Natural Polyphenols in Cancer Management: Promising Role, Mechanisms, and Chemistry


Cite item

Full Text

Abstract

Background:Although cancers emerge rapidly and cancer cells divide aggressively, which affects our vital organ systems. Recently, cancer treatments are targeted immune systems mediating intrinsic cellular mechanisms. Natural efficacious polyphenols have been exhibited to help prevent most cancers and reverse the progression of cancers.

Methods:Many resources have been used to know the promising role of polyphenols in preventing and treating cancers. The electronic databases include Science Direct, Google, Google Scholar, PubMed, and Scopus. The search was limited to the English language only.

Results:Polyphenols have been reported as anti-metastatic agents that explore the promising role of these compounds in cancer prevention. Such agents act through many signaling pathways, including PI3K/Akt and TNF-induced signaling pathways. The chemical modifications of polyphenols and the structure-activity relationships (SARs) between polyphenols and anticancer activities have also been discussed.

Conclusion:Many research papers were reported to explain the anti-cancer potential of Polyphenols, The SARs between polyphenols and anti-cancer activities, which correlate structures of polyphenols with significant chemotherapeutic action. The mechanism of anti-cancer potential is to be added for searching for new anti-cancer natural products.

About the authors

Prabhat Upadhyay

Department of Pharmaceutical Science, Institute of Pharmaceutical Research, GLA University

Author for correspondence.
Email: info@benthamscience.net

Sonia Singh

Department of Pharmacy, Institute of Pharmaceutical Research,, GLA University

Email: info@benthamscience.net

Vishal Vishwakarma

Department of Pharmacology,, All India Institute of Medical Sciences,

Email: info@benthamscience.net

References

  1. Johung, T.; Monje, M. Neuronal activity in the glioma microenvironment. Curr. Opin. Neurobiol., 2017, 47, 156-161. doi: 10.1016/j.conb.2017.10.009 PMID: 29096244
  2. Venkatesh, H.S.; Tam, L.T.; Woo, P.J.; Lennon, J.; Nagaraja, S.; Gillespie, S.M.; Ni, J.; Duveau, D.Y.; Morris, P.J.; Zhao, J.J.; Thomas, C.J.; Monje, M. Targeting neuronal activity-regulated neuroligin-3 dependency in high-grade glioma. Nature, 2017, 549(7673), 533-537. doi: 10.1038/nature24014 PMID: 28959975
  3. Batiha, G.E.S.; Beshbishy, A.M.; Ikram, M.; Mulla, Z.S.; El-Hack, M.E.A.; Taha, A.E.; Algammal, A.M.; Elewa, Y.H.A. The pharmacological activity, biochemical properties, and pharmacokinetics of the major natural polyphenolic flavonoid: Quercetin. Foods, 2020, 9(3), 374. doi: 10.3390/foods9030374 PMID: 32210182
  4. Caselli, A.; Cirri, P.; Santi, A.; Paoli, P. Morin: A promising natural drug. Curr. Med. Chem., 2016, 23(8), 774-791. doi: 10.2174/0929867323666160106150821 PMID: 26018232
  5. Scalbert, A.; Manach, C.; Morand, C.; Rémésy, C.; Jiménez, L. Dietary polyphenols and the prevention of diseases. Crit. Rev. Food Sci. Nutr., 2005, 45(4), 287-306. doi: 10.1080/1040869059096 PMID: 16047496
  6. Thun, M.J.; DeLancey, J.O.; Center, M.M.; Jemal, A.; Ward, E.M. The global burden of cancer: Priorities for prevention. Carcinogenesis, 2010, 31(1), 100-110. doi: 10.1093/carcin/bgp263 PMID: 19934210
  7. Averilla, J.N.; Oh, J.; Kim, H.J.; Kim, J.S.; Kim, J.S. Potential health benefits of phenolic compounds in grape processing by-products. Food Sci. Biotechnol., 2019, 28(6), 1607-1615. doi: 10.1007/s10068-019-00628-2 PMID: 31807333
  8. Gupta, A.; Kagliwal, L.D.; Singhal, R.S. Biotransformation of polyphenols for improved bioavailability and processing stability. Adv. Food Nutr. Res., 2013, 69, 183-217. doi: 10.1016/B978-0-12-410540-9.00004-1 PMID: 23522797
  9. Syed, D.N.; Khan, N.; Afaq, F.; Mukhtar, H. Chemoprevention of prostate cancer through dietary agents: Progress and promise. Cancer Epidemiol. Biomarkers Prev., 2007, 16(11), 2193-2203. doi: 10.1158/1055-9965.EPI-06-0942 PMID: 18006906
  10. Zheng, P.P.; Li, J.; Kros, J.M. Breakthroughs in modern cancer therapy and elusive cardiotoxicity: Critical research-practice gaps, challenges, and insights. Med. Res. Rev., 2018, 38(1), 325-376. doi: 10.1002/med.21463 PMID: 28862319
  11. Xiang, J.; Zhang, Y.; Liu, X.; Zhou, Q.; Piao, Y.; Shao, S.; Tang, J.; Zhou, Z.; Xie, T.; Shen, Y. Natural polyphenols-platinum nanocomplexes stimulate immune system for combination cancer therapy. Nano Lett., 2022, 22(13), 5615-5625. doi: 10.1021/acs.nanolett.2c02161 PMID: 35749341
  12. Lopus, M. Nano-ayurvedic medicine and its potential in cancer treatment. J. Integr. Med., 2023, 21(2), 117-119. doi: 10.1016/j.joim.2022.12.001 PMID: 36610811
  13. Chimento, A.; De Luca, A.; D’Amico, M.; De Amicis, F.; Pezzi, V. The involvement of natural polyphenols in molecular mechanisms inducing apoptosis in tumor cells: A promising adjuvant in cancer therapy. Int. J. Mol. Sci., 2023, 24(2), 1680. doi: 10.3390/ijms24021680 PMID: 36675194
  14. Swallah, M.S.; Sun, H.; Affoh, R.; Fu, H.; Yu, H. Antioxidant potential overviews of secondary metabolites (polyphenols) in fruits. Int. J. Food Sci., 2020, 2020, 1-8. doi: 10.1155/2020/9081686 PMID: 32455130
  15. Brglez Mojzer, E.; Knez Hrnčič, M.; Škerget, M.; Knez, Ž.; Bren, U. Polyphenols: Extraction methods, antioxidative action, bioavailability and anticarcinogenic effects. Molecules, 2016, 21(7), 901. doi: 10.3390/molecules21070901 PMID: 27409600
  16. Pandey, K.B.; Rizvi, S.I. Plant polyphenols as dietary antioxidants in human health and disease. Oxid. Med. Cell. Longev., 2009, 2(5), 270-278. doi: 10.4161/oxim.2.5.9498 PMID: 20716914
  17. Sorrenti, V.; Fortinguerra, S.; Caudullo, G.; Buriani, A. Deciphering the role of polyphenols in sports performance: From nutritional genomics to the gut microbiota toward phytonutritional epigenomics. Nutrients, 2020, 12(5), 1265. doi: 10.3390/nu12051265 PMID: 32365576
  18. Skalicka-Woźniak, K.; Orhan, I.E.; Cordell, G.A.; Nabavi, S.M.; Budzyńska, B. Implication of coumarins towards central nervous system disorders. Pharmacol. Res., 2016, 103, 188-203. doi: 10.1016/j.phrs.2015.11.023 PMID: 26657416
  19. Sansone, R.; Rodriguez-Mateos, A.; Heuel, J.; Falk, D.; Schuler, D.; Wagstaff, R.; Kuhnle, G.G.C.; Spencer, J.P.E.; Schroeter, H.; Merx, M.W.; Kelm, M.; Heiss, C. Cocoa flavanol intake improves endothelial function and framingham risk score in healthy men and women: A randomised, controlled, double-masked trial: The Flaviola Health Study. Br. J. Nutr., 2015, 114(8), 1246-1255. doi: 10.1017/S0007114515002822 PMID: 26348767
  20. Amawi, H.; Ashby, C., Jr; Samuel, T.; Peraman, R.; Tiwari, A. Polyphenolic nutrients in cancer chemoprevention and metastasis: Role of the epithelial-to-mesenchymal (EMT) pathway. Nutrients, 2017, 9(8), 911. doi: 10.3390/nu9080911 PMID: 28825675
  21. Mashhadi Akbar Boojar, M. An overview of the cellular mechanisms of flavonoids radioprotective effects. Adv. Pharm. Bull., 2019, 10(1), 13-19. doi: 10.15171/apb.2020.002 PMID: 32002357
  22. Metsämuuronen, S.; Sirén, H. Bioactive phenolic compounds, metabolism and properties: A review on valuable chemical compounds in Scots pine and Norway spruce. Phytochem. Rev., 2019, 18(3), 623-664. doi: 10.1007/s11101-019-09630-2
  23. Waffo-Téguo, P.; Hawthorne, M.E.; Cuendet, M.; Mérillon, J.M.; Kinghorn, A.D.; Pezzuto, J.M.; Mehta, R.G. Potential cancer-chemopreventive activities of wine stilbenoids and flavans extracted from grape (Vitis vinifera) cell cultures. Nutr. Cancer, 2001, 40(2), 173-179. doi: 10.1207/S15327914NC402_14 PMID: 11962253
  24. Vitale, M.; Masulli, M.; Rivellese, A.A.; Bonora, E.; Cappellini, F.; Nicolucci, A.; Squatrito, S.; Antenucci, D.; Barrea, A.; Bianchi, C.; Bianchini, F.; Fontana, L.; Fornengo, P.; Giorgino, F.; Gnasso, A.; Mannucci, E.; Mazzotti, A.; Nappo, R.; Palena, A.P.; Pata, P.; Perriello, G.; Potenziani, S.; Radin, R.; Ricci, L.; Romeo, F.; Santini, C.; Scarponi, M.; Serra, R.; Timi, A.; Turco, A.A.; Vedovato, M.; Zavaroni, D.; Grioni, S.; Riccardi, G.; Vaccaro, O. Dietary intake and major food sources of polyphenols in people with type 2 diabetes: The TOSCA.IT Study. Eur. J. Nutr., 2018, 57(2), 679-688. doi: 10.1007/s00394-016-1355-1 PMID: 28004268
  25. Wang, L.; Sun, R.; Zhang, Q.; Luo, Q.; Zeng, S.; Li, X.; Gong, X.; Li, Y.; Lu, L.; Hu, M.; Liu, Z. An update on polyphenol disposition via coupled metabolic pathways. Expert Opin. Drug Metab. Toxicol., 2019, 15(2), 151-165. doi: 10.1080/17425255.2019.1559815 PMID: 30583703
  26. Murota, K.; Hotta, A.; Ido, H.; Kawai, Y.; Moon, J.H.; Sekido, K.; Hayashi, H.; Inakuma, T.; Terao, J. Antioxidant capacity of albumin-bound quercetin metabolites after onion consumption in humans. J. Med. Invest., 2007, 54(3,4), 370-374. doi: 10.2152/jmi.54.370 PMID: 17878690
  27. De Palma, M.; Hanahan, D. The biology of personalized cancer medicine: Facing individual complexities underlying hallmark capabilities. Mol. Oncol., 2012, 6(2), 111-127. doi: 10.1016/j.molonc.2012.01.011 PMID: 22360993
  28. Amararathna, M.; Johnston, M.; Rupasinghe, H. Plant polyphenols as chemopreventive agents for lung cancer. Int. J. Mol. Sci., 2016, 17(8), 1352. doi: 10.3390/ijms17081352 PMID: 27548149
  29. Society, A.C. Cancer facts & figures 2017. J. Consum. Health Internet, 2012, 16, 366-367.
  30. Turrini, E.; Ferruzzi, L.; Fimognari, C. Potential effects of pomegranate polyphenols in cancer prevention and therapy. Oxid. Med. Cell. Longev., 2015, 2015, 1-19. doi: 10.1155/2015/938475 PMID: 26180600
  31. Hadi, S.M.; Asad, S.F.; Singh, S.; Ahmad, A. Putative mechanism for anticancer and apoptosis-inducing properties of plant-derived polyphenolic compounds. IUBMB Life, 2000, 50(3), 167-171. doi: 10.1080/152165400300001471 PMID: 11142343
  32. Yan Xu; Zhang J.; Li Xiong; Lei Zhang; Dong Sun, Hui Liu Green tea polyphenols inhibit cognitive impairment induced by chronic cerebral hypoperfusion via modulating oxidative stress. J. Nutr. Biochem., 2010, 21(8), 741-748. doi: 10.1016/j.jnutbio.2009.05.002 PMID: 19615878
  33. Harper, C.E.; Patel, B.B.; Wang, J.; Eltoum, I.A.; Lamartiniere, C.A. Epigallocatechin-3-gallate suppresses early stage, but not late stage prostate cancer in TRAMP mice: Mechanisms of action. Prostate, 2007, 67(14), 1576-1589. doi: 10.1002/pros.20643 PMID: 17705241
  34. Araújo, J.R.; Gonçalves, P.; Martel, F. Chemopreventive effect of dietary polyphenols in colorectal cancer cell lines. Nutr. Res., 2011, 31(2), 77-87. doi: 10.1016/j.nutres.2011.01.006 PMID: 21419311
  35. Howells, L.M.; Mitra, A.; Manson, M.M. Comparison of oxaliplatin- and curcumin-mediated antiproliferative effects in colorectal cell lines. Int. J. Cancer, 2007, 121(1), 175-183. doi: 10.1002/ijc.22645 PMID: 17330230
  36. Irazabal, M.V.; Torres, V.E. Reactive oxygen species and redox signaling in chronic kidney disease. Cells, 2020, 9(6), 1342. doi: 10.3390/cells9061342 PMID: 32481548
  37. Balasubramanian, S.; Zhu, L.; Eckert, R.L. Apigenin inhibition of involucrin gene expression is associated with a specific reduction in phosphorylation of protein kinase Cdelta Tyr311. J. Biol. Chem., 2006, 281(47), 36162-36172. doi: 10.1074/jbc.M605368200 PMID: 16982614
  38. Cháirez-Ramírez, M.H.; de la Cruz-López, K.G.; García-Carrancá, A. Polyphenols as antitumor agents targeting key players in cancer-driving signaling pathways. Front. Pharmacol., 2021, 12, 710304. doi: 10.3389/fphar.2021.710304 PMID: 34744708
  39. Wee, P.; Wang, Z. Epidermal growth factor receptor cell proliferation signaling pathways. Cancers, 2017, 9(5), 52. doi: 10.3390/cancers9050052 PMID: 28513565
  40. Lee, S.; Heinrich, E.L.; Lu, J.; Lee, W.; Choi, A.H.; Luu, C.; Chung, V.; Fakih, M.; Kim, J. Epidermal growth factor receptor signaling to the mitogen activated protein kinase pathway bypasses ras in pancreatic cancer cells. Pancreas, 2016, 45(2), 286-292. doi: 10.1097/MPA.0000000000000379 PMID: 26262587
  41. Aggarwal, V.; Tuli, H.; Varol, A.; Thakral, F.; Yerer, M.; Sak, K.; Varol, M.; Jain, A.; Khan, M.; Sethi, G. Role of reactive oxygen species in cancer progression: Molecular mechanisms and recent advancements. Biomolecules, 2019, 9(11), 735. doi: 10.3390/biom9110735 PMID: 31766246
  42. Mokra, D.; Joskova, M.; Mokry, J. Therapeutic effects of green tea polyphenol (‒)-Epigallocatechin-3-Gallate (EGCG) in relation to molecular pathways controlling inflammation, oxidative stress, and apoptosis. Int. J. Mol. Sci., 2022, 24(1), 340. doi: 10.3390/ijms24010340 PMID: 36613784
  43. Wang, X.; Lin, Y. Tumor necrosis factor and cancer, buddies or foes? Acta Pharmacol. Sin., 2008, 29(11), 1275-1288. doi: 10.1111/j.1745-7254.2008.00889.x PMID: 18954521
  44. Long, J.; Guan, P.; Hu, X.; Yang, L.; He, L.; Lin, Q.; Luo, F.; Li, J.; He, X.; Du, Z.; Li, T. Natural polyphenols as targeted modulators in colon cancer: Molecular mechanisms and applications. Front. Immunol., 2021, 12, 635484. doi: 10.3389/fimmu.2021.635484 PMID: 33664749
  45. Lousa, I.; Reis, F.; Santos-Silva, A.; Belo, L. The signaling pathway of TNF receptors: Linking animal models of renal disease to human CKD. Int. J. Mol. Sci., 2022, 23(6), 3284. doi: 10.3390/ijms23063284 PMID: 35328704
  46. Peng, F.; Liao, M.; Qin, R.; Zhu, S.; Peng, C.; Fu, L.; Chen, Y.; Han, B. Regulated cell death (RCD) in cancer: Key pathways and targeted therapies. Signal Transduct. Target. Ther., 2022, 7(1), 286. doi: 10.1038/s41392-022-01110-y PMID: 35963853
  47. Porrini, M.; Riso, P.; Brusamolino, A.; Berti, C.; Guarnieri, S.; Visioli, F. Daily intake of a formulated tomato drink affects carotenoid plasma and lymphocyte concentrations and improves cellular antioxidant protection. Br. J. Nutr., 2005, 93(1), 93-99. doi: 10.1079/BJN20041315 PMID: 15705230
  48. Selvendiran, K.; Koga, H.; Ueno, T.; Yoshida, T.; Maeyama, M.; Torimura, T.; Yano, H.; Kojiro, M.; Sata, M. Luteolin promotes degradation in signal transducer and activator of transcription 3 in human hepatoma cells: An implication for the antitumor potential of flavonoids. Cancer Res., 2006, 66(9), 4826-4834. doi: 10.1158/0008-5472.CAN-05-4062 PMID: 16651438
  49. Lee, H.J.; Wang, C.J.; Kuo, H.C.; Chou, F.P.; Jean, L.F.; Tseng, T.H. Induction apoptosis of luteolin in human hepatoma HepG2 cells involving mitochondria translocation of Bax/Bak and activation of JNK. Toxicol. Appl. Pharmacol., 2005, 203(2), 124-131. doi: 10.1016/j.taap.2004.08.004 PMID: 15710173
  50. Gong, L.; Li, Y.; Nedeljkovic-Kurepa, A.; Sarkar, F.H. Inactivation of NF-κB by genistein is mediated via Akt signaling pathway in breast cancer cells. Oncogene, 2003, 22(30), 4702-4709. doi: 10.1038/sj.onc.1206583 PMID: 12879015
  51. Atten, M.J.; Godoy-Romero, E.; Attar, B.M.; Milson, T.; Zopel, M.; Holian, O. Resveratrol regulates cellular PKC α and δ to inhibit growth and induce apoptosis in gastric cancer cells. Invest. New Drugs, 2005, 23(2), 111-119. doi: 10.1007/s10637-005-5855-8 PMID: 15744586
  52. Wenzel, E.; Somoza, V. Metabolism and bioavailability oftrans-resveratrol. Mol. Nutr. Food Res., 2005, 49(5), 472-481. doi: 10.1002/mnfr.200500010 PMID: 15779070
  53. Ahmad, K.A.; Harris, N.H.; Johnson, A.D.; Lindvall, H.C.N.; Wang, G.; Ahmed, K. Protein kinase CK2 modulates apoptosis induced by resveratrol and epigallocatechin-3-gallate in prostate cancer cells. Mol. Cancer Ther., 2007, 6(3), 1006-1012. doi: 10.1158/1535-7163.MCT-06-0491 PMID: 17363494
  54. Wolter, F.; Akoglu, B.; Clausnitzer, A.; Stein, J. Downregulation of the cyclin D1/Cdk4 complex occurs during resveratrol-induced cell cycle arrest in colon cancer cell lines. J. Nutr., 2001, 131(8), 2197-2203. doi: 10.1093/jn/131.8.2197 PMID: 11481417
  55. Zhou, H.B.; Yan, Y.; Sun, Y.N.; Zhu, J.R. Resveratrol induces apoptosis in human esophageal carcinoma cells. World J. Gastroenterol., 2003, 9(3), 408-411. doi: 10.3748/wjg.v9.i3.408 PMID: 12632486
  56. Alkhalaf, M. Resveratrol-induced apoptosis is associated with activation of p53 and inhibition of protein translation in T47D human breast cancer cells. Pharmacology, 2007, 80(2-3), 134-143. doi: 10.1159/000103253 PMID: 17534123
  57. Niles, R.M.; McFarland, M.; Weimer, M.B.; Redkar, A.; Fu, Y.M.; Meadows, G.G. Resveratrol is a potent inducer of apoptosis in human melanoma cells. Cancer Lett., 2003, 190(2), 157-163. doi: 10.1016/S0304-3835(02)00676-6 PMID: 12565170
  58. Mouria, M.; Gukovskaya, A.S.; Jung, Y.; Buechler, P.; Hines, O.J.; Reber, H.A.; Pandol, S.J. Food-derived polyphenols inhibit pancreatic cancer growth through mitochondrial cytochrome C release and apoptosis. Int. J. Cancer, 2002, 98(5), 761-769. doi: 10.1002/ijc.10202 PMID: 11920648
  59. Gao, X.; Xu, Y.X.; Divine, G.; Janakiraman, N.; Chapman, R.A.; Gautam, S.C. Disparate in vitro and in vivo antileukemic effects of resveratrol, a natural polyphenolic compound found in grapes. J. Nutr., 2002, 132(7), 2076-2081. doi: 10.1093/jn/132.7.2076 PMID: 12097696
  60. Kim, Y.A.; Lee, W.H.; Choi, T.H.; Rhee, S.H.; Park, K.Y.; Choi, Y.H. Involvement of p21WAF1/CIP1, pRB, Bax and NF-kappaB in induction of growth arrest and apoptosis by resveratrol in human lung carcinoma A549 cells. Int. J. Oncol., 2003, 23(4), 1143-1149. PMID: 12963997
  61. Medrano-Padial, C.; Puerto, M.; Moreno, F.J.; Richard, T.; Cantos-Villar, E.; Pichardo, S. In vitro toxicity assessment of stilbene extract for its potential use as antioxidant in the wine industry. Antioxidants, 2019, 8(10), 467. doi: 10.3390/antiox8100467 PMID: 31600944
  62. Joe, A.K.; Liu, H.; Suzui, M.; Vural, M.E.; Xiao, D.; Weinstein, I.B. Resveratrol induces growth inhibition, S-phase arrest, apoptosis, and changes in biomarker expression in several human cancer cell lines. Clin. Cancer Res., 2002, 8(3), 893-903. PMID: 11895924
  63. Kello, M.; Takac, P.; Kubatka, P.; Kuruc, T.; Petrova, K.; Mojzis, J. Oxidative stress-induced DNA damage and apoptosis in clove buds-treated MCF-7 cells. Biomolecules, 2020, 10(1), 139. doi: 10.3390/biom10010139 PMID: 31947708
  64. Khan, H.; Ullah, H.; Castilho, P.C.M.F.; Gomila, A.S.; D’Onofrio, G.; Filosa, R.; Wang, F.; Nabavi, S.M.; Daglia, M.; Silva, A.S.; Rengasamy, K.R.R.; Ou, J.; Zou, X.; Xiao, J.; Cao, H. Targeting NF-κB signaling pathway in cancer by dietary polyphenols. Crit. Rev. Food Sci. Nutr., 2020, 60(16), 2790-2800. doi: 10.1080/10408398.2019.1661827 PMID: 31512490
  65. Krishna, B.M.; Jana, S.; Singhal, J.; Horne, D.; Awasthi, S.; Salgia, R.; Singhal, S.S. Notch signaling in breast cancer: From pathway analysis to therapy. Cancer Lett., 2019, 461, 123-131. doi: 10.1016/j.canlet.2019.07.012 PMID: 31326555
  66. Niedzwiecki, A.; Roomi, M.; Kalinovsky, T.; Rath, M. Anticancer efficacy of polyphenols and their combinations. Nutrients, 2016, 8(9), 552. doi: 10.3390/nu8090552 PMID: 27618095
  67. Onaciu, A.; Munteanu, R.; Munteanu, V.C.; Gulei, D.; Raduly, L.; Feder, R.I.; Pirlog, R.; Atanasov, A.G.; Korban, S.S.; Irimie, A.; Berindan-Neagoe, I. Spontaneous and induced animal models for cancer research. Diagnostics, 2020, 10(9), 660. doi: 10.3390/diagnostics10090660 PMID: 32878340
  68. Ullah, A.; Munir, S.; Badshah, S.L.; Khan, N.; Ghani, L.; Poulson, B.G.; Emwas, A.H.; Jaremko, M. Important flavonoids and their role as a therapeutic agent. Molecules, 2020, 25(22), 5243. doi: 10.3390/molecules25225243 PMID: 33187049
  69. Martin, H.L.; Adams, M.; Higgins, J.; Bond, J.; Morrison, E.E.; Bell, S.M.; Warriner, S.; Nelson, A.; Tomlinson, D.C. High-content, high-throughput screening for the identification of cytotoxic compounds based on cell morphology and cell proliferation markers. PLoS One, 2014, 9(2), e88338. doi: 10.1371/journal.pone.0088338 PMID: 24505478
  70. Chen, B.S.; Wu, C.C. Systems biology as an integrated platform for bioinformatics, systems synthetic biology, and systems metabolic engineering. Cells, 2013, 2(4), 635-688. doi: 10.3390/cells2040635 PMID: 24709875
  71. George, V.C.; Dellaire, G.; Rupasinghe, H.P.V. Plant flavonoids in cancer chemoprevention: Role in genome stability. J. Nutr. Biochem., 2017, 45, 1-14. doi: 10.1016/j.jnutbio.2016.11.007 PMID: 27951449
  72. Amawi, H.; Ashby, C.R., Jr; Tiwari, A.K. Cancer chemoprevention through dietary flavonoids: what’s limiting? Chin. J. Cancer, 2017, 36(1), 50. doi: 10.1186/s40880-017-0217-4 PMID: 28061892
  73. Bustos, A.S.; Håkansson, A.; Linares-Pastén, J.A.; Peñarrieta, J.M.; Nilsson, L. Interaction of quercetin and epigallocatechin gallate (EGCG) aggregates with pancreatic lipase under simplified intestinal conditions. PLoS One, 2020, 15(4), e0224853. doi: 10.1371/journal.pone.0224853 PMID: 32298262
  74. Nijveldt, R.J.; van Nood, E.; van Hoorn, D.E.C.; Boelens, P.G.; van Norren, K.; van Leeuwen, P.A.M. Flavonoids: A review of probable mechanisms of action and potential applications. Am. J. Clin. Nutr., 2001, 74(4), 418-425. doi: 10.1093/ajcn/74.4.418 PMID: 11566638
  75. Applegate, C.; Rowles, J., III; Ranard, K.; Jeon, S.; Erdman, J., Jr Soy consumption and the risk of prostate cancer: An updated systematic review and meta-analysis. Nutrients, 2018, 10(1), 40. doi: 10.3390/nu10010040 PMID: 29300347
  76. Kim, W.; Bang, M.; Kim, E.; Kang, N.; Jung, K.; Cho, H.; Park, J. Quercetin decreases the expression of ErbB2 and ErbB3 proteins in HT-29 human colon cancer cells. J. Nutr. Biochem., 2005, 16(3), 155-162. doi: 10.1016/j.jnutbio.2004.10.010 PMID: 15741050
  77. van der Woude, H.; Gliszczyńska-Świgło, A.; Struijs, K.; Smeets, A.; Alink, G.M.; Rietjens, I.M.C.M. Biphasic modulation of cell proliferation by quercetin at concentrations physiologically relevant in humans. Cancer Lett., 2003, 200(1), 41-47. doi: 10.1016/S0304-3835(03)00412-9 PMID: 14550951
  78. Shan, B.E.; Wang, M.X.; Li, R. Quercetin inhibit human SW480 colon cancer growth in association with inhibition of cyclin D1 and survivin expression through Wnt/β-catenin signaling pathway. Cancer Invest., 2009, 27(6), 604-612. doi: 10.1080/07357900802337191 PMID: 19440933
  79. Ramos, S. Cancer chemoprevention and chemotherapy: Dietary polyphenols and signalling pathways. Mol. Nutr. Food Res., 2008, 52(5), 507-526. doi: 10.1002/mnfr.200700326 PMID: 18435439
  80. Gee, J.M.; Hara, H.; Johnson, I.T. Suppression of intestinal crypt cell proliferation and aberrant crypt foci by dietary quercetin in rats. Nutr. Cancer, 2002, 43(2), 193-201. doi: 10.1207/S15327914NC432_10 PMID: 12599752
  81. Park, C.H.; Chang, J.Y.; Hahm, E.R.; Park, S.; Kim, H.K.; Yang, C.H. Quercetin, a potent inhibitor against β-catenin/Tcf signaling in SW480 colon cancer cells. Biochem. Biophys. Res. Commun., 2005, 328(1), 227-234. doi: 10.1016/j.bbrc.2004.12.151 PMID: 15670774
  82. Lu, L.; Ma, X.; Zheng, J.; Li, L.; Yang, W.; Kong, Y.; Wang, J. Quercetin for myocardial ischemia reperfusion injury. Medicine, 2020, 99(26), e20856. doi: 10.1097/MD.0000000000020856 PMID: 32590785
  83. Li, W.; Du, B.; Wang, T.; Wang, S.; Zhang, J. Kaempferol induces apoptosis in human HCT116 colon cancer cells via the ataxia-telangiectasia mutated-p53 pathway with the involvement of p53 upregulated modulator of apoptosis. Chem. Biol. Interact., 2009, 177(2), 121-127. doi: 10.1016/j.cbi.2008.10.048 PMID: 19028473
  84. Lee, J.H.; Johnson, J.V.; Talcott, S.T. Identification of ellagic acid conjugates and other polyphenolics in muscadine grapes by HPLC-ESI-MS. J. Agric. Food Chem., 2005, 53(15), 6003-6010. doi: 10.1021/jf050468r PMID: 16028988
  85. Kim, M.E.; Ha, T.K.; Yoon, J.H.; Lee, J.S. Myricetin induces cell death of human colon cancer cells via BAX/BCL2-dependent pathway. Anticancer Res., 2014, 34(2), 701-706. PMID: 24511002
  86. Adhami, V.M.; Syed, D.N.; Khan, N.; Mukhtar, H. Dietary flavonoid fisetin: A novel dual inhibitor of PI3K/Akt and mTOR for prostate cancer management. Biochem. Pharmacol., 2012, 84(10), 1277-1281. doi: 10.1016/j.bcp.2012.07.012 PMID: 22842629
  87. Lu, X.; Jung, J.; Cho, H.J.; Lim, D.Y.; Lee, H.S.; Chun, H.S.; Kwon, D.Y.; Park, J.H. Fisetin inhibits the activities of cyclin-dependent kinases leading to cell cycle arrest in HT-29 human colon cancer cells. J. Nutr., 2005, 135(12), 2884-2890. doi: 10.1093/jn/135.12.2884 PMID: 16317137
  88. Liu, L.H.; Shi, R.J.; Chen, Z.C. Paeonol exerts anti-tumor activity against colorectal cancer cells by inducing G0/G1 phase arrest and cell apoptosis via inhibiting the Wnt/β-catenin signaling pathway. Int. J. Mol. Med., 2020, 46(2), 675-684. doi: 10.3892/ijmm.2020.4629 PMID: 32626954
  89. Ramos, A.A.; Marques, F.; Fernandes-Ferreira, M.; Pereira-Wilson, C. Water extracts of tree Hypericum sps. protect DNA from oxidative and alkylating damage and enhance DNA repair in colon cells. Food Chem. Toxicol., 2013, 51, 80-86. doi: 10.1016/j.fct.2012.09.014 PMID: 23000446
  90. Alonso-Castro, A.J.; Domínguez, F.; García-Carrancá, A. Rutin exerts antitumor effects on nude mice bearing SW480 tumor. Arch. Med. Res., 2013, 44(5), 346-351. doi: 10.1016/j.arcmed.2013.06.002 PMID: 23867787
  91. Li, S.; Li, H.; Xu, X.; Saw, P.E.; Zhang, L. Nanocarrier-mediated antioxidant delivery for liver diseases. Theranostics, 2020, 10(3), 1262-1280. doi: 10.7150/thno.38834 PMID: 31938064
  92. Hogan, F.S.; Krishnegowda, N.K.; Mikhailova, M.; Kahlenberg, M.S. Flavonoid, silibinin, inhibits proliferation and promotes cell-cycle arrest of human colon cancer. J. Surg. Res., 2007, 143(1), 58-65. doi: 10.1016/j.jss.2007.03.080 PMID: 17950073
  93. Agarwal, C.; Singh, R.P.; Dhanalakshmi, S.; Tyagi, A.K.; Tecklenburg, M.; Sclafani, R.A.; Agarwal, R. Silibinin upregulates the expression of cyclin-dependent kinase inhibitors and causes cell cycle arrest and apoptosis in human colon carcinoma HT-29 cells. Oncogene, 2003, 22(51), 8271-8282. doi: 10.1038/sj.onc.1207158 PMID: 14614451
  94. Singh, R.P.; Gu, M.; Agarwal, R. Silibinin inhibits colorectal cancer growth by inhibiting tumor cell proliferation and angiogenesis. Cancer Res., 2008, 68(6), 2043-2050. doi: 10.1158/0008-5472.CAN-07-6247 PMID: 18339887
  95. Kauntz, H.; Bousserouel, S.; Gossé, F.; Raul, F. Silibinin triggers apoptotic signaling pathways and autophagic survival response in human colon adenocarcinoma cells and their derived metastatic cells. Apoptosis, 2011, 16(10), 1042-1053. doi: 10.1007/s10495-011-0631-z PMID: 21779837
  96. Velmurugan, B.; Gangar, S.C.; Kaur, M.; Tyagi, A.; Deep, G.; Agarwal, R. Silibinin exerts sustained growth suppressive effect against human colon carcinoma SW480 xenograft by targeting multiple signaling molecules. Pharm. Res., 2010, 27(10), 2085-2097. doi: 10.1007/s11095-010-0207-6 PMID: 20628792
  97. Lin, C.M.; Chen, Y.H.; Ma, H.P.; Wang, B.W.; Chiu, J.H.; Chua, S.K.; Ong, J.R.; Shyu, K.G. Silibinin inhibits the invasion of IL-6-stimulated colon cancer cells via selective JNK/AP-1/MMP-2 modulation in vitro. J. Agric. Food Chem., 2012, 60(51), 12451-12457. doi: 10.1021/jf300964f PMID: 23210512
  98. Kauntz, H.; Bousserouel, S.; Gosse, F.; Marescaux, J.; Raul, F. Silibinin, a natural flavonoid, modulates the early expression of chemoprevention biomarkers in a preclinical model of colon carcinogenesis. Int. J. Oncol., 2012, 41(3), 849-854. doi: 10.3892/ijo.2012.1526 PMID: 22735354
  99. Kumar, S; Pandey, AK Chemistry and biological activities of flavonoids: An overview. Sci. World J., 2013, 2013, 162750. doi: 10.1155/2013/162750
  100. Attoub, S.; Hassan, A.H.; Vanhoecke, B.; Iratni, R.; Takahashi, T.; Gaben, A.M.; Bracke, M.; Awad, S.; John, A.; Kamalboor, H.A.; Al Sultan, M.A.; Arafat, K.; Gespach, C.; Petroianu, G. Inhibition of cell survival, invasion, tumor growth and histone deacetylase activity by the dietary flavonoid luteolin in human epithelioid cancer cells. Eur. J. Pharmacol., 2011, 651(1-3), 18-25. doi: 10.1016/j.ejphar.2010.10.063 PMID: 21074525
  101. Lim, D.Y.; Cho, H.J.; Kim, J.; Nho, C.W.; Lee, K.W.; Park, J.H.Y. Luteolin decreases IGF-II production and downregulates insulin-like growth factor-I receptor signaling in HT-29 human colon cancer cells. BMC Gastroenterol., 2012, 12(1), 9. doi: 10.1186/1471-230X-12-9 PMID: 22269172
  102. Pandurangan, A.K. Potential targets for prevention of colorectal cancer: A focus on PI3K/Akt/mTOR and Wnt pathways. Asian Pac. J. Cancer Prev., 2013, 14(4), 2201-2205. doi: 10.7314/APJCP.2013.14.4.2201 PMID: 23725112
  103. Wang, L.M.; Xie, K.P.; Huo, H.N.; Shang, F.; Zou, W.; Xie, M.J. Luteolin inhibits proliferation induced by IGF-1 pathway dependent ERα in human breast cancer MCF-7 cells. Asian Pac. J. Cancer Prev., 2012, 13(4), 1431-1437. doi: 10.7314/APJCP.2012.13.4.1431 PMID: 22799344
  104. Chen, D.; Wan, S.B.; Yang, H.; Yuan, J.; Chan, T.H.; Dou, Q.P. EGCG, green tea polyphenols and their synthetic analogs and prodrugs for human cancer prevention and treatment. Adv. Clin. Chem., 2011, 53, 155-177. doi: 10.1016/B978-0-12-385855-9.00007-2 PMID: 21404918
  105. Shimizu, M.; Deguchi, A.; Hara, Y.; Moriwaki, H.; Weinstein, I.B. EGCG inhibits activation of the insulin-like growth factor-1 receptor in human colon cancer cells. Biochem. Biophys. Res. Commun., 2005, 334(3), 947-953. doi: 10.1016/j.bbrc.2005.06.182 PMID: 16053920
  106. Du, G.J.; Zhang, Z.; Wen, X.D.; Yu, C.; Calway, T.; Yuan, C.S.; Wang, C.Z. Epigallocatechin gallate (EGCG) is the most effective cancer chemopreventive polyphenol in green tea. Nutrients, 2012, 4(11), 1679-1691. doi: 10.3390/nu4111679 PMID: 23201840
  107. Berger, S.J.; Gupta, S.; Belfi, C.A.; Gosky, D.M.; Mukhtar, H. Green tea constituent (--)-epigallocatechin-3-gallate inhibits topoisomerase I activity in human colon carcinoma cells. Biochem. Biophys. Res. Commun., 2001, 288(1), 101-105. doi: 10.1006/bbrc.2001.5736 PMID: 11594758
  108. Chen, C.; Shen, G.; Hebbar, V.; Hu, R.; Owuor, E.D.; Kong, A.N.T. Epigallocatechin-3-gallate-induced stress signals in HT-29 human colon adenocarcinoma cells. Carcinogenesis, 2003, 24(8), 1369-1378. doi: 10.1093/carcin/bgg091 PMID: 12819184
  109. Adachi, S.; Nagao, T.; To, S.; Joe, A.K.; Shimizu, M.; Matsushima-Nishiwaki, R.; Kozawa, O.; Moriwaki, H.; Maxfield, F.R.; Weinstein, I.B. (-)-Epigallocatechin gallate causes internalization of the epidermal growth factor receptor in human colon cancer cells. Carcinogenesis, 2008, 29(10), 1986-1993. doi: 10.1093/carcin/bgn128 PMID: 18586691
  110. Howell, A.B.; Reed, J.D.; Krueger, C.G.; Winterbottom, R.; Cunningham, D.G.; Leahy, M. A-type cranberry proanthocyanidins and uropathogenic bacterial anti-adhesion activity. Phytochemistry, 2005, 66(18), 2281-2291. doi: 10.1016/j.phytochem.2005.05.022 PMID: 16055161
  111. Gorlach, S.; Wagner, W.; Podsędek, A.; Szewczyk, K.; Koziołkiewicz, M.; Dastych, J. Procyanidins from Japanese quince (Chaenomeles japonica) fruit induce apoptosis in human colon cancer Caco-2 cells in a degree of polymerization-dependent manner. Nutr. Cancer, 2011, 63(8), 1348-1360. doi: 10.1080/01635581.2011.608480 PMID: 22026386
  112. Lizárraga, D.; Touriño, S.; Reyes-Zurita, F.J.; de Kok, T.M.; van Delft, J.H.; Maas, L.M.; Briedé, J.J.; Centelles, J.J.; Torres, J.L.; Cascante, M. Witch hazel (Hamamelis virginiana) fractions and the importance of gallate moieties--electron transfer capacities in their antitumoral properties. J. Agric. Food Chem., 2008, 56(24), 11675-11682. doi: 10.1021/jf802345x PMID: 19035659
  113. Engelbrecht, A.M.; Mattheyse, M.; Ellis, B.; Loos, B.; Thomas, M.; Smith, R.; Peters, S.; Smith, C.; Myburgh, K. Proanthocyanidin from grape seeds inactivates the PI3-kinase/PKB pathway and induces apoptosis in a colon cancer cell line. Cancer Lett., 2007, 258(1), 144-153. doi: 10.1016/j.canlet.2007.08.020 PMID: 17923279
  114. Maldonado, M.E.; Bousserouel, S.; Gossé, F.; Lobstein, A.; Raul, F. Implication of NF-κB and p53 in the expression of TRAIL-death receptors and apoptosis by apple procyanidins in human metastatic SW620 cells. Biomédica, 2010, 30(4), 577-586. doi: 10.7705/biomedica.v30i4.296 PMID: 21713362
  115. García-Lafuente, A.; Guillamón, E.; Villares, A.; Rostagno, M.A.; Martínez, J.A. Flavonoids as anti-inflammatory agents: Implications in cancer and cardiovascular disease. Inflamm. Res., 2009, 58(9), 537-552. doi: 10.1007/s00011-009-0037-3 PMID: 19381780
  116. Yang, C.S.; Landau, J.M.; Huang, M.T.; Newmark, H.L. Inhibition of carcinogenesis by dietary polyphenolic compounds. Annu. Rev. Nutr., 2001, 21(1), 381-406. doi: 10.1146/annurev.nutr.21.1.381 PMID: 11375442
  117. Johnson, I.T.; Williamson, G.; Musk, S.R.R. Anticarcinogenic factors in plant foods: A new class of nutrients? Nutr. Res. Rev., 1994, 7(1), 175-204. doi: 10.1079/NRR19940011 PMID: 19094297
  118. Kamaraj, S.; Vinodhkumar, R.; Anandakumar, P.; Jagan, S.; Ramakrishnan, G.; Devaki, T. The effects of quercetin on antioxidant status and tumor markers in the lung and serum of mice treated with benzo(a)pyrene. Biol. Pharm. Bull., 2007, 30(12), 2268-2273. doi: 10.1248/bpb.30.2268 PMID: 18057710
  119. Ryyti, R.; Hämäläinen, M.; Peltola, R.; Moilanen, E. Beneficial effects of lingonberry (Vaccinium vitis-idaea L.) supplementation on metabolic and inflammatory adverse effects induced by high-fat diet in a mouse model of obesity. PLoS One, 2020, 15(5), e0232605. doi: 10.1371/journal.pone.0232605 PMID: 32379797
  120. Shiomi, K.; Kuriyama, I.; Yoshida, H.; Mizushina, Y.; Mizushina, Y. Inhibitory effects of myricetin on mammalian DNA polymerase, topoisomerase and human cancer cell proliferation. Food Chem., 2013, 139(1-4), 910-918. doi: 10.1016/j.foodchem.2013.01.009 PMID: 23561189
  121. Lim, D.Y.; Park, J.H.Y. Induction of p53 contributes to apoptosis of HCT-116 human colon cancer cells induced by the dietary compound fisetin. Am. J. Physiol. Gastrointest. Liver Physiol., 2009, 296(5), G1060-G1068. doi: 10.1152/ajpgi.90490.2008 PMID: 19264955
  122. Wargovich, M.J.; Jimenez, A.; McKee, K.; Steele, V.E.; Velasco, M.; Woods, J.; Price, R.; Gray, K.; Kelloff, G.J. Efficacy of potential chemopreventive agents on rat colon aberrant crypt formation and progression. Carcinogenesis, 2000, 21(6), 1149-1155. doi: 10.1093/carcin/21.6.1149 PMID: 10837003
  123. Ravichandran, K.; Velmurugan, B.; Gu, M.; Singh, R.P.; Agarwal, R. Inhibitory effect of silibinin against azoxymethane-induced colon tumorigenesis in A/J mice. Clin. Cancer Res., 2010, 16(18), 4595-4606. doi: 10.1158/1078-0432.CCR-10-1213 PMID: 20823143
  124. Ashokkumar, P.; Sudhandiran, G. Protective role of luteolin on the status of lipid peroxidation and antioxidant defense against azoxymethane-induced experimental colon carcinogenesis. Biomed. Pharmacother., 2008, 62(9), 590-597. doi: 10.1016/j.biopha.2008.06.031 PMID: 18692983
  125. Chiou, Y.S.; Ma, N.J.L.; Sang, S.; Ho, C.T.; Wang, Y.J.; Pan, M.H. Peracetylated (-)-epigallocatechin-3-gallate (AcEGCG) potently suppresses dextran sulfate sodium-induced colitis and colon tumorigenesis in mice. J. Agric. Food Chem., 2012, 60(13), 3441-3451. doi: 10.1021/jf300441p PMID: 22409325
  126. Gossé, F.; Guyot, S.; Roussi, S.; Lobstein, A.; Fischer, B.; Seiler, N.; Raul, F. Chemopreventive properties of apple procyanidins on human colon cancer-derived metastatic SW620 cells and in a rat model of colon carcinogenesis. Carcinogenesis, 2005, 26(7), 1291-1295. doi: 10.1093/carcin/bgi074 PMID: 15790589
  127. Nabors, L.B.; Suswam, E.; Huang, Y.; Yang, X.; Johnson, M.J.; King, P.H. Tumor necrosis factor α induces angiogenic factor upregulation in malignant glioma cells: A role for RNA stabilization and HuR. Cancer Res., 2003, 63(14), 4181-4187. PMID: 12874024
  128. Suzukawa, K.; Weber, T.J.; Colburn, N.H. AP-1, NF-kappa-B, and ERK activation thresholds for promotion of neoplastic transformation in the mouse epidermal JB6 model. Environ. Health Perspect., 2002, 110(9), 865-870. doi: 10.1289/ehp.02110865 PMID: 12204819
  129. Balkwill, F. TNF-α in promotion and progression of cancer. Cancer Metastasis Rev., 2006, 25(3), 409-416. doi: 10.1007/s10555-006-9005-3 PMID: 16951987
  130. Hassan, M; Watari, H; AbuAlmaaty, A; Ohba, Y; Sakuragi, N Apoptosis and molecular targeting therapy in cancer. Biomed. Res. Int., 2014, 2014, 150845. doi: 10.1155/2014/150845
  131. Zhou, Y.; Zheng, J.; Li, Y.; Xu, D.P.; Li, S.; Chen, Y.M.; Li, H.B. Natural polyphenols for prevention and treatment of cancer. Nutrients, 2016, 8(8), 515. doi: 10.3390/nu8080515 PMID: 27556486
  132. Hegde, M.M.; Lakshman, K. Role of polyphenols and flavonoids as anti-cancer drug candidates: A review. Pharmacognosy Res., 2023, 15(2), 206-216. doi: 10.5530/pres.15.2.022
  133. Abotaleb, M.; Liskova, A.; Kubatka, P.; Büsselberg, D. Therapeutic potential of plant phenolic acids in the treatment of cancer. Biomolecules, 2020, 10(2), 221. doi: 10.3390/biom10020221 PMID: 32028623
  134. Montané, X.; Kowalczyk, O.; Reig-Vano, B.; Bajek, A.; Roszkowski, K.; Tomczyk, R.; Pawliszak, W.; Giamberini, M.; Mocek-Płóciniak, A.; Tylkowski, B. Current perspectives of the applications of polyphenols and flavonoids in cancer therapy. Molecules, 2020, 25(15), 3342. doi: 10.3390/molecules25153342 PMID: 32717865
  135. Bhosale, P.B.; Ha, S.E.; Vetrivel, P.; Kim, H.H.; Kim, S.M.; Kim, G.S. Functions of polyphenols and its anticancer properties in biomedical research: A narrative review. Transl. Cancer Res., 2020, 9(12), 7619-7631. doi: 10.21037/tcr-20-2359 PMID: 35117361

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers