Natural Polyphenols in Cancer Management: Promising Role, Mechanisms, and Chemistry
- Authors: Upadhyay P.1, Singh S.2, Vishwakarma V.3
-
Affiliations:
- Department of Pharmaceutical Science, Institute of Pharmaceutical Research, GLA University
- Department of Pharmacy, Institute of Pharmaceutical Research,, GLA University
- Department of Pharmacology,, All India Institute of Medical Sciences,
- Issue: Vol 25, No 6 (2024)
- Pages: 694-712
- Section: Biotechnology
- URL: https://rjpbr.com/1389-2010/article/view/644866
- DOI: https://doi.org/10.2174/1389201024666230822090318
- ID: 644866
Cite item
Full Text
Abstract
Background:Although cancers emerge rapidly and cancer cells divide aggressively, which affects our vital organ systems. Recently, cancer treatments are targeted immune systems mediating intrinsic cellular mechanisms. Natural efficacious polyphenols have been exhibited to help prevent most cancers and reverse the progression of cancers.
Methods:Many resources have been used to know the promising role of polyphenols in preventing and treating cancers. The electronic databases include Science Direct, Google, Google Scholar, PubMed, and Scopus. The search was limited to the English language only.
Results:Polyphenols have been reported as anti-metastatic agents that explore the promising role of these compounds in cancer prevention. Such agents act through many signaling pathways, including PI3K/Akt and TNF-induced signaling pathways. The chemical modifications of polyphenols and the structure-activity relationships (SARs) between polyphenols and anticancer activities have also been discussed.
Conclusion:Many research papers were reported to explain the anti-cancer potential of Polyphenols, The SARs between polyphenols and anti-cancer activities, which correlate structures of polyphenols with significant chemotherapeutic action. The mechanism of anti-cancer potential is to be added for searching for new anti-cancer natural products.
About the authors
Prabhat Upadhyay
Department of Pharmaceutical Science, Institute of Pharmaceutical Research, GLA University
Author for correspondence.
Email: info@benthamscience.net
Sonia Singh
Department of Pharmacy, Institute of Pharmaceutical Research,, GLA University
Email: info@benthamscience.net
Vishal Vishwakarma
Department of Pharmacology,, All India Institute of Medical Sciences,
Email: info@benthamscience.net
References
- Johung, T.; Monje, M. Neuronal activity in the glioma microenvironment. Curr. Opin. Neurobiol., 2017, 47, 156-161. doi: 10.1016/j.conb.2017.10.009 PMID: 29096244
- Venkatesh, H.S.; Tam, L.T.; Woo, P.J.; Lennon, J.; Nagaraja, S.; Gillespie, S.M.; Ni, J.; Duveau, D.Y.; Morris, P.J.; Zhao, J.J.; Thomas, C.J.; Monje, M. Targeting neuronal activity-regulated neuroligin-3 dependency in high-grade glioma. Nature, 2017, 549(7673), 533-537. doi: 10.1038/nature24014 PMID: 28959975
- Batiha, G.E.S.; Beshbishy, A.M.; Ikram, M.; Mulla, Z.S.; El-Hack, M.E.A.; Taha, A.E.; Algammal, A.M.; Elewa, Y.H.A. The pharmacological activity, biochemical properties, and pharmacokinetics of the major natural polyphenolic flavonoid: Quercetin. Foods, 2020, 9(3), 374. doi: 10.3390/foods9030374 PMID: 32210182
- Caselli, A.; Cirri, P.; Santi, A.; Paoli, P. Morin: A promising natural drug. Curr. Med. Chem., 2016, 23(8), 774-791. doi: 10.2174/0929867323666160106150821 PMID: 26018232
- Scalbert, A.; Manach, C.; Morand, C.; Rémésy, C.; Jiménez, L. Dietary polyphenols and the prevention of diseases. Crit. Rev. Food Sci. Nutr., 2005, 45(4), 287-306. doi: 10.1080/1040869059096 PMID: 16047496
- Thun, M.J.; DeLancey, J.O.; Center, M.M.; Jemal, A.; Ward, E.M. The global burden of cancer: Priorities for prevention. Carcinogenesis, 2010, 31(1), 100-110. doi: 10.1093/carcin/bgp263 PMID: 19934210
- Averilla, J.N.; Oh, J.; Kim, H.J.; Kim, J.S.; Kim, J.S. Potential health benefits of phenolic compounds in grape processing by-products. Food Sci. Biotechnol., 2019, 28(6), 1607-1615. doi: 10.1007/s10068-019-00628-2 PMID: 31807333
- Gupta, A.; Kagliwal, L.D.; Singhal, R.S. Biotransformation of polyphenols for improved bioavailability and processing stability. Adv. Food Nutr. Res., 2013, 69, 183-217. doi: 10.1016/B978-0-12-410540-9.00004-1 PMID: 23522797
- Syed, D.N.; Khan, N.; Afaq, F.; Mukhtar, H. Chemoprevention of prostate cancer through dietary agents: Progress and promise. Cancer Epidemiol. Biomarkers Prev., 2007, 16(11), 2193-2203. doi: 10.1158/1055-9965.EPI-06-0942 PMID: 18006906
- Zheng, P.P.; Li, J.; Kros, J.M. Breakthroughs in modern cancer therapy and elusive cardiotoxicity: Critical research-practice gaps, challenges, and insights. Med. Res. Rev., 2018, 38(1), 325-376. doi: 10.1002/med.21463 PMID: 28862319
- Xiang, J.; Zhang, Y.; Liu, X.; Zhou, Q.; Piao, Y.; Shao, S.; Tang, J.; Zhou, Z.; Xie, T.; Shen, Y. Natural polyphenols-platinum nanocomplexes stimulate immune system for combination cancer therapy. Nano Lett., 2022, 22(13), 5615-5625. doi: 10.1021/acs.nanolett.2c02161 PMID: 35749341
- Lopus, M. Nano-ayurvedic medicine and its potential in cancer treatment. J. Integr. Med., 2023, 21(2), 117-119. doi: 10.1016/j.joim.2022.12.001 PMID: 36610811
- Chimento, A.; De Luca, A.; DAmico, M.; De Amicis, F.; Pezzi, V. The involvement of natural polyphenols in molecular mechanisms inducing apoptosis in tumor cells: A promising adjuvant in cancer therapy. Int. J. Mol. Sci., 2023, 24(2), 1680. doi: 10.3390/ijms24021680 PMID: 36675194
- Swallah, M.S.; Sun, H.; Affoh, R.; Fu, H.; Yu, H. Antioxidant potential overviews of secondary metabolites (polyphenols) in fruits. Int. J. Food Sci., 2020, 2020, 1-8. doi: 10.1155/2020/9081686 PMID: 32455130
- Brglez Mojzer, E.; Knez Hrnčič, M.; kerget, M.; Knez, .; Bren, U. Polyphenols: Extraction methods, antioxidative action, bioavailability and anticarcinogenic effects. Molecules, 2016, 21(7), 901. doi: 10.3390/molecules21070901 PMID: 27409600
- Pandey, K.B.; Rizvi, S.I. Plant polyphenols as dietary antioxidants in human health and disease. Oxid. Med. Cell. Longev., 2009, 2(5), 270-278. doi: 10.4161/oxim.2.5.9498 PMID: 20716914
- Sorrenti, V.; Fortinguerra, S.; Caudullo, G.; Buriani, A. Deciphering the role of polyphenols in sports performance: From nutritional genomics to the gut microbiota toward phytonutritional epigenomics. Nutrients, 2020, 12(5), 1265. doi: 10.3390/nu12051265 PMID: 32365576
- Skalicka-Woźniak, K.; Orhan, I.E.; Cordell, G.A.; Nabavi, S.M.; Budzyńska, B. Implication of coumarins towards central nervous system disorders. Pharmacol. Res., 2016, 103, 188-203. doi: 10.1016/j.phrs.2015.11.023 PMID: 26657416
- Sansone, R.; Rodriguez-Mateos, A.; Heuel, J.; Falk, D.; Schuler, D.; Wagstaff, R.; Kuhnle, G.G.C.; Spencer, J.P.E.; Schroeter, H.; Merx, M.W.; Kelm, M.; Heiss, C. Cocoa flavanol intake improves endothelial function and framingham risk score in healthy men and women: A randomised, controlled, double-masked trial: The Flaviola Health Study. Br. J. Nutr., 2015, 114(8), 1246-1255. doi: 10.1017/S0007114515002822 PMID: 26348767
- Amawi, H.; Ashby, C., Jr; Samuel, T.; Peraman, R.; Tiwari, A. Polyphenolic nutrients in cancer chemoprevention and metastasis: Role of the epithelial-to-mesenchymal (EMT) pathway. Nutrients, 2017, 9(8), 911. doi: 10.3390/nu9080911 PMID: 28825675
- Mashhadi Akbar Boojar, M. An overview of the cellular mechanisms of flavonoids radioprotective effects. Adv. Pharm. Bull., 2019, 10(1), 13-19. doi: 10.15171/apb.2020.002 PMID: 32002357
- Metsämuuronen, S.; Sirén, H. Bioactive phenolic compounds, metabolism and properties: A review on valuable chemical compounds in Scots pine and Norway spruce. Phytochem. Rev., 2019, 18(3), 623-664. doi: 10.1007/s11101-019-09630-2
- Waffo-Téguo, P.; Hawthorne, M.E.; Cuendet, M.; Mérillon, J.M.; Kinghorn, A.D.; Pezzuto, J.M.; Mehta, R.G. Potential cancer-chemopreventive activities of wine stilbenoids and flavans extracted from grape (Vitis vinifera) cell cultures. Nutr. Cancer, 2001, 40(2), 173-179. doi: 10.1207/S15327914NC402_14 PMID: 11962253
- Vitale, M.; Masulli, M.; Rivellese, A.A.; Bonora, E.; Cappellini, F.; Nicolucci, A.; Squatrito, S.; Antenucci, D.; Barrea, A.; Bianchi, C.; Bianchini, F.; Fontana, L.; Fornengo, P.; Giorgino, F.; Gnasso, A.; Mannucci, E.; Mazzotti, A.; Nappo, R.; Palena, A.P.; Pata, P.; Perriello, G.; Potenziani, S.; Radin, R.; Ricci, L.; Romeo, F.; Santini, C.; Scarponi, M.; Serra, R.; Timi, A.; Turco, A.A.; Vedovato, M.; Zavaroni, D.; Grioni, S.; Riccardi, G.; Vaccaro, O. Dietary intake and major food sources of polyphenols in people with type 2 diabetes: The TOSCA.IT Study. Eur. J. Nutr., 2018, 57(2), 679-688. doi: 10.1007/s00394-016-1355-1 PMID: 28004268
- Wang, L.; Sun, R.; Zhang, Q.; Luo, Q.; Zeng, S.; Li, X.; Gong, X.; Li, Y.; Lu, L.; Hu, M.; Liu, Z. An update on polyphenol disposition via coupled metabolic pathways. Expert Opin. Drug Metab. Toxicol., 2019, 15(2), 151-165. doi: 10.1080/17425255.2019.1559815 PMID: 30583703
- Murota, K.; Hotta, A.; Ido, H.; Kawai, Y.; Moon, J.H.; Sekido, K.; Hayashi, H.; Inakuma, T.; Terao, J. Antioxidant capacity of albumin-bound quercetin metabolites after onion consumption in humans. J. Med. Invest., 2007, 54(3,4), 370-374. doi: 10.2152/jmi.54.370 PMID: 17878690
- De Palma, M.; Hanahan, D. The biology of personalized cancer medicine: Facing individual complexities underlying hallmark capabilities. Mol. Oncol., 2012, 6(2), 111-127. doi: 10.1016/j.molonc.2012.01.011 PMID: 22360993
- Amararathna, M.; Johnston, M.; Rupasinghe, H. Plant polyphenols as chemopreventive agents for lung cancer. Int. J. Mol. Sci., 2016, 17(8), 1352. doi: 10.3390/ijms17081352 PMID: 27548149
- Society, A.C. Cancer facts & figures 2017. J. Consum. Health Internet, 2012, 16, 366-367.
- Turrini, E.; Ferruzzi, L.; Fimognari, C. Potential effects of pomegranate polyphenols in cancer prevention and therapy. Oxid. Med. Cell. Longev., 2015, 2015, 1-19. doi: 10.1155/2015/938475 PMID: 26180600
- Hadi, S.M.; Asad, S.F.; Singh, S.; Ahmad, A. Putative mechanism for anticancer and apoptosis-inducing properties of plant-derived polyphenolic compounds. IUBMB Life, 2000, 50(3), 167-171. doi: 10.1080/152165400300001471 PMID: 11142343
- Yan Xu; Zhang J.; Li Xiong; Lei Zhang; Dong Sun, Hui Liu Green tea polyphenols inhibit cognitive impairment induced by chronic cerebral hypoperfusion via modulating oxidative stress. J. Nutr. Biochem., 2010, 21(8), 741-748. doi: 10.1016/j.jnutbio.2009.05.002 PMID: 19615878
- Harper, C.E.; Patel, B.B.; Wang, J.; Eltoum, I.A.; Lamartiniere, C.A. Epigallocatechin-3-gallate suppresses early stage, but not late stage prostate cancer in TRAMP mice: Mechanisms of action. Prostate, 2007, 67(14), 1576-1589. doi: 10.1002/pros.20643 PMID: 17705241
- Araújo, J.R.; Gonçalves, P.; Martel, F. Chemopreventive effect of dietary polyphenols in colorectal cancer cell lines. Nutr. Res., 2011, 31(2), 77-87. doi: 10.1016/j.nutres.2011.01.006 PMID: 21419311
- Howells, L.M.; Mitra, A.; Manson, M.M. Comparison of oxaliplatin- and curcumin-mediated antiproliferative effects in colorectal cell lines. Int. J. Cancer, 2007, 121(1), 175-183. doi: 10.1002/ijc.22645 PMID: 17330230
- Irazabal, M.V.; Torres, V.E. Reactive oxygen species and redox signaling in chronic kidney disease. Cells, 2020, 9(6), 1342. doi: 10.3390/cells9061342 PMID: 32481548
- Balasubramanian, S.; Zhu, L.; Eckert, R.L. Apigenin inhibition of involucrin gene expression is associated with a specific reduction in phosphorylation of protein kinase Cdelta Tyr311. J. Biol. Chem., 2006, 281(47), 36162-36172. doi: 10.1074/jbc.M605368200 PMID: 16982614
- Cháirez-Ramírez, M.H.; de la Cruz-López, K.G.; García-Carrancá, A. Polyphenols as antitumor agents targeting key players in cancer-driving signaling pathways. Front. Pharmacol., 2021, 12, 710304. doi: 10.3389/fphar.2021.710304 PMID: 34744708
- Wee, P.; Wang, Z. Epidermal growth factor receptor cell proliferation signaling pathways. Cancers, 2017, 9(5), 52. doi: 10.3390/cancers9050052 PMID: 28513565
- Lee, S.; Heinrich, E.L.; Lu, J.; Lee, W.; Choi, A.H.; Luu, C.; Chung, V.; Fakih, M.; Kim, J. Epidermal growth factor receptor signaling to the mitogen activated protein kinase pathway bypasses ras in pancreatic cancer cells. Pancreas, 2016, 45(2), 286-292. doi: 10.1097/MPA.0000000000000379 PMID: 26262587
- Aggarwal, V.; Tuli, H.; Varol, A.; Thakral, F.; Yerer, M.; Sak, K.; Varol, M.; Jain, A.; Khan, M.; Sethi, G. Role of reactive oxygen species in cancer progression: Molecular mechanisms and recent advancements. Biomolecules, 2019, 9(11), 735. doi: 10.3390/biom9110735 PMID: 31766246
- Mokra, D.; Joskova, M.; Mokry, J. Therapeutic effects of green tea polyphenol (‒)-Epigallocatechin-3-Gallate (EGCG) in relation to molecular pathways controlling inflammation, oxidative stress, and apoptosis. Int. J. Mol. Sci., 2022, 24(1), 340. doi: 10.3390/ijms24010340 PMID: 36613784
- Wang, X.; Lin, Y. Tumor necrosis factor and cancer, buddies or foes? Acta Pharmacol. Sin., 2008, 29(11), 1275-1288. doi: 10.1111/j.1745-7254.2008.00889.x PMID: 18954521
- Long, J.; Guan, P.; Hu, X.; Yang, L.; He, L.; Lin, Q.; Luo, F.; Li, J.; He, X.; Du, Z.; Li, T. Natural polyphenols as targeted modulators in colon cancer: Molecular mechanisms and applications. Front. Immunol., 2021, 12, 635484. doi: 10.3389/fimmu.2021.635484 PMID: 33664749
- Lousa, I.; Reis, F.; Santos-Silva, A.; Belo, L. The signaling pathway of TNF receptors: Linking animal models of renal disease to human CKD. Int. J. Mol. Sci., 2022, 23(6), 3284. doi: 10.3390/ijms23063284 PMID: 35328704
- Peng, F.; Liao, M.; Qin, R.; Zhu, S.; Peng, C.; Fu, L.; Chen, Y.; Han, B. Regulated cell death (RCD) in cancer: Key pathways and targeted therapies. Signal Transduct. Target. Ther., 2022, 7(1), 286. doi: 10.1038/s41392-022-01110-y PMID: 35963853
- Porrini, M.; Riso, P.; Brusamolino, A.; Berti, C.; Guarnieri, S.; Visioli, F. Daily intake of a formulated tomato drink affects carotenoid plasma and lymphocyte concentrations and improves cellular antioxidant protection. Br. J. Nutr., 2005, 93(1), 93-99. doi: 10.1079/BJN20041315 PMID: 15705230
- Selvendiran, K.; Koga, H.; Ueno, T.; Yoshida, T.; Maeyama, M.; Torimura, T.; Yano, H.; Kojiro, M.; Sata, M. Luteolin promotes degradation in signal transducer and activator of transcription 3 in human hepatoma cells: An implication for the antitumor potential of flavonoids. Cancer Res., 2006, 66(9), 4826-4834. doi: 10.1158/0008-5472.CAN-05-4062 PMID: 16651438
- Lee, H.J.; Wang, C.J.; Kuo, H.C.; Chou, F.P.; Jean, L.F.; Tseng, T.H. Induction apoptosis of luteolin in human hepatoma HepG2 cells involving mitochondria translocation of Bax/Bak and activation of JNK. Toxicol. Appl. Pharmacol., 2005, 203(2), 124-131. doi: 10.1016/j.taap.2004.08.004 PMID: 15710173
- Gong, L.; Li, Y.; Nedeljkovic-Kurepa, A.; Sarkar, F.H. Inactivation of NF-κB by genistein is mediated via Akt signaling pathway in breast cancer cells. Oncogene, 2003, 22(30), 4702-4709. doi: 10.1038/sj.onc.1206583 PMID: 12879015
- Atten, M.J.; Godoy-Romero, E.; Attar, B.M.; Milson, T.; Zopel, M.; Holian, O. Resveratrol regulates cellular PKC α and δ to inhibit growth and induce apoptosis in gastric cancer cells. Invest. New Drugs, 2005, 23(2), 111-119. doi: 10.1007/s10637-005-5855-8 PMID: 15744586
- Wenzel, E.; Somoza, V. Metabolism and bioavailability oftrans-resveratrol. Mol. Nutr. Food Res., 2005, 49(5), 472-481. doi: 10.1002/mnfr.200500010 PMID: 15779070
- Ahmad, K.A.; Harris, N.H.; Johnson, A.D.; Lindvall, H.C.N.; Wang, G.; Ahmed, K. Protein kinase CK2 modulates apoptosis induced by resveratrol and epigallocatechin-3-gallate in prostate cancer cells. Mol. Cancer Ther., 2007, 6(3), 1006-1012. doi: 10.1158/1535-7163.MCT-06-0491 PMID: 17363494
- Wolter, F.; Akoglu, B.; Clausnitzer, A.; Stein, J. Downregulation of the cyclin D1/Cdk4 complex occurs during resveratrol-induced cell cycle arrest in colon cancer cell lines. J. Nutr., 2001, 131(8), 2197-2203. doi: 10.1093/jn/131.8.2197 PMID: 11481417
- Zhou, H.B.; Yan, Y.; Sun, Y.N.; Zhu, J.R. Resveratrol induces apoptosis in human esophageal carcinoma cells. World J. Gastroenterol., 2003, 9(3), 408-411. doi: 10.3748/wjg.v9.i3.408 PMID: 12632486
- Alkhalaf, M. Resveratrol-induced apoptosis is associated with activation of p53 and inhibition of protein translation in T47D human breast cancer cells. Pharmacology, 2007, 80(2-3), 134-143. doi: 10.1159/000103253 PMID: 17534123
- Niles, R.M.; McFarland, M.; Weimer, M.B.; Redkar, A.; Fu, Y.M.; Meadows, G.G. Resveratrol is a potent inducer of apoptosis in human melanoma cells. Cancer Lett., 2003, 190(2), 157-163. doi: 10.1016/S0304-3835(02)00676-6 PMID: 12565170
- Mouria, M.; Gukovskaya, A.S.; Jung, Y.; Buechler, P.; Hines, O.J.; Reber, H.A.; Pandol, S.J. Food-derived polyphenols inhibit pancreatic cancer growth through mitochondrial cytochrome C release and apoptosis. Int. J. Cancer, 2002, 98(5), 761-769. doi: 10.1002/ijc.10202 PMID: 11920648
- Gao, X.; Xu, Y.X.; Divine, G.; Janakiraman, N.; Chapman, R.A.; Gautam, S.C. Disparate in vitro and in vivo antileukemic effects of resveratrol, a natural polyphenolic compound found in grapes. J. Nutr., 2002, 132(7), 2076-2081. doi: 10.1093/jn/132.7.2076 PMID: 12097696
- Kim, Y.A.; Lee, W.H.; Choi, T.H.; Rhee, S.H.; Park, K.Y.; Choi, Y.H. Involvement of p21WAF1/CIP1, pRB, Bax and NF-kappaB in induction of growth arrest and apoptosis by resveratrol in human lung carcinoma A549 cells. Int. J. Oncol., 2003, 23(4), 1143-1149. PMID: 12963997
- Medrano-Padial, C.; Puerto, M.; Moreno, F.J.; Richard, T.; Cantos-Villar, E.; Pichardo, S. In vitro toxicity assessment of stilbene extract for its potential use as antioxidant in the wine industry. Antioxidants, 2019, 8(10), 467. doi: 10.3390/antiox8100467 PMID: 31600944
- Joe, A.K.; Liu, H.; Suzui, M.; Vural, M.E.; Xiao, D.; Weinstein, I.B. Resveratrol induces growth inhibition, S-phase arrest, apoptosis, and changes in biomarker expression in several human cancer cell lines. Clin. Cancer Res., 2002, 8(3), 893-903. PMID: 11895924
- Kello, M.; Takac, P.; Kubatka, P.; Kuruc, T.; Petrova, K.; Mojzis, J. Oxidative stress-induced DNA damage and apoptosis in clove buds-treated MCF-7 cells. Biomolecules, 2020, 10(1), 139. doi: 10.3390/biom10010139 PMID: 31947708
- Khan, H.; Ullah, H.; Castilho, P.C.M.F.; Gomila, A.S.; DOnofrio, G.; Filosa, R.; Wang, F.; Nabavi, S.M.; Daglia, M.; Silva, A.S.; Rengasamy, K.R.R.; Ou, J.; Zou, X.; Xiao, J.; Cao, H. Targeting NF-κB signaling pathway in cancer by dietary polyphenols. Crit. Rev. Food Sci. Nutr., 2020, 60(16), 2790-2800. doi: 10.1080/10408398.2019.1661827 PMID: 31512490
- Krishna, B.M.; Jana, S.; Singhal, J.; Horne, D.; Awasthi, S.; Salgia, R.; Singhal, S.S. Notch signaling in breast cancer: From pathway analysis to therapy. Cancer Lett., 2019, 461, 123-131. doi: 10.1016/j.canlet.2019.07.012 PMID: 31326555
- Niedzwiecki, A.; Roomi, M.; Kalinovsky, T.; Rath, M. Anticancer efficacy of polyphenols and their combinations. Nutrients, 2016, 8(9), 552. doi: 10.3390/nu8090552 PMID: 27618095
- Onaciu, A.; Munteanu, R.; Munteanu, V.C.; Gulei, D.; Raduly, L.; Feder, R.I.; Pirlog, R.; Atanasov, A.G.; Korban, S.S.; Irimie, A.; Berindan-Neagoe, I. Spontaneous and induced animal models for cancer research. Diagnostics, 2020, 10(9), 660. doi: 10.3390/diagnostics10090660 PMID: 32878340
- Ullah, A.; Munir, S.; Badshah, S.L.; Khan, N.; Ghani, L.; Poulson, B.G.; Emwas, A.H.; Jaremko, M. Important flavonoids and their role as a therapeutic agent. Molecules, 2020, 25(22), 5243. doi: 10.3390/molecules25225243 PMID: 33187049
- Martin, H.L.; Adams, M.; Higgins, J.; Bond, J.; Morrison, E.E.; Bell, S.M.; Warriner, S.; Nelson, A.; Tomlinson, D.C. High-content, high-throughput screening for the identification of cytotoxic compounds based on cell morphology and cell proliferation markers. PLoS One, 2014, 9(2), e88338. doi: 10.1371/journal.pone.0088338 PMID: 24505478
- Chen, B.S.; Wu, C.C. Systems biology as an integrated platform for bioinformatics, systems synthetic biology, and systems metabolic engineering. Cells, 2013, 2(4), 635-688. doi: 10.3390/cells2040635 PMID: 24709875
- George, V.C.; Dellaire, G.; Rupasinghe, H.P.V. Plant flavonoids in cancer chemoprevention: Role in genome stability. J. Nutr. Biochem., 2017, 45, 1-14. doi: 10.1016/j.jnutbio.2016.11.007 PMID: 27951449
- Amawi, H.; Ashby, C.R., Jr; Tiwari, A.K. Cancer chemoprevention through dietary flavonoids: whats limiting? Chin. J. Cancer, 2017, 36(1), 50. doi: 10.1186/s40880-017-0217-4 PMID: 28061892
- Bustos, A.S.; Håkansson, A.; Linares-Pastén, J.A.; Peñarrieta, J.M.; Nilsson, L. Interaction of quercetin and epigallocatechin gallate (EGCG) aggregates with pancreatic lipase under simplified intestinal conditions. PLoS One, 2020, 15(4), e0224853. doi: 10.1371/journal.pone.0224853 PMID: 32298262
- Nijveldt, R.J.; van Nood, E.; van Hoorn, D.E.C.; Boelens, P.G.; van Norren, K.; van Leeuwen, P.A.M. Flavonoids: A review of probable mechanisms of action and potential applications. Am. J. Clin. Nutr., 2001, 74(4), 418-425. doi: 10.1093/ajcn/74.4.418 PMID: 11566638
- Applegate, C.; Rowles, J., III; Ranard, K.; Jeon, S.; Erdman, J., Jr Soy consumption and the risk of prostate cancer: An updated systematic review and meta-analysis. Nutrients, 2018, 10(1), 40. doi: 10.3390/nu10010040 PMID: 29300347
- Kim, W.; Bang, M.; Kim, E.; Kang, N.; Jung, K.; Cho, H.; Park, J. Quercetin decreases the expression of ErbB2 and ErbB3 proteins in HT-29 human colon cancer cells. J. Nutr. Biochem., 2005, 16(3), 155-162. doi: 10.1016/j.jnutbio.2004.10.010 PMID: 15741050
- van der Woude, H.; Gliszczyńska-Świgło, A.; Struijs, K.; Smeets, A.; Alink, G.M.; Rietjens, I.M.C.M. Biphasic modulation of cell proliferation by quercetin at concentrations physiologically relevant in humans. Cancer Lett., 2003, 200(1), 41-47. doi: 10.1016/S0304-3835(03)00412-9 PMID: 14550951
- Shan, B.E.; Wang, M.X.; Li, R. Quercetin inhibit human SW480 colon cancer growth in association with inhibition of cyclin D1 and survivin expression through Wnt/β-catenin signaling pathway. Cancer Invest., 2009, 27(6), 604-612. doi: 10.1080/07357900802337191 PMID: 19440933
- Ramos, S. Cancer chemoprevention and chemotherapy: Dietary polyphenols and signalling pathways. Mol. Nutr. Food Res., 2008, 52(5), 507-526. doi: 10.1002/mnfr.200700326 PMID: 18435439
- Gee, J.M.; Hara, H.; Johnson, I.T. Suppression of intestinal crypt cell proliferation and aberrant crypt foci by dietary quercetin in rats. Nutr. Cancer, 2002, 43(2), 193-201. doi: 10.1207/S15327914NC432_10 PMID: 12599752
- Park, C.H.; Chang, J.Y.; Hahm, E.R.; Park, S.; Kim, H.K.; Yang, C.H. Quercetin, a potent inhibitor against β-catenin/Tcf signaling in SW480 colon cancer cells. Biochem. Biophys. Res. Commun., 2005, 328(1), 227-234. doi: 10.1016/j.bbrc.2004.12.151 PMID: 15670774
- Lu, L.; Ma, X.; Zheng, J.; Li, L.; Yang, W.; Kong, Y.; Wang, J. Quercetin for myocardial ischemia reperfusion injury. Medicine, 2020, 99(26), e20856. doi: 10.1097/MD.0000000000020856 PMID: 32590785
- Li, W.; Du, B.; Wang, T.; Wang, S.; Zhang, J. Kaempferol induces apoptosis in human HCT116 colon cancer cells via the ataxia-telangiectasia mutated-p53 pathway with the involvement of p53 upregulated modulator of apoptosis. Chem. Biol. Interact., 2009, 177(2), 121-127. doi: 10.1016/j.cbi.2008.10.048 PMID: 19028473
- Lee, J.H.; Johnson, J.V.; Talcott, S.T. Identification of ellagic acid conjugates and other polyphenolics in muscadine grapes by HPLC-ESI-MS. J. Agric. Food Chem., 2005, 53(15), 6003-6010. doi: 10.1021/jf050468r PMID: 16028988
- Kim, M.E.; Ha, T.K.; Yoon, J.H.; Lee, J.S. Myricetin induces cell death of human colon cancer cells via BAX/BCL2-dependent pathway. Anticancer Res., 2014, 34(2), 701-706. PMID: 24511002
- Adhami, V.M.; Syed, D.N.; Khan, N.; Mukhtar, H. Dietary flavonoid fisetin: A novel dual inhibitor of PI3K/Akt and mTOR for prostate cancer management. Biochem. Pharmacol., 2012, 84(10), 1277-1281. doi: 10.1016/j.bcp.2012.07.012 PMID: 22842629
- Lu, X.; Jung, J.; Cho, H.J.; Lim, D.Y.; Lee, H.S.; Chun, H.S.; Kwon, D.Y.; Park, J.H. Fisetin inhibits the activities of cyclin-dependent kinases leading to cell cycle arrest in HT-29 human colon cancer cells. J. Nutr., 2005, 135(12), 2884-2890. doi: 10.1093/jn/135.12.2884 PMID: 16317137
- Liu, L.H.; Shi, R.J.; Chen, Z.C. Paeonol exerts anti-tumor activity against colorectal cancer cells by inducing G0/G1 phase arrest and cell apoptosis via inhibiting the Wnt/β-catenin signaling pathway. Int. J. Mol. Med., 2020, 46(2), 675-684. doi: 10.3892/ijmm.2020.4629 PMID: 32626954
- Ramos, A.A.; Marques, F.; Fernandes-Ferreira, M.; Pereira-Wilson, C. Water extracts of tree Hypericum sps. protect DNA from oxidative and alkylating damage and enhance DNA repair in colon cells. Food Chem. Toxicol., 2013, 51, 80-86. doi: 10.1016/j.fct.2012.09.014 PMID: 23000446
- Alonso-Castro, A.J.; Domínguez, F.; García-Carrancá, A. Rutin exerts antitumor effects on nude mice bearing SW480 tumor. Arch. Med. Res., 2013, 44(5), 346-351. doi: 10.1016/j.arcmed.2013.06.002 PMID: 23867787
- Li, S.; Li, H.; Xu, X.; Saw, P.E.; Zhang, L. Nanocarrier-mediated antioxidant delivery for liver diseases. Theranostics, 2020, 10(3), 1262-1280. doi: 10.7150/thno.38834 PMID: 31938064
- Hogan, F.S.; Krishnegowda, N.K.; Mikhailova, M.; Kahlenberg, M.S. Flavonoid, silibinin, inhibits proliferation and promotes cell-cycle arrest of human colon cancer. J. Surg. Res., 2007, 143(1), 58-65. doi: 10.1016/j.jss.2007.03.080 PMID: 17950073
- Agarwal, C.; Singh, R.P.; Dhanalakshmi, S.; Tyagi, A.K.; Tecklenburg, M.; Sclafani, R.A.; Agarwal, R. Silibinin upregulates the expression of cyclin-dependent kinase inhibitors and causes cell cycle arrest and apoptosis in human colon carcinoma HT-29 cells. Oncogene, 2003, 22(51), 8271-8282. doi: 10.1038/sj.onc.1207158 PMID: 14614451
- Singh, R.P.; Gu, M.; Agarwal, R. Silibinin inhibits colorectal cancer growth by inhibiting tumor cell proliferation and angiogenesis. Cancer Res., 2008, 68(6), 2043-2050. doi: 10.1158/0008-5472.CAN-07-6247 PMID: 18339887
- Kauntz, H.; Bousserouel, S.; Gossé, F.; Raul, F. Silibinin triggers apoptotic signaling pathways and autophagic survival response in human colon adenocarcinoma cells and their derived metastatic cells. Apoptosis, 2011, 16(10), 1042-1053. doi: 10.1007/s10495-011-0631-z PMID: 21779837
- Velmurugan, B.; Gangar, S.C.; Kaur, M.; Tyagi, A.; Deep, G.; Agarwal, R. Silibinin exerts sustained growth suppressive effect against human colon carcinoma SW480 xenograft by targeting multiple signaling molecules. Pharm. Res., 2010, 27(10), 2085-2097. doi: 10.1007/s11095-010-0207-6 PMID: 20628792
- Lin, C.M.; Chen, Y.H.; Ma, H.P.; Wang, B.W.; Chiu, J.H.; Chua, S.K.; Ong, J.R.; Shyu, K.G. Silibinin inhibits the invasion of IL-6-stimulated colon cancer cells via selective JNK/AP-1/MMP-2 modulation in vitro. J. Agric. Food Chem., 2012, 60(51), 12451-12457. doi: 10.1021/jf300964f PMID: 23210512
- Kauntz, H.; Bousserouel, S.; Gosse, F.; Marescaux, J.; Raul, F. Silibinin, a natural flavonoid, modulates the early expression of chemoprevention biomarkers in a preclinical model of colon carcinogenesis. Int. J. Oncol., 2012, 41(3), 849-854. doi: 10.3892/ijo.2012.1526 PMID: 22735354
- Kumar, S; Pandey, AK Chemistry and biological activities of flavonoids: An overview. Sci. World J., 2013, 2013, 162750. doi: 10.1155/2013/162750
- Attoub, S.; Hassan, A.H.; Vanhoecke, B.; Iratni, R.; Takahashi, T.; Gaben, A.M.; Bracke, M.; Awad, S.; John, A.; Kamalboor, H.A.; Al Sultan, M.A.; Arafat, K.; Gespach, C.; Petroianu, G. Inhibition of cell survival, invasion, tumor growth and histone deacetylase activity by the dietary flavonoid luteolin in human epithelioid cancer cells. Eur. J. Pharmacol., 2011, 651(1-3), 18-25. doi: 10.1016/j.ejphar.2010.10.063 PMID: 21074525
- Lim, D.Y.; Cho, H.J.; Kim, J.; Nho, C.W.; Lee, K.W.; Park, J.H.Y. Luteolin decreases IGF-II production and downregulates insulin-like growth factor-I receptor signaling in HT-29 human colon cancer cells. BMC Gastroenterol., 2012, 12(1), 9. doi: 10.1186/1471-230X-12-9 PMID: 22269172
- Pandurangan, A.K. Potential targets for prevention of colorectal cancer: A focus on PI3K/Akt/mTOR and Wnt pathways. Asian Pac. J. Cancer Prev., 2013, 14(4), 2201-2205. doi: 10.7314/APJCP.2013.14.4.2201 PMID: 23725112
- Wang, L.M.; Xie, K.P.; Huo, H.N.; Shang, F.; Zou, W.; Xie, M.J. Luteolin inhibits proliferation induced by IGF-1 pathway dependent ERα in human breast cancer MCF-7 cells. Asian Pac. J. Cancer Prev., 2012, 13(4), 1431-1437. doi: 10.7314/APJCP.2012.13.4.1431 PMID: 22799344
- Chen, D.; Wan, S.B.; Yang, H.; Yuan, J.; Chan, T.H.; Dou, Q.P. EGCG, green tea polyphenols and their synthetic analogs and prodrugs for human cancer prevention and treatment. Adv. Clin. Chem., 2011, 53, 155-177. doi: 10.1016/B978-0-12-385855-9.00007-2 PMID: 21404918
- Shimizu, M.; Deguchi, A.; Hara, Y.; Moriwaki, H.; Weinstein, I.B. EGCG inhibits activation of the insulin-like growth factor-1 receptor in human colon cancer cells. Biochem. Biophys. Res. Commun., 2005, 334(3), 947-953. doi: 10.1016/j.bbrc.2005.06.182 PMID: 16053920
- Du, G.J.; Zhang, Z.; Wen, X.D.; Yu, C.; Calway, T.; Yuan, C.S.; Wang, C.Z. Epigallocatechin gallate (EGCG) is the most effective cancer chemopreventive polyphenol in green tea. Nutrients, 2012, 4(11), 1679-1691. doi: 10.3390/nu4111679 PMID: 23201840
- Berger, S.J.; Gupta, S.; Belfi, C.A.; Gosky, D.M.; Mukhtar, H. Green tea constituent (--)-epigallocatechin-3-gallate inhibits topoisomerase I activity in human colon carcinoma cells. Biochem. Biophys. Res. Commun., 2001, 288(1), 101-105. doi: 10.1006/bbrc.2001.5736 PMID: 11594758
- Chen, C.; Shen, G.; Hebbar, V.; Hu, R.; Owuor, E.D.; Kong, A.N.T. Epigallocatechin-3-gallate-induced stress signals in HT-29 human colon adenocarcinoma cells. Carcinogenesis, 2003, 24(8), 1369-1378. doi: 10.1093/carcin/bgg091 PMID: 12819184
- Adachi, S.; Nagao, T.; To, S.; Joe, A.K.; Shimizu, M.; Matsushima-Nishiwaki, R.; Kozawa, O.; Moriwaki, H.; Maxfield, F.R.; Weinstein, I.B. (-)-Epigallocatechin gallate causes internalization of the epidermal growth factor receptor in human colon cancer cells. Carcinogenesis, 2008, 29(10), 1986-1993. doi: 10.1093/carcin/bgn128 PMID: 18586691
- Howell, A.B.; Reed, J.D.; Krueger, C.G.; Winterbottom, R.; Cunningham, D.G.; Leahy, M. A-type cranberry proanthocyanidins and uropathogenic bacterial anti-adhesion activity. Phytochemistry, 2005, 66(18), 2281-2291. doi: 10.1016/j.phytochem.2005.05.022 PMID: 16055161
- Gorlach, S.; Wagner, W.; Podsędek, A.; Szewczyk, K.; Koziołkiewicz, M.; Dastych, J. Procyanidins from Japanese quince (Chaenomeles japonica) fruit induce apoptosis in human colon cancer Caco-2 cells in a degree of polymerization-dependent manner. Nutr. Cancer, 2011, 63(8), 1348-1360. doi: 10.1080/01635581.2011.608480 PMID: 22026386
- Lizárraga, D.; Touriño, S.; Reyes-Zurita, F.J.; de Kok, T.M.; van Delft, J.H.; Maas, L.M.; Briedé, J.J.; Centelles, J.J.; Torres, J.L.; Cascante, M. Witch hazel (Hamamelis virginiana) fractions and the importance of gallate moieties--electron transfer capacities in their antitumoral properties. J. Agric. Food Chem., 2008, 56(24), 11675-11682. doi: 10.1021/jf802345x PMID: 19035659
- Engelbrecht, A.M.; Mattheyse, M.; Ellis, B.; Loos, B.; Thomas, M.; Smith, R.; Peters, S.; Smith, C.; Myburgh, K. Proanthocyanidin from grape seeds inactivates the PI3-kinase/PKB pathway and induces apoptosis in a colon cancer cell line. Cancer Lett., 2007, 258(1), 144-153. doi: 10.1016/j.canlet.2007.08.020 PMID: 17923279
- Maldonado, M.E.; Bousserouel, S.; Gossé, F.; Lobstein, A.; Raul, F. Implication of NF-κB and p53 in the expression of TRAIL-death receptors and apoptosis by apple procyanidins in human metastatic SW620 cells. Biomédica, 2010, 30(4), 577-586. doi: 10.7705/biomedica.v30i4.296 PMID: 21713362
- García-Lafuente, A.; Guillamón, E.; Villares, A.; Rostagno, M.A.; Martínez, J.A. Flavonoids as anti-inflammatory agents: Implications in cancer and cardiovascular disease. Inflamm. Res., 2009, 58(9), 537-552. doi: 10.1007/s00011-009-0037-3 PMID: 19381780
- Yang, C.S.; Landau, J.M.; Huang, M.T.; Newmark, H.L. Inhibition of carcinogenesis by dietary polyphenolic compounds. Annu. Rev. Nutr., 2001, 21(1), 381-406. doi: 10.1146/annurev.nutr.21.1.381 PMID: 11375442
- Johnson, I.T.; Williamson, G.; Musk, S.R.R. Anticarcinogenic factors in plant foods: A new class of nutrients? Nutr. Res. Rev., 1994, 7(1), 175-204. doi: 10.1079/NRR19940011 PMID: 19094297
- Kamaraj, S.; Vinodhkumar, R.; Anandakumar, P.; Jagan, S.; Ramakrishnan, G.; Devaki, T. The effects of quercetin on antioxidant status and tumor markers in the lung and serum of mice treated with benzo(a)pyrene. Biol. Pharm. Bull., 2007, 30(12), 2268-2273. doi: 10.1248/bpb.30.2268 PMID: 18057710
- Ryyti, R.; Hämäläinen, M.; Peltola, R.; Moilanen, E. Beneficial effects of lingonberry (Vaccinium vitis-idaea L.) supplementation on metabolic and inflammatory adverse effects induced by high-fat diet in a mouse model of obesity. PLoS One, 2020, 15(5), e0232605. doi: 10.1371/journal.pone.0232605 PMID: 32379797
- Shiomi, K.; Kuriyama, I.; Yoshida, H.; Mizushina, Y.; Mizushina, Y. Inhibitory effects of myricetin on mammalian DNA polymerase, topoisomerase and human cancer cell proliferation. Food Chem., 2013, 139(1-4), 910-918. doi: 10.1016/j.foodchem.2013.01.009 PMID: 23561189
- Lim, D.Y.; Park, J.H.Y. Induction of p53 contributes to apoptosis of HCT-116 human colon cancer cells induced by the dietary compound fisetin. Am. J. Physiol. Gastrointest. Liver Physiol., 2009, 296(5), G1060-G1068. doi: 10.1152/ajpgi.90490.2008 PMID: 19264955
- Wargovich, M.J.; Jimenez, A.; McKee, K.; Steele, V.E.; Velasco, M.; Woods, J.; Price, R.; Gray, K.; Kelloff, G.J. Efficacy of potential chemopreventive agents on rat colon aberrant crypt formation and progression. Carcinogenesis, 2000, 21(6), 1149-1155. doi: 10.1093/carcin/21.6.1149 PMID: 10837003
- Ravichandran, K.; Velmurugan, B.; Gu, M.; Singh, R.P.; Agarwal, R. Inhibitory effect of silibinin against azoxymethane-induced colon tumorigenesis in A/J mice. Clin. Cancer Res., 2010, 16(18), 4595-4606. doi: 10.1158/1078-0432.CCR-10-1213 PMID: 20823143
- Ashokkumar, P.; Sudhandiran, G. Protective role of luteolin on the status of lipid peroxidation and antioxidant defense against azoxymethane-induced experimental colon carcinogenesis. Biomed. Pharmacother., 2008, 62(9), 590-597. doi: 10.1016/j.biopha.2008.06.031 PMID: 18692983
- Chiou, Y.S.; Ma, N.J.L.; Sang, S.; Ho, C.T.; Wang, Y.J.; Pan, M.H. Peracetylated (-)-epigallocatechin-3-gallate (AcEGCG) potently suppresses dextran sulfate sodium-induced colitis and colon tumorigenesis in mice. J. Agric. Food Chem., 2012, 60(13), 3441-3451. doi: 10.1021/jf300441p PMID: 22409325
- Gossé, F.; Guyot, S.; Roussi, S.; Lobstein, A.; Fischer, B.; Seiler, N.; Raul, F. Chemopreventive properties of apple procyanidins on human colon cancer-derived metastatic SW620 cells and in a rat model of colon carcinogenesis. Carcinogenesis, 2005, 26(7), 1291-1295. doi: 10.1093/carcin/bgi074 PMID: 15790589
- Nabors, L.B.; Suswam, E.; Huang, Y.; Yang, X.; Johnson, M.J.; King, P.H. Tumor necrosis factor α induces angiogenic factor upregulation in malignant glioma cells: A role for RNA stabilization and HuR. Cancer Res., 2003, 63(14), 4181-4187. PMID: 12874024
- Suzukawa, K.; Weber, T.J.; Colburn, N.H. AP-1, NF-kappa-B, and ERK activation thresholds for promotion of neoplastic transformation in the mouse epidermal JB6 model. Environ. Health Perspect., 2002, 110(9), 865-870. doi: 10.1289/ehp.02110865 PMID: 12204819
- Balkwill, F. TNF-α in promotion and progression of cancer. Cancer Metastasis Rev., 2006, 25(3), 409-416. doi: 10.1007/s10555-006-9005-3 PMID: 16951987
- Hassan, M; Watari, H; AbuAlmaaty, A; Ohba, Y; Sakuragi, N Apoptosis and molecular targeting therapy in cancer. Biomed. Res. Int., 2014, 2014, 150845. doi: 10.1155/2014/150845
- Zhou, Y.; Zheng, J.; Li, Y.; Xu, D.P.; Li, S.; Chen, Y.M.; Li, H.B. Natural polyphenols for prevention and treatment of cancer. Nutrients, 2016, 8(8), 515. doi: 10.3390/nu8080515 PMID: 27556486
- Hegde, M.M.; Lakshman, K. Role of polyphenols and flavonoids as anti-cancer drug candidates: A review. Pharmacognosy Res., 2023, 15(2), 206-216. doi: 10.5530/pres.15.2.022
- Abotaleb, M.; Liskova, A.; Kubatka, P.; Büsselberg, D. Therapeutic potential of plant phenolic acids in the treatment of cancer. Biomolecules, 2020, 10(2), 221. doi: 10.3390/biom10020221 PMID: 32028623
- Montané, X.; Kowalczyk, O.; Reig-Vano, B.; Bajek, A.; Roszkowski, K.; Tomczyk, R.; Pawliszak, W.; Giamberini, M.; Mocek-Płóciniak, A.; Tylkowski, B. Current perspectives of the applications of polyphenols and flavonoids in cancer therapy. Molecules, 2020, 25(15), 3342. doi: 10.3390/molecules25153342 PMID: 32717865
- Bhosale, P.B.; Ha, S.E.; Vetrivel, P.; Kim, H.H.; Kim, S.M.; Kim, G.S. Functions of polyphenols and its anticancer properties in biomedical research: A narrative review. Transl. Cancer Res., 2020, 9(12), 7619-7631. doi: 10.21037/tcr-20-2359 PMID: 35117361
Supplementary files
