Salvia officinalis Improves Glycemia and Suppresses Pro-inflammatory Features in Obese Rats with Metabolic Syndrome
- Authors: Alsherif D.1, Hussein M.2, Abuelkasem S.3
-
Affiliations:
- Department of Radiology and Medical Imaging, Faculty of Applied Health Science Technology, October 6th University,
- Department of Biotechnology, Faculty of Applied Health Science Technology, October 6th University
- Department of Biochemistry, Faculty of Applied Health Science Technology, October 6th University,
- Issue: Vol 25, No 5 (2024)
- Pages: 623-636
- Section: Biotechnology
- URL: https://rjpbr.com/1389-2010/article/view/644846
- DOI: https://doi.org/10.2174/1389201024666230811104740
- ID: 644846
Cite item
Full Text
Abstract
Objectives:Obesity is regarded as the main cause of metabolic diseases and a core factor for all-cause mortality in the general population, notably from cardiovascular disease. The majority of people with type 2 diabetes have obesity and insulin resistance. Some evidence indicates that an individual with obesity is approximately 10 times more likely to develop type 2 diabetes than someone with moderate body weight. One of the most significant therapeutic herbs, Salvia officinalis (Lamiaceae) (SAGE), possesses potent medicinal importance. The aim of this article was to evaluate the anti-diabetic and antiobesity activity of SAGEAE against HFD-induced obesity in rats.
Methods:Thirty adult albino rats were randomly divided into five equal groups: control, High-fat Diet (HFD) administrated rats, HFD + Salvia officinalis Aqueous Extract (SAGEAE) (150 mg/kg.bw.), HFD + SAGEAE (300 mg/kg.bw.) and HFD + metformin (500 mg/kg.bw.). Body weight, plasma biochemical parameters, oxidative stress, inflammatory indicators, hepatic Phosphoenolpyruvate Carboxykinase 1 (PCK1), Glucokinase (GK), brain Leptin Receptor (LepRb), Glucose Transporter-4 (GLUT4), Sirtuin 1 (SIRT1) and mRNA33-5P gene signalling mRNA levels were all assessed after 8 weeks. A histological examination of the liver was also performed to check for lipid accumulation.
Results:The administration of HFD resulted in increased body weight, glucose, insulin, leptin, Total Cholesterol (TC), Triglycerides (TG), Thiobarbaturic Acid Reactive Substances (TBARS), Monocyte Chemoattractant Protein-1 (MCP1), Interleukine-6 (IL-6) and tumor necrosis factor-α (TNF- α) as well as hepatic PCK1, brain LepRb and adipose tissue mRNA33-5P gene expression. However, our findings revealed a significant reduction in adiponectin, High-density Lipoproteincholesterol (HDL-C), reduced glutathione (GSH) and Superoxide Dismutase (SOD) levels as well as the expression of hepatic GK and adipose tissue SIRT1 and GLUT4 genes. Also, administration of SAGEAE significantly normalized body weight, glucose, insulin, leptin, adiponectin, TC, TG, HDL-C, TBARs, SOD, IL-6, MCP-1 and TNF-α in plasma and liver tissue of HFD-treated rats. On the other hand, PCK1, GK, LepRb, SIRT1, GLUT4 and mRNA33-5P gene expression was enhanced in obese rats when administrated with SAGEAE. Histological and US studies support the biochemical, PCR and electrophoretic results.
Conclusion:The findings imply that SAGEAE could be used as a new pharmaceutical formula in the treatment of obesity.
Keywords
About the authors
Diana Alsherif
Department of Radiology and Medical Imaging, Faculty of Applied Health Science Technology, October 6th University,
Email: info@benthamscience.net
Mohammed Hussein
Department of Biotechnology, Faculty of Applied Health Science Technology, October 6th University
Author for correspondence.
Email: info@benthamscience.net
Suzan Abuelkasem
Department of Biochemistry, Faculty of Applied Health Science Technology, October 6th University,
Email: info@benthamscience.net
References
- Ren, J.; Wu, N.N.; Wang, S.; Sowers, J.R.; Zhang, Y. Obesity cardiomyopathy: Evidence, mechanisms, and therapeutic implications. Physiol. Rev., 2021, 101(4), 1745-1807. doi: 10.1152/physrev.00030.2020 PMID: 33949876
- Abdelaal, M.; le Roux, C.W.; Docherty, N.G. Morbidity and mortality associated with obesity. Ann. Transl. Med., 2017, 5(7), 161-175. doi: 10.21037/atm.2017.03.107 PMID: 28480197
- Abdalla, H.M. Purslane extract effects on obesity-induced diabetic rats fed a high-fat diet. Malays. J. Nutr., 2010, 16(3), 419-429. PMID: 22691995
- M Soliman, S. Mosallam, S.; Mamdouh, M.A.; Hussein, M.A.; M Abd El-Halim, S. Design and optimization of cranberry extract loaded bile salt augmented liposomes for targeting of MCP-1/STAT3/VEGF signaling pathway in DMN-intoxicated liver in rats. Drug Deliv., 2022, 29(1), 427-439. doi: 10.1080/10717544.2022.2032875 PMID: 35098843
- Mohamad, E.A.; Mohamed, Z.N.; Hussein, M.A.; Elneklawi, M.S. GANE can improve lung fibrosis by reducing inflammation via promoting p38MAPK/TGF-β1/NF-κB signaling pathway downregulation. ACS Omega, 2022, 7(3), 3109-3120. doi: 10.1021/acsomega.1c06591 PMID: 35097306
- Deshmane, S.L.; Kremlev, S.; Amini, S.; Sawaya, B.E. Monocyte chemoattractant protein-1 (MCP-1): An overview. J. Interferon Cytokine Res., 2009, 29(6), 313-326. doi: 10.1089/jir.2008.0027 PMID: 19441883
- Murphy, E.A. Novel adipocytokines: Monocyte chemotactic protein-1, plasminogen activator inhibitor-1, chemerin. Energy Balance and Cancer, 2017, 12, 161-186. doi: 10.1007/978-3-319-41677-9_8
- Zhang, Y.; Li, R.; Chen, W.; Li, Y.; Chen, G. Retinoids induced Pck1 expression and attenuated insulin-mediated suppression of its expression via activation of retinoic acid receptor in primary rat hepatocytes. Mol. Cell. Biochem., 2011, 355(1-2), 1-8. doi: 10.1007/s11010-011-0831-4 PMID: 21519922
- Chen, G.; Zhang, Y.; Lu, D.; Li, N.; Ross, A.C. Retinoids synergize with insulin to induce hepatic Gck expression. Biochem. J., 2009, 419(3), 645-653. doi: 10.1042/BJ20082368 PMID: 19173678
- Xu, J.; Zhang, M.; Zhang, X.; Yang, H.; Sun, B.; Wang, Z.; Zhou, Y.; Wang, S.; Liu, X.; Liu, L. Contribution of hepatic retinaldehyde dehydrogenase induction to impairment of glucose metabolism by high-fat-diet feeding in C57BL/6J mice. Basic Clin. Pharmacol. Toxicol., 2018, 123(5), 539-548. doi: 10.1111/bcpt.13039 PMID: 29753302
- Snider, N.T.; Leonard, J.M.; Kwan, R.; Griggs, N.W.; Rui, L.; Omary, M.B. Glucose and SIRT2 reciprocally mediate the regulation of keratin 8 by lysine acetylation. J. Cell Biol., 2013, 200(3), 241-247. doi: 10.1083/jcb.201209028 PMID: 23358244
- Sun, K.; Wang, X.; Fang, N.; Xu, A. lin, Y.; Zhao, X.; Nazarali, A.J.; Ji, S. SIRT2 suppresses expression of inflammatory factors via Hsp90-glucocorticoid receptor signalling. J. Cell. Mol. Med., 2020, 24(13), 7439-7450. doi: 10.1111/jcmm.15365 PMID: 32515550
- Min, J.S.; Kim, J.C.; Kim, J.A.; Kang, I.; Ahn, J.K. SIRT2 reduces actin polymerization and cell migration through deacetylation and degradation of HSP90. Biochim. Biophys. Acta Mol. Cell Res., 2018, 1865(9), 1230-1238. doi: 10.1016/j.bbamcr.2018.06.005 PMID: 29908203
- Barrios, V.; Frago, L.M.; Canelles, S.; Guerra-Cantera, S.; Arilla-Ferreiro, E.; Chowen, J.A.; Argente, J. Leptin modulates the response of brown adipose tissue to negative energy balance: Implication of the GH/IGF-I axis. Int. J. Mol. Sci., 2021, 22(6), 2827. doi: 10.3390/ijms22062827 PMID: 33799501
- Fang, P.; He, B.; Yu, M.; Shi, M.; Zhu, Y.; Zhang, Z.; Bo, P. Treatment with celastrol protects against obesity through suppression of galanin-induced fat intake and activation of PGC-1α/GLUT4 axis-mediated glucose consumption. Biochim. Biophys. Acta Mol. Basis Dis., 2019, 1865(6), 1341-1350. doi: 10.1016/j.bbadis.2019.02.002 PMID: 30742994
- Min, W.; Wu, M.; Fang, P.; Yu, M.; Shi, M.; Zhang, Z.; Bo, P. Effect of baicalein on GLUT4 translocation in adipocytes of diet-induced obese mice. Cell. Physiol. Biochem., 2018, 50(2), 426-436. doi: 10.1159/000494154 PMID: 30308480
- Yang, Y.; Jiang, H.; Xiao, L.; Yang, X. MicroRNA-33b-5p is overexpressed and inhibits GLUT4 by targeting HMGA2 in polycystic ovarian syndrome: An in vivo and in vitro study. Oncol. Rep., 2018, 39(6), 3073-3085. doi: 10.3892/or.2018.6375 PMID: 29693142
- Ghorbani, A.; Esmaeilizadeh, M. Pharmacological properties of Salvia officinalis and its components. J. Tradit. Complement. Med., 2017, 7(4), 433-440. doi: 10.1016/j.jtcme.2016.12.014 PMID: 29034191
- Poulios, E.; Giaginis, C.; Vasios, G.K. Current advances on the extraction and identification of bioactive components of sage (Salvia spp.). Curr. Pharm. Biotechnol., 2019, 20(10), 845-857. doi: 10.2174/1389201020666190722130440 PMID: 31333123
- Poulios, E.; Giaginis, C.; Vasios, G.K. Current state of the art on the antioxidant activity of sage (Salvia spp.) and its bioactive components. Planta Med., 2020, 86(4), 224-238. doi: 10.1055/a-1087-8276 PMID: 31975363
- Yanagimichi, M.; Nishino, K.; Sakamoto, A.; Kurodai, R.; Kojima, K.; Eto, N.; Isoda, H.; Ksouri, R.; Irie, K.; Kambe, T.; Masuda, S.; Akita, T.; Maejima, K.; Nagao, M. Analyses of putative anti-cancer potential of three STAT3 signaling inhibitory compounds derived from Salvia officinalis. Biochem. Biophys. Rep., 2021, 25, 100882. doi: 10.1016/j.bbrep.2020.100882 PMID: 33392396
- Hussein, M.A.; Ismail, N.E.M.; Mohamed, A.H.; Borik, R.M.; Ali, A.A.; Mosaad, Y.O. Plasma phospholipids: A promising simple biochemical parameter to evaluate covid-19 infection severity. Bioinform. Biol. Insights, 2021, 15. doi: 10.1177/11779322211055891 PMID: 34840499
- Boshra, S.A.; Hussein, M.A. Cranberry extract as a supplemented food in treatment of oxidative stress and breast cancer induced by N-Methyl-N-Nitrosourea in female virgin rats. Int. J. Phytomed., 2016, 8(2), 217-227.
- Hussein, M.A.; Borik, R.M. A novel quinazoline-4-one derivatives as a promising cytokine inhibitors: Synthesis, Molecular docking, and structure-activity relationship. Curr. Pharm. Biotechnol., 2022, 23(9), 1179-1203. doi: 10.2174/1389201022666210601170650 PMID: 34077343
- Gobba, N.A.E.K.; Hussein Ali, A.; El Sharawy, D.E.; Hussein, M.A. The potential hazardous effect of exposure to iron dust in Egyptian smoking and nonsmoking welders. Arch. Environ. Occup. Health, 2018, 73(3), 189-202. doi: 10.1080/19338244.2017.1314930 PMID: 28375782
- M Fayed, A. A Abdalla, E.; Hassan, S.A.; A Hussein, M.; M Roshdy, T. Downregulation of TLR4-NF-?B-p38 MAPK signalling in cholestatic rats treated with cranberry extract. Pak. J. Biol. Sci., 2022, 25(2), 112-122. doi: 10.3923/pjbs.2022.112.122 PMID: 35233999
- Lee, A.; Morley, J.E. Metformin decreases food consumption and induces weight loss in subjects with obesity with type II non-insulin-dependent diabetes. Obes. Res., 1998, 6(1), 47-53. doi: 10.1002/j.1550-8528.1998.tb00314.x PMID: 9526970
- Assinewe, V.A.; Baum, B.R.; Gagnon, D.; Arnason, J.T. Phytochemistry of wild populations of Panax quinquefolius L. (North American ginseng). J. Agric. Food Chem., 2003, 51(16), 4549-4553. doi: 10.1021/jf030042h PMID: 14705875
- Troisi, R.J.; Cowie, C.C.; Harris, M.I. Diurnal variation in fasting plasma glucose: Implications for diagnosis of diabetes in patients examined in the afternoon. JAMA, 2000, 284(24), 3157-3159. doi: 10.1001/jama.284.24.3157 PMID: 11135780
- Fossati, P.; Prencipe, L. Serum triglycerides determined colorimetrically with an enzyme that produces hydrogen peroxide. Clin. Chem., 1982, 28(10), 2077-2080. doi: 10.1093/clinchem/28.10.2077 PMID: 6812986
- Allain, C.C.; Poon, L.S.; Chan, C.S.G.; Richmond, W.; Fu, P.C. Enzymatic determination of total serum cholesterol. Clin. Chem., 1974, 20(4), 470-475. doi: 10.1093/clinchem/20.4.470 PMID: 4818200
- Burstein, M.; Scholnick, H.R.; Morfin, R. Rapid method for the isolation of lipoproteins from human serum by precipitation with polyanions. J. Lipid Res., 1970, 11(6), 583-595. doi: 10.1016/S0022-2275(20)42943-8 PMID: 4100998
- Tsikas, D. Assessment of lipid peroxidation by measuring malondialdehyde (MDA) and relatives in biological samples: Analytical and biological challenges. Anal. Biochem., 2017, 524, 13-30. doi: 10.1016/j.ab.2016.10.021 PMID: 27789233
- Owen, J.B.; Butterfield, D.A. Measurement of oxidized/reduced glutathione ratio. Methods Mol. Biol., 2010, 648, 269-277. doi: 10.1007/978-1-60761-756-3_18 PMID: 20700719
- Kakkar, P.; Das, B.; Visvanathan, P. A modified spectrophotometric assay of SOD. Indian J. Biochem. Biophys., 1984, 21, 130-132. PMID: 6490072
- Bancroft, G.D.; Steven, A. Theory and Practice of Histological Technique, 4th ed; Churchill Livingstone: New York, 1983, pp. 99-112.
- Fan, J.G.; Jia, J.D.; Li, Y.M.; Wang, B.Y.; Lu, L.G.; Shi, J.P.; Chan, L.Y. Guidelines for the diagnosis and management of nonalcoholic fatty liver disease: Update 2010: (published in Chinese on Chinese Journal of Hepatology 2010; 18:163-166). J. Dig. Dis., 2011, 12(1), 38-44. doi: 10.1111/j.1751-2980.2010.00476.x PMID: 21276207
- Roa, M.; Blane, K.; Zonneberg, M. One way analysis of variance.Version IA (C); PC-STAT, Program coded by University of Georgia: USA, 1985.
- Wood, I.S.; de Heredia, F.P.; Wang, B.; Trayhurn, P. Cellular hypoxia and adipose tissue dysfunction in obesity. Proc. Nutr. Soc., 2009, 68(4), 370-377. doi: 10.1017/S0029665109990206 PMID: 19698203
- Zhang, J.; Celli, G.B.; Brooks, M.S. Natural sources of anthocyanins. In: In Anthocyanins from Natural Sources: Exploiting Targeted Delivery for Improved Health,, 1st ed.; Brooks, M.S.L.; Celli, G.B. Eds;.. The Royal Society of Chemistry: Cambridge, UK, 2019; 7, pp. 154-196.
- Lu, Y.; Yeap Foo, L. Antioxidant activities of polyphenols from sage (Salvia officinalis). Food Chem., 2001, 75(2), 197-202. doi: 10.1016/S0308-8146(01)00198-4
- Azevedo, M.F.; Camsari, Ç.; Sá, C.M.; Lima, C.F..; Fernandes- Ferreira, M.; Pereira-Wilson, C. Ursolic acid and luteolin-7- glucoside improve lipid profiles and increase liver glycogen content through glycogen synthase kinase-3. Phytother. Res., 2010, 24(S2), S220-S224. doi: 10.1002/ptr.3118 PMID: 20127879
- Demori, I.; Voci, A.; Fugassa, E.; Burlando, B. Combined effects of high-fat diet and ethanol induce oxidative stress in rat liver. Alcohol, 2006, 40(3), 185-191. doi: 10.1016/j.alcohol.2006.12.006 PMID: 17418698
- Sá,C.; Ramos, A.; Azevedo, M.; Lima, C.; Fernandes-Ferreira, M.; Pereira-Wilson, C. Sage tea drinking improves lipid profile and antioxidant defences in humans. Int. J. Mol. Sci., 2009, 10(9), 3937-3950. doi: 10.3390/ijms10093937 PMID: 19865527
- Rozenberg, O.; Aviram, M. S-Glutathionylation regulates HDL-associated paraoxonase 1 (PON1) activity. Biochem. Biophys. Res. Commun., 2006, 351(2), 492-498. doi: 10.1016/j.bbrc.2006.10.059 PMID: 17070779
- Uzun, H.; Konukoglu, D.; Gelisgen, R.; Zengin, K.; Taskin, M. Plasma protein carbonyl and thiol stress before and after laparoscopic gastric banding in morbidly obese patients. Obes. Surg., 2007, 17(10), 1367-1373. doi: 10.1007/s11695-007-9242-8 PMID: 18000722
- Wu, T.; Gao, Y.; Guo, X.; Zhang, M.; Gong, L. Blackberry and blueberry anthocyanin supplementation counteract high-fat-diet-induced obesity by alleviating oxidative stress and inflammation and accelerating energy expenditure. Oxid. Med. Cell. Longev., 2018, 2018, 1-9. doi: 10.1155/2018/4051232 PMID: 30057677
- Fayed, A.; Ibrahem, M.A.; Hassan, S.A.; Hussein, M.A.; Roshdy, T. Cranberry extract as a promising functional food to regulate srebp1/pparα/cpt-1/aco signaling pathways in HFD-induced obesity in rats. Adv. Anim. Vet. Sci., 2022, 10(9), 1933-1944. doi: 10.17582/journal.aavs/2022/10.9.1933.1944
- ESuanarun sawat, T.; Wacharaporn, D.N.A.; Songsak, T.; Rattanamahamphoom, J. Anti-lipidemic actions of essential oil extracted from ociumum Sanctum L. J. Appl. Biomed., 2009, 7, 45-53. doi: 10.32725/jab.2009.004
- El Gizawy, H.A.E.H.; Hussein, M.A.; Abdel-Sattar, E. Biological activities, isolated compounds and HPLC profile of Verbascum nubicum. Pharm. Biol., 2019, 57(1), 485-497. doi: 10.1080/13880209.2019.1643378 PMID: 31401911
- Siddiqui, J.A.; Partridge, N.C. CCL2/Monocyte chemoattractant protein 1 and parathyroid hormone action on bone. Front. Endocrinol., 2017, 8, 49. doi: 10.3389/fendo.2017.00049 PMID: 28424660
- Morrison, N.A.; Forwood, M.R. Monocyte chemotactic protein-1 (MCP1) accumulation in human osteoclast precursor cultures. Life, 2022, 12(6), 789. doi: 10.3390/life12060789 PMID: 35743820
- Mulholland, B.S.; Forwood, M.R.; Morrison, N.A. Monocyte chemoattractant protein-1 (MCP-1/CCL2) drives activation of bone remodelling and skeletal metastasis. Curr. Osteoporos. Rep., 2019, 17(6), 538-547. doi: 10.1007/s11914-019-00545-7 PMID: 31713180
- Sell, H.; Dietze-Schroeder, D.; Kaiser, U.; Eckel, J. Monocyte chemotactic protein-1 is a potential player in the negative cross-talk between adipose tissue and skeletal muscle. Endocrinology, 2006, 147(5), 2458-2467. doi: 10.1210/en.2005-0969 PMID: 16439461
- Samuel, V.T.; Petersen, K.F.; Shulman, G.I. Lipid-induced insulin resistance: Unravelling the mechanism. Lancet, 2010, 375(9733), 2267-2277. doi: 10.1016/S0140-6736(10)60408-4 PMID: 20609972
- Muoio, D.M.; Newgard, C.B. Obesity-related derangements in metabolic regulation. Annu. Rev. Biochem., 2006, 75(1), 367-401. doi: 10.1146/annurev.biochem.75.103004.142512 PMID: 16756496
- Noakes, T.D. So what comes first: The obesity or the insulin resistance? And which is more important? Clin. Chem., 2018, 64(1), 7-9. doi: 10.1373/clinchem.2017.282962 PMID: 29295832
- Aragonès, G.; Ardid-Ruiz, A.; Ibars, M. Suárez, M.; Bladé, C. Modulation of leptin resistance by food compounds. Mol. Nutr. Food Res., 2016, 60(8), 1789-1803. doi: 10.1002/mnfr.201500964 PMID: 26842874
- Ardid-Ruiz, A.; Harazin, A.; Barna, L.; Walter, F.R.; Bladé, C. Suárez, M.; Deli, M.A.; Aragonès, G. The effects of Vitis vinifera L. phenolic compounds on a blood-brain barrier culture model: Expression of leptin receptors and protection against cytokine-induced damage. J. Ethnopharmacol., 2020, 247, 112253. doi: 10.1016/j.jep.2019.112253 PMID: 31562952
- Polyzos, S.A.; Kountouras, J.; Mantzoros, C.S. Leptin in nonalcoholic fatty liver disease: A narrative review. Metabolism, 2015, 64(1), 60-78. doi: 10.1016/j.metabol.2014.10.012 PMID: 25456097
- Hussein, M.A. Anti-obesity, antiatherogenic, anti-diabetic and antioxidant activities of J. montana ethanolic formulation in obese diabetic rats fed high-fat diet. Free Radic. Antioxid., 2011, 1(1), 49-60. doi: 10.5530/ax.2011.1.9
- Razny, U.; Kiec-Wilk, B.; Wator, L.; Polus, A.; Dyduch, G.; Solnica, B.; Malecki, M.; Tomaszewska, R.; Cooke, J.P.; Dembinska-Kiec, A. Increased nitric oxide availability attenuates high fat diet metabolic alterations and gene expression associated with insulin resistance. Cardiovasc. Diabetol., 2011, 10(1), 68-72. doi: 10.1186/1475-2840-10-68 PMID: 21781316
- Salah, A.; Hussein, A.; Hassan, S.; Hussein, M.A.; Bassiouny, K. Green synthesis of RES-CMCS: A promising modulator of the GLUT-4/Leptin Signaling Pathway in HFD-induced insulin resistance. Biomed. Res. Ther., 2022, 9(7), 5166-5178. doi: 10.15419/bmrat.v9i7.753
- Kelly, G. A review of the sirtuin system, its clinical implications, and the potential role of dietary activators like resveratrol: part 1. Altern. Med. Rev., 2010, 15(3), 245-263. PMID: 21155626
- Schenk, S.; McCurdy, C.E.; Philp, A.; Chen, M.Z.; Holliday, M.J.; Bandyopadhyay, G.K.; Osborn, O.; Baar, K.; Olefsky, J.M. Sirt1 enhances skeletal muscle insulin sensitivity in mice during caloric restriction. J. Clin. Invest., 2011, 121(11), 4281-4288. doi: 10.1172/JCI58554 PMID: 21985785
- Price, N.L.; Gomes, A.P.; Ling, A.J.Y.; Duarte, F.V.; Martin-Montalvo, A.; North, B.J.; Agarwal, B.; Ye, L.; Ramadori, G.; Teodoro, J.S.; Hubbard, B.P.; Varela, A.T.; Davis, J.G.; Varamini, B.; Hafner, A.; Moaddel, R.; Rolo, A.P.; Coppari, R.; Palmeira, C.M.; de Cabo, R.; Baur, J.A.; Sinclair, D.A. SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function. Cell Metab., 2012, 15(5), 675-690. doi: 10.1016/j.cmet.2012.04.003 PMID: 22560220
- Cai, S.; Sun, W.; Fan, Y.; Guo, X.; Xu, G.; Xu, T.; Hou, Y.; Zhao, B.; Feng, X.; Liu, T. Effect of mulberry leaf (Folium Mori) on insulin resistance via IRS-1/PI3K/Glut-4 signalling pathway in type 2 diabetes mellitus rats. Pharm. Biol., 2016, 54(11), 2685-2691. doi: 10.1080/13880209.2016.1178779 PMID: 27158744
- Wilson, R.D.; Islam, M.S. Effects of white mulberry (Morus alba) leaf tea investigated in a type 2 diabetes model of rats. Acta Pol. Pharm., 2015, 72(1), 153-160. PMID: 25850211
- Lee, J.; Padhye, A.; Sharma, A.; Song, G.; Miao, J.; Mo, Y.Y.; Wang, L.; Kemper, J.K. A pathway involving farnesoid X receptor and small heterodimer partner positively regulates hepatic sirtuin 1 levels via microRNA-34a inhibition. J. Biol. Chem., 2010, 285(17), 12604-12611. doi: 10.1074/jbc.M109.094524 PMID: 20185821
- Kelly, G.S. A review of the sirtuin system, its clinical implications, and the potential role of dietary activators like resveratrol: Part 2. Altern. Med. Rev., 2010, 15(4), 313-328. PMID: 21194247
- Karunakaran, D.; Richards, L.; Geoffrion, M.; Barrette, D.; Gotfrit, R.J.; Harper, M.E.; Rayner, K.J. Therapeutic inhibition of miR-33 promotes fatty acid oxidation but does not ameliorate metabolic dysfunction in diet-induced obesity. Arterioscler. Thromb. Vasc. Biol., 2015, 35(12), 2536-2543. doi: 10.1161/ATVBAHA.115.306404 PMID: 26427794
- Xie, Q.; Peng, J.; Guo, Y.; Li, F. MicroRNA-33-5p inhibits cholesterol efflux in vascular endothelial cells by regulating citrate synthase and ATP-binding cassette transporter A1. BMC Cardiovasc. Disord., 2021, 21(1), 433. doi: 10.1186/s12872-021-02228-7 PMID: 34517822
- Shankar, K.; Zhong, Y.; Kang, P.; Lau, F.; Blackburn, M.L.; Chen, J.R.; Borengasser, S.J.; Ronis, M.J.J.; Badger, T.M. Maternal obesity promotes a proinflammatory signature in rat uterus and blastocyst. Endocrinology, 2011, 152(11), 4158-4170. doi: 10.1210/EN.2010-1078 PMID: 21862610
Supplementary files
