022, 197, 113797. doi: 10.1016/j.bios.2021.113797 PMID: 34818600
  9. Ren, Z.; Sun, S.; Sun, R.; Cui, G.; Hong, L.; Rao, B.; Li, A.; Yu, Z.; Kan, Q.; Mao, Z. A metal–polyphenol-coordinated nanomedicine for synergistic cascade cancer chemotherapy and chemodynamic therapy. Adv. Mater., 2020, 32(6), 1906024. doi: 10.1002/adma.201906024 PMID: 31834662
  10. Burke, J.A.; Zhang, X.; Bobbala, S.; Frey, M.A.; Bohorquez Fuentes, C.; Freire Haddad, H.; Allen, S.D.; Richardson, R.A.K.; Ameer, G.A.; Scott, E.A. Subcutaneous nanotherapy repurposes the immunosuppressive mechanism of rapamycin to enhance allogeneic islet graft viability. Nat. Nanotechnol., 2022, 17(3), 319-330. doi: 10.1038/s41565-021-01048-2 PMID: 35039683
  11. Abuajah, C.I.; Ogbonna, A.C.; Osuji, C.M. Functional components and medicinal properties of food: A review. J. Food Sci. Technol., 2015, 52(5), 2522-2529. doi: 10.1007/s13197-014-1396-5 PMID: 25892752
  12. Li, X.Y.; Chen, H.R.; Zha, X.Q.; Chen, S.; Pan, L.H.; Li, Q.M.; Luo, J.P. Prevention and possible mechanism of a purified Laminaria japonica polysaccharide on adriamycin-induced acute kidney injury in mice. Int. J. Biol. Macromol., 2020, 148, 591-600. doi: 10.1016/j.ijbiomac.2020.01.159 PMID: 31958563
  13. Zhu, Q.; Chen, J.; Li, Q.; Wang, T.; Li, H. Antitumor activity of polysaccharide from Laminaria japonica on mice bearing H22 liver cancer. Int. J. Biol. Macromol., 2016, 92, 156-158. doi: 10.1016/j.ijbiomac.2016.06.090 PMID: 27375056
  14. Peng, F.H.; Zha, X.Q.; Cui, S.H.; Asghar, M.N.; Pan, L.H.; Wang, J.H.; Luo, J.P. Purification, structure features and anti-atherosclerosis activity of a Laminaria japonica polysaccharide. Int. J. Biol. Macromol., 2015, 81, 926-935. doi: 10.1016/j.ijbiomac.2015.09.027 PMID: 26394383
  15. Xu, C.; Yin, L.; Teng, Z.; Zhou, X.; Li, W.; Lai, Q.; Peng, C.; Zhang, C.; Lou, J.; Zhou, X. Prevention of obesity related diseases through laminarin-induced targeted delivery of bindarit. Theranostics, 2020, 10(21), 9544-9560. doi: 10.7150/thno.45788 PMID: 32863944
  16. Bai, R.; Yao, C.; Zhong, Z.; Ge, J.; Bai, Z.; Ye, X.; Xie, T.; Xie, Y. Discovery of natural anti-inflammatory alkaloids: Potential leads for the drug discovery for the treatment of inflammation. Eur. J. Med. Chem., 2021, 213, 113165. doi: 10.1016/j.ejmech.2021.113165 PMID: 33454546
  17. Kong, Y.R.; Tay, K.C.; Su, Y.X.; Wong, C.K.; Tan, W.N.; Khaw, K.Y. Potential of naturally derived alkaloids as multi-targeted therapeutic agents for neurodegenerative diseases. Molecules, 2021, 26(3), 728. doi: 10.3390/molecules26030728 PMID: 33573300
  18. Karasneh, R.A.; Murray, L.J.; Cardwell, C.R. Cardiac glycosides and breast cancer risk: A systematic review and meta-analysis of observational studies. Int. J. Cancer, 2017, 140(5), 1035-1041. doi: 10.1002/ijc.30520 PMID: 27861859
  19. Patel, S. Plant-derived cardiac glycosides: Role in heart ailments and cancer management. Biomed. Pharmacother., 2016, 84, 1036-1041. doi: 10.1016/j.biopha.2016.10.030 PMID: 27780131
  20. Škubník, J.; Pavlíčková, V.; Rimpelová, S. Cardiac glycosides as immune system modulators. Biomolecules, 2021, 11(5), 659. doi: 10.3390/biom11050659 PMID: 33947098
  21. Prescott, R.J.; Harris, M.; Banerjee, S.S. Fungal infections of the small and large intestine. J. Clin. Pathol., 1992, 45(9), 806-811. doi: 10.1136/jcp.45.9.806 PMID: 1401213
  22. Yourassowsky, E. Collection and transport of specimens for bacteriological analysis: A neglected subject in medical teaching. Infection, 1980, 8(S2), S143-S145. doi: 10.1007/BF01639875 PMID: 7005094
  23. Loessner, H.; Weiss, S. Bacteria-mediated DNA transfer in gene therapy and vaccination. Expert Opin. Biol. Ther., 2004, 4(2), 157-168. doi: 10.1517/14712598.4.2.157 PMID: 14998775
  24. Zhao, Z.; Ukidve, A.; Kim, J.; Mitragotri, S. Targeting strategies for tissue-specific drug delivery. Cell, 2020, 181(1), 151-167. doi: 10.1016/j.cell.2020.02.001 PMID: 32243788
  25. Li, S.; Wang, Q.; Shen, Y.; Hassan, M.; Shen, J.; Jiang, W.; Su, Y.; Chen, J.; Bai, L.; Zhou, W.; Wang, Y. Pseudoneutrophil cytokine sponges disrupt myeloid expansion and tumor trafficking to improve cancer immunotherapy. Nano Lett., 2020, 20(1), 242-251. doi: 10.1021/acs.nanolett.9b03753 PMID: 31790598
  26. Deng, G.; Sun, Z.; Li, S.; Peng, X.; Li, W.; Zhou, L.; Ma, Y.; Gong, P.; Cai, L. Cell-membrane immunotherapy based on natural killer cell membrane coated nanoparticles for the effective inhibition of primary and abscopal tumor growth. ACS Nano, 2018, 12(12), 12096-12108. doi: 10.1021/acsnano.8b05292 PMID: 30444351
  27. Li, C.; Zhao, Z.; Luo, Y.; Ning, T.; Liu, P.; Chen, Q.; Chu, Y.; Guo, Q.; Zhang, Y.; Zhou, W.; Chen, H.; Zhou, Z.; Wang, Y.; Su, B.; You, H.; Zhang, T.; Li, X.; Song, H.; Li, C.; Sun, T.; Jiang, C. Macrophage-disguised manganese dioxide nanoparticles for neuroprotection by reducing oxidative stress and modulating inflammatory microenvironment in acute ischemic stroke. Adv. Sci., 2021, 8(20), 2101526. doi: 10.1002/advs.202101526 PMID: 34436822
  28. Liang, H.; Huang, K.; Su, T.; Li, Z.; Hu, S.; Dinh, P.U.; Wrona, E.A.; Shao, C.; Qiao, L.; Vandergriff, A.C.; Hensley, M.T.; Cores, J.; Allen, T.; Zhang, H.; Zeng, Q.; Xing, J.; Freytes, D.O.; Shen, D.; Yu, Z.; Cheng, K. Mesenchymal stem cell/red blood cell-inspired nanoparticle therapy in mice with carbon tetrachloride-induced acute liver failure. ACS Nano, 2018, 12(7), 6536-6544. doi: 10.1021/acsnano.8b00553 PMID: 29943967
  29. Chen, L.; Zhou, Z.; Hu, C.; Maitz, M.F.; Yang, L.; Luo, R.; Wang, Y. Platelet membrane-coated nanocarriers targeting plaques to deliver anti-CD47 antibody for atherosclerotic therapy Research., 2022, 2022(3), 2022/9845459. doi: 10.34133/2022/9845459 PMID: 35118420
  30. Zhou, Y.K.; Patel, H.H.; Roth, D.M. Extracellular vesicles: A new paradigm for cellular communication in perioperative medicine, critical care, and pain management. Anesth. Analg., 2021, 133(5), 1162-1179. doi: 10.1213/ANE.0000000000005655 PMID: 34304233
  31. Stanley, S. Biological nanoparticles and their influence on organisms. Curr. Opin. Biotechnol., 2014, 28, 69-74. doi: 10.1016/j.copbio.2013.11.014 PMID: 24832077
  32. Pitchaimani, A.; Nguyen, T.D.T.; Aryal, S. Natural killer cell membrane infused biomimetic liposomes for targeted tumor therapy. Biomaterials, 2018, 160, 124-137. doi: 10.1016/j.biomaterials.2018.01.018 PMID: 29407341
  33. Zhai, Y.; Su, J.; Ran, W.; Zhang, P.; Yin, Q.; Zhang, Z.; Yu, H.; Li, Y. Preparation and application of cell membrane-camouflaged nanoparticles for cancer therapy. Theranostics, 2017, 7(10), 2575-2592. doi: 10.7150/thno.20118 PMID: 28819448
  34. Tarasov, V.V.; Svistunov, A.A.; Chubarev, V.N.; Dostdar, S.A.; Sokolov, A.V.; Brzecka, A.; Sukocheva, O.; Neganova, M.E.; Klochkov, S.G.; Somasundaram, S.G.; Kirkland, C.E.; Aliev, G. Extracellular vesicles in cancer nanomedicine. Semin. Cancer Biol., 2021, 69, 212-225. doi: 10.1016/j.semcancer.2019.08.017 PMID: 31421263
  35. Singh, M.; Bhatnagar, P.; Mishra, S.; Kumar, P.; Shukla, Y.; Gupta, K.C. PLGA-encapsulated tea polyphenols enhance the chemotherapeutic efficacy of cisplatin against human cancer cells and mice bearing ehrlich ascites carcinoma. Retraction. Int. J. Nanomedicine, 2019, 14, 7625-7626. doi: 10.2147/IJN.S230533 PMID: 31571867
  36. Guo, W.; Li, A.; Jia, Z.; Yuan, Y.; Dai, H.; Li, H. Transferrin modified PEG-PLA-resveratrol conjugates: In vitro and in vivo studies for glioma. Eur. J. Pharmacol., 2013, 718(1-3), 41-47. doi: 10.1016/j.ejphar.2013.09.034 PMID: 24070814
  37. Yang, R.; Yan, Y.; Wu, Z.; Wei, Y.; Song, H.; Zhu, L.; Zhao, C.; Xu, N.; Fu, J.; Huo, K. Resveratrol-loaded titania nanotube coatings promote osteogenesis and inhibit inflammation through reducing the reactive oxygen species production via regulation of NF-κB signaling pathway. Mater. Sci. Eng. C, 2021, 131, 112513. doi: 10.1016/j.msec.2021.112513 PMID: 34857292
  38. Trotta, V.; Pavan, B.; Ferraro, L.; Beggiato, S.; Traini, D.; Des Reis, L.G.; Scalia, S.; Dalpiaz, A. Brain targeting of resveratrol by nasal administration of chitosan-coated lipid microparticles. Eur. J. Pharm. Biopharm., 2018, 127, 250-259. doi: 10.1016/j.ejpb.2018.02.010 PMID: 29486302
  39. Zhang, W.; Jiang, W. Antioxidant and antibacterial chitosan film with tea polyphenols-mediated green synthesis silver nanoparticle via a novel one-pot method. Int. J. Biol. Macromol., 2020, 155, 1252-1261. doi: 10.1016/j.ijbiomac.2019.11.093 PMID: 31726160
  40. Ghasemzadeh, F.; Najafpour, G.D.; Mohammadi, M. Antiinfective properties of ursolic acid-loaded chitosan nanoparticles against Staphylococcus aureus. Turk. J. Chem., 2021, 45(5), 1454-1462. doi: 10.3906/kim-2104-13 PMID: 34849059
  41. Lőrincz, A.; Mihály, J.; Wacha, A.; Németh, C.; Besztercei, B.; Gyulavári, P.; Varga, Z.; Peták, I.; Bóta, A. Combination of multifunctional ursolic acid with kinase inhibitors for anti-cancer drug carrier vesicles. Mater. Sci. Eng. C, 2021, 131, 112481. doi: 10.1016/j.msec.2021.112481 PMID: 34857267
  42. Yu, X.; Wang, Y.; Liu, X.; Ge, Y.; Zhang, S. Ursolic acid loaded-mesoporous hydroxylapatite/chitosan therapeutic scaffolds regulate bone regeneration ability by promoting the M2-type polarization of macrophages. Int. J. Nanomedicine, 2021, 16, 5301-5315. doi: 10.2147/IJN.S323033 PMID: 34393482
  43. Lan, J.S.; Qin, Y.H.; Liu, L.; Zeng, R.F.; Yang, Y.; Wang, K.; Ding, Y.; Zhang, T.; Ho, R.J.Y. A carrier-free folate receptor-targeted ursolic acid/methotrexate nanodelivery system for synergetic anticancer therapy. Int. J. Nanomedicine, 2021, 16, 1775-1787. doi: 10.2147/IJN.S287806 PMID: 33692622
  44. Liu, C.J.; Yao, L.; Hu, Y.M.; Zhao, B.T. Effect of quercetin-loaded mesoporous silica nanoparticles on myocardial ischemia-reperfusion injury in rats and its mechanism. Int. J. Nanomedicine, 2021, 16, 741-752. doi: 10.2147/IJN.S277377 PMID: 33564233
  45. Li, F.; Jin, H.; Xiao, J.; Yin, X.; Liu, X.; Li, D.; Huang, Q. The simultaneous loading of catechin and quercetin on chitosan-based nanoparticles as effective antioxidant and antibacterial agent. Food Res. Int., 2018, 111, 351-360. doi: 10.1016/j.foodres.2018.05.038 PMID: 30007696
  46. Wang, Y.; Li, C.; Wan, Y.; Qi, M.; Chen, Q.; Sun, Y.; Sun, X.; Fang, J.; Fu, L.; Xu, L.; Dong, B.; Wang, L. Quercetin-loaded ceria nanocomposite potentiate dual-directional immunoregulation via macrophage polarization against periodontal inflammation. Small, 2021, 17(41), 2101505. doi: 10.1002/smll.202101505 PMID: 34499411
  47. Zhang, J.; Shen, L.; Li, X.; Song, W.; Liu, Y.; Huang, L. Nanoformulated codelivery of quercetin and alantolactone promotes an antitumor response through synergistic immunogenic cell death for microsatellite-stable colorectal cancer. ACS Nano, 2019, 13(11), 12511-12524. doi: 10.1021/acsnano.9b02875 PMID: 31664821
  48. Ren, T.; Gou, J.; Sun, W.; Tao, X.; Tan, X.; Wang, P.; Zhang, Y.; He, H.; Yin, T.; Tang, X. Entrapping of nanoparticles in yeast cell wall microparticles for macrophage-targeted oral delivery of cabazitaxel. Mol. Pharm., 2018, 15(7), 2870-2882. doi: 10.1021/acs.molpharmaceut.8b00357 PMID: 29863879
  49. Chen, Q.; Luo, R.; Han, X.; Zhang, J.; He, Y.; Qi, S.; Pu, X.; Nie, W.; Dong, L.; Xu, H.; Liu, F.; Lin, M.; Zhong, H.; Fu, C.; Gao, F. Entrapment of macrophage-target nanoparticles by yeast microparticles for rhein delivery in ulcerative colitis treatment. Biomacromolecules, 2021, 22(6), 2754-2767. doi: 10.1021/acs.biomac.1c00425 PMID: 34019390
  50. Li, Y.; Ma, X.; Yue, Y.; Zhang, K.; Cheng, K.; Feng, Q.; Ma, N.; Liang, J.; Zhang, T.; Zhang, L.; Chen, Z.; Wang, X.; Ren, L.; Zhao, X.; Nie, G. Rapid surface display of mRNA antigens by bacteria-derived outer membrane vesicles for a personalized tumor vaccine. Adv. Mater., 2022, 34(20), 2109984. doi: 10.1002/adma.202109984 PMID: 35315546
  51. Yan, N.; Xu, J.; Liu, G.; Ma, C.; Bao, L.; Cong, Y.; Wang, Z.; Zhao, Y.; Xu, W.; Chen, C. Penetrating macrophage-based nanoformulation for periodontitis treatment. ACS Nano, 2022, 16(11), 18253-18265. doi: 10.1021/acsnano.2c05923 PMID: 36288552
  52. Fu, L.; Zhang, W.; Zhou, X.; Fu, J.; He, C. Tumor cell membrane-camouflaged responsive nanoparticles enable MRI-guided immuno-chemodynamic therapy of orthotopic osteosarcoma. Bioact. Mater., 2022, 17, 221-233. doi: 10.1016/j.bioactmat.2022.01.035 PMID: 35386464
  53. Guo, Y.; Fan, Y.; Wang, Z.; Li, G.; Zhan, M.; Gong, J.; Majoral, J.P.; Shi, X.; Shen, M. Chemotherapy mediated by biomimetic polymeric nanoparticles potentiates enhanced tumor immunotherapy via amplification of endoplasmic reticulum stress and mitochondrial dysfunction. Adv. Mater., 2022, 34(47), 2206861. doi: 10.1002/adma.202206861 PMID: 36125843
  54. Yin, T.; Fan, Q.; Hu, F.; Ma, X.; Yin, Y.; Wang, B.; Kuang, L.; Hu, X.; Xu, B.; Wang, Y. Engineered macrophage-membrane-coated nanoparticles with enhanced PD-1 expression induce immunomodulation for a synergistic and targeted antiglioblastoma activity. Nano Lett., 2022, 22(16), 6606-6614. doi: 10.1021/acs.nanolett.2c01863 PMID: 35948420
  55. Yang, T.; Wang, A.; Nie, D.; Fan, W.; Jiang, X.; Yu, M.; Guo, S.; Zhu, C.; Wei, G.; Gan, Y. Ligand-switchable nanoparticles resembling viral surface for sequential drug delivery and improved oral insulin therapy. Nat. Commun., 2022, 13(1), 6649. doi: 10.1038/s41467-022-34357-8 PMID: 36333321
  56. Yang, J.; Su, T.; Zou, H.; Yang, G.; Ding, J.; Chen, X. Spatiotemporally targeted polypeptide nanoantidotes improve chemotherapy tolerance of cisplatin. Angew. Chem. Int. Ed., 2022, 61(47), e202211136. doi: 10.1002/anie.202211136 PMID: 36069260
  57. Ma, B.; Hu, G.; Guo, S.; Zeng, Q.; Chen, Y.; Hwan Oh, D.; Jin, Y.; Fu, X. Use of peptide-modified nanoparticles as a bacterial cell targeting agent for enhanced antibacterial activity and other biomedical applications. Food Res. Int., 2022, 161, 111638. doi: 10.1016/j.foodres.2022.111638 PMID: 36192867
  58. Gu, Y.; Zhao, Y.; Zhang, Z.; Hao, J.; Zheng, Y.; Liu, Q.; Liu, Y.; Shi, L. An antibody-like polymeric nanoparticle removes intratumoral galectin-1 to enhance antitumor T-cell responses in cancer immunotherapy. ACS Appl. Mater. Interfaces, 2021, 13(19), 22159-22168. doi: 10.1021/acsami.1c02116 PMID: 33955217
  59. Qi, S.; Luo, R.; Han, X.; Nie, W.; Ye, N.; Fu, C.; Gao, F. pH/ROS dual-sensitive natural polysaccharide nanoparticles enhance "one stone four birds" effect of rhein on ulcerative colitis. ACS Appl. Mater. Interfaces, 2022, 14(45), 50692-50709. doi: 10.1021/acsami.2c17827 PMID: 36326017
  60. Yang, W.; Frickenstein, A.N.; Sheth, V.; Holden, A.; Mettenbrink, E.M.; Wang, L.; Woodward, A.A.; Joo, B.S.; Butterfield, S.K.; Donahue, N.D.; Green, D.E.; Thomas, A.G.; Harcourt, T.; Young, H.; Tang, M.; Malik, Z.A.; Harrison, R.G.; Mukherjee, P.; DeAngelis, P.L.; Wilhelm, S. Controlling nanoparticle uptake in innate immune cells with heparosan polysaccharides. Nano Lett., 2022, 22(17), 7119-7128. doi: 10.1021/acs.nanolett.2c02226 PMID: 36048773
  61. Liu, J.; Wen, Q.; Zhou, B.; Yuan, C.; Du, S.; Li, L.; Jiang, L.; Yao, S.Q.; Ge, J. "Clickable" ZIF-8 for cell-type-specific delivery of functional proteins. ACS Chem. Biol., 2022, 17(1), 32-38. doi: 10.1021/acschembio.1c00872 PMID: 34936351
  62. Jun, H.; Jang, E.; Kim, H.; Yeo, M.; Park, S.G.; Lee, J.; Shin, K.J.; Chae, Y.C.; Kang, S.; Kim, E. TRAIL & EGFR affibody dual-display on a protein nanoparticle synergistically suppresses tumor growth. J. Control. Release, 2022, 349, 367-378. doi: 10.1016/j.jconrel.2022.07.004 PMID: 35809662
  63. Kole, C.; Kole, P.; Randunu, K.M.; Choudhary, P.; Podila, R.; Ke, P.C.; Rao, A.M.; Marcus, R.K. Nanobiotechnology can boost crop production and quality: first evidence from increased plant biomass, fruit yield and phytomedicine content in bitter melon (Momordica charantia). BMC Biotechnol., 2013, 13(1), 37. doi: 10.1186/1472-6750-13-37 PMID: 23622112
  64. Nair, H.B.; Sung, B.; Yadav, V.R.; Kannappan, R.; Chaturvedi, M.M.; Aggarwal, B.B. Delivery of antiinflammatory nutraceuticals by nanoparticles for the prevention and treatment of cancer. Biochem. Pharmacol., 2010, 80(12), 1833-1843. doi: 10.1016/j.bcp.2010.07.021 PMID: 20654584
  65. Bhia, M.; Motallebi, M.; Abadi, B.; Zarepour, A.; Pereira-Silva, M.; Saremnejad, F.; Santos, A.C.; Zarrabi, A.; Melero, A.; Jafari, S.M.; Shakibaei, M. Naringenin nano-delivery systems and their therapeutic applications. Pharmaceutics, 2021, 13(2), 291. doi: 10.3390/pharmaceutics13020291 PMID: 33672366
  66. Pangeni, R.; Sahni, J.K.; Ali, J.; Sharma, S.; Baboota, S. Resveratrol: Review on therapeutic potential and recent advances in drug delivery. Expert Opin. Drug Deliv., 2014, 11(8), 1285-1298. doi: 10.1517/17425247.2014.919253 PMID: 24830814
  67. Ding, N.; Dou, C.; Wang, Y.; Liu, F.; Guan, G.; Huo, D.; Li, Y.; Yang, J.; Wei, K.; Yang, M.; Tan, J.; Zeng, W.; Zhu, C. Antishear stress bionic carbon nanotube mesh coating with intracellular controlled drug delivery constructing small-diameter tissue-engineered vascular grafts. Adv. Healthc. Mater., 2018, 7(11), 1800026. doi: 10.1002/adhm.201800026 PMID: 29637716
  68. Lamothe, S.; Azimy, N.; Bazinet, L.; Couillard, C.; Britten, M. Interaction of green tea polyphenols with dairy matrices in a simulated gastrointestinal environment. Food Funct., 2014, 5(10), 2621-2631. doi: 10.1039/C4FO00203B PMID: 25154916
  69. Yang, Z.; Peng, Z.; Li, J.; Li, S.; Kong, L.; Li, P.; Wang, Q. Development and evaluation of novel flavour microcapsules containing vanilla oil using complex coacervation approach. Food Chem., 2014, 145, 272-277. doi: 10.1016/j.foodchem.2013.08.074 PMID: 24128477
  70. Mukherjee, S.; Ghosh, S.; Das, D.K.; Chakraborty, P.; Choudhury, S.; Gupta, P.; Adhikary, A.; Dey, S.; Chattopadhyay, S. Gold-conjugated green tea nanoparticles for enhanced anti-tumor activities and hepatoprotection — synthesis, characterization and in vitro evaluation. J. Nutr. Biochem., 2015, 26(11), 1283-1297. doi: 10.1016/j.jnutbio.2015.06.003 PMID: 26310506
  71. Peters, C.M.; Green, R.J.; Janle, E.M.; Ferruzzi, M.G. Formulation with ascorbic acid and sucrose modulates catechin bioavailability from green tea. Food Res. Int., 2010, 43(1), 95-102. doi: 10.1016/j.foodres.2009.08.016 PMID: 20161530
  72. Yin, C.; Cheng, L.; Zhang, X.; Wu, Z. Nanotechnology improves delivery efficiency and bioavailability of tea polyphenols. J. Food Biochem., 2020, 44(9), e13380. doi: 10.1111/jfbc.13380 PMID: 32667062
  73. Son, J.; Lee, S.Y. Therapeutic potential of ursonic acid: Comparison with ursolic acid. Biomolecules, 2020, 10(11), 1505. doi: 10.3390/biom10111505 PMID: 33147723
  74. Wan, S.Z.; Liu, C.; Huang, C.K.; Luo, F.Y.; Zhu, X. Ursolic acid improves intestinal damage and bacterial dysbiosis in liver fibrosis mice. Front. Pharmacol., 2019, 10, 1321. doi: 10.3389/fphar.2019.01321 PMID: 31736766
  75. Wang, L.; Yin, Q.; Liu, C.; Tang, Y.; Sun, C.; Zhuang, J. Nanoformulations of ursolic acid: A modern natural anticancer molecule. Front. Pharmacol., 2021, 12, 706121. doi: 10.3389/fphar.2021.706121 PMID: 34295253
  76. Jin, H.; Pi, J.; Yang, F.; Wu, C.; Cheng, X.; Bai, H.; Huang, D.; Jiang, J.; Cai, J.; Chen, Z.W. Ursolic acid-loaded chitosan nanoparticles induce potent anti-angiogenesis in tumor. Appl. Microbiol. Biotechnol., 2016, 100(15), 6643-6652. doi: 10.1007/s00253-016-7360-8 PMID: 26883344
  77. Antônio, E.; Antunes, O.R.; de Araújo, I.S.; Khalil, N.M.; Mainardes, R.M. Poly(lactic acid) nanoparticles loaded with ursolic acid: Characterization and in vitro evaluation of radical scavenging activity and cytotoxicity. Mater. Sci. Eng. C, 2017, 71, 156-166. doi: 10.1016/j.msec.2016.09.080 PMID: 27987693
  78. Zhang, H.; Zheng, D.; Ding, J.; Xu, H.; Li, X.; Sun, W. Efficient delivery of ursolic acid by poly(N-vinylpyrrolidone)-block-poly (ε-caprolactone) nanoparticles for inhibiting the growth of hepatocellular carcinoma in vitro and in vivo. Int. J. Nanomedicine, 2015, 10, 1909-1920. PMID: 25792825
  79. Liu, Z.; Ye, W.; Zheng, J.; Wang, Q.; Ma, G.; Liu, H.; Wang, X. Hierarchically electrospraying a PLGA@chitosan sphere-in-sphere composite microsphere for multi-drug-controlled release. Regen. Biomater., 2020, 7(4), 381-390. doi: 10.1093/rb/rbaa009 PMID: 32793383
  80. Baishya, R.; Nayak, D.K.; Kumar, D.; Sinha, S.; Gupta, A.; Ganguly, S.; Debnath, M.C. Ursolic acid loaded PLGA nanoparticles: in vitro and in vivo evaluation to explore tumor targeting ability on B16F10 melanoma cell lines. Pharm. Res., 2016, 33(11), 2691-2703. doi: 10.1007/s11095-016-1994-1 PMID: 27431865
  81. Cui, D.; Liang, T.; Sun, L.; Meng, L.; Yang, C.; Wang, L.; Liang, T.; Li, Q. Green synthesis of selenium nanoparticles with extract of hawthorn fruit induced HepG2 cells apoptosis. Pharm. Biol., 2018, 56(1), 528-534. doi: 10.1080/13880209.2018.1510974 PMID: 30387372
  82. Khwaza, V.; Oyedeji, O.O.; Aderibigbe, B.A. Ursolic acid-based derivatives as potential anti-cancer agents: An update. Int. J. Mol. Sci., 2020, 21(16), 5920. doi: 10.3390/ijms21165920 PMID: 32824664
  83. Yin, R.; Li, T.; Tian, J.X.; Xi, P.; Liu, R.H. Ursolic acid, a potential anticancer compound for breast cancer therapy. Crit. Rev. Food Sci. Nutr., 2018, 58(4), 568-574. doi: 10.1080/10408398.2016.1203755 PMID: 27469428
  84. Buda, V.; Brezoiu, A.M.; Berger, D.; Pavel, I.Z.; Muntean, D.; Minda, D.; Dehelean, C.A.; Soica, C.; Diaconeasa, Z.; Folescu, R.; Danciu, C. Biological evaluation of black chokeberry extract free and embedded in two mesoporous silica-type matrices. Pharmaceutics, 2020, 12(9), 838. doi: 10.3390/pharmaceutics12090838 PMID: 32882983
  85. Iwashina, T.J.J.P.R. Structure and distribution of the flavonoids in plants. J. Plant Res., 2000, 113(3), 287-299.
  86. Schröder, L.; Marahrens, P.; Koch, J.G.; Heidegger, H.; Vilsmeier, T.; Phan-Brehm, T.; Hofmann, S.; Mahner, S.; Jeschke, U.; Richter, D.U. Effects of green tea, matcha tea and their components epigallocatechin gallate and quercetin on MCF 7 and MDA-MB-231 breast carcinoma cells. Oncol. Rep., 2019, 41(1), 387-396. PMID: 30320348
  87. Davoodvandi, A.; Shabani Varkani, M.; Clark, C.C.T.; Jafarnejad, S. Quercetin as an anticancer agent: Focus on esophageal cancer. J. Food Biochem., 2020, 44(9), e13374. doi: 10.1111/jfbc.13374 PMID: 32686158
  88. Kashyap, D.; Mittal, S.; Sak, K.; Singhal, P.; Tuli, H.S. Molecular mechanisms of action of quercetin in cancer: Recent advances. Tumour Biol., 2016, 37(10), 12927-12939. doi: 10.1007/s13277-016-5184-x PMID: 27448306
  89. Khan, F.; Niaz, K.; Maqbool, F.; Ismail, H.F.; Abdollahi, M.; Nagulapalli, V.K.; Nabavi, S.; Bishayee, A. Molecular targets underlying the anticancer effects of quercetin: An update. Nutrients, 2016, 8(9), 529. doi: 10.3390/nu8090529 PMID: 27589790
  90. Sak, K. Site-specific anticancer effects of dietary flavonoid quercetin. Nutr. Cancer, 2014, 66(2), 177-193. doi: 10.1080/01635581.2014.864418 PMID: 24377461
  91. Cai, X.; Fang, Z.; Dou, J.; Yu, A.; Zhai, G. Bioavailability of quercetin: Problems and promises. Curr. Med. Chem., 2013, 20(20), 2572-2582. doi: 10.2174/09298673113209990120 PMID: 23514412
  92. Mulik, R.S.; Mönkkönen, J.; Juvonen, R.O.; Mahadik, K.R.; Paradkar, A.R. Apoptosis-induced anticancer effect of transferrin-conjugated solid lipid nanoparticles of curcumin. Cancer Nanotechnol., 2012, 3(1-6), 65-81. doi: 10.1007/s12645-012-0031-2 PMID: 26069496
  93. Zhang, Z.; Xu, S.; Wang, Y.; Yu, Y.; Li, F.; Zhu, H.; Shen, Y.; Huang, S.; Guo, S. Near-infrared triggered co-delivery of doxorubicin and quercetin by using gold nanocages with tetradecanol to maximize anti-tumor effects on MCF-7/ADR cells. J. Colloid Interface Sci., 2018, 509, 47-57. doi: 10.1016/j.jcis.2017.08.097 PMID: 28881205
  94. Zhu, B.; Yu, L.; Yue, Q. Co-delivery of vincristine and quercetin by nanocarriers for lymphoma combination chemotherapy. Biomed. Pharmacother., 2017, 91, 287-294. doi: 10.1016/j.biopha.2017.02.112 PMID: 28463792
  95. Hu, K.; Miao, L.; Goodwin, T.J.; Li, J.; Liu, Q.; Huang, L. Quercetin remodels the tumor microenvironment to improve the permeation, retention, and antitumor effects of nanoparticles. ACS Nano, 2017, 11(5), 4916-4925. doi: 10.1021/acsnano.7b01522 PMID: 28414916
  96. Xu, J.; Ma, Q.; Zhang, Y.; Fei, Z.; Sun, Y.; Fan, Q.; Liu, B.; Bai, J.; Yu, Y.; Chu, J.; Chen, J.; Wang, C. Yeast-derived nanoparticles remodel the immunosuppressive microenvironment in tumor and tumor-draining lymph nodes to suppress tumor growth. Nat. Commun., 2022, 13(1), 110. doi: 10.1038/s41467-021-27750-2 PMID: 35013252
  97. Zhou, X.; Ling, K.; Liu, M.; Zhang, X.; Ding, J.; Dong, Y.; Liang, Z.; Li, J.; Zhang, J. Targeted delivery of cisplatin-derived nanoprecursors via a biomimetic yeast microcapsule for tumor therapy by the oral route. Theranostics, 2019, 9(22), 6568-6586. doi: 10.7150/thno.35353 PMID: 31588236
  98. Yin, L.; Peng, C.; Tang, Y.; Yuan, Y.; Liu, J.; Xiang, T.; Liu, F.; Zhou, X.; Li, X. Biomimetic oral targeted delivery of bindarit for immunotherapy of atherosclerosis. Biomater. Sci., 2020, 8(13), 3640-3648. doi: 10.1039/D0BM00418A PMID: 32458838
  99. Zhou, X.; Zhang, X.; Han, S.; Dou, Y.; Liu, M.; Zhang, L.; Guo, J.; Shi, Q.; Gong, G.; Wang, R.; Hu, J.; Li, X.; Zhang, J. Yeast microcapsule-mediated targeted delivery of diverse nanoparticles for imaging and therapy via the oral route. Nano Lett., 2017, 17(2), 1056-1064. doi: 10.1021/acs.nanolett.6b04523 PMID: 28075596
  100. Hu, X.; Zhang, J. Yeast capsules for targeted delivery: The future of nanotherapy? Nanomedicine, 2017, 12(9), 955-957. doi: 10.2217/nnm-2017-0059 PMID: 28440701
  101. Zhang, X.; Xu, X.; Chen, Y.; Dou, Y.; Zhou, X.; Li, L.; Li, C.; An, H.; Tao, H.; Hu, H.J.M.T. Bioinspired yeast microcapsules loaded with self-assembled nanotherapies for targeted treatment of cardiovascular disease. Mater. Today, 2017, 20(6) doi: 10.1016/j.mattod.2017.05.006
  102. Cecile, B.; Ellison, C.K.; Adrien, D.; Brun, Y.V.J.N.R.M. Bacterial adhesion at the single-cell level. Nat. Rev. Microbiol., 2018, 16(10), 616-627.
  103. Asadi, A.; Razavi, S.; Talebi, M.; Gholami, M. Correction to: A review on anti-adhesion therapies of bacterial diseases. Infection, 2019, 47(1), 25-26.
  104. Zhang, Y.; Chen, Y.; Lo, C.; Zhuang, J.; Angsantikul, P.; Zhang, Q.; Wei, X.; Zhou, Z.; Obonyo, M.; Fang, R.H.; Gao, W.; Zhang, L. Inhibition of pathogen adhesion by bacterial outer membrane-coated nanoparticles. Angew. Chem. Int. Ed., 2019, 58(33), 11404-11408. doi: 10.1002/anie.201906280 PMID: 31206942
  105. Naskar, A.; Cho, H.; Lee, S.; Kim, K. Biomimetic nanoparticles coated with bacterial outer membrane vesicles as a new-generation platform for biomedical applications. Pharmaceutics, 2021, 13(11), 1887. doi: 10.3390/pharmaceutics13111887 PMID: 34834302
  106. Jan, A.T. Outer membrane vesicles (OMVs) of gram-negative bacteria: A perspective update. Front. Microbiol., 2017, 8, 1053. doi: 10.3389/fmicb.2017.01053 PMID: 28649237
  107. Huang, J.; Wu, Z.; Xu, J. Effects of biofilm nano-composite drugs OMVs-MSN-5-FU on cervical lymph node metastases from oral squamous cell carcinoma. Front. Oncol., 2022, 12, 881910. doi: 10.3389/fonc.2022.881910 PMID: 35515126
  108. Fang, R.H.; Jiang, Y.; Fang, J.C.; Zhang, L. Cell membrane-derived nanomaterials for biomedical applications. Biomaterials, 2017, 128, 69-83. doi: 10.1016/j.biomaterials.2017.02.041 PMID: 28292726
  109. Zhang, Y.; Wang, Y.; Xin, Q.; Li, M.; Yu, P.; Luo, J.; Xu, X.; Chen, X.; Li, J. Zwitterionic choline phosphate conjugated folate-poly (ethylene glycol): A general decoration of erythrocyte membrane-coated nanoparticles for enhanced tumor-targeting drug delivery. J. Mater. Chem. B Mater. Biol. Med., 2022, 10(14), 2497-2503. doi: 10.1039/D1TB02493K PMID: 35019930
  110. Chen, H.; Sha, H.; Zhang, L.; Qian, H.; Chen, F.; Ding, N.; Ji, L.; Zhu, A.; Xu, Q.; Meng, F.; Yu, L.; Zhou, Y.; Liu, B. Lipid insertion enables targeted functionalization of paclitaxel-loaded erythrocyte membrane nanosystem by tumor-penetrating bispecific recombinant protein. Int. J. Nanomedicine, 2018, 13, 5347-5359. doi: 10.2147/IJN.S165109 PMID: 30254439
  111. He, M.; Yu, P.; Hu, Y.; Zhang, J.; He, M.; Nie, C.; Chu, X. Erythrocyte-membrane-enveloped biomineralized metal–organic framework nanoparticles enable intravenous glucose-responsive insulin delivery. ACS Appl. Mater. Interfaces, 2021, 13(17), 19648-19659. doi: 10.1021/acsami.1c01943 PMID: 33890785
  112. Bahmani, B.; Gong, H.; Luk, B.T.; Haushalter, K.J.; DeTeresa, E.; Previti, M.; Zhou, J.; Gao, W.; Bui, J.D.; Zhang, L.; Fang, R.H.; Zhang, J. Intratumoral immunotherapy using platelet-cloaked nanoparticles enhances antitumor immunity in solid tumors. Nat. Commun., 2021, 12(1), 1999. doi: 10.1038/s41467-021-22311-z PMID: 33790276
  113. Hu, C.M.J.; Fang, R.H.; Wang, K.C.; Luk, B.T.; Thamphiwatana, S.; Dehaini, D.; Nguyen, P.; Angsantikul, P.; Wen, C.H.; Kroll, A.V.; Carpenter, C.; Ramesh, M.; Qu, V.; Patel, S.H.; Zhu, J.; Shi, W.; Hofman, F.M.; Chen, T.C.; Gao, W.; Zhang, K.; Chien, S.; Zhang, L. Nanoparticle biointerfacing by platelet membrane cloaking. Nature, 2015, 526(7571), 118-121. doi: 10.1038/nature15373 PMID: 26374997
  114. Zhang, N.; Lin, J.; Chew, S.Y. Neural cell membrane-coated nanoparticles for targeted and enhanced uptake by central nervous system cells. ACS Appl. Mater. Interfaces, 2021, 13(47), 55840-55850. doi: 10.1021/acsami.1c16543 PMID: 34792341
  115. Liu, H.; Han, Y.; Wang, T.; Zhang, H.; Xu, Q.; Yuan, J.; Li, Z. Targeting microglia for therapy of parkinson’s disease by using biomimetic ultrasmall nanoparticles. J. Am. Chem. Soc., 2020, 142(52), 21730-21742. doi: 10.1021/jacs.0c09390 PMID: 33315369
  116. Gong, C.; Yu, X.; You, B.; Wu, Y.; Wang, R.; Han, L.; Wang, Y.; Gao, S.; Yuan, Y. Macrophage-cancer hybrid membrane-coated nanoparticles for targeting lung metastasis in breast cancer therapy. J. Nanobiotechnology, 2020, 18(1), 92. doi: 10.1186/s12951-020-00649-8 PMID: 32546174
  117. Wang, D.; Dong, H.; Li, M.; Cao, Y.; Yang, F.; Zhang, K.; Dai, W.; Wang, C.; Zhang, X. Erythrocyte–cancer hybrid membrane camouflaged hollow copper sulfide nanoparticles for prolonged circulation life and homotypic-targeting photothermal/chemotherapy of melanoma. ACS Nano, 2018, 12(6), 5241-5252. doi: 10.1021/acsnano.7b08355 PMID: 29800517
  118. Dehaini, D.; Wei, X.; Fang, R.H.; Masson, S.; Angsantikul, P.; Luk, B.T.; Zhang, Y.; Ying, M.; Jiang, Y.; Kroll, A.V.; Gao, W.; Zhang, L. Erythrocyte-platelet hybrid membrane coating for enhanced nanoparticle functionalization. Adv. Mater., 2017, 29(16), 1606209. doi: 10.1002/adma.201606209 PMID: 28199033
  119. Hu, C.; Lei, T.; Wang, Y.; Cao, J.; Yang, X.; Qin, L.; Liu, R.; Zhou, Y.; Tong, F.; Umeshappa, C.S.; Gao, H. Phagocyte-membrane-coated and laser-responsive nanoparticles control primary and metastatic cancer by inducing anti-tumor immunity. Biomaterials, 2020, 255, 120159. doi: 10.1016/j.biomaterials.2020.120159 PMID: 32554131
  120. Xiao, T.; He, M.; Xu, F.; Fan, Y.; Jia, B.; Shen, M.; Wang, H.; Shi, X. Macrophage membrane-camouflaged responsive polymer nanogels enable magnetic resonance imaging-guided chemotherapy/chemodynamic therapy of orthotopic glioma. ACS Nano, 2021, 15(12), 20377-20390. doi: 10.1021/acsnano.1c08689 PMID: 34860014
  121. Xue, J.; Zhao, Z.; Zhang, L.; Xue, L.; Shen, S.; Wen, Y.; Wei, Z.; Wang, L.; Kong, L.; Sun, H.; Ping, Q.; Mo, R.; Zhang, C. Neutrophil-mediated anticancer drug delivery for suppression of postoperative malignant glioma recurrence. Nat. Nanotechnol., 2017, 12(7), 692-700. doi: 10.1038/nnano.2017.54 PMID: 28650441
  122. Wu, J.; Ma, T.; Zhu, M.; Huang, T.; Zhang, B.; Gao, J.; Lin, N.J.N.T. Nanotechnology reinforced neutrophil-based therapeutic strategies for inflammatory diseases therapy. Nano Today, 2022, 46, 101577.
  123. Zhang, C.Y.; Dong, X.; Gao, J.; Lin, W.; Liu, Z.; Wang, Z. Nanoparticle-induced neutrophil apoptosis increases survival in sepsis and alleviates neurological damage in stroke. Sci. Adv., 2019, 5(11), eaax7964. doi: 10.1126/sciadv.aax7964 PMID: 31723603
  124. Li, M.J.; Gao, F.; Huang, Q.X.; Feng, J.; Liu, C.J.; Gong, S.L.; Zhang, X.Z.J.S.C.M. Natural killer cell-mimicking nanomaterial for overcoming the multidrug resistance of tumor via cascade catalysis. Sci. China Mater., 2022, 66, 1215-1226.
  125. Deng, G.; Peng, X.; Sun, Z.; Zheng, W.; Yu, J.; Du, L.; Chen, H.; Gong, P.; Zhang, P.; Cai, L.; Tang, B.Z. Natural-killer-cell-inspired nanorobots with aggregation-induced emission characteristics for near-infrared-II fluorescence-guided glioma theranostics. ACS Nano, 2020, 14(9), 11452-11462. doi: 10.1021/acsnano.0c03824 PMID: 32820907
  126. Ye, C.; Zheng, F.; Wu, N.; Zhu, G.; Li, X. Extracellular vesicles in vascular remodeling. Acta Pharmacol. Sin., 2022, 43(9), 2191-2201. doi: 10.1038/s41401-021-00846-7 PMID: 35022541
  127. Lu, M.; Xing, H.; Shao, W.; Zhang, T.; Zhang, M.; Wang, Y.; Li, F.; Weng, Y.; Zheng, A.; Huang, Y.; Liang, X.J. Photoactivatable silencing extracellular vesicle (PASEV) sensitizes cancer immunotherapy. Adv. Mater., 2022, 34(35), 2204765. doi: 10.1002/adma.202204765 PMID: 35793475
  128. Hu, M.; Zhang, J.; Kong, L.; Yu, Y.; Hu, Q.; Yang, T.; Wang, Y.; Tu, K.; Qiao, Q.; Qin, X.; Zhang, Z. Immunogenic hybrid nanovesicles of liposomes and tumor-derived nanovesicles for cancer immunochemotherapy. ACS Nano, 2021, 15(2), 3123-3138. doi: 10.1021/acsnano.0c09681 PMID: 33470095
  129. Jiang, X.C.; Gao, J.Q. Exosomes as novel bio-carriers for gene and drug delivery. Int. J. Pharm., 2017, 521(1-2), 167-175. doi: 10.1016/j.ijpharm.2017.02.038 PMID: 28216464
  130. Liu, R.; Liu, J.; Ji, X.; Liu, Y. Synthetic nucleic acids delivered by exosomes: a potential therapeutic for generelated metabolic brain diseases. Metab. Brain Dis., 2013, 28(4), 551-562. doi: 10.1007/s11011-013-9434-y PMID: 24022398
  131. Lakhal, S.; Wood, M.J.A. Exosome nanotechnology: An emerging paradigm shift in drug delivery. BioEssays, 2011, 33(10), 737-741. doi: 10.1002/bies.201100076 PMID: 21932222
  132. Zhang, Z.G.; Chopp, M. Exosomes in stroke pathogenesis and therapy. J. Clin. Invest., 2016, 126(4), 1190-1197. doi: 10.1172/JCI81133 PMID: 27035810
  133. Pei, W.; Li, X.; Bi, R.; Zhang, X.; Zhong, M.; Yang, H.; Zhang, Y.; Lv, K. Exosome membrane-modified M2 macrophages targeted nanomedicine: Treatment for allergic asthma. J. Control. Release, 2021, 338, 253-267. doi: 10.1016/j.jconrel.2021.08.024 PMID: 34418524
  134. Cheng, Q.; Dai, Z.; Smbatyan, G.; Epstein, A.L.; Lenz, H.J.; Zhang, Y. Eliciting anti-cancer immunity by genetically engineered multifunctional exosomes. Mol. Ther., 2022, 30(9), 3066-3077. doi: 10.1016/j.ymthe.2022.06.013 PMID: 35746867
  135. Cabral, H.; Miyata, K.; Osada, K.; Kataoka, K. Block copolymer micelles in nanomedicine applications. Chem. Rev., 2018, 118(14), 6844-6892. doi: 10.1021/acs.chemrev.8b00199 PMID: 29957926
  136. Xuan, W.; Peng, Y.; Deng, Z.; Peng, T.; Kuai, H.; Li, Y.; He, J.; Jin, C.; Liu, Y.; Wang, R.; Tan, W. A basic insight into aptamer-drug conjugates (ApDCs). Biomaterials, 2018, 182, 216-226. doi: 10.1016/j.biomaterials.2018.08.021 PMID: 30138784
  137. Ouyang, C.; Zhang, S.; Xue, C.; Yu, X.; Xu, H.; Wang, Z.; Lu, Y.; Wu, Z.S. Precision-guided missile-like DNA nanostructure containing warhead and guidance control for aptamer-based targeted drug delivery into cancer cells in vitro and in vivo. J. Am. Chem. Soc., 2020, 142(3), 1265-1277. doi: 10.1021/jacs.9b09782 PMID: 31895985
  138. Xia, F.; He, A.; Zhao, H.; Sun, Y.; Duan, Q.; Abbas, S.J.; Liu, J.; Xiao, Z.; Tan, W. Molecular engineering of aptamer self-assemblies increases in vivo stability and targeted recognition. ACS Nano, 2022, 16(1), 169-179. doi: 10.1021/acsnano.1c05265 PMID: 34935348
  139. Geng, Z.; Wang, L.; Liu, K.; Liu, J.; Tan, W. Enhancing anti-PD-1 immunotherapy by nanomicelles self-assembled from multivalent aptamer drug conjugates. Angew. Chem. Int. Ed., 2021, 60(28), 15459-15465. doi: 10.1002/anie.202102631 PMID: 33904236
  140. Lupold, S.E.; Hicke, B.J.; Lin, Y.; Coffey, D.S. Identification and characterization of nuclease-stabilized RNA molecules that bind human prostate cancer cells via the prostate-specific membrane antigen. Cancer Res., 2002, 62(14), 4029-4033. PMID: 12124337
  141. Guo, S.; Vieweger, M.; Zhang, K.; Yin, H.; Wang, H.; Li, X.; Li, S.; Hu, S.; Sparreboom, A.; Evers, B.M.; Dong, Y.; Chiu, W.; Guo, P. Ultra-thermostable RNA nanoparticles for solubilizing and high-yield loading of paclitaxel for breast cancer therapy. Nat. Commun., 2020, 11(1), 972. doi: 10.1038/s41467-020-14780-5 PMID: 32080195
  142. Rehmani, H.; Li, Y.; Li, T.; Padia, R.; Calbay, O.; Jin, L.; Chen, H.; Huang, S. Addiction to protein kinase Cɩ due to PRKCI gene amplification can be exploited for an aptamer-based targeted therapy in ovarian cancer. Signal Transduct. Target. Ther., 2020, 5(1), 140. doi: 10.1038/s41392-020-0197-8 PMID: 32820156
  143. Chen, X.; He, X.; Gao, R.; Lan, X.; Zhu, L.; Chen, K.; Hu, Y.; Huang, K.; Xu, W. Aptamer-functionalized binary-drug delivery system for synergetic obesity therapy. ACS Nano, 2022, 16(1), 1036-1050. doi: 10.1021/acsnano.1c08690 PMID: 34967620
  144. Ma, W.; Yang, Y.; Zhu, J.; Jia, W.; Zhang, T.; Liu, Z.; Chen, X.; Lin, Y. Biomimetic nanoerythrosome-coated Aptamer–DNA tetrahedron/maytansine conjugates: ph-responsive and targeted cytotoxicity for her2‐positive breast cancer. Adv. Mater., 2022, 34(46), 2109609. doi: 10.1002/adma.202109609 PMID: 35064993
  145. Saw, P.E.; Xu, X.; Kim, S.; Jon, S. Biomedical applications of a novel class of high-affinity peptides. Acc. Chem. Res., 2021, 54(18), 3576-3592. doi: 10.1021/acs.accounts.1c00239 PMID: 34406761
  146. Rasines Mazo, A.; Allison-Logan, S.; Karimi, F.; Chan, N.J.A.; Qiu, W.; Duan, W.; O’Brien-Simpson, N.M.; Qiao, G.G. Ring opening polymerization of α-amino acids: advances in synthesis, architecture and applications of polypeptides and their hybrids. Chem. Soc. Rev., 2020, 49(14), 4737-4834. doi: 10.1039/C9CS00738E PMID: 32573586
  147. Landgraf, M.; Lahr, C.A.; Kaur, I.; Shafiee, A.; Sanchez-Herrero, A.; Janowicz, P.W.; Ravichandran, A.; Howard, C.B.; Cifuentes-Rius, A.; McGovern, J.A.; Voelcker, N.H.; Hutmacher, D.W. Targeted camptothecin delivery via silicon nanoparticles reduces breast cancer metastasis. Biomaterials, 2020, 240, 119791. doi: 10.1016/j.biomaterials.2020.119791 PMID: 32109589
  148. Li, M.; Song, Y.; Song, N.; Wu, G.; Zhou, H.; Long, J.; Zhang, P.; Shi, L.; Yu, Z. Supramolecular antagonists promote mitochondrial dysfunction. Nano Lett., 2021, 21(13), 5730-5737. doi: 10.1021/acs.nanolett.1c01469 PMID: 34142834
  149. Cao, M.; Lu, S.; Wang, N.; Xu, H.; Cox, H.; Li, R.; Waigh, T.; Han, Y.; Wang, Y.; Lu, J.R. Enzyme-triggered morphological transition of peptide nanostructures for tumor-targeted drug delivery and enhanced cancer therapy. ACS Appl. Mater. Interfaces, 2019, 11(18), 16357-16366. doi: 10.1021/acsami.9b03519 PMID: 30991000
  150. Wang, M.D.; Lv, G.T.; An, H.W.; Zhang, N.Y.; Wang, H. In situ self-assembly of bispecific peptide for cancer immunotherapy. Angew. Chem. Int. Ed., 2022, 61(10), e202113649. doi: 10.1002/anie.202113649 PMID: 34994999
  151. Qi, J.; Jia, S.; Kang, X.; Wu, X.; Hong, Y.; Shan, K.; Kong, X.; Wang, Z.; Ding, D. Semiconducting polymer nanoparticles with surface-mimicking protein secondary structure as lysosome-targeting chimaeras for self-synergistic cancer immunotherapy. Adv. Mater., 2022, 34(31), 2203309. doi: 10.1002/adma.202203309 PMID: 35704513
  152. Richards, D.A.; Maruani, A.; Chudasama, V. Antibody fragments as nanoparticle targeting ligands: A step in the right direction. Chem. Sci., 2017, 8(1), 63-77. doi: 10.1039/C6SC02403C PMID: 28451149
  153. Shaw, A.; Hoffecker, I.T.; Smyrlaki, I.; Rosa, J.; Grevys, A.; Bratlie, D.; Sandlie, I.; Michaelsen, T.E.; Andersen, J.T.; Högberg, B. Binding to nanopatterned antigens is dominated by the spatial tolerance of antibodies. Nat. Nanotechnol., 2019, 14(2), 184-190. doi: 10.1038/s41565-018-0336-3 PMID: 30643273
  154. Donaghy, H. Effects of antibody, drug and linker on the preclinical and clinical toxicities of antibody-drug conjugates. MAbs, 2016, 8(4), 659-671. doi: 10.1080/19420862.2016.1156829 PMID: 27045800
  155. Wu, S.Y.; Wu, F.G.; Chen, X. Antibody-incorporated nanomedicines for cancer therapy. Adv. Mater., 2022, 34(24), 2109210. doi: 10.1002/adma.202109210 PMID: 35142395
  156. Di, J.; Xie, F.; Xu, Y. When liposomes met antibodies: Drug delivery and beyond. Adv. Drug Deliv. Rev., 2020, 154-155, 151-162. doi: 10.1016/j.addr.2020.09.003 PMID: 32926944
  157. Helmi, O.; Elshishiny, F.; Mamdouh, W. Targeted doxorubicin delivery and release within breast cancer environment using PEGylated chitosan nanoparticles labeled with monoclonal antibodies. Int. J. Biol. Macromol., 2021, 184, 325-338. doi: 10.1016/j.ijbiomac.2021.06.014 PMID: 34119547
  158. Martínez-Jothar, L.; Beztsinna, N.; van Nostrum, C.F.; Hennink, W.E.; Oliveira, S. Selective cytotoxicity to HER2 positive breast cancer cells by saporin-loaded nanobody-targeted polymeric nanoparticles in combination with photochemical internalization. Mol. Pharm., 2019, 16(4), 1633-1647. doi: 10.1021/acs.molpharmaceut.8b01318 PMID: 30817164
  159. del Solar, V.; Contel, M. Metal-based antibody drug conjugates. Potential and challenges in their application as targeted therapies in cancer. J. Inorg. Biochem., 2019, 199, 110780. doi: 10.1016/j.jinorgbio.2019.110780 PMID: 31434020
  160. Flamm, J.; Hartung, S.; Gänger, S.; Maigler, F.; Pitzer, C.; Schindowski, K. Establishment of an olfactory region-specific intranasal delivery technique in mice to target the central nervous system. Front. Pharmacol., 2022, 12, 789780. doi: 10.3389/fphar.2021.789780 PMID: 35082672
  161. Pan, J.; Attia, S.A.; Subhan, M.A.; Filipczak, N.; Mendes, L.P.; Li, X.; Kishan, Y.S.S.; Torchilin, V.P. Monoclonal antibody 2C5-modified mixed dendrimer micelles for tumor-targeted codelivery of chemotherapeutics and siRNA. Mol. Pharm., 2020, 17(5), 1638-1647. doi: 10.1021/acs.molpharmaceut.0c00075 PMID: 32233497
  162. Carvalho, M.R.; Reis, R.L.; Oliveira, J.M. Dendrimer nanoparticles for colorectal cancer applications. J. Mater. Chem. B Mater. Biol. Med., 2020, 8(6), 1128-1138. doi: 10.1039/C9TB02289A PMID: 31971528
  163. Wu, H.; Shi, H.; Zhang, H.; Wang, X.; Yang, Y.; Yu, C.; Hao, C.; Du, J.; Hu, H.; Yang, S. Prostate stem cell antigen antibody-conjugated multiwalled carbon nanotubes for targeted ultrasound imaging and drug delivery. Biomaterials, 2014, 35(20), 5369-5380. doi: 10.1016/j.biomaterials.2014.03.038 PMID: 24709520
  164. Xiao, Y.; Gao, X.; Taratula, O.; Treado, S.; Urbas, A.; Holbrook, R.D.; Cavicchi, R.E.; Avedisian, C.T.; Mitra, S.; Savla, R.; Wagner, P.D.; Srivastava, S.; He, H. Anti-HER2 IgY antibody-functionalized single-walled carbon nanotubes for detection and selective destruction of breast cancer cells. BMC Cancer, 2009, 9(1), 351. doi: 10.1186/1471-2407-9-351 PMID: 19799784
  165. Liu, N.; Liang, X.; Yang, C.; Hu, S.; Luo, Q.; Luo, H. Dual-targeted magnetic mesoporous silica nanoparticles reduce brain amyloid-β burden via depolymerization and intestinal metabolism. Theranostics, 2022, 12(15), 6646-6664. doi: 10.7150/thno.76574 PMID: 36185606
  166. Trabulo, S.; Aires, A.; Aicher, A.; Heeschen, C.; Cortajarena, A.L. Multifunctionalized iron oxide nanoparticles for selective targeting of pancreatic cancer cells. Biochim. Biophys. Acta, Gen. Subj., 2017, 1861(6), 1597-1605. doi: 10.1016/j.bbagen.2017.01.035 PMID: 28161480
  167. Alt, K.; Carraro, F.; Jap, E.; Linares-Moreau, M.; Riccò, R.; Righetto, M.; Bogar, M.; Amenitsch, H.; Hashad, R.A.; Doonan, C.; Hagemeyer, C.E.; Falcaro, P. Self-assembly of oriented antibody-decorated metal–organic framework nanocrystals for active-targeting applications. Adv. Mater., 2022, 34(21), 2106607. doi: 10.1002/adma.202106607 PMID: 34866253
  168. Luo, T.; Ni, K.; Culbert, A.; Lan, G.; Li, Z.; Jiang, X.; Kaufmann, M.; Lin, W. Nanoscale metal–organic frameworks stabilize bacteriochlorins for type I and Type II photodynamic therapy. J. Am. Chem. Soc., 2020, 142(16), 7334-7339. doi: 10.1021/jacs.0c02129 PMID: 32248686
  169. Schmid, D.; Park, C.G.; Hartl, C.A.; Subedi, N.; Cartwright, A.N.; Puerto, R.B.; Zheng, Y.; Maiarana, J.; Freeman, G.J.; Wucherpfennig, K.W.; Irvine, D.J.; Goldberg, M.S. T cell-targeting nanoparticles focus delivery of immunotherapy to improve antitumor immunity. Nat. Commun., 2017, 8(1), 1747. doi: 10.1038/s41467-017-01830-8 PMID: 29170511
  170. Hu, N.; Li, W.; Hong, Y.; Zeng, Z.; Zhang, J.; Wu, X.; Zhou, K.; Wu, F.A. PD1 targeted nano-delivery system based on epigenetic alterations of T cell responses in the treatment of gastric cancer. Mol. Ther. Oncolytics, 2022, 24, 148-159. doi: 10.1016/j.omto.2021.12.006 PMID: 35024441
  171. Mittelheisser, V.; Coliat, P.; Moeglin, E.; Goepp, L.; Goetz, J.G.; Charbonnière, L.J.; Pivot, X.; Detappe, A. Optimal physicochemical properties of antibody–nanoparticle conjugates for improved tumor targeting. Adv. Mater., 2022, 34(24), 2110305. doi: 10.1002/adma.202110305 PMID: 35289003
  172. Houdaihed, L.; Evans, J.C.; Allen, C. Dual-targeted delivery of nanoparticles encapsulating paclitaxel and everolimus: A novel strategy to overcome breast cancer receptor heterogeneity. Pharm. Res., 2020, 37(3), 39. doi: 10.1007/s11095-019-2684-6 PMID: 31965330
  173. Chen, H.; Lin, J.; Shan, Y.; Zhengmao, L. The promotion of nanoparticle delivery to two populations of gastric cancer stem cells by CD133 and CD44 antibodies. Biomed. Pharmacother., 2019, 115, 108857. doi: 10.1016/j.biopha.2019.108857 PMID: 31048191
  174. Hu, C.M.J.; Zhang, L.; Aryal, S.; Cheung, C.; Fang, R.H.; Zhang, L. Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proc. Natl. Acad. Sci., 2011, 108(27), 10980-10985. doi: 10.1073/pnas.1106634108 PMID: 21690347
  175. Greene, M.K.; Nogueira, J.C.F.; Tracey, S.R.; Richards, D.A.; McDaid, W.J.; Burrows, J.F.; Campbell, K.; Longley, D.B.; Chudasama, V.; Scott, C.J. Refined construction of antibody-targeted nanoparticles leads to superior antigen binding and enhanced delivery of an entrapped payload to pancreatic cancer cells. Nanoscale, 2020, 12(21), 11647-11658. doi: 10.1039/D0NR02387F PMID: 32436550
  176. Zou, J.; Chen, S.; Li, Y.; Zeng, L.; Lian, G.; Li, J.; Chen, S.; Huang, K.; Chen, Y. Nanoparticles modified by triple single chain antibodies for MRI examination and targeted therapy in pancreatic cancer. Nanoscale, 2020, 12(7), 4473-4490. doi: 10.1039/C9NR04976B PMID: 32031201
  177. Schlör, A.; Hirschberg, S.; Amor, G.B.; Meister, T.L.; Arora, P.; Pöhlmann, S.; Hoffmann, M.; Pfaender, S.; Eddin, O.K.; Kamhieh-Milz, J.; Hanack, K. SARS-CoV-2 neutralizing camelid heavy-chain-only antibodies as powerful tools for diagnostic and therapeutic applications. Front. Immunol., 2022, 13, 930975. doi: 10.3389/fimmu.2022.930975 PMID: 36189209
  178. Van de Broek, B.; Devoogdt, N.; D’Hollander, A.; Gijs, H.L.; Jans, K.; Lagae, L.; Muyldermans, S.; Maes, G.; Borghs, G. Specific cell targeting with nanobody conjugated branched gold nanoparticles for photothermal therapy. ACS Nano, 2011, 5(6), 4319-4328. doi: 10.1021/nn1023363 PMID: 21609027
  179. Dragan, E.S.; Dinu, M.V. Polysaccharides constructed hydrogels as vehicles for proteins and peptides. A review. Carbohydr. Polym., 2019, 225, 115210. doi: 10.1016/j.carbpol.2019.115210 PMID: 31521316
  180. Thomas, D. KurienThomas, K.; Latha, M.S. Preparation and evaluation of alginate nanoparticles prepared by green method for drug delivery applications. Int. J. Biol. Macromol., 2020, 154, 888-895. doi: 10.1016/j.ijbiomac.2020.03.167 PMID: 32209372
  181. Torres, F.G.; Troncoso, O.P.; Pisani, A.; Gatto, F.; Bardi, G. Natural polysaccharide nanomaterials: An overview of their immunological properties. Int. J. Mol. Sci., 2019, 20(20), 5092. doi: 10.3390/ijms20205092 PMID: 31615111
  182. Yang, H.; Luo, Y.; Hu, H.; Yang, S.; Li, Y.; Jin, H.; Chen, S.; He, Q.; Hong, C.; Wu, J.; Wan, Y.; Li, M.; Li, Z.; Yang, X.; Su, Y.; Zhou, Y.; Hu, B. pH-sensitive, cerebral vasculature-targeting hydroxyethyl starch functionalized nanoparticles for improved angiogenesis and neurological function recovery in ischemic stroke. Adv. Healthc. Mater., 2021, 10(12), 2100028. doi: 10.1002/adhm.202100028 PMID: 34028998
  183. Tan, R.; Tian, D.; Liu, J.; Wang, C.; Wan, Y. Doxorubicin-bound hydroxyethyl starch conjugate nanoparticles with pH/Redox responsive linkage for enhancing antitumor therapy. Int. J. Nanomedicine, 2021, 16, 4527-4544. doi: 10.2147/IJN.S314705 PMID: 34276212
  184. Salatin, S.; Yari Khosroushahi, A. Overviews on the cellular uptake mechanism of polysaccharide colloidal nanoparticles. J. Cell. Mol. Med., 2017, 21(9), 1668-1686. doi: 10.1111/jcmm.13110 PMID: 28244656
  185. Xu, M.; Asghar, S.; Dai, S.; Wang, Y.; Feng, S.; Jin, L.; Shao, F.; Xiao, Y. Mesenchymal stem cells-curcumin loaded chitosan nanoparticles hybrid vectors for tumor-tropic therapy. Int. J. Biol. Macromol., 2019, 134, 1002-1012. doi: 10.1016/j.ijbiomac.2019.04.201 PMID: 31063785
  186. Rizvi, S.A.A.; Saleh, A.M. Applications of nanoparticle systems in drug delivery technology. Saudi Pharm. J., 2018, 26(1), 64-70. doi: 10.1016/j.jsps.2017.10.012 PMID: 29379334
  187. Ragothaman, M.; Kannan Villalan, A.; Dhanasekaran, A.; Palanisamy, T. Bio-hybrid hydrogel comprising collagen-capped silver nanoparticles and melatonin for accelerated tissue regeneration in skin defects. Mater. Sci. Eng. C, 2021, 128, 112328. doi: 10.1016/j.msec.2021.112328 PMID: 34474879
  188. Lin, T.; Zhao, P.; Jiang, Y.; Tang, Y.; Jin, H.; Pan, Z.; He, H.; Yang, V.C.; Huang, Y. Blood–brain-barrier-penetrating albumin nanoparticles for biomimetic drug delivery via albumin-binding protein pathways for antiglioma therapy. ACS Nano, 2016, 10(11), 9999-10012. doi: 10.1021/acsnano.6b04268 PMID: 27934069
  189. Wang, X.; Wei, B.; Cheng, X.; Wang, J.; Tang, R. Phenylboronic acid-decorated gelatin nanoparticles for enhanced tumor targeting and penetration. Nanotechnology, 2016, 27(38), 385101. doi: 10.1088/0957-4484/27/38/385101 PMID: 27514078
  190. Akolpoğlu Başaran, D.D.; Gündüz, U.; Tezcaner, A.; Keskin, D. Topical delivery of heparin from PLGA nanoparticles entrapped in nanofibers of sericin/gelatin scaffolds for wound healing. Int. J. Pharm., 2021, 597, 120207. doi: 10.1016/j.ijpharm.2021.120207 PMID: 33524526
  191. Dad, H.A.; Gu, T.W.; Zhu, A.Q.; Huang, L.Q.; Peng, L.H. Plant exosome-like nanovesicles: Emerging therapeutics and drug delivery nanoplatforms. Mol. Ther., 2021, 29(1), 13-31. doi: 10.1016/j.ymthe.2020.11.030 PMID: 33278566
  192. Lu, M.; Huang, Y. Bioinspired exosome-like therapeutics and delivery nanoplatforms. Biomaterials, 2020, 242, 119925. doi: 10.1016/j.biomaterials.2020.119925 PMID: 32151860

补充文件

附件文件
动作
1. JATS XML

版权所有 © Bentham Science Publishers, 2024