A Synoptic Update on Smart Lipid Nanocarrier: Cubosomes, and their Design Development, and Recent Challenges


Cite item

Full Text

Abstract

Cubosomes are a kind of nanoparticle that is distinct from solid particles in that they are liquid crystalline particles formed by self-assembly of a certain surfactant with a current water ratio. Their unique properties as a result of their microstructure are useful in practical applications. Cubosomes, specifically lyotropic nonlamellar liquid crystalline nanoparticles (LCNs) have gained acceptance as a medication delivery strategy for cancer and other disorders. Cubosomes are produced by the fragmentation of a solid-like phase into smaller particles. Because of its particular microstructure, which is physiologically safe and capable of allowing for the controlled release of solubilized compounds, cubic phase particles are garnering considerable attention. These cubosomes are highly adaptable carriers with promising theranostic efficacy because they can be given orally, topically, or intravenously. Throughout its operation, the drug delivery system regulates the loaded anticancer bioactive's target selectivity and drug release characteristics. This compilation examines recent advances and obstacles in the development and application of cubosomes to treat various cancers, as well as the challenges of turning it into a potential nanotechnological invasion.

About the authors

Putrevu Sreelaya

Department of Pharmaceutics, School of Pharmacy & Technology Management, VKM'S NMIMS Deemed-to-be University

Email: info@benthamscience.net

Sankha Bhattacharya

Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University

Author for correspondence.
Email: info@benthamscience.net

References

  1. Kaur, S.D.; Singh, G.; Singh, G.; Singhal, K.; Kant, S.; Bedi, N. Cubosomes as potential nanocarrier for drug delivery: A comprehensive review. J. Pharm. Res. Int., 2021, 33, 118-135. doi: 10.9734/jpri/2021/v33i31B31698
  2. Almoshari, Y. Development, therapeutic evaluation and theranostic applications of cubosomes on cancers: An updated review. Pharmaceutics, 2022, 14(3), 600. doi: 10.3390/pharmaceutics14030600 PMID: 35335975
  3. Gaballa, SA.; El Garhy, OH.; Abdelkader, H. Cubosomes: Composition, preparation, and drug delivery applications. Int J of Ad Biomed & Pharm Res., 2020, 3(1), 1-9.
  4. Dhadwal, A.; Sharma, D.R.; Pandit, V.; Ashawat, M.S.; Kumar, P. Cubosomes: A novel carrier for transdermal drug delivery. J. Drug Deliv. Ther., 2020, 10(1), 123-130. doi: 10.22270/jddt.v10i1.3814
  5. Zhao, XY.; Zhang, J.; Zheng, LQ. Studies of cubosomes as a sustained drug delivery system. J. Dispers. Sci. Technol., 2005, 25(6), 795-799.
  6. Spicer, P.T. Progress in liquid crystalline dispersions. Cubosomes. Curr. Opin. Colloid Interface Sci., 2005, 10(5-6), 274-279. doi: 10.1016/j.cocis.2005.09.004
  7. Lindman, B Alexandridis, PJABCS-A Amphiphilic molecules: Small and large. 2000, 1-12.
  8. Bhosale, R.R.; Osmani, R.A.; Harkare, B.R.; Ghodake, P.P. Cubosomes: the inimitable nanoparticulate drug carriers. Sch. Acad. J. Pharm., 2013, 2(6), 481-486.
  9. Flak, D.K.; Adamski, V.; Nowaczyk, G.; Szutkowski, K.; Synowitz, M.; Jurga, S.; Held-Feindt, J. AT101-loaded cubosomes as an alternative for improved glioblastoma therapy. Int. J. Nanomedicine, 2021, 15, 7415-7431. doi: 10.2147/IJN.S265061 PMID: 33116479; (b) Garg M, Goyal A, Kumari S. An update on the recent advances in cubosome: a novel drug delivery system. Curr Drug Metab, 2021, 22(6), 441-450. doi: 10.2174/1389200221666210105121532 PMID: 33402079
  10. Faria, AR.; Silvestre, OF.; Maibohm, C.; Adão, RM.; Silva, BF. Nieder, JBJNR Cubosome nanoparticles for enhanced delivery of mitochondria anticancer drug elesclomol and therapeutic monitoring via sub-cellular NAD (P) H multi-photon fluorescence lifetime imaging. Nano Res., 2019, 12, 991-998.
  11. Zewail, M. Lipidic cubic-phase leflunomide nanoparticles (cubosomes) as a potential tool for breast cancer management. Drug Deliv., 2022, 29(1), 1663-1674.
  12. Alexandridis, P.; Olsson, U.; Lindman, BJL. Structural polymorphism of amphiphilic copolymers: Six lyotropic liquid crystalline and two solution phases in a poly (oxybutylene)-b-poly (oxyethylene)- water- xylene system. Langmuir, 1997, 13(1), 23-34.
  13. Nasr, M.; Ghorab, M.K.; Abdelazem, A. In vitro and in vivo evaluation of cubosomes containing 5-fluorouracil for liver targeting. Acta Pharm. Sin. B, 2015, 5(1), 79-88. doi: 10.1016/j.apsb.2014.12.001 PMID: 26579429
  14. Rehman, A.; Tong, Q.; Jafari, S.M.; Assadpour, E.; Shehzad, Q.; Aadil, R.M.; Iqbal, M.W.; Rashed, M.M.A.; Mushtaq, B.S.; Ashraf, W. Carotenoid-loaded nanocarriers: A comprehensive review. Adv. Colloid Interface Sci., 2020, 275, 102048. doi: 10.1016/j.cis.2019.102048 PMID: 31757387
  15. Kim, D.H.; Jahn, A.; Cho, S.J.; Kim, J.S.; Ki, M.H.; Kim, D.D. Lyotropic liquid crystal systems in drug delivery: A review. J. Pharm. Investig., 2015, 45(1), 1-11. doi: 10.1007/s40005-014-0165-9
  16. Huang, Y.; Gui, S. Factors affecting the structure of lyotropic liquid crystals and the correlation between structure and drug diffusion. RSC Advances, 2018, 8(13), 6978-6987. doi: 10.1039/C7RA12008G PMID: 35540315
  17. Mertins, O.; Mathews, P.D.; Angelova, A. Advances in the design of ph-sensitive cubosome liquid crystalline nanocarriers for drug delivery applications. Nanomaterials, 2020, 10(5), 963. doi: 10.3390/nano10050963 PMID: 32443582
  18. Mohammad, Y.; Prentice, RN.; Boyd, BJ. Comparison of cubosomes and hexosomes for the delivery of phenytoin to the brain. J. Colloid Interface Sci., 2022, 605, 146-154.
  19. Ba, A; Xa, FG; Sa, S.AN An overview of cubosomes-smart drug delivery system. Sri Ramachandra J. Med., 2015, 8(1)
  20. Jain, S.; Jain, V.; Mahajan, S. Lipid based vesicular drug delivery systems; Advances in Pharmaceutics, 2014. doi: 10.1155/2014/574673
  21. Patond, V.B.; Ghonge, A.B.; Narkhede, M.B.J.I.J.T.S.R.D. Cubosome-Review., 2020, 4, 1116-1120.
  22. Karami, Z. Cubosomes: Remarkable drug delivery potential. Drug Discov. Today, 2016, 21(5), 789-801.
  23. Younus, M.; Prentice, R.N.; Clarkson, A.N.; Boyd, B.J.; Rizwan, S.B. Incorporation of an endogenous neuromodulatory lipid, oleoylethanolamide, into cubosomes: Nanostructural characterization. Langmuir, 2016, 32(35), 8942-8950. doi: 10.1021/acs.langmuir.6b02395 PMID: 27524261
  24. Barkate, A.R.; Gadekar, D.N. Cubosomes: The novel drug delivery system. World J. Pharm. Res., 2020, 9, 1170-1185.
  25. Oliveira, C.; Ferreira, C.JO.; Sousa, M.; Paris, JL.; Gaspar, R.; Silva, B.FB.; Teixeira, JA.; Ferreira-Santos, P.; Botelho, CM. A versatile nanocarrier—cubosomes, characterization, and applications. Nanomaterials, 2022, 12(13), 2224. doi: 10.3390/nano12132224 PMID: 35808060
  26. Garg, G.; Saraf, S.; Saraf, S. Cubosomes: An overview. Biol. Pharm. Bull., 2007, 30(2), 350-353. doi: 10.1248/bpb.30.350 PMID: 17268078
  27. Hong, SK.; Ma, JY. In vitro skin permeation enhancement of KIOM-MA-128 by monoolein cubosomes. J. Dispers. Sci. Technol., 2012, 33(10), 1503-1508.
  28. Rizwan, S.B.; Boyd, B.J. Cubosomes: structure, preparation and use as an antigen delivery system. Subunit Vaccine Delivery; Springer, 2015, pp. 125-140.
  29. Drummond, C.J.; Fong, C. Surfactant self-assembly objects as novel drug delivery vehicles. Curr. Opin. Colloid Interface Sci., 1999, 4(6), 449-456. doi: 10.1016/S1359-0294(00)00020-0
  30. Chong, J.Y.T.; Mulet, X.; Keddie, D.J.; Waddington, L.; Mudie, S.T.; Boyd, B.J.; Drummond, C.J. Novel steric stabilizers for lyotropic liquid crystalline nanoparticles: PEGylated-phytanyl copolymers. Langmuir, 2015, 31(9), 2615-2629. doi: 10.1021/la501471z PMID: 25068381
  31. Ha, S.; La, Y.; Kim, K.T. Polymer cubosomes: Infinite cubic mazes and possibilities. Acc. Chem. Res., 2020, 53(3), 620-631. doi: 10.1021/acs.accounts.9b00563 PMID: 31920073; (b) Varghese R, Salvi S, Sood P, Kulkarni B, Kumar D. Cubosomes in cancer drug delivery: A review. Colloid Interface Sci Commun, 2022, 46, 100561.
  32. Akhlaghi, S.P.; Ribeiro, I.R.; Boyd, B.J.; Loh, W. Impact of preparation method and variables on the internal structure, morphology, and presence of liposomes in phytantriol-Pluronic® F127 cubosomes. Colloids Surf. B Biointerfaces, 2016, 145, 845-853. doi: 10.1016/j.colsurfb.2016.05.091 PMID: 27315333
  33. Chime, A.; Ikechukwu, V.O. Lipid-based drug delivery systems (LDDS): Recent advances and applications of lipids in drug delivery. Afr. J. Pharm. Pharmacol., 2013, 7(48), 3034-3059. doi: 10.5897/AJPPX2013.0004
  34. Balata, G.; Amin, M.; Alhalabi, F.; Alansari, S. Cubosomes: A novel approach for delivery of anticancer drugs. Am. j. PharmTech res., 2016, 7(1), 1-14.
  35. Patel, B. Thakkar, HPJNDDSAEBA Cubosomes: Novel nanocarriers for drug delivery. Curr. Drug Deliv., 2021, 13(4), 482-493.
  36. Shrimal, P.; Jadeja, G.; Patel, S. A review on novel methodologies for drug nanoparticle preparation: Microfluidic approach. Chem. Eng. Res. Des., 2020, 153, 728-756. doi: 10.1016/j.cherd.2019.11.031
  37. Patond, V.B.; Ghonge, A.B.; Narkhede, M.B. Cubosome-Review. Int J Trend Sci Res Dev., 2020, 4, 1116-1120.
  38. von Halling Laier, C.; Gibson, B.; van de Weert, M.; Boyd, B.J.; Rades, T.; Boisen, A.; Hook, S.; Nielsen, L.H. Spray dried cubosomes with ovalbumin and Quil-A as a nanoparticulate dry powder vaccine formulation. Int. J. Pharm., 2018, 550(1-2), 35-44. doi: 10.1016/j.ijpharm.2018.08.036 PMID: 30134183
  39. Ola, M.; Bhaskar, R.; Patil, G.R. Liquid crystalline drug delivery system for sustained release loaded with an antitubercular drug. J. Drug Deliv. Ther., 2018, 8(4), 93-101. doi: 10.22270/jddt.v8i4.1719
  40. Jain, A.K.; Thareja, S. In vitro and in vivo characterization of pharmaceutical nanocarriers used for drug delivery. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 524-539. doi: 10.1080/21691401.2018.1561457 PMID: 30784319
  41. Hallan, S.S.; Sguizzato, M.; Esposito, E.; Cortesi, R. Challenges in the physical characterization of lipid nanoparticles. Pharmaceutics, 2021, 13(4), 549. doi: 10.3390/pharmaceutics13040549 PMID: 33919859
  42. Angelov, B.; Angelova, A.; Drechsler, M.; Garamus, V.M.; Mutafchieva, R.; Lesieur, S. Identification of large channels in cationic PEGylated cubosome nanoparticles by synchrotron radiation SAXS and Cryo-TEM imaging. Soft Matter, 2015, 11(18), 3686-3692. doi: 10.1039/C5SM00169B PMID: 25820228
  43. Fang, L.; Seifert, S.; Winans, R.E.; Li, T. Operando XAS/SAXS: Guiding design of single-atom and subnanocluster catalysts. Small Methods, 2021, 5(5), 2001194. doi: 10.1002/smtd.202001194 PMID: 34928104
  44. Alexandridis, P.; Olsson, U.; Lindman, BJL. A reverse micellar cubic phase. Langmuir, 1996, 12(6), 1419-1422. doi: 10.1021/la9509099
  45. Aleandri, S.; Bandera, D.; Mezzenga, R.; Landau, E.M. Biotinylated cubosomes: A versatile tool for active targeting and codelivery of paclitaxel and a fluorescein-based lipid dye. Langmuir, 2015, 31(46), 12770-12776. doi: 10.1021/acs.langmuir.5b03469 PMID: 26513646
  46. Mohsen, A.M.; Younis, M.M.; Salama, A.; Darwish, A.B. Cubosomes as a potential oral drug delivery system for enhancing the hepatoprotective effect of coenzyme Q10. J. Pharm. Sci., 2021, 110(7), 2677-2686. doi: 10.1016/j.xphs.2021.02.007 PMID: 33600809
  47. Mo, J.; Milleret, G.; Nagaraj, M. Liquid crystal nanoparticles for commercial drug delivery. Liq. Cryst. Rev., 2017, 5(2), 69-85. doi: 10.1080/21680396.2017.1361874
  48. Archana, A.; Vijayasri, K.; Madhurim, M.; Kumar, C. Curcumin loaded nano cubosomal hydrogel: preparation, in vitro characterization and antibacterial activity. Chem. Sci. Trans., 2015, 4(1), 75-80.
  49. Rarokar, N.R.; Saoji, S.D.; Raut, N.A.; Taksande, J.B.; Khedekar, P.B.; Dave, V.S. Nanostructured cubosomes in a thermoresponsive depot system: an alternative approach for the controlled delivery of docetaxel. AAPS PharmSciTech, 2016, 17(2), 436-445. doi: 10.1208/s12249-015-0369-y PMID: 26208439
  50. Akhlaghi, S.P.; Loh, W. Interactions and release of two palmitoyl peptides from phytantriol cubosomes. Eur. J. Pharm. Biopharm., 2017, 117, 60-67. doi: 10.1016/j.ejpb.2017.03.022 PMID: 28377272
  51. Huang, J.; Peng, T.; Li, Y.; Zhan, Z.; Zeng, Y.; Huang, Y.; Pan, X.; Wu, C.Y.; Wu, C. Ocular cubosome drug delivery system for timolol maleate: preparation, characterization, cytotoxicity, ex vivo, and in vivo evaluation. AAPS PharmSciTech, 2017, 18(8), 2919-2926. doi: 10.1208/s12249-017-0763-8 PMID: 28429294
  52. Mulet, X.; Boyd, B.J.; Drummond, C.J. Advances in drug delivery and medical imaging using colloidal lyotropic liquid crystalline dispersions. J. Colloid Interface Sci., 2013, 393, 1-20. doi: 10.1016/j.jcis.2012.10.014 PMID: 23237762
  53. Rizwan, S.B.; Boyd, B.J.; Rades, T.; Hook, S. Bicontinuous cubic liquid crystals as sustained delivery systems for peptides and proteins. Expert Opin. Drug Deliv., 2010, 7(10), 1133-1144. doi: 10.1517/17425247.2010.515584 PMID: 20858165
  54. Bala, R.; Sindhu, R.K.; Kaundle, B.; Madaan, R.; Cavalu, S. The prospective of liquid crystals in nano formulations for drug delivery systems. J. Mol. Struct., 2021, 1245, 131117. doi: 10.1016/j.molstruc.2021.131117
  55. Sarkar, B; Venugopal, V; Bodratti, AM; Tsianou, M Nanoparticle surface modification by amphiphilic polymers in aqueous media: Role of polar organic solvents. J. Colloid Interface Sci., 2013, 397, 1-8.; (b) Hou F, Wang H, Zhang Y, Zhu N, Liu H, Li J. Construction and evaluation of folic acid-modified 3-bromopyruvate cubosomes. Med Sci Monit, 2020, 26, e924620. doi: 10.12659/MSM.924620 PMID: 32956335; (c) Zhai J, Scoble JA, Li N, et al. Epidermal growth factor receptor- targeted lipid nanoparticles retain self-assembled nanostructures and provide high specificity Nanoscale , 2015, 7(7), 2905-13.
  56. Waheed, A.; Aqil, M. Lyotropic liquid crystalline nanoparticles: Scaffolds for delivery of myriad therapeutics and diagnostics. J. Mol. Liq., 2021, 338, 116919. doi: 10.1016/j.molliq.2021.116919
  57. Rarokar, N.; Khedekar, P. Cubosomes: A vehicle for delivery of various therapeutic agents. MOJ Toxicol., 2018, 4(1), 19-21.
  58. Rapalli, VK; Banerjee, S; Khan, S; Jha, PN; Gupta, G; Dua, K QbD-driven formulation development and evaluation of topical hydrogel containing ketoconazole loaded cubosomes., 2021, 119, 111548. doi: 10.1016/j.msec.2020.111548
  59. Gajda, E.; Godlewska, M.; Mariak, Z.; Nazaruk, E.; Gawel, D. Combinatory treatment with miR-7-5p and drug-loaded cubosomes effectively impairs cancer cells. Int. J. Mol. Sci., 2020, 21(14), 5039. doi: 10.3390/ijms21145039 PMID: 32708846
  60. Shanmugam, T.; Banerjee, R. Nanostructured self assembled lipid materials for drug delivery and tissue engineering. Ther. Deliv., 2011, 2(11), 1485-1516. doi: 10.4155/tde.11.105 PMID: 22826876
  61. Nasr, M.; Younes, H.; Abdel-Rashid, R.S. Formulation and evaluation of cubosomes containing colchicine for transdermal delivery. Drug Deliv. Transl. Res., 2020, 10(5), 1302-1313. doi: 10.1007/s13346-020-00785-6 PMID: 32399604
  62. Suresh, AM. Kallingal, A Cubosomes nanoparticles: Recent advancements in drug delivery. Int J Med Phar Sci, 2020, 10(02), 11.
  63. Thomas, A; Varghese, J; Raju, SP; Das, C; Abraham, E Cubosomes- a novel drug delivery system. J. Global Trends Pharm. Sci.,
  64. Said, M; Aboelwafa, AA; Elshafeey, AH Central composite optimization of ocular mucoadhesive cubosomes for enhanced bioavailability and controlled delivery of voriconazole. J. Drug Deliv. Sci. Technol., 2021, 61, 102075.
  65. Sen, R.; Gupta, R.; Singh, S.; Mantry, S.; Das, S. A review on cubosome and virosome: The novel drug delivery system. UJPSR, 2017, 3(1), 24-33.
  66. Sahdev, P.; Ochyl, L.J.; Moon, J.J. Biomaterials for nanoparticle vaccine delivery systems. Pharm. Res., 2014, 31(10), 2563-2582. doi: 10.1007/s11095-014-1419-y PMID: 24848341
  67. Madheswaran, T.; Kandasamy, M.; Bose, R.J.C.; Karuppagounder, V. Current potential and challenges in the advances of liquid crystalline nanoparticles as drug delivery systems. Drug Discov. Today, 2019, 24(7), 1405-1412. doi: 10.1016/j.drudis.2019.05.004 PMID: 31102731
  68. Gan, L.; Wang, J.; Jiang, M.; Bartlett, H.; Ouyang, D.; Eperjesi, F.; Liu, J.; Gan, Y. Recent advances in topical ophthalmic drug delivery with lipid-based nanocarriers. Drug Discov. Today, 2013, 18(5-6), 290-297. doi: 10.1016/j.drudis.2012.10.005 PMID: 23092895
  69. Kaasgaard, T.; Drummond, C.J. Ordered 2-D and 3-D nanostructured amphiphile self-assembly materials stable in excess solvent. Phys. Chem. Chem. Phys., 2006, 8(43), 4957-4975. doi: 10.1039/b609510k PMID: 17091149
  70. Zhang, L.; Li, J.; Tian, D.; Sun, L.; Wang, X.; Tian, M. Theranostic combinatorial drug-loaded coated cubosomes for enhanced targeting and efficacy against cancer cells. Cell Death Dis., 2020, 11(1), 1-12. doi: 10.1038/s41419-019-2182-0 PMID: 31911576
  71. Patil, S.M.; Sawant, S.S.; Kunda, N.K. Inhalable bedaquiline-loaded cubosomes for the treatment of non-small cell lung cancer (NSCLC). Int. J. Pharm., 2021, 607, 121046. doi: 10.1016/j.ijpharm.2021.121046 PMID: 34450225
  72. Bessone, C.D.V.; Akhlaghi, S.P.; Tártara, L.I.; Quinteros, D.A.; Loh, W.; Allemandi, D.A. Latanoprost-loaded phytantriol cubosomes for the treatment of glaucoma. Eur. J. Pharm. Sci., 2021, 160, 105748. doi: 10.1016/j.ejps.2021.105748 PMID: 33567324
  73. Al-mahallawi, A.M.; Abdelbary, A.A.; El-Zahaby, S.A. Norfloxacin loaded nano-cubosomes for enhanced management of otitis externa: In vitro and in vivo evaluation. Int. J. Pharm., 2021, 600, 120490. doi: 10.1016/j.ijpharm.2021.120490 PMID: 33744451
  74. Saber, S.; Nasr, M.; Kaddah, M.M.Y.; Mostafa-Hedeab, G.; Cavalu, S.; Mourad, A.A.E.; Gaafar, A.G.A.; Zaghlool, S.S.; Saleh, S.; Hafez, M.M.; Girgis, S.; Elgharabawy, R.M.; Nader, K.; Alsharidah, M.; Batiha, G.E.S.; El-Ahwany, E.; Amin, N.A.; Elagamy, H.I.; Shata, A.; Nader, R.; Khodir, A.E. Nifuroxazide-loaded cubosomes exhibit an advancement in pulmonary delivery and attenuate bleomycin-induced lung fibrosis by regulating the STAT3 and NF-κB signaling: A new challenge for unmet therapeutic needs. Biomed. Pharmacother., 2022, 148, 112731. doi: 10.1016/j.biopha.2022.112731 PMID: 35220029
  75. Bernardi, FPRBKWZJE Cubosome, its process of obtaining and its uses. 2020.
  76. Strachan, CEC Oral therapeutic delivery. 2020.
  77. Zhang, IPAPA Drug combination kits and methods of drug delivery. 2020.
  78. Barrows, TH. Compositions and methods of use thereof for treatment of mastitis. Patent Application 20230057782 2020.
  79. Allen, EASBD Remote modulation of bicontinuous nanospheres for controlled delivery applications. Patent Application 20210308065, 2020.
  80. Prestidge, CTT Antimicrobial compositions and methods of use., 2020.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers