Extrusion and Co-extrusion: A Technology in Probiotic Encapsulation with Alternative Materials
- Authors: Homayouni-Rad A.1, Mortazavian A.2, Pourjafar H.3, Moghadam S.2
-
Affiliations:
- Department of Food Science and Technology, Faculty of Nutrition and Food Sciences,, Tabriz University of Medical Sciences
- Department of Food Science and Technology, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences
- Dietary Supplements and Probiotic Research Center, Alborz University of Medical Sciences
- Issue: Vol 25, No 15 (2024)
- Pages: 1986-2000
- Section: Biotechnology
- URL: https://rjpbr.com/1389-2010/article/view/644615
- DOI: https://doi.org/10.2174/0113892010264234231219073231
- ID: 644615
Cite item
Full Text
Abstract
:Encapsulation, in particular extrusion and co-extrusion, is a common practice to protect probiotics from the harsh conditions of the digestive tract as well as processing. Hydrocolloids, including proteins and carbohydrates, natural or modified, are a group of ingredients used as the wall material in extrusion. Hydrocolloids, due to their specific properties, can significantly improve the probiotic survivability of the final powder during the microencapsulation process and storage. The present article will discuss the different kinds of hydrocolloids used for microencapsulation of probiotics by extrusion and co-extrusion, along with new sources of novel gums and their potential as wall material.
Keywords
About the authors
Aziz Homayouni-Rad
Department of Food Science and Technology, Faculty of Nutrition and Food Sciences,, Tabriz University of Medical Sciences
Email: info@benthamscience.net
Amir Mortazavian
Department of Food Science and Technology, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences
Email: info@benthamscience.net
Hadi Pourjafar
Dietary Supplements and Probiotic Research Center, Alborz University of Medical Sciences
Email: info@benthamscience.net
Saba Moghadam
Department of Food Science and Technology, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences
Author for correspondence.
Email: info@benthamscience.net
References
- Solanki, HK; Pawar, DD; Shah, DA; Prajapati, VD; Jani, GK; Mulla, AM Development of microencapsulation delivery system for long-term preservation of probiotics as biotherapeutics agent. BioMed research international, 2013, 2013. doi: 10.1155/2013/620719
- Lapsiri, W.; Bhandari, B.; Wanchaitanawong, P. Viability of Lactobacillus plantarum TISTR 2075 in different protectants during spray drying and storage. Dry. Technol., 2012, 30(13), 1407-1412. doi: 10.1080/07373937.2012.684226
- Burgain, J.; Gaiani, C.; Linder, M.; Scher, J. Encapsulation of probiotic living cells: From laboratory scale to industrial applications. J. Food Eng., 2011, 104(4), 467-483. doi: 10.1016/j.jfoodeng.2010.12.031
- Corona-Hernandez, R.I. Álvarez-Parrilla, E.; Lizardi-Mendoza, J.; Islas-Rubio, A.R.; de la Rosa, L.A.; Wall-Medrano, A. Structural stability and viability of microencapsulated probiotic bacteria: a review. Compr. Rev. Food Sci. Food Saf., 2013, 12(6), 614-628. doi: 10.1111/1541-4337.12030 PMID: 33412721
- De Prisco, A.; Mauriello, G. Probiotication of foods: A focus on microencapsulation tool. Trends Food Sci. Technol., 2016, 48, 27-39. doi: 10.1016/j.tifs.2015.11.009
- Anandharamakrishnan, C. Spray drying techniques for food ingredient encapsulation; John Wiley & Sons, 2015. doi: 10.1002/9781118863985
- Yao, M.; Xie, J.; Du, H.; McClements, D.J.; Xiao, H.; Li, L. Progress in microencapsulation of probiotics: A review. Compr. Rev. Food Sci. Food Saf., 2020, 19(2), 857-874. doi: 10.1111/1541-4337.12532 PMID: 33325164
- Nedovic, V.; Kalusevic, A.; Manojlovic, V.; Levic, S.; Bugarski, B. An overview of encapsulation technologies for food applications. Procedia Food Sci., 2011, 1, 1806-1815. doi: 10.1016/j.profoo.2011.09.265
- Gharsallaoui, A.; Roudaut, G.; Chambin, O.; Voilley, A.; Saurel, R. Applications of spray-drying in microencapsulation of food ingredients: An overview. Food Res. Int., 2007, 40(9), 1107-1121. doi: 10.1016/j.foodres.2007.07.004
- Zheng, D.W.; Li, R.Q.; An, J.X.; Xie, T.Q.; Han, Z.Y.; Xu, R.; Fang, Y.; Zhang, X.Z. Prebiotics‐encapsulated probiotic spores regulate gut microbiota and suppress colon cancer. Adv. Mater., 2020, 32(45), 2004529. doi: 10.1002/adma.202004529 PMID: 33006175
- Fangmeier, M.; Lehn, D.N.; Maciel, M.J.; Volken de Souza, C.F. Encapsulation of bioactive ingredients by extrusion with vibrating technology: advantages and challenges. Food Bioprocess Technol., 2019, 12(9), 1472-1486. doi: 10.1007/s11947-019-02326-7
- How, Y.H.; Lai, K.W.; Pui, L.P.; In, L.L.A. Co‐extrusion and extrusion microencapsulation: Effect on microencapsulation efficiency, survivability through gastrointestinal digestion and storage. J. Food Process Eng., 2022, 45(3), e13985. doi: 10.1111/jfpe.13985
- Bamidele, O.P.; Emmambux, M.N. Encapsulation of bioactive compounds by "extrusion" technologies: a review. Crit. Rev. Food Sci. Nutr., 2021, 61(18), 3100-3118. doi: 10.1080/10408398.2020.1793724 PMID: 32729723
- Widaningrum; Miskiyah; Indrasti, D.; Hidaya, H.C. Improvement of viability of lactobacillus casei and bifidobacterium longum with several encapsulating materials using extrusion method. J. Ilmu Ternak Vet., 2019, 23(4), 189-201. doi: 10.14334/jitv.v23i4.1547
- Chávarri M.; Marañón, I.; Ares, R.; Ibáñez, F.C.; Marzo, F.; Villarán, M.C. Microencapsulation of a probiotic and prebiotic in alginate-chitosan capsules improves survival in simulated gastro-intestinal conditions. Int. J. Food Microbiol., 2010, 142(1-2), 185-189. doi: 10.1016/j.ijfoodmicro.2010.06.022 PMID: 20659775
- Helmig, J.; Behr, M.; Elgeti, S. Boundary-conforming finite element methods for twin-screw extruders: Unsteady - temperature-dependent - non-Newtonian simulations. Comput. Fluids, 2019, 190, 322-336. doi: 10.1016/j.compfluid.2019.06.028
- Leonard, W.; Zhang, P.; Ying, D.; Fang, Z. Application of extrusion technology in plant food processing byproducts: An overview. Compr. Rev. Food Sci. Food Saf., 2020, 19(1), 218-246. doi: 10.1111/1541-4337.12514 PMID: 33319515
- dos Santos, J.; da Silva, G.S.; Velho, M.C.; Beck, R.C.R. Eudragit®: A versatile family of polymers for hot melt extrusion and 3D printing processes in pharmaceutics. Pharmaceutics, 2021, 13(9), 1424. doi: 10.3390/pharmaceutics13091424 PMID: 34575500
- Ravishankar, P; Khang, A; Laredo, M; Balachandran, K Using dimensionless numbers to predict centrifugal jet-spun nanofiber morphology. Journal of Nanomaterials, 2019, 2019. doi: 10.1155/2019/4639658
- Low, K.G.; Lim, S.F. Study on electrostatic extrusion method for synthesizing calcium alginate encapsulated iron oxide. Journal of Applied Science & Process Engineering., 2014, 1(1), 9-27.
- Ng, S.L.; Lai, K.W.; Nyam, K.L.; Pui, L.P. Microencapsulation of Lactobacillus plantarum 299v incorporated with oligofructose in chitosan coated-alginate beads and its storage stability in ambarella juice. Malays. J. Microbiol., 2019, 15(5)
- Sakai, T. Screw extrusion technology past, present and future. Polimery, 2013, 58(11/12), 847-857. doi: 10.14314/polimery.2013.847
- Yao, S.; Guo, T.; Liu, T.; Xi, Z.; Xu, Z.; Zhao, L. Good extrusion foaming performance of long‐chain branched PET induced by its enhanced crystallization property. J. Appl. Polym. Sci., 2020, 137(41), 49268. doi: 10.1002/app.49268
- Silva, E.J.N.L. Carapiá, M.F.; Lopes, R.M.; Belladonna, F.G.; Senna, P.M.; Souza, E.M.; De-Deus, G. Comparison of apically extruded debris after large apical preparations by full‐sequence rotary and single‐file reciprocating systems. Int. Endod. J., 2016, 49(7), 700-705. doi: 10.1111/iej.12503 PMID: 26174577
- Nemethova, V.; Lacik, I.; Razga, F. Vibration technology for microencapsulation: The restrictive role of viscosity. J. Bioprocess. Biotech., 2015, 5(1), 1. doi: 10.4172/2155-9821.1000199
- Silva, M.P.; Tulini, F.L.; Martins, E.; Penning, M. Fávaro-Trindade, C.S.; Poncelet, D. Comparison of extrusion and co-extrusion encapsulation techniques to protect Lactobacillus acidophilus LA3 in simulated gastrointestinal fluids. Lebensm. Wiss. Technol., 2018, 89, 392-399. doi: 10.1016/j.lwt.2017.11.008
- Gbassi, G.K.; Vandamme, T. Probiotic encapsulation technology: From microencapsulation to release into the gut. Pharmaceutics, 2012, 4(1), 149-163. doi: 10.3390/pharmaceutics4010149 PMID: 24300185
- Heinzen, C.; Berger, A.; Marison, I. Use of vibration technology for jet break-up for encapsulation of cells and liquids in monodisperse microcapsules. Fundamentals of cell immobilisation biotechnology; Springer, 2004, pp. 257-275.
- Chew, S.C.; Nyam, K.L. Microencapsulation of kenaf seed oil by co-extrusion technology. J. Food Eng., 2016, 175, 43-50. doi: 10.1016/j.jfoodeng.2015.12.002
- Wandrey, C.; Bartkowiak, A.; Harding, S.E. Materials for encapsulation. Encapsulation technologies for active food ingredients and food processing; Springer, 2010, pp. 31-100. doi: 10.1007/978-1-4419-1008-0_3
- Agnihotri, N.; Mishra, R.; Goda, C.; Arora, M. Microencapsulationa novel approach in drug delivery: a review. Indo Global Journal of Pharmaceutical Sciences, 2012, 2(1), 01-20. doi: 10.35652/IGJPS.2012.01
- Cortés-Morales, E.A.; Mendez-Montealvo, G.; Velazquez, G. Interactions of the molecular assembly of polysaccharide-protein systems as encapsulation materials. A review. Adv. Colloid Interface Sci., 2021, 295, 102398. doi: 10.1016/j.cis.2021.102398 PMID: 33931199
- Etim, R.K.; Ijimdiya, T.S.; Eberemu, A.O.; Osinubi, K.J. Compatibility interaction of landfill leachate with lateritic soil bio-treated with Bacillus megaterium: Criterion for barrier material in municipal solid waste containment. Cleaner Materials, 2022, 5, 100110. doi: 10.1016/j.clema.2022.100110
- Rathore, S.; Desai, P.M.; Liew, C.V.; Chan, L.W.; Heng, P.W.S. Microencapsulation of microbial cells. J. Food Eng., 2013, 116(2), 369-381. doi: 10.1016/j.jfoodeng.2012.12.022
- Doublier, J-L.; Garnier, C.; Cuvelier, G. Gums and hydrocolloids: functional aspects. Carbohydrates in food; CRC Press, 2017, pp. 307-354.
- Phillips, G.O.; Williams, P.A. Handbook of hydrocolloids; Elsevier, 2009. doi: 10.1533/9781845695873
- Burey, P.; Bhandari, B.R.; Howes, T.; Gidley, M.J. Hydrocolloid gel particles: Formation, characterization, and application. Crit. Rev. Food Sci. Nutr., 2008, 48(5), 361-377. doi: 10.1080/10408390701347801 PMID: 18464027
- Li, C.; Hu, Y. New definition of resistant starch types from the gut microbiota perspectivesa review. Crit. Rev. Food Sci. Nutr., 2022, 1-11.
- dos Anjos, L.; Pandey, P.K.; Moraes, T.A.; Feil, R.; Lunn, J.E.; Stitt, M. Feedback regulation by trehalose 6‐phosphate slows down starch mobilization below the rate that would exhaust starch reserves at dawn in Arabidopsis leaves. Plant Direct, 2018, 2(8), e00078. doi: 10.1002/pld3.78 PMID: 31245743
- Kumar, L.; Brennan, M.; Zheng, H.; Brennan, C. The effects of dairy ingredients on the pasting, textural, rheological, freeze-thaw properties and swelling behaviour of oat starch. Food Chem., 2018, 245, 518-524. doi: 10.1016/j.foodchem.2017.10.125 PMID: 29287403
- Semyonov, D.; Ramon, O.; Kaplun, Z.; Levin-Brener, L.; Gurevich, N.; Shimoni, E. Microencapsulation of Lactobacillus paracasei by spray freeze drying. Food Res. Int., 2010, 43(1), 193-202. doi: 10.1016/j.foodres.2009.09.028
- Agave juice as an agent for probiotic encapsulation by spray drying. Cortés-Arminio, C.; López-Malo, A.; Palou, E.; Jiménez, M., Eds.; 17th World Congress of International Commission of Agricultural and Biosystems Engineering conference proceedings; Quebec City, 2010.
- Fongin, S.; Alvino Granados, A.E.; Harnkarnsujarit, N.; Hagura, Y.; Kawai, K. Effects of maltodextrin and pulp on the water sorption, glass transition, and caking properties of freeze-dried mango powder. J. Food Eng., 2019, 247, 95-103. doi: 10.1016/j.jfoodeng.2018.11.027
- Paim, D.R.S.F.; Costa, S.D.O.; Walter, E.H.M.; Tonon, R.V. Microencapsulation of probiotic jussara (Euterpe edulis M.) juice by spray drying. Lebensm. Wiss. Technol., 2016, 74, 21-25. doi: 10.1016/j.lwt.2016.07.022
- Eichhorn, S.J.; Etale, A.; Wang, J.; Berglund, L.A.; Li, Y.; Cai, Y.; Chen, C.; Cranston, E.D.; Johns, M.A.; Fang, Z.; Li, G.; Hu, L.; Khandelwal, M.; Lee, K-Y.; Oksman, K.; Pinitsoontorn, S.; Quero, F.; Sebastian, A.; Titirici, M.M.; Xu, Z.; Vignolini, S.; Frka-Petesic, B. Current international research into cellulose as a functional nanomaterial for advanced applications. J. Mater. Sci., 2022, 57(10), 5697-5767. doi: 10.1007/s10853-022-06903-8
- Fathi, M. Martín, Á.; McClements, D.J. Nanoencapsulation of food ingredients using carbohydrate based delivery systems. Trends Food Sci. Technol., 2014, 39(1), 18-39. doi: 10.1016/j.tifs.2014.06.007
- Wang, Y. Prebiotics: Present and future in food science and technology. Food Res. Int., 2009, 42(1), 8-12. doi: 10.1016/j.foodres.2008.09.001
- Rodríguez-Huezo, M.E.; Durán-Lugo, R.; Prado-Barragán, L.A.; Cruz-Sosa, F.; Lobato-Calleros, C.; Alvarez-Ramírez, J.; Vernon-Carter, E.J. Pre-selection of protective colloids for enhanced viability of Bifidobacterium bifidum following spray-drying and storage, and evaluation of aguamiel as thermoprotective prebiotic. Food Res. Int., 2007, 40(10), 1299-1306. doi: 10.1016/j.foodres.2007.09.001
- Homayouni Rad, A.; Delshadian, Z.; Arefhosseini, S.R.; Alipour, B.; Asghari Jafarabadi, M. Effect of inulin and stevia on some physical properties of chocolate milk. Health Promot. Perspect., 2012, 2(1), 42-47. PMID: 24688916
- Figueroa-González, I.; Quijano, G.; Ramírez, G.; Cruz-Guerrero, A. Probiotics and prebiotics-perspectives and challenges. J. Sci. Food Agric., 2011, 91(8), 1341-1348. doi: 10.1002/jsfa.4367 PMID: 21445871
- Kalyani Nair, K.; Kharb, S.; Thompkinson, D.K. Inulin dietary fiber with functional and health attributesa review. Food Rev. Int., 2010, 26(2), 189-203. doi: 10.1080/87559121003590664
- Nazzaro, F.; Orlando, P.; Fratianni, F.; Coppola, R. Microencapsulation in food science and biotechnology. Curr. Opin. Biotechnol., 2012, 23(2), 182-186. doi: 10.1016/j.copbio.2011.10.001 PMID: 22024623
- Barclay, T.; Ginic-Markovic, M.; Cooper, P.; Petrovsky, N. Inulin-a versatile polysaccharide with multiple pharmaceutical and food chemical uses. J. Excip. Food Chem., 2016, 1(3)
- Roberfroid, M.B. Inulin-type fructans: Functional food ingredients. J. Nutr., 2007, 137(11)(Suppl.), 2493S-2502S. doi: 10.1093/jn/137.11.2493S PMID: 17951492
- Adhikari, B.; Howes, T.; Wood, B.J.; Bhandari, B.R. The effect of low molecular weight surfactants and proteins on surface stickiness of sucrose during powder formation through spray drying. J. Food Eng., 2009, 94(2), 135-143. doi: 10.1016/j.jfoodeng.2009.01.022
- Pinto, S.S.; Fritzen-Freire, C.B.; Benedetti, S.; Murakami, F.S.; Petrus, J.C.C.; Prudêncio, E.S.; Amboni, R.D.M.C. Potential use of whey concentrate and prebiotics as carrier agents to protect Bifidobacterium-BB-12 microencapsulated by spray drying. Food Res. Int., 2015, 67, 400-408. doi: 10.1016/j.foodres.2014.11.038
- Rajam, R.; Anandharamakrishnan, C. Microencapsulation of Lactobacillus plantarum (MTCC 5422) with fructooligosaccharide as wall material by spray drying. Lebensm. Wiss. Technol., 2015, 60(2), 773-780. doi: 10.1016/j.lwt.2014.09.062
- Beirão-da-Costa, S.; Duarte, C.; Bourbon, A.I.; Pinheiro, A.C.; Januلrio, M.I.N.; Vicente, A.A.; Beirمo-da-Costa, M.L.; Delgadillo, I. Inulin potential for encapsulation and controlled delivery of Oregano essential oil. Food Hydrocoll., 2013, 33(2), 199-206. doi: 10.1016/j.foodhyd.2013.03.009
- Nie, S.P.; Wang, C.; Cui, S.W.; Wang, Q.; Xie, M.Y.; Phillips, G.O. A further amendment to the classical core structure of gum arabic (Acacia senegal). Food Hydrocoll., 2013, 31(1), 42-48. doi: 10.1016/j.foodhyd.2012.09.014
- Bhosale, R.R.; Osmani, R.A.M.; Moin, A. Natural gums and mucilages: A review on multifaceted excipients in pharmaceutical science and research. International Journal of Pharmacognosy and Phytochemical Research., 2014, 15(6), 4.
- Lee, K.Y.; Mooney, D.J. Alginate: Properties and biomedical applications. Prog. Polym. Sci., 2012, 37(1), 106-126. doi: 10.1016/j.progpolymsci.2011.06.003 PMID: 22125349
- Draget, K.I. Skjåk Bræk, G.; Smidsrød, O. Alginic acid gels: the effect of alginate chemical composition and molecular weight. Carbohydr. Polym., 1994, 25(1), 31-38. doi: 10.1016/0144-8617(94)90159-7
- Dong, Q.Y.; Chen, M.Y.; Xin, Y.; Qin, X.Y.; Cheng, Z.; Shi, L.E.; Tang, Z-X. Alginate‐based and protein‐based materials for probiotics encapsulation: a review. Int. J. Food Sci. Technol., 2013, 48(7), 1339-1351. doi: 10.1111/ijfs.12078
- Iravani, S.; Korbekandi, H.; Mirmohammadi, S.V. Technology and potential applications of probiotic encapsulation in fermented milk products. J. Food Sci. Technol., 2015, 52(8), 4679-4696. doi: 10.1007/s13197-014-1516-2 PMID: 26243890
- Mirzaei, H.; Pourjafar, H.; Rad, A.H. The effect of microencapsulation with calcium alginate and resistant starch on the Lactobacillus acidophilus (La5) survival rate in simulated gastrointestinal juice conditions. J. Vet. Res., 2011, 66(4), 337-377.
- Shams, E.; Barzad, M.S.; Mohamadnia, S.; Tavakoli, O.; Mehrdadfar, A. A review on alginate-based bioinks, combination with other natural biomaterials and characteristics. J. Biomater. Appl., 2022, 37(2), 355-372. doi: 10.1177/08853282221085690 PMID: 35510845
- Santa-Maria, M.; Scher, H.; Jeoh, T. Microencapsulation of bioactives in cross-linked alginate matrices by spray drying. J. Microencapsul., 2012, 29(3), 286-295. doi: 10.3109/02652048.2011.651494 PMID: 22251237
- Agüero, L.; Zaldivar-Silva, D. Peña, L.; Dias, M.L. Alginate microparticles as oral colon drug delivery device: A review. Carbohydr. Polym., 2017, 168, 32-43. doi: 10.1016/j.carbpol.2017.03.033 PMID: 28457455
- Lee, B.B.; Ibrahim, R.; Chu, S.Y.; Zulkifli, N.A.; Ravindra, P. Alginate liquid core capsule formation using the simple extrusion dripping method. Journal of Polymer Engineering, 2015, 35(4), 311-318. doi: 10.1515/polyeng-2014-0174
- Zavareze, E.R.; Pinto, V.Z.; Klein, B.; El Halal, S.L.M.; Elias, M.C.; Prentice-Hernández, C.; Dias, A.R.G. Development of oxidised and heatmoisture treated potato starch film. Food Chem., 2012, 132(1), 344-350. doi: 10.1016/j.foodchem.2011.10.090 PMID: 26434300
- Anal, A.K.; Singh, H. Recent advances in microencapsulation of probiotics for industrial applications and targeted delivery. Trends Food Sci. Technol., 2007, 18(5), 240-251. doi: 10.1016/j.tifs.2007.01.004
- Mirzaei, H.; Pourjafar, H.; Homayouni, A. Effect of calcium alginate and resistant starch microencapsulation on the survival rate of Lactobacillus acidophilus La5 and sensory properties in Iranian white brined cheese. Food Chem., 2012, 132(4), 1966-1970. doi: 10.1016/j.foodchem.2011.12.033
- Homayouni, A.; Amini, A.; Keshtiban, A.K.; Mortazavian, A.M.; Esazadeh, K.; Pourmoradian, S. Resistant starch in food industry: A changing outlook for consumer and producer. Stärke, 2014, 66(1-2), 102-114. doi: 10.1002/star.201300110
- Mirhosseini, H.; Amid, B.T. A review study on chemical composition and molecular structure of newly plant gum exudates and seed gums. Food Res. Int., 2012, 46(1), 387-398. doi: 10.1016/j.foodres.2011.11.017
- Hesarinejad, M.A.; Razavi, S.M.A.; Koocheki, A. Alyssum homolocarpum seed gum: Dilute solution and some physicochemical properties. Int. J. Biol. Macromol., 2015, 81, 418-426. doi: 10.1016/j.ijbiomac.2015.08.019 PMID: 26277752
- Khazaei, N.; Esmaiili, M.; Djomeh, Z.E.; Ghasemlou, M.; Jouki, M. Characterization of new biodegradable edible film made from basil seed (Ocimum basilicum L.) gum. Carbohydr. Polym., 2014, 102, 199-206. doi: 10.1016/j.carbpol.2013.10.062 PMID: 24507273
- Osano, J.P.; Hosseini-Parvar, S.H.; Matia-Merino, L.; Golding, M. Emulsifying properties of a novel polysaccharide extracted from basil seed (Ocimum bacilicum L.): Effect of polysaccharide and protein content. Food Hydrocoll., 2014, 37, 40-48. doi: 10.1016/j.foodhyd.2013.09.008
- Zameni, A.; Kashaninejad, M.; Aalami, M.; Salehi, F. Effect of thermal and freezing treatments on rheological, textural and color properties of basil seed gum. J. Food Sci. Technol., 2015, 52(9), 5914-5921. doi: 10.1007/s13197-014-1679-x PMID: 26345008
- Razavi, S.M.A.; Mortazavi, S.A.; Matia-Merino, L.; Hosseini-Parvar, S.H.; Motamedzadegan, A.; Khanipour, E. Optimisation study of gum extraction from Basil seeds (Ocimum basilicum L.). Int. J. Food Sci. Technol., 2009, 44(9), 1755-1762. doi: 10.1111/j.1365-2621.2009.01993.x
- Kurd, F.; Fathi, M.; Shekarchizadeh, H. Basil seed mucilage as a new source for electrospinning: Production and physicochemical characterization. Int. J. Biol. Macromol., 2017, 95, 689-695. doi: 10.1016/j.ijbiomac.2016.11.116 PMID: 27919814
- Saha, A.; Tyagi, S.; Gupta, R.K.; Tyagi, Y.K. Natural gums of plant origin as edible coatings for food industry applications. Crit. Rev. Biotechnol., 2017, 37(8), 959-973. doi: 10.1080/07388551.2017.1286449 PMID: 28423942
- Naji-Tabasi, S.; Razavi, S.M.A.; Mehditabar, H. Fabrication of basil seed gum nanoparticles as a novel oral delivery system of glutathione. Carbohydr. Polym., 2017, 157, 1703-1713. doi: 10.1016/j.carbpol.2016.11.052 PMID: 27987886
- Koocheki, A.; Mortazavi, S.A.; Shahidi, F.; Razavi, S.M.A.; Taherian, A.R. Rheological properties of mucilage extracted from Alyssum homolocarpum seed as a new source of thickening agent. J. Food Eng., 2009, 91(3), 490-496. doi: 10.1016/j.jfoodeng.2008.09.028
- Monjazeb Marvdashti, L.; Koocheki, A.; Yavarmanesh, M. Alyssum homolocarpum seed gum-polyvinyl alcohol biodegradable composite film: Physicochemical, mechanical, thermal and barrier properties. Carbohydr. Polym., 2017, 155, 280-293. doi: 10.1016/j.carbpol.2016.07.123 PMID: 27702514
- Prata, A.S.; Garcia, L.; Tonon, R.V.; Hubinger, M.D. Wall material selection for encapsulation by spray drying. Journal of Colloid Science and Biotechnology, 2013, 2(2), 86-92. doi: 10.1166/jcsb.2013.1039
- Koocheki, A.; Mortazavi, S.A.; Shahidi, F.; Razavi, S.M.A.; Kadkhodaee, R.; Milani, J.M. Optimization of mucilage extraction from Qodume shirazi seed (Alyssum homolocarpum) using response surface methodology. J. Food Process Eng., 2010, 33(5), 861-882. doi: 10.1111/j.1745-4530.2008.00312.x
- Anvari, M.; Tabarsa, M.; Cao, R.; You, S.; Joyner, H.S.; Behnam, S. Compositional characterization and rheological properties of an anionic gum from Alyssum homolocarpum seeds. Food Hydrocoll., 2016, 52, 766-773. doi: 10.1016/j.foodhyd.2015.07.030
- Khoshakhlagh, K.; Koocheki, A.; Mohebbi, M.; Allafchian, A. Development and characterization of electrosprayed Alyssum homolocarpum seed gum nanoparticles for encapsulation of d-limonene. J. Colloid Interface Sci., 2017, 490, 562-575. doi: 10.1016/j.jcis.2016.11.067 PMID: 27923141
- Segura-Campos, MR; Ciau-Solís, N; Rosado-Rubio, G; Chel-Guerrero, L; Betancur-Ancona, D Chemical and functional properties of chia seed (Salvia hispanica L.) gum. International journal of food science, 2014, 2014.
- Ali, NM; Yeap, SK; Ho, WY; Beh, BK; Tan, SW; Tan, SG The promising future of chia, Salvia hispanica L. Journal of Biomedicine and Biotechnology, 2012, 2012.
- Timilsena, Y.P.; Adhikari, R.; Kasapis, S.; Adhikari, B. Molecular and functional characteristics of purified gum from Australian chia seeds. Carbohydr. Polym., 2016, 136, 128-136. doi: 10.1016/j.carbpol.2015.09.035 PMID: 26572338
- Goh, K.K.T.; Matia-Merino, L.; Chiang, J.H.; Quek, R.; Soh, S.J.B.; Lentle, R.G. The physico-chemical properties of chia seed polysaccharide and its microgel dispersion rheology. Carbohydr. Polym., 2016, 149, 297-307. doi: 10.1016/j.carbpol.2016.04.126 PMID: 27261754
- Muñoz, L.A.; Cobos, A.; Diaz, O.; Aguilera, J.M. Chia seeds: Microstructure, mucilage extraction and hydration. J. Food Eng., 2012, 108(1), 216-224. doi: 10.1016/j.jfoodeng.2011.06.037
- Avila-de la Rosa, G.; Alvarez-Ramirez, J.; Vernon-Carter, E.J.; Carrillo-Navas, H.; Pérez-Alonso, C. Viscoelasticity of chia (Salvia hispanica L.) seed mucilage dispersion in the vicinity of an oil-water interface. Food Hydrocoll., 2015, 49, 200-207. doi: 10.1016/j.foodhyd.2015.03.017
- Bustamante, M.; Oomah, B.D.; Rubilar, M.; Shene, C. Effective lactobacillus plantarum and bifidobacterium infantis encapsulation with chia seed (Salvia hispanica L.) and flaxseed (Linum usitatissimum L.) mucilage and soluble protein by spray drying. Food Chem., 2017, 216, 97-105. doi: 10.1016/j.foodchem.2016.08.019 PMID: 27596397
- Timilsena, Y.P.; Wang, B.; Adhikari, R.; Adhikari, B. Preparation and characterization of chia seed protein isolatechia seed gum complex coacervates. Food Hydrocoll., 2016, 52, 554-563. doi: 10.1016/j.foodhyd.2015.07.033
- Behrouzian, F.; Razavi, S.M.A.; Phillips, G.O. Cress seed (Lepidium sativum) mucilage, an overview. Bioactive Carbohydrates and Dietary Fibre, 2014, 3(1), 17-28. doi: 10.1016/j.bcdf.2014.01.001
- Karazhiyan, H.; Razavi, S.M.A.; Phillips, G.O.; Fang, Y.; Al-Assaf, S.; Nishinari, K. Physicochemical aspects of hydrocolloid extract from the seeds of Lepidium sativum. Int. J. Food Sci. Technol., 2011, 46(5), 1066-1072. doi: 10.1111/j.1365-2621.2011.02583.x
- Naji, S.; Razavi, S.M.A.; Karazhiyan, H. Effect of thermal treatments on functional properties of cress seed (Lepidium sativum) and xanthan gums: A comparative study. Food Hydrocoll., 2012, 28(1), 75-81. doi: 10.1016/j.foodhyd.2011.11.012
- Karazhiyan, H.; Razavi, S.M.A.; Phillips, G.O. Extraction optimization of a hydrocolloid extract from cress seed (Lepidium sativum) using response surface methodology. Food Hydrocoll., 2011, 25(5), 915-920. doi: 10.1016/j.foodhyd.2010.08.022
- Jouki, M.; Khazaei, N.; Ghasemlou, M. HadiNezhad, M. Effect of glycerol concentration on edible film production from cress seed carbohydrate gum. Carbohydr. Polym., 2013, 96(1), 39-46. doi: 10.1016/j.carbpol.2013.03.077 PMID: 23688452
- Jafari, S.M.; Mahdavi-Khazaei, K.; Hemmati-Kakhki, A. Microencapsulation of saffron petal anthocyanins with cress seed gum compared with Arabic gum through freeze drying. Carbohydr. Polym., 2016, 140, 20-25. doi: 10.1016/j.carbpol.2015.11.079 PMID: 26876823
- Prajapati, V.D.; Maheriya, P.M.; Jani, G.K.; Patil, P.D.; Patel, B.N. Lepidium sativum Linn.: A current addition to the family of mucilage and its applications. Int. J. Biol. Macromol., 2014, 65, 72-80. doi: 10.1016/j.ijbiomac.2014.01.008 PMID: 24418343
- Bustamante, M.; Villarroel, M.; Rubilar, M.; Shene, C. Lactobacillus acidophilus La-05 encapsulated by spray drying: Effect of mucilage and protein from flaxseed (Linum usitatissimum L.). Lebensm. Wiss. Technol., 2015, 62(2), 1162-1168. doi: 10.1016/j.lwt.2015.02.017
- Wang, Y.; Wang, L.J.; Li, D.; Xue, J.; Mao, Z.H. Effects of drying methods on rheological properties of flaxseed gum. Carbohydr. Polym., 2009, 78(2), 213-219. doi: 10.1016/j.carbpol.2009.03.025
- Chen, H.H.; Xu, S.Y.; Wang, Z. Gelation properties of flaxseed gum. J. Food Eng., 2006, 77(2), 295-303. doi: 10.1016/j.jfoodeng.2005.06.033
- Hadad, S.; Goli, S.A.H. Fabrication and characterization of electrospun nanofibers using flaxseed (Linum usitatissimum) mucilage. Int. J. Biol. Macromol., 2018, 114, 408-414. doi: 10.1016/j.ijbiomac.2018.03.154 PMID: 29596931
- Lai, K.; How, Y.; Pui, L. Microencapsulation of Lactobacillus rhamnosus GG with flaxseed mucilage using co-extrusion technique. J. Microencapsul., 2021, 38(2), 134-148. doi: 10.1080/02652048.2020.1863490 PMID: 33306440
- Huq, T.; Khan, A.; Khan, R.A.; Riedl, B.; Lacroix, M. Encapsulation of probiotic bacteria in biopolymeric system. Crit. Rev. Food Sci. Nutr., 2013, 53(9), 909-916. doi: 10.1080/10408398.2011.573152 PMID: 23768183
- Livney, Y.D. Milk proteins as vehicles for bioactives. Curr. Opin. Colloid Interface Sci., 2010, 15(1-2), 73-83. doi: 10.1016/j.cocis.2009.11.002
- Gbassi, G.; Vandamme, T.; Ennahar, S.; Marchioni, E. Microencapsulation of Lactobacillus plantarum spp in an alginate matrix coated with whey proteins. Int. J. Food Microbiol., 2009, 129(1), 103-105. doi: 10.1016/j.ijfoodmicro.2008.11.012 PMID: 19059666
- Abd El-Salam, M.H.; El-Shibiny, S.; El-Shibiny, S. Preparation and properties of milk proteins-based encapsulated probiotics: a review. Dairy Sci. Technol., 2015, 95(4), 393-412. doi: 10.1007/s13594-015-0223-8
- Anandharamakrishnan, C.; Rielly, C.D.; Stapley, A.G.F. Effects of process variables on the denaturation of whey proteins during spray drying. Dry. Technol., 2007, 25(5), 799-807. doi: 10.1080/07373930701370175
- Rajam, R.; Karthik, P.; Parthasarathi, S.; Joseph, G.S.; Anandharamakrishnan, C. Effect of whey protein alginate wall systems on survival of microencapsulated Lactobacillus plantarum in simulated gastrointestinal conditions. J. Funct. Foods, 2012, 4(4), 891-898. doi: 10.1016/j.jff.2012.06.006
- Gunasekaran, S.; Ko, S.; Xiao, L. Use of whey proteins for encapsulation and controlled delivery applications. J. Food Eng., 2007, 83(1), 31-40. doi: 10.1016/j.jfoodeng.2006.11.001
- Fu, N.; Chen, X.D. Towards a maximal cell survival in convective thermal drying processes. Food Res. Int., 2011, 44(5), 1127-1149. doi: 10.1016/j.foodres.2011.03.053
- Tavares, G.M.; Croguennec, T.; Carvalho, A.F.; Bouhallab, S. Milk proteins as encapsulation devices and delivery vehicles: Applications and trends. Trends Food Sci. Technol., 2014, 37(1), 5-20. doi: 10.1016/j.tifs.2014.02.008
- Mortazavian, A.; Razavi, S.H.; Ehsani, M.R.; Sohrabvandi, S. Principles and methods of microencapsulation of probiotic microorganisms. Iran. J. Biotechnol., 2007, 5(1), 1-18.
- Estevinho, B.N.; Rocha, F.; Santos, L.; Alves, A. Microencapsulation with chitosan by spray drying for industry applications A review. Trends Food Sci. Technol., 2013, 31(2), 138-155. doi: 10.1016/j.tifs.2013.04.001
- Li, H.; Cheng, F.; Wei, X.; Yi, X.; Tang, S.; Wang, Z.; Zhang, Y.S.; He, J.; Huang, Y. Injectable, self-healing, antibacterial, and hemostatic N,O-carboxymethyl chitosan/oxidized chondroitin sulfate composite hydrogel for wound dressing. Mater. Sci. Eng. C, 2021, 118, 111324. doi: 10.1016/j.msec.2020.111324 PMID: 33254961
- Cheng, F.; Xu, L.; Dai, J.; Yi, X.; He, J.; Li, H. N Ocarboxymethyl chitosan/oxidized cellulose composite sponge containing ε-poly-l-lysine as a potential wound dressing for the prevention and treatment of postoperative adhesion. Int. J. Biol. Macromol., 2022, 209(Pt B), 2151-2164. doi: 10.1016/j.ijbiomac.2022.04.195 PMID: 35500774
- Kim, J.U.; Kim, B.; Shahbaz, H.M.; Lee, S.H.; Park, D.; Park, J. Encapsulation of probiotic Lactobacillus acidophilus by ionic gelation with electrostatic extrusion for enhancement of survival under simulated gastric conditions and during refrigerated storage. Int. J. Food Sci. Technol., 2017, 52(2), 519-530. doi: 10.1111/ijfs.13308
- Lim, G.P.; Ong, H.Y.; Lee, B.B.; Ahmad, M.S.; Singh, H.; Ravindra, P. Effects of process variables on size of chitosan-alginate capsules through extrusion-dripping method. Adv. Mat. Res., 2014, 925, 8-12. doi: 10.4028/ href='www.scientific.net/AMR.925.8' target='_blank'>www.scientific.net/AMR.925.8
- Alizadeh-Sani, M.; Ehsani, A.; Moghaddas Kia, E.; Khezerlou, A. Microbial gums: Introducing a novel functional component of edible coatings and packaging. Appl. Microbiol. Biotechnol., 2019, 103(17), 6853-6866. doi: 10.1007/s00253-019-09966-x PMID: 31289906
- Poli, F.; Momodu, D.; Spina, G.E.; Terella, A.; Mutuma, B.K.; Focarete, M.L.; Manyala, N.; Soavi, F. Pullulan-ionic liquid-based supercapacitor: A novel, smart combination of components for an easy-to-dispose device. Electrochim. Acta, 2020, 338, 135872. doi: 10.1016/j.electacta.2020.135872
- Fialho, A.M.; Moreira, L.M.; Granja, A.T.; Popescu, A.O.; Hoffmann, K. Sá-Correia, I. Occurrence, production, and applications of gellan: Current state and perspectives. Appl. Microbiol. Biotechnol., 2008, 79(6), 889-900. doi: 10.1007/s00253-008-1496-0 PMID: 18506441
- Kia, E.M.; Ghasempour, Z.; Ghanbari, S.; Pirmohammadi, R.; Ehsani, A. Development of probiotic yogurt by incorporation of milk protein concentrate (MPC) and microencapsulated Lactobacillus paracasei in gellan-caseinate mixture. Br. Food J., 2018.
- Aquinas, N.; Bhat, M.R.; Selvaraj, S. A review presenting production, characterization, and applications of biopolymer curdlan in food and pharmaceutical sectors. Polym. Bull., 2021, 1-23.
- Nishinari, K.; Zhang, H.; Funami, T. Curdlan. Handbook of hydrocolloids; Elsevier, 2021, pp. 887-921. doi: 10.1016/B978-0-12-820104-6.00005-X
- Shi, Y.; Liu, J.; Yan, Q.; You, X.; Yang, S.; Jiang, Z. In vitro digestibility and prebiotic potential of curdlan (1 → 3)-β- d -glucan oligosaccharides in Lactobacillus species. Carbohydr. Polym., 2018, 188, 17-26. doi: 10.1016/j.carbpol.2018.01.085 PMID: 29525154
- Putra, A.; Kakugo, A.; Furukawa, H.; Gong, J.P.; Osada, Y.; Uemura, T.; Yamamoto, M. Production of bacterial cellulose with well oriented fibril on PDMS substrate. Polym. J., 2008, 40(2), 137-142. doi: 10.1295/polymj.PJ2007180
- Retegi, A.; Gabilondo, N. Peña, C.; Zuluaga, R.; Castro, C.; Gañan, P.; de la Caba, K.; Mondragon, I. Bacterial cellulose films with controlled microstructuremechanical property relationships. Cellulose, 2010, 17(3), 661-669. doi: 10.1007/s10570-009-9389-7
- Palaniraj, A.; Jayaraman, V. Production, recovery and applications of xanthan gum by Xanthomonas campestris. J. Food Eng., 2011, 106(1), 1-12. doi: 10.1016/j.jfoodeng.2011.03.035
- Ding, W.K.; Shah, N.P. Effect of various encapsulating materials on the stability of probiotic bacteria. J. Food Sci., 2009, 74(2), M100-M107. doi: 10.1111/j.1750-3841.2009.01067.x PMID: 19323757
- Tantratian, S.; Wattanaprasert, S.; Suknaisilp, S. Effect of partial substitution of milk-non-fat with xanthan gum on encapsulation of a probiotic Lactobacillus. J. Food Process. Preserv., 2018, 42(7), e13673. doi: 10.1111/jfpp.13673
- Assadpour, E.; Jafari, S.M. Advances in spray-drying encapsulation of food bioactive ingredients: From microcapsules to nanocapsules. Annu. Rev. Food Sci. Technol., 2019, 10(1), 103-131. doi: 10.1146/annurev-food-032818-121641 PMID: 30649963
- Jacobsen, C. García-Moreno, P.J.; Mendes, A.C.; Mateiu, R.V.; Chronakis, I.S. Use of electrohydrodynamic processing for encapsulation of sensitive bioactive compounds and applications in food. Annu. Rev. Food Sci. Technol., 2018, 9(1), 525-549. doi: 10.1146/annurev-food-030117-012348 PMID: 29400995
- Okuro, P.K.; de Matos, F.E. Junior; Favaro-Trindade, C.S. Technological challenges for spray chilling encapsulation of functional food ingredients. Food Technol. Biotechnol., 2013, 51(2), 171.
- Fang, Z.; Bhandari, B. Spray drying, freeze drying and related processes for food ingredient and nutraceutical encapsulation. Encapsulation technologies and delivery systems for food ingredients and nutraceuticals; Elsevier, 2012, pp. 73-109.
- McClements, D.J.; Jafari, S.M. Improving emulsion formation, stability and performance using mixed emulsifiers: A review. Adv. Colloid Interface Sci., 2018, 251, 55-79. doi: 10.1016/j.cis.2017.12.001 PMID: 29248154
- Aloys, H.; Korma, S.A.; Alice, T.M.; Chantal, N.; Ali, A.H.; Abed, S.M. Microencapsulation by complex coacervation: Methods, techniques, benefits, and applications-A review. Amer. J. Food Sci. Nutrit. Res., 2016, 3(6), 188-192.
- Sohail, A.; Turner, M.S.; Coombes, A.; Bostrom, T.; Bhandari, B. Survivability of probiotics encapsulated in alginate gel microbeads using a novel impinging aerosols method. Int. J. Food Microbiol., 2011, 145(1), 162-168. doi: 10.1016/j.ijfoodmicro.2010.12.007 PMID: 21276627
- Lai, P.Y.; How, Y.H. Pui, LP Microencapsulation of Bifidobacterium lactis Bi-07 with galactooligosaccharides using co-extrusion technique. J. Microbiol. Biotechnol. Food Sci., 2022, 11(6), 2416. doi: 10.55251/jmbfs.2416
- Yong, A.K.L.; Lai, K.W.; Mohamad Ghazali, H.; Chang, L.S.; Pui, L.P. Microencapsulation of Bifidobacterium animalis subsp. lactis BB-12 with mannitol. Asia Pac. J. Mol. Biol. Biotechnol., 2020, 28(2), 32-42. doi: 10.35118/apjmbb.2020.028.2.04
- Farias, T.G.S.; Ladislau, H.F.L.; Stamford, T.C.M.; Medeiros, J.A.C.; Soares, B.L.M.; Stamford Arnaud, T.M.; Stamford, T.L.M. Viabilities of Lactobacillus rhamnosus ASCC 290 and Lactobacillus casei ATCC 334 (in free form or encapsulated with calcium alginate-chitosan) in yellow mombin ice cream. Lebensm. Wiss. Technol., 2019, 100, 391-396. doi: 10.1016/j.lwt.2018.10.084
- Shinde, T.; Sun-Waterhouse, D.; Brooks, J. Co-extrusion encapsulation of probiotic Lactobacillus acidophilus alone or together with apple skin polyphenols: An aqueous and value-added delivery system using alginate. Food Bioprocess Technol., 2014, 7(6), 1581-1596. doi: 10.1007/s11947-013-1129-1
- Silva, M.P.; Tulini, F.L.; Ribas, M.M.; Penning, M. Fávaro-Trindade, C.S.; Poncelet, D. Microcapsules loaded with the probiotic Lactobacillus paracasei BGP-1 produced by co-extrusion technology using alginate/shellac as wall material: Characterization and evaluation of drying processes. Food Res. Int., 2016, 89(Pt 1), 582-590. doi: 10.1016/j.foodres.2016.09.008 PMID: 28460954
- Lee, Y.; Ji, Y.R.; Lee, S.; Choi, M-J. Cho, Y Microencapsulation of probiotic Lactobacillus acidophilus KBL409 by extrusion technology to enhance survival under simulated intestinal and freeze-drying conditions. J. Microbiol. Biotechnol., 2019, 29(5), 721-730. doi: 10.4014/jmb.1903.03018
- Gul, O.; Dervisoglu, M. Application of multicriteria decision technique to determine optimum sodium alginate concentration for microencapsulation of Lactobacillus casei Shirota by extrusion and emulsification. J. Food Process Eng., 2017, 40(3), e12481. doi: 10.1111/jfpe.12481
- Shi, L.E.; Li, Z.H.; Li, D.T.; Xu, M.; Chen, H.Y.; Zhang, Z.L.; Tang, Z-X. Encapsulation of probiotic Lactobacillus bulgaricus in alginatemilk microspheres and evaluation of the survival in simulated gastrointestinal conditions. J. Food Eng., 2013, 117(1), 99-104. doi: 10.1016/j.jfoodeng.2013.02.012
Supplementary files
