Extrusion and Co-extrusion: A Technology in Probiotic Encapsulation with Alternative Materials


Cite item

Full Text

Abstract

:Encapsulation, in particular extrusion and co-extrusion, is a common practice to protect probiotics from the harsh conditions of the digestive tract as well as processing. Hydrocolloids, including proteins and carbohydrates, natural or modified, are a group of ingredients used as the wall material in extrusion. Hydrocolloids, due to their specific properties, can significantly improve the probiotic survivability of the final powder during the microencapsulation process and storage. The present article will discuss the different kinds of hydrocolloids used for microencapsulation of probiotics by extrusion and co-extrusion, along with new sources of novel gums and their potential as wall material.

About the authors

Aziz Homayouni-Rad

Department of Food Science and Technology, Faculty of Nutrition and Food Sciences,, Tabriz University of Medical Sciences

Email: info@benthamscience.net

Amir Mortazavian

Department of Food Science and Technology, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences

Email: info@benthamscience.net

Hadi Pourjafar

Dietary Supplements and Probiotic Research Center, Alborz University of Medical Sciences

Email: info@benthamscience.net

Saba Moghadam

Department of Food Science and Technology, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences

Author for correspondence.
Email: info@benthamscience.net

References

  1. Solanki, HK; Pawar, DD; Shah, DA; Prajapati, VD; Jani, GK; Mulla, AM Development of microencapsulation delivery system for long-term preservation of probiotics as biotherapeutics agent. BioMed research international, 2013, 2013. doi: 10.1155/2013/620719
  2. Lapsiri, W.; Bhandari, B.; Wanchaitanawong, P. Viability of Lactobacillus plantarum TISTR 2075 in different protectants during spray drying and storage. Dry. Technol., 2012, 30(13), 1407-1412. doi: 10.1080/07373937.2012.684226
  3. Burgain, J.; Gaiani, C.; Linder, M.; Scher, J. Encapsulation of probiotic living cells: From laboratory scale to industrial applications. J. Food Eng., 2011, 104(4), 467-483. doi: 10.1016/j.jfoodeng.2010.12.031
  4. Corona-Hernandez, R.I. Álvarez-Parrilla, E.; Lizardi-Mendoza, J.; Islas-Rubio, A.R.; de la Rosa, L.A.; Wall-Medrano, A. Structural stability and viability of microencapsulated probiotic bacteria: a review. Compr. Rev. Food Sci. Food Saf., 2013, 12(6), 614-628. doi: 10.1111/1541-4337.12030 PMID: 33412721
  5. De Prisco, A.; Mauriello, G. Probiotication of foods: A focus on microencapsulation tool. Trends Food Sci. Technol., 2016, 48, 27-39. doi: 10.1016/j.tifs.2015.11.009
  6. Anandharamakrishnan, C. Spray drying techniques for food ingredient encapsulation; John Wiley & Sons, 2015. doi: 10.1002/9781118863985
  7. Yao, M.; Xie, J.; Du, H.; McClements, D.J.; Xiao, H.; Li, L. Progress in microencapsulation of probiotics: A review. Compr. Rev. Food Sci. Food Saf., 2020, 19(2), 857-874. doi: 10.1111/1541-4337.12532 PMID: 33325164
  8. Nedovic, V.; Kalusevic, A.; Manojlovic, V.; Levic, S.; Bugarski, B. An overview of encapsulation technologies for food applications. Procedia Food Sci., 2011, 1, 1806-1815. doi: 10.1016/j.profoo.2011.09.265
  9. Gharsallaoui, A.; Roudaut, G.; Chambin, O.; Voilley, A.; Saurel, R. Applications of spray-drying in microencapsulation of food ingredients: An overview. Food Res. Int., 2007, 40(9), 1107-1121. doi: 10.1016/j.foodres.2007.07.004
  10. Zheng, D.W.; Li, R.Q.; An, J.X.; Xie, T.Q.; Han, Z.Y.; Xu, R.; Fang, Y.; Zhang, X.Z. Prebiotics‐encapsulated probiotic spores regulate gut microbiota and suppress colon cancer. Adv. Mater., 2020, 32(45), 2004529. doi: 10.1002/adma.202004529 PMID: 33006175
  11. Fangmeier, M.; Lehn, D.N.; Maciel, M.J.; Volken de Souza, C.F. Encapsulation of bioactive ingredients by extrusion with vibrating technology: advantages and challenges. Food Bioprocess Technol., 2019, 12(9), 1472-1486. doi: 10.1007/s11947-019-02326-7
  12. How, Y.H.; Lai, K.W.; Pui, L.P.; In, L.L.A. Co‐extrusion and extrusion microencapsulation: Effect on microencapsulation efficiency, survivability through gastrointestinal digestion and storage. J. Food Process Eng., 2022, 45(3), e13985. doi: 10.1111/jfpe.13985
  13. Bamidele, O.P.; Emmambux, M.N. Encapsulation of bioactive compounds by "extrusion" technologies: a review. Crit. Rev. Food Sci. Nutr., 2021, 61(18), 3100-3118. doi: 10.1080/10408398.2020.1793724 PMID: 32729723
  14. Widaningrum; Miskiyah; Indrasti, D.; Hidaya, H.C. Improvement of viability of lactobacillus casei and bifidobacterium longum with several encapsulating materials using extrusion method. J. Ilmu Ternak Vet., 2019, 23(4), 189-201. doi: 10.14334/jitv.v23i4.1547
  15. Chávarri M.; Marañón, I.; Ares, R.; Ibáñez, F.C.; Marzo, F.; Villarán, M.C. Microencapsulation of a probiotic and prebiotic in alginate-chitosan capsules improves survival in simulated gastro-intestinal conditions. Int. J. Food Microbiol., 2010, 142(1-2), 185-189. doi: 10.1016/j.ijfoodmicro.2010.06.022 PMID: 20659775
  16. Helmig, J.; Behr, M.; Elgeti, S. Boundary-conforming finite element methods for twin-screw extruders: Unsteady - temperature-dependent - non-Newtonian simulations. Comput. Fluids, 2019, 190, 322-336. doi: 10.1016/j.compfluid.2019.06.028
  17. Leonard, W.; Zhang, P.; Ying, D.; Fang, Z. Application of extrusion technology in plant food processing byproducts: An overview. Compr. Rev. Food Sci. Food Saf., 2020, 19(1), 218-246. doi: 10.1111/1541-4337.12514 PMID: 33319515
  18. dos Santos, J.; da Silva, G.S.; Velho, M.C.; Beck, R.C.R. Eudragit®: A versatile family of polymers for hot melt extrusion and 3D printing processes in pharmaceutics. Pharmaceutics, 2021, 13(9), 1424. doi: 10.3390/pharmaceutics13091424 PMID: 34575500
  19. Ravishankar, P; Khang, A; Laredo, M; Balachandran, K Using dimensionless numbers to predict centrifugal jet-spun nanofiber morphology. Journal of Nanomaterials, 2019, 2019. doi: 10.1155/2019/4639658
  20. Low, K.G.; Lim, S.F. Study on electrostatic extrusion method for synthesizing calcium alginate encapsulated iron oxide. Journal of Applied Science & Process Engineering., 2014, 1(1), 9-27.
  21. Ng, S.L.; Lai, K.W.; Nyam, K.L.; Pui, L.P. Microencapsulation of Lactobacillus plantarum 299v incorporated with oligofructose in chitosan coated-alginate beads and its storage stability in ambarella juice. Malays. J. Microbiol., 2019, 15(5)
  22. Sakai, T. Screw extrusion technology — past, present and future. Polimery, 2013, 58(11/12), 847-857. doi: 10.14314/polimery.2013.847
  23. Yao, S.; Guo, T.; Liu, T.; Xi, Z.; Xu, Z.; Zhao, L. Good extrusion foaming performance of long‐chain branched PET induced by its enhanced crystallization property. J. Appl. Polym. Sci., 2020, 137(41), 49268. doi: 10.1002/app.49268
  24. Silva, E.J.N.L. Carapiá, M.F.; Lopes, R.M.; Belladonna, F.G.; Senna, P.M.; Souza, E.M.; De-Deus, G. Comparison of apically extruded debris after large apical preparations by full‐sequence rotary and single‐file reciprocating systems. Int. Endod. J., 2016, 49(7), 700-705. doi: 10.1111/iej.12503 PMID: 26174577
  25. Nemethova, V.; Lacik, I.; Razga, F. Vibration technology for microencapsulation: The restrictive role of viscosity. J. Bioprocess. Biotech., 2015, 5(1), 1. doi: 10.4172/2155-9821.1000199
  26. Silva, M.P.; Tulini, F.L.; Martins, E.; Penning, M. Fávaro-Trindade, C.S.; Poncelet, D. Comparison of extrusion and co-extrusion encapsulation techniques to protect Lactobacillus acidophilus LA3 in simulated gastrointestinal fluids. Lebensm. Wiss. Technol., 2018, 89, 392-399. doi: 10.1016/j.lwt.2017.11.008
  27. Gbassi, G.K.; Vandamme, T. Probiotic encapsulation technology: From microencapsulation to release into the gut. Pharmaceutics, 2012, 4(1), 149-163. doi: 10.3390/pharmaceutics4010149 PMID: 24300185
  28. Heinzen, C.; Berger, A.; Marison, I. Use of vibration technology for jet break-up for encapsulation of cells and liquids in monodisperse microcapsules. Fundamentals of cell immobilisation biotechnology; Springer, 2004, pp. 257-275.
  29. Chew, S.C.; Nyam, K.L. Microencapsulation of kenaf seed oil by co-extrusion technology. J. Food Eng., 2016, 175, 43-50. doi: 10.1016/j.jfoodeng.2015.12.002
  30. Wandrey, C.; Bartkowiak, A.; Harding, S.E. Materials for encapsulation. Encapsulation technologies for active food ingredients and food processing; Springer, 2010, pp. 31-100. doi: 10.1007/978-1-4419-1008-0_3
  31. Agnihotri, N.; Mishra, R.; Goda, C.; Arora, M. Microencapsulation–a novel approach in drug delivery: a review. Indo Global Journal of Pharmaceutical Sciences, 2012, 2(1), 01-20. doi: 10.35652/IGJPS.2012.01
  32. Cortés-Morales, E.A.; Mendez-Montealvo, G.; Velazquez, G. Interactions of the molecular assembly of polysaccharide-protein systems as encapsulation materials. A review. Adv. Colloid Interface Sci., 2021, 295, 102398. doi: 10.1016/j.cis.2021.102398 PMID: 33931199
  33. Etim, R.K.; Ijimdiya, T.S.; Eberemu, A.O.; Osinubi, K.J. Compatibility interaction of landfill leachate with lateritic soil bio-treated with Bacillus megaterium: Criterion for barrier material in municipal solid waste containment. Cleaner Materials, 2022, 5, 100110. doi: 10.1016/j.clema.2022.100110
  34. Rathore, S.; Desai, P.M.; Liew, C.V.; Chan, L.W.; Heng, P.W.S. Microencapsulation of microbial cells. J. Food Eng., 2013, 116(2), 369-381. doi: 10.1016/j.jfoodeng.2012.12.022
  35. Doublier, J-L.; Garnier, C.; Cuvelier, G. Gums and hydrocolloids: functional aspects. Carbohydrates in food; CRC Press, 2017, pp. 307-354.
  36. Phillips, G.O.; Williams, P.A. Handbook of hydrocolloids; Elsevier, 2009. doi: 10.1533/9781845695873
  37. Burey, P.; Bhandari, B.R.; Howes, T.; Gidley, M.J. Hydrocolloid gel particles: Formation, characterization, and application. Crit. Rev. Food Sci. Nutr., 2008, 48(5), 361-377. doi: 10.1080/10408390701347801 PMID: 18464027
  38. Li, C.; Hu, Y. New definition of resistant starch types from the gut microbiota perspectives–a review. Crit. Rev. Food Sci. Nutr., 2022, 1-11.
  39. dos Anjos, L.; Pandey, P.K.; Moraes, T.A.; Feil, R.; Lunn, J.E.; Stitt, M. Feedback regulation by trehalose 6‐phosphate slows down starch mobilization below the rate that would exhaust starch reserves at dawn in Arabidopsis leaves. Plant Direct, 2018, 2(8), e00078. doi: 10.1002/pld3.78 PMID: 31245743
  40. Kumar, L.; Brennan, M.; Zheng, H.; Brennan, C. The effects of dairy ingredients on the pasting, textural, rheological, freeze-thaw properties and swelling behaviour of oat starch. Food Chem., 2018, 245, 518-524. doi: 10.1016/j.foodchem.2017.10.125 PMID: 29287403
  41. Semyonov, D.; Ramon, O.; Kaplun, Z.; Levin-Brener, L.; Gurevich, N.; Shimoni, E. Microencapsulation of Lactobacillus paracasei by spray freeze drying. Food Res. Int., 2010, 43(1), 193-202. doi: 10.1016/j.foodres.2009.09.028
  42. Agave juice as an agent for probiotic encapsulation by spray drying. Cortés-Arminio, C.; López-Malo, A.; Palou, E.; Jiménez, M., Eds.; 17th World Congress of International Commission of Agricultural and Biosystems Engineering conference proceedings; Quebec City, 2010.
  43. Fongin, S.; Alvino Granados, A.E.; Harnkarnsujarit, N.; Hagura, Y.; Kawai, K. Effects of maltodextrin and pulp on the water sorption, glass transition, and caking properties of freeze-dried mango powder. J. Food Eng., 2019, 247, 95-103. doi: 10.1016/j.jfoodeng.2018.11.027
  44. Paim, D.R.S.F.; Costa, S.D.O.; Walter, E.H.M.; Tonon, R.V. Microencapsulation of probiotic jussara (Euterpe edulis M.) juice by spray drying. Lebensm. Wiss. Technol., 2016, 74, 21-25. doi: 10.1016/j.lwt.2016.07.022
  45. Eichhorn, S.J.; Etale, A.; Wang, J.; Berglund, L.A.; Li, Y.; Cai, Y.; Chen, C.; Cranston, E.D.; Johns, M.A.; Fang, Z.; Li, G.; Hu, L.; Khandelwal, M.; Lee, K-Y.; Oksman, K.; Pinitsoontorn, S.; Quero, F.; Sebastian, A.; Titirici, M.M.; Xu, Z.; Vignolini, S.; Frka-Petesic, B. Current international research into cellulose as a functional nanomaterial for advanced applications. J. Mater. Sci., 2022, 57(10), 5697-5767. doi: 10.1007/s10853-022-06903-8
  46. Fathi, M. Martín, Á.; McClements, D.J. Nanoencapsulation of food ingredients using carbohydrate based delivery systems. Trends Food Sci. Technol., 2014, 39(1), 18-39. doi: 10.1016/j.tifs.2014.06.007
  47. Wang, Y. Prebiotics: Present and future in food science and technology. Food Res. Int., 2009, 42(1), 8-12. doi: 10.1016/j.foodres.2008.09.001
  48. Rodríguez-Huezo, M.E.; Durán-Lugo, R.; Prado-Barragán, L.A.; Cruz-Sosa, F.; Lobato-Calleros, C.; Alvarez-Ramírez, J.; Vernon-Carter, E.J. Pre-selection of protective colloids for enhanced viability of Bifidobacterium bifidum following spray-drying and storage, and evaluation of aguamiel as thermoprotective prebiotic. Food Res. Int., 2007, 40(10), 1299-1306. doi: 10.1016/j.foodres.2007.09.001
  49. Homayouni Rad, A.; Delshadian, Z.; Arefhosseini, S.R.; Alipour, B.; Asghari Jafarabadi, M. Effect of inulin and stevia on some physical properties of chocolate milk. Health Promot. Perspect., 2012, 2(1), 42-47. PMID: 24688916
  50. Figueroa-González, I.; Quijano, G.; Ramírez, G.; Cruz-Guerrero, A. Probiotics and prebiotics-perspectives and challenges. J. Sci. Food Agric., 2011, 91(8), 1341-1348. doi: 10.1002/jsfa.4367 PMID: 21445871
  51. Kalyani Nair, K.; Kharb, S.; Thompkinson, D.K. Inulin dietary fiber with functional and health attributes—a review. Food Rev. Int., 2010, 26(2), 189-203. doi: 10.1080/87559121003590664
  52. Nazzaro, F.; Orlando, P.; Fratianni, F.; Coppola, R. Microencapsulation in food science and biotechnology. Curr. Opin. Biotechnol., 2012, 23(2), 182-186. doi: 10.1016/j.copbio.2011.10.001 PMID: 22024623
  53. Barclay, T.; Ginic-Markovic, M.; Cooper, P.; Petrovsky, N. Inulin-a versatile polysaccharide with multiple pharmaceutical and food chemical uses. J. Excip. Food Chem., 2016, 1(3)
  54. Roberfroid, M.B. Inulin-type fructans: Functional food ingredients. J. Nutr., 2007, 137(11)(Suppl.), 2493S-2502S. doi: 10.1093/jn/137.11.2493S PMID: 17951492
  55. Adhikari, B.; Howes, T.; Wood, B.J.; Bhandari, B.R. The effect of low molecular weight surfactants and proteins on surface stickiness of sucrose during powder formation through spray drying. J. Food Eng., 2009, 94(2), 135-143. doi: 10.1016/j.jfoodeng.2009.01.022
  56. Pinto, S.S.; Fritzen-Freire, C.B.; Benedetti, S.; Murakami, F.S.; Petrus, J.C.C.; Prudêncio, E.S.; Amboni, R.D.M.C. Potential use of whey concentrate and prebiotics as carrier agents to protect Bifidobacterium-BB-12 microencapsulated by spray drying. Food Res. Int., 2015, 67, 400-408. doi: 10.1016/j.foodres.2014.11.038
  57. Rajam, R.; Anandharamakrishnan, C. Microencapsulation of Lactobacillus plantarum (MTCC 5422) with fructooligosaccharide as wall material by spray drying. Lebensm. Wiss. Technol., 2015, 60(2), 773-780. doi: 10.1016/j.lwt.2014.09.062
  58. Beirão-da-Costa, S.; Duarte, C.; Bourbon, A.I.; Pinheiro, A.C.; Januلrio, M.I.N.; Vicente, A.A.; Beirمo-da-Costa, M.L.; Delgadillo, I. Inulin potential for encapsulation and controlled delivery of Oregano essential oil. Food Hydrocoll., 2013, 33(2), 199-206. doi: 10.1016/j.foodhyd.2013.03.009
  59. Nie, S.P.; Wang, C.; Cui, S.W.; Wang, Q.; Xie, M.Y.; Phillips, G.O. A further amendment to the classical core structure of gum arabic (Acacia senegal). Food Hydrocoll., 2013, 31(1), 42-48. doi: 10.1016/j.foodhyd.2012.09.014
  60. Bhosale, R.R.; Osmani, R.A.M.; Moin, A. Natural gums and mucilages: A review on multifaceted excipients in pharmaceutical science and research. International Journal of Pharmacognosy and Phytochemical Research., 2014, 15(6), 4.
  61. Lee, K.Y.; Mooney, D.J. Alginate: Properties and biomedical applications. Prog. Polym. Sci., 2012, 37(1), 106-126. doi: 10.1016/j.progpolymsci.2011.06.003 PMID: 22125349
  62. Draget, K.I. Skjåk Bræk, G.; Smidsrød, O. Alginic acid gels: the effect of alginate chemical composition and molecular weight. Carbohydr. Polym., 1994, 25(1), 31-38. doi: 10.1016/0144-8617(94)90159-7
  63. Dong, Q.Y.; Chen, M.Y.; Xin, Y.; Qin, X.Y.; Cheng, Z.; Shi, L.E.; Tang, Z-X. Alginate‐based and protein‐based materials for probiotics encapsulation: a review. Int. J. Food Sci. Technol., 2013, 48(7), 1339-1351. doi: 10.1111/ijfs.12078
  64. Iravani, S.; Korbekandi, H.; Mirmohammadi, S.V. Technology and potential applications of probiotic encapsulation in fermented milk products. J. Food Sci. Technol., 2015, 52(8), 4679-4696. doi: 10.1007/s13197-014-1516-2 PMID: 26243890
  65. Mirzaei, H.; Pourjafar, H.; Rad, A.H. The effect of microencapsulation with calcium alginate and resistant starch on the Lactobacillus acidophilus (La5) survival rate in simulated gastrointestinal juice conditions. J. Vet. Res., 2011, 66(4), 337-377.
  66. Shams, E.; Barzad, M.S.; Mohamadnia, S.; Tavakoli, O.; Mehrdadfar, A. A review on alginate-based bioinks, combination with other natural biomaterials and characteristics. J. Biomater. Appl., 2022, 37(2), 355-372. doi: 10.1177/08853282221085690 PMID: 35510845
  67. Santa-Maria, M.; Scher, H.; Jeoh, T. Microencapsulation of bioactives in cross-linked alginate matrices by spray drying. J. Microencapsul., 2012, 29(3), 286-295. doi: 10.3109/02652048.2011.651494 PMID: 22251237
  68. Agüero, L.; Zaldivar-Silva, D. Peña, L.; Dias, M.L. Alginate microparticles as oral colon drug delivery device: A review. Carbohydr. Polym., 2017, 168, 32-43. doi: 10.1016/j.carbpol.2017.03.033 PMID: 28457455
  69. Lee, B.B.; Ibrahim, R.; Chu, S.Y.; Zulkifli, N.A.; Ravindra, P. Alginate liquid core capsule formation using the simple extrusion dripping method. Journal of Polymer Engineering, 2015, 35(4), 311-318. doi: 10.1515/polyeng-2014-0174
  70. Zavareze, E.R.; Pinto, V.Z.; Klein, B.; El Halal, S.L.M.; Elias, M.C.; Prentice-Hernández, C.; Dias, A.R.G. Development of oxidised and heat–moisture treated potato starch film. Food Chem., 2012, 132(1), 344-350. doi: 10.1016/j.foodchem.2011.10.090 PMID: 26434300
  71. Anal, A.K.; Singh, H. Recent advances in microencapsulation of probiotics for industrial applications and targeted delivery. Trends Food Sci. Technol., 2007, 18(5), 240-251. doi: 10.1016/j.tifs.2007.01.004
  72. Mirzaei, H.; Pourjafar, H.; Homayouni, A. Effect of calcium alginate and resistant starch microencapsulation on the survival rate of Lactobacillus acidophilus La5 and sensory properties in Iranian white brined cheese. Food Chem., 2012, 132(4), 1966-1970. doi: 10.1016/j.foodchem.2011.12.033
  73. Homayouni, A.; Amini, A.; Keshtiban, A.K.; Mortazavian, A.M.; Esazadeh, K.; Pourmoradian, S. Resistant starch in food industry: A changing outlook for consumer and producer. Stärke, 2014, 66(1-2), 102-114. doi: 10.1002/star.201300110
  74. Mirhosseini, H.; Amid, B.T. A review study on chemical composition and molecular structure of newly plant gum exudates and seed gums. Food Res. Int., 2012, 46(1), 387-398. doi: 10.1016/j.foodres.2011.11.017
  75. Hesarinejad, M.A.; Razavi, S.M.A.; Koocheki, A. Alyssum homolocarpum seed gum: Dilute solution and some physicochemical properties. Int. J. Biol. Macromol., 2015, 81, 418-426. doi: 10.1016/j.ijbiomac.2015.08.019 PMID: 26277752
  76. Khazaei, N.; Esmaiili, M.; Djomeh, Z.E.; Ghasemlou, M.; Jouki, M. Characterization of new biodegradable edible film made from basil seed (Ocimum basilicum L.) gum. Carbohydr. Polym., 2014, 102, 199-206. doi: 10.1016/j.carbpol.2013.10.062 PMID: 24507273
  77. Osano, J.P.; Hosseini-Parvar, S.H.; Matia-Merino, L.; Golding, M. Emulsifying properties of a novel polysaccharide extracted from basil seed (Ocimum bacilicum L.): Effect of polysaccharide and protein content. Food Hydrocoll., 2014, 37, 40-48. doi: 10.1016/j.foodhyd.2013.09.008
  78. Zameni, A.; Kashaninejad, M.; Aalami, M.; Salehi, F. Effect of thermal and freezing treatments on rheological, textural and color properties of basil seed gum. J. Food Sci. Technol., 2015, 52(9), 5914-5921. doi: 10.1007/s13197-014-1679-x PMID: 26345008
  79. Razavi, S.M.A.; Mortazavi, S.A.; Matia-Merino, L.; Hosseini-Parvar, S.H.; Motamedzadegan, A.; Khanipour, E. Optimisation study of gum extraction from Basil seeds (Ocimum basilicum L.). Int. J. Food Sci. Technol., 2009, 44(9), 1755-1762. doi: 10.1111/j.1365-2621.2009.01993.x
  80. Kurd, F.; Fathi, M.; Shekarchizadeh, H. Basil seed mucilage as a new source for electrospinning: Production and physicochemical characterization. Int. J. Biol. Macromol., 2017, 95, 689-695. doi: 10.1016/j.ijbiomac.2016.11.116 PMID: 27919814
  81. Saha, A.; Tyagi, S.; Gupta, R.K.; Tyagi, Y.K. Natural gums of plant origin as edible coatings for food industry applications. Crit. Rev. Biotechnol., 2017, 37(8), 959-973. doi: 10.1080/07388551.2017.1286449 PMID: 28423942
  82. Naji-Tabasi, S.; Razavi, S.M.A.; Mehditabar, H. Fabrication of basil seed gum nanoparticles as a novel oral delivery system of glutathione. Carbohydr. Polym., 2017, 157, 1703-1713. doi: 10.1016/j.carbpol.2016.11.052 PMID: 27987886
  83. Koocheki, A.; Mortazavi, S.A.; Shahidi, F.; Razavi, S.M.A.; Taherian, A.R. Rheological properties of mucilage extracted from Alyssum homolocarpum seed as a new source of thickening agent. J. Food Eng., 2009, 91(3), 490-496. doi: 10.1016/j.jfoodeng.2008.09.028
  84. Monjazeb Marvdashti, L.; Koocheki, A.; Yavarmanesh, M. Alyssum homolocarpum seed gum-polyvinyl alcohol biodegradable composite film: Physicochemical, mechanical, thermal and barrier properties. Carbohydr. Polym., 2017, 155, 280-293. doi: 10.1016/j.carbpol.2016.07.123 PMID: 27702514
  85. Prata, A.S.; Garcia, L.; Tonon, R.V.; Hubinger, M.D. Wall material selection for encapsulation by spray drying. Journal of Colloid Science and Biotechnology, 2013, 2(2), 86-92. doi: 10.1166/jcsb.2013.1039
  86. Koocheki, A.; Mortazavi, S.A.; Shahidi, F.; Razavi, S.M.A.; Kadkhodaee, R.; Milani, J.M. Optimization of mucilage extraction from Qodume shirazi seed (Alyssum homolocarpum) using response surface methodology. J. Food Process Eng., 2010, 33(5), 861-882. doi: 10.1111/j.1745-4530.2008.00312.x
  87. Anvari, M.; Tabarsa, M.; Cao, R.; You, S.; Joyner, H.S.; Behnam, S. Compositional characterization and rheological properties of an anionic gum from Alyssum homolocarpum seeds. Food Hydrocoll., 2016, 52, 766-773. doi: 10.1016/j.foodhyd.2015.07.030
  88. Khoshakhlagh, K.; Koocheki, A.; Mohebbi, M.; Allafchian, A. Development and characterization of electrosprayed Alyssum homolocarpum seed gum nanoparticles for encapsulation of d-limonene. J. Colloid Interface Sci., 2017, 490, 562-575. doi: 10.1016/j.jcis.2016.11.067 PMID: 27923141
  89. Segura-Campos, MR; Ciau-Solís, N; Rosado-Rubio, G; Chel-Guerrero, L; Betancur-Ancona, D Chemical and functional properties of chia seed (Salvia hispanica L.) gum. International journal of food science, 2014, 2014.
  90. Ali, NM; Yeap, SK; Ho, WY; Beh, BK; Tan, SW; Tan, SG The promising future of chia, Salvia hispanica L. Journal of Biomedicine and Biotechnology, 2012, 2012.
  91. Timilsena, Y.P.; Adhikari, R.; Kasapis, S.; Adhikari, B. Molecular and functional characteristics of purified gum from Australian chia seeds. Carbohydr. Polym., 2016, 136, 128-136. doi: 10.1016/j.carbpol.2015.09.035 PMID: 26572338
  92. Goh, K.K.T.; Matia-Merino, L.; Chiang, J.H.; Quek, R.; Soh, S.J.B.; Lentle, R.G. The physico-chemical properties of chia seed polysaccharide and its microgel dispersion rheology. Carbohydr. Polym., 2016, 149, 297-307. doi: 10.1016/j.carbpol.2016.04.126 PMID: 27261754
  93. Muñoz, L.A.; Cobos, A.; Diaz, O.; Aguilera, J.M. Chia seeds: Microstructure, mucilage extraction and hydration. J. Food Eng., 2012, 108(1), 216-224. doi: 10.1016/j.jfoodeng.2011.06.037
  94. Avila-de la Rosa, G.; Alvarez-Ramirez, J.; Vernon-Carter, E.J.; Carrillo-Navas, H.; Pérez-Alonso, C. Viscoelasticity of chia (Salvia hispanica L.) seed mucilage dispersion in the vicinity of an oil-water interface. Food Hydrocoll., 2015, 49, 200-207. doi: 10.1016/j.foodhyd.2015.03.017
  95. Bustamante, M.; Oomah, B.D.; Rubilar, M.; Shene, C. Effective lactobacillus plantarum and bifidobacterium infantis encapsulation with chia seed (Salvia hispanica L.) and flaxseed (Linum usitatissimum L.) mucilage and soluble protein by spray drying. Food Chem., 2017, 216, 97-105. doi: 10.1016/j.foodchem.2016.08.019 PMID: 27596397
  96. Timilsena, Y.P.; Wang, B.; Adhikari, R.; Adhikari, B. Preparation and characterization of chia seed protein isolate–chia seed gum complex coacervates. Food Hydrocoll., 2016, 52, 554-563. doi: 10.1016/j.foodhyd.2015.07.033
  97. Behrouzian, F.; Razavi, S.M.A.; Phillips, G.O. Cress seed (Lepidium sativum) mucilage, an overview. Bioactive Carbohydrates and Dietary Fibre, 2014, 3(1), 17-28. doi: 10.1016/j.bcdf.2014.01.001
  98. Karazhiyan, H.; Razavi, S.M.A.; Phillips, G.O.; Fang, Y.; Al-Assaf, S.; Nishinari, K. Physicochemical aspects of hydrocolloid extract from the seeds of Lepidium sativum. Int. J. Food Sci. Technol., 2011, 46(5), 1066-1072. doi: 10.1111/j.1365-2621.2011.02583.x
  99. Naji, S.; Razavi, S.M.A.; Karazhiyan, H. Effect of thermal treatments on functional properties of cress seed (Lepidium sativum) and xanthan gums: A comparative study. Food Hydrocoll., 2012, 28(1), 75-81. doi: 10.1016/j.foodhyd.2011.11.012
  100. Karazhiyan, H.; Razavi, S.M.A.; Phillips, G.O. Extraction optimization of a hydrocolloid extract from cress seed (Lepidium sativum) using response surface methodology. Food Hydrocoll., 2011, 25(5), 915-920. doi: 10.1016/j.foodhyd.2010.08.022
  101. Jouki, M.; Khazaei, N.; Ghasemlou, M. HadiNezhad, M. Effect of glycerol concentration on edible film production from cress seed carbohydrate gum. Carbohydr. Polym., 2013, 96(1), 39-46. doi: 10.1016/j.carbpol.2013.03.077 PMID: 23688452
  102. Jafari, S.M.; Mahdavi-Khazaei, K.; Hemmati-Kakhki, A. Microencapsulation of saffron petal anthocyanins with cress seed gum compared with Arabic gum through freeze drying. Carbohydr. Polym., 2016, 140, 20-25. doi: 10.1016/j.carbpol.2015.11.079 PMID: 26876823
  103. Prajapati, V.D.; Maheriya, P.M.; Jani, G.K.; Patil, P.D.; Patel, B.N. Lepidium sativum Linn.: A current addition to the family of mucilage and its applications. Int. J. Biol. Macromol., 2014, 65, 72-80. doi: 10.1016/j.ijbiomac.2014.01.008 PMID: 24418343
  104. Bustamante, M.; Villarroel, M.; Rubilar, M.; Shene, C. Lactobacillus acidophilus La-05 encapsulated by spray drying: Effect of mucilage and protein from flaxseed (Linum usitatissimum L.). Lebensm. Wiss. Technol., 2015, 62(2), 1162-1168. doi: 10.1016/j.lwt.2015.02.017
  105. Wang, Y.; Wang, L.J.; Li, D.; Xue, J.; Mao, Z.H. Effects of drying methods on rheological properties of flaxseed gum. Carbohydr. Polym., 2009, 78(2), 213-219. doi: 10.1016/j.carbpol.2009.03.025
  106. Chen, H.H.; Xu, S.Y.; Wang, Z. Gelation properties of flaxseed gum. J. Food Eng., 2006, 77(2), 295-303. doi: 10.1016/j.jfoodeng.2005.06.033
  107. Hadad, S.; Goli, S.A.H. Fabrication and characterization of electrospun nanofibers using flaxseed (Linum usitatissimum) mucilage. Int. J. Biol. Macromol., 2018, 114, 408-414. doi: 10.1016/j.ijbiomac.2018.03.154 PMID: 29596931
  108. Lai, K.; How, Y.; Pui, L. Microencapsulation of Lactobacillus rhamnosus GG with flaxseed mucilage using co-extrusion technique. J. Microencapsul., 2021, 38(2), 134-148. doi: 10.1080/02652048.2020.1863490 PMID: 33306440
  109. Huq, T.; Khan, A.; Khan, R.A.; Riedl, B.; Lacroix, M. Encapsulation of probiotic bacteria in biopolymeric system. Crit. Rev. Food Sci. Nutr., 2013, 53(9), 909-916. doi: 10.1080/10408398.2011.573152 PMID: 23768183
  110. Livney, Y.D. Milk proteins as vehicles for bioactives. Curr. Opin. Colloid Interface Sci., 2010, 15(1-2), 73-83. doi: 10.1016/j.cocis.2009.11.002
  111. Gbassi, G.; Vandamme, T.; Ennahar, S.; Marchioni, E. Microencapsulation of Lactobacillus plantarum spp in an alginate matrix coated with whey proteins. Int. J. Food Microbiol., 2009, 129(1), 103-105. doi: 10.1016/j.ijfoodmicro.2008.11.012 PMID: 19059666
  112. Abd El-Salam, M.H.; El-Shibiny, S.; El-Shibiny, S. Preparation and properties of milk proteins-based encapsulated probiotics: a review. Dairy Sci. Technol., 2015, 95(4), 393-412. doi: 10.1007/s13594-015-0223-8
  113. Anandharamakrishnan, C.; Rielly, C.D.; Stapley, A.G.F. Effects of process variables on the denaturation of whey proteins during spray drying. Dry. Technol., 2007, 25(5), 799-807. doi: 10.1080/07373930701370175
  114. Rajam, R.; Karthik, P.; Parthasarathi, S.; Joseph, G.S.; Anandharamakrishnan, C. Effect of whey protein – alginate wall systems on survival of microencapsulated Lactobacillus plantarum in simulated gastrointestinal conditions. J. Funct. Foods, 2012, 4(4), 891-898. doi: 10.1016/j.jff.2012.06.006
  115. Gunasekaran, S.; Ko, S.; Xiao, L. Use of whey proteins for encapsulation and controlled delivery applications. J. Food Eng., 2007, 83(1), 31-40. doi: 10.1016/j.jfoodeng.2006.11.001
  116. Fu, N.; Chen, X.D. Towards a maximal cell survival in convective thermal drying processes. Food Res. Int., 2011, 44(5), 1127-1149. doi: 10.1016/j.foodres.2011.03.053
  117. Tavares, G.M.; Croguennec, T.; Carvalho, A.F.; Bouhallab, S. Milk proteins as encapsulation devices and delivery vehicles: Applications and trends. Trends Food Sci. Technol., 2014, 37(1), 5-20. doi: 10.1016/j.tifs.2014.02.008
  118. Mortazavian, A.; Razavi, S.H.; Ehsani, M.R.; Sohrabvandi, S. Principles and methods of microencapsulation of probiotic microorganisms. Iran. J. Biotechnol., 2007, 5(1), 1-18.
  119. Estevinho, B.N.; Rocha, F.; Santos, L.; Alves, A. Microencapsulation with chitosan by spray drying for industry applications – A review. Trends Food Sci. Technol., 2013, 31(2), 138-155. doi: 10.1016/j.tifs.2013.04.001
  120. Li, H.; Cheng, F.; Wei, X.; Yi, X.; Tang, S.; Wang, Z.; Zhang, Y.S.; He, J.; Huang, Y. Injectable, self-healing, antibacterial, and hemostatic N,O-carboxymethyl chitosan/oxidized chondroitin sulfate composite hydrogel for wound dressing. Mater. Sci. Eng. C, 2021, 118, 111324. doi: 10.1016/j.msec.2020.111324 PMID: 33254961
  121. Cheng, F.; Xu, L.; Dai, J.; Yi, X.; He, J.; Li, H. N Ocarboxymethyl chitosan/oxidized cellulose composite sponge containing ε-poly-l-lysine as a potential wound dressing for the prevention and treatment of postoperative adhesion. Int. J. Biol. Macromol., 2022, 209(Pt B), 2151-2164. doi: 10.1016/j.ijbiomac.2022.04.195 PMID: 35500774
  122. Kim, J.U.; Kim, B.; Shahbaz, H.M.; Lee, S.H.; Park, D.; Park, J. Encapsulation of probiotic Lactobacillus acidophilus by ionic gelation with electrostatic extrusion for enhancement of survival under simulated gastric conditions and during refrigerated storage. Int. J. Food Sci. Technol., 2017, 52(2), 519-530. doi: 10.1111/ijfs.13308
  123. Lim, G.P.; Ong, H.Y.; Lee, B.B.; Ahmad, M.S.; Singh, H.; Ravindra, P. Effects of process variables on size of chitosan-alginate capsules through extrusion-dripping method. Adv. Mat. Res., 2014, 925, 8-12. doi: 10.4028/ href='www.scientific.net/AMR.925.8' target='_blank'>www.scientific.net/AMR.925.8
  124. Alizadeh-Sani, M.; Ehsani, A.; Moghaddas Kia, E.; Khezerlou, A. Microbial gums: Introducing a novel functional component of edible coatings and packaging. Appl. Microbiol. Biotechnol., 2019, 103(17), 6853-6866. doi: 10.1007/s00253-019-09966-x PMID: 31289906
  125. Poli, F.; Momodu, D.; Spina, G.E.; Terella, A.; Mutuma, B.K.; Focarete, M.L.; Manyala, N.; Soavi, F. Pullulan-ionic liquid-based supercapacitor: A novel, smart combination of components for an easy-to-dispose device. Electrochim. Acta, 2020, 338, 135872. doi: 10.1016/j.electacta.2020.135872
  126. Fialho, A.M.; Moreira, L.M.; Granja, A.T.; Popescu, A.O.; Hoffmann, K. Sá-Correia, I. Occurrence, production, and applications of gellan: Current state and perspectives. Appl. Microbiol. Biotechnol., 2008, 79(6), 889-900. doi: 10.1007/s00253-008-1496-0 PMID: 18506441
  127. Kia, E.M.; Ghasempour, Z.; Ghanbari, S.; Pirmohammadi, R.; Ehsani, A. Development of probiotic yogurt by incorporation of milk protein concentrate (MPC) and‎ microencapsulated Lactobacillus paracasei in gellan-caseinate mixture. Br. Food J., 2018.
  128. Aquinas, N.; Bhat, M.R.; Selvaraj, S. A review presenting production, characterization, and applications of biopolymer curdlan in food and pharmaceutical sectors. Polym. Bull., 2021, 1-23.
  129. Nishinari, K.; Zhang, H.; Funami, T. Curdlan. Handbook of hydrocolloids; Elsevier, 2021, pp. 887-921. doi: 10.1016/B978-0-12-820104-6.00005-X
  130. Shi, Y.; Liu, J.; Yan, Q.; You, X.; Yang, S.; Jiang, Z. In vitro digestibility and prebiotic potential of curdlan (1 → 3)-β- d -glucan oligosaccharides in Lactobacillus species. Carbohydr. Polym., 2018, 188, 17-26. doi: 10.1016/j.carbpol.2018.01.085 PMID: 29525154
  131. Putra, A.; Kakugo, A.; Furukawa, H.; Gong, J.P.; Osada, Y.; Uemura, T.; Yamamoto, M. Production of bacterial cellulose with well oriented fibril on PDMS substrate. Polym. J., 2008, 40(2), 137-142. doi: 10.1295/polymj.PJ2007180
  132. Retegi, A.; Gabilondo, N. Peña, C.; Zuluaga, R.; Castro, C.; Gañan, P.; de la Caba, K.; Mondragon, I. Bacterial cellulose films with controlled microstructure–mechanical property relationships. Cellulose, 2010, 17(3), 661-669. doi: 10.1007/s10570-009-9389-7
  133. Palaniraj, A.; Jayaraman, V. Production, recovery and applications of xanthan gum by Xanthomonas campestris. J. Food Eng., 2011, 106(1), 1-12. doi: 10.1016/j.jfoodeng.2011.03.035
  134. Ding, W.K.; Shah, N.P. Effect of various encapsulating materials on the stability of probiotic bacteria. J. Food Sci., 2009, 74(2), M100-M107. doi: 10.1111/j.1750-3841.2009.01067.x PMID: 19323757
  135. Tantratian, S.; Wattanaprasert, S.; Suknaisilp, S. Effect of partial substitution of milk-non-fat with xanthan gum on encapsulation of a probiotic Lactobacillus. J. Food Process. Preserv., 2018, 42(7), e13673. doi: 10.1111/jfpp.13673
  136. Assadpour, E.; Jafari, S.M. Advances in spray-drying encapsulation of food bioactive ingredients: From microcapsules to nanocapsules. Annu. Rev. Food Sci. Technol., 2019, 10(1), 103-131. doi: 10.1146/annurev-food-032818-121641 PMID: 30649963
  137. Jacobsen, C. García-Moreno, P.J.; Mendes, A.C.; Mateiu, R.V.; Chronakis, I.S. Use of electrohydrodynamic processing for encapsulation of sensitive bioactive compounds and applications in food. Annu. Rev. Food Sci. Technol., 2018, 9(1), 525-549. doi: 10.1146/annurev-food-030117-012348 PMID: 29400995
  138. Okuro, P.K.; de Matos, F.E. Junior; Favaro-Trindade, C.S. Technological challenges for spray chilling encapsulation of functional food ingredients. Food Technol. Biotechnol., 2013, 51(2), 171.
  139. Fang, Z.; Bhandari, B. Spray drying, freeze drying and related processes for food ingredient and nutraceutical encapsulation. Encapsulation technologies and delivery systems for food ingredients and nutraceuticals; Elsevier, 2012, pp. 73-109.
  140. McClements, D.J.; Jafari, S.M. Improving emulsion formation, stability and performance using mixed emulsifiers: A review. Adv. Colloid Interface Sci., 2018, 251, 55-79. doi: 10.1016/j.cis.2017.12.001 PMID: 29248154
  141. Aloys, H.; Korma, S.A.; Alice, T.M.; Chantal, N.; Ali, A.H.; Abed, S.M. Microencapsulation by complex coacervation: Methods, techniques, benefits, and applications-A review. Amer. J. Food Sci. Nutrit. Res., 2016, 3(6), 188-192.
  142. Sohail, A.; Turner, M.S.; Coombes, A.; Bostrom, T.; Bhandari, B. Survivability of probiotics encapsulated in alginate gel microbeads using a novel impinging aerosols method. Int. J. Food Microbiol., 2011, 145(1), 162-168. doi: 10.1016/j.ijfoodmicro.2010.12.007 PMID: 21276627
  143. Lai, P.Y.; How, Y.H. Pui, LP Microencapsulation of Bifidobacterium lactis Bi-07 with galactooligosaccharides using co-extrusion technique. J. Microbiol. Biotechnol. Food Sci., 2022, 11(6), 2416. doi: 10.55251/jmbfs.2416
  144. Yong, A.K.L.; Lai, K.W.; Mohamad Ghazali, H.; Chang, L.S.; Pui, L.P. Microencapsulation of Bifidobacterium animalis subsp. lactis BB-12 with mannitol. Asia Pac. J. Mol. Biol. Biotechnol., 2020, 28(2), 32-42. doi: 10.35118/apjmbb.2020.028.2.04
  145. Farias, T.G.S.; Ladislau, H.F.L.; Stamford, T.C.M.; Medeiros, J.A.C.; Soares, B.L.M.; Stamford Arnaud, T.M.; Stamford, T.L.M. Viabilities of Lactobacillus rhamnosus ASCC 290 and Lactobacillus casei ATCC 334 (in free form or encapsulated with calcium alginate-chitosan) in yellow mombin ice cream. Lebensm. Wiss. Technol., 2019, 100, 391-396. doi: 10.1016/j.lwt.2018.10.084
  146. Shinde, T.; Sun-Waterhouse, D.; Brooks, J. Co-extrusion encapsulation of probiotic Lactobacillus acidophilus alone or together with apple skin polyphenols: An aqueous and value-added delivery system using alginate. Food Bioprocess Technol., 2014, 7(6), 1581-1596. doi: 10.1007/s11947-013-1129-1
  147. Silva, M.P.; Tulini, F.L.; Ribas, M.M.; Penning, M. Fávaro-Trindade, C.S.; Poncelet, D. Microcapsules loaded with the probiotic Lactobacillus paracasei BGP-1 produced by co-extrusion technology using alginate/shellac as wall material: Characterization and evaluation of drying processes. Food Res. Int., 2016, 89(Pt 1), 582-590. doi: 10.1016/j.foodres.2016.09.008 PMID: 28460954
  148. Lee, Y.; Ji, Y.R.; Lee, S.; Choi, M-J. Cho, Y Microencapsulation of probiotic Lactobacillus acidophilus KBL409 by extrusion technology to enhance survival under simulated intestinal and freeze-drying conditions. J. Microbiol. Biotechnol., 2019, 29(5), 721-730. doi: 10.4014/jmb.1903.03018
  149. Gul, O.; Dervisoglu, M. Application of multicriteria decision technique to determine optimum sodium alginate concentration for microencapsulation of Lactobacillus casei Shirota by extrusion and emulsification. J. Food Process Eng., 2017, 40(3), e12481. doi: 10.1111/jfpe.12481
  150. Shi, L.E.; Li, Z.H.; Li, D.T.; Xu, M.; Chen, H.Y.; Zhang, Z.L.; Tang, Z-X. Encapsulation of probiotic Lactobacillus bulgaricus in alginate–milk microspheres and evaluation of the survival in simulated gastrointestinal conditions. J. Food Eng., 2013, 117(1), 99-104. doi: 10.1016/j.jfoodeng.2013.02.012

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers